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Introduction to Computer Vision

Computer Vision intersects with:
I Mathematics
I Machine Learning
I Artificial Intelligence
I Algorithms
I Signal Processing
I Computer Graphics
I Robotics



Computer Vision vs. Computer Graphics

I Graphics
Generate an image from scratch, using a known model

I Vision
Understand contents of the image, build a scene model



Problems and Breakthroughs

I Computer Vision is a huge field and our talk is short and
introductory

I Let’s go through the common topics and types of problems
you might encounter, while studying the field



Image Formation and Camera Models

I First step: understand devices acquiring your data and
how the image that you are processing is formed

I How? Compute the transformation matrices such that you
can project the 3D points in world coordinates into the 2D
image coordinates that you have



Image Formation and Camera Models



Multiview Geometry

I What can we do with multiple cameras?

1

1
http://vision.ucsd.edu/~manu/research.html

http://vision.ucsd.edu/~manu/research.html


Multiview Geometry: 3D Reconstruction

I What can we do with multiple cameras?

2

2
http://carlos-hernandez.org/research.html

http://carlos-hernandez.org/research.html


Feature Extraction

I Prerequisite: finding common points in series of images
I Solution: feature extraction and feature matching

I Breakthrough by David Lowe in ’99: SIFT features



Features: Harris Corners

I Developed in ’88, by C. Harris and M. Stephens 3

I Find difference in intensity, in all directions, for point (u, v)

3http://www.bmva.org/bmvc/1988/avc-88-023.pdf

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Features: Harris Corners

I OpenCV already has it (see practice section)

I Some sample results you can get:

4

4image from OpenCV tutorial



Features: Scale Invariant Feature Transformation

I SIFT features are probably one of the most important
breakthroughs in the field

I For any object, there are definitely many interesting points
that one can consider unique. So which ones should we
consider?

I SIFT features identifies in an image those feature vectors
that are invariant to scaling, rotation or translation



Features: Scale Invariant Feature Transformation

I High-level overview of the stages 5

I Scale-space extrema detection: searches over all scales
and image locations and keep potential interest points,
invariant to scale and orientation

I Keypoint localization: a model is fit to determine location
and scale and stable keypoints are kept

I Orientation assignment: orientation is assigned to each
keypoint, based on local image gradient direction

I Keypoint descriptor: around each keypoint, local
information is transformed into a representation tolerant to
shape distortion or illumination change

5
http://www.cs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

http://www.cs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf
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Features: Scale Invariant Feature Transformation



Stereo Matching

I What can we compute using this setup?



Stereo Matching: Disparity Map

I Disparity map: sensing depth

6

6
Seelinktotutorialinpracticesession

See link to tutorial in practice session


Image Segmentation

I Partition an image into multiple segments. Simplify the
image and make it easier to analyze

7

7
Jianbo Shi, http://cis.upenn.edu/~jshi

http://cis.upenn.edu/~jshi


Image Segmentation: Algorithms

I Graph Cuts!

8

8
Jianbo Shi, http://cis.upenn.edu/~jshi

http://cis.upenn.edu/~jshi


Image Segmentation: Algorithms

I Mean Shift Filtering
I Clustering using Gaussian Mixture Models



Structure from Motion

I Estimates 3D structure from sequence of 2D images

9

9
http://www.tnt.uni-hannover.de/

http://www.tnt.uni-hannover.de/


Reverse Part: Motion Estimation

I The reverse problem is an ill-posed problem, as it requires
estimating 3D motion from 2D images

10

I You’re using the technique every time you watch a movie,
as video compression determines motion vectors for
motion compensation

10
http://xiph.org/~xiphmont/demo/theora/demo2.html

http://xiph.org/~xiphmont/demo/theora/demo2.html


Computer Vision: Machine Learning?

I Maybe not as much ML so far as you might have expected
- you need some domain specific knowledge at first

I But there’s plenty of it: object tracking, object recognition,
hollistic scene understanding, image reconstruction and
many others
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Object Tracking: Particle Filters

I Hidden Markov Model

11

I State is described through a set of particles
I Alternating steps: prediction, update (measurement)

I Several lines of code at most!
I Motivating example, for studying them in-depth:
https://www.youtube.com/watch?v=B4ianyQTnCE

11
http://en.wikipedia.org/wiki/Particle_filter

https://www.youtube.com/watch?v=B4ianyQTnCE
http://en.wikipedia.org/wiki/Particle_filter
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Object Recognition

I Step 1: is there a car in this image?

I Step 2: what kind of cars are in this image?
I Step 3: where are the cars in this image?
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Object Recognition: Visual Words

I Idea: describe images through visual "words". How?

I Step 1. Get a large "positive" training set of images
containing the object you want to recognize

I Step 2. Extract local features from each of the images (8 x
8 pixel patches).

I Step 3. Use a clustering technique (e.g. k-means) to
identify the top-K most representative features. This is your
"visual vocabulary". What distance can you use?

I Do the same for a "negative" training set
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Object Recognition: Histograms by Visual Words



Object Recognition: Naive Bayes

I Now an image is represented by a set of words (w1, ...,wn)

I Why not use Naive Bayes we discussed about yesterday?
P(y = (has car)|w1, ...,wn) ∝

P(y = (has car))
∏

i P(wi |y = (has car))

I Nice read about visual words and their applications
http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/IRBG.pdf

I Solving remaining steps, is a fairly tough task

http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/IRBG.pdf
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Object Recognition: State of the Art

I ImageNet Competition (yearly) 12

I 72%, 2010
I 74%, 2011
I 85%, 2012

I Guess the technology used in 2012!

12
http://www.image-net.org/
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Questions?

I Questions?

I Next: let’s play a bit with OpenCV in python
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End of workshop!

I Hope you had fun and learned more about ML!

I Feel free to keep in touch, come back with questions,
feedback, ideas or anything else. Thanks for attending!
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