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Quick Review: Discriminative versus Generative Models

I Both models use in the end P(y |x) to assign the label

I Discriminative models learn it directly
I Generative models model P(x , y) and then use Bayes rule

I Assume data set {(xi , yi )} = {(1, 0), (1, 1), (0, 1)}
I Complete the following tables

P(y|x)
y = 0 y = 1

x = 0 ? ?
x = 1 ? ?

P(x,y)
y = 0 y = 1

x = 0 ? ?
x = 1 ? ?
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I Discriminative models learn it directly
I Generative models model P(x , y) and then use Bayes rule

I Assume data set {(xi , yi )} = {(1, 0), (1, 1), (0, 1)}
I Complete the following tables

P(y|x)
y = 0 y = 1

x = 0 0 1
x = 1 1/2 1/2

P(x,y)
y = 0 y = 1

x = 0 0 1/3
x = 1 1/3 1/3



Quick Review: Discriminative versus Generative Models

I One should almost always prefer discriminative models
over generative models, when possible
["On Discriminative vs. Generative classifiers", Andrew Ng and Michael Jordan, NIPS ’01]



The Gaussian Distribution (Normal Distribution)

I Parametrized by mean µ and variance σ2 (moments)

I Formally, the function is as follows

I Plots for various values

http://en.wikipedia.org/wiki/Normal_distribution
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The Gaussian Distribution: Motivation

I Why care about the normal distribution?

I Because of CLT (Central Limit Theorem)

I Assume you have many i.i.d. observations of a random
variable with unknown underlying distribution

I One can simply compute the mean µ and variance σ2 of
these observations and approximate the distribution
through N (µ, σ2)

I ... it’s also incredibly simple, though it might look
complicated
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The Bias - Variance Tradeoff

MSE = 1
n
∑

i
(ŷi − yi)

2

I The mean squared error of a classifier can be split as
I MSE = bias2 + variance + noise [homework: research the math behind it1]

I To explain what the bias and variance are, assume that
one trains the same model multiple times on the different
subsets of data

1
http://www.cc.gatech.edu/~lebanon/notes/estimators1.pdf
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Bias of an Estimator

I The bias is defined as the difference between the average
predictions of the trained models and the correct prediction

I Intuitevely, if we keep re-training the model on different
datasets, for each value to be predicted, its estimates are
off in some direction, on average, from the true prediction

I Represents a systematic error due to the model.
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Variance of an Estimator

I The variance of an estimator can be seen as the variability
of the model for a specific data point

I That is, how does the model’s prediction vary, accross its
different realizations (trainings)

I Represents a systematic error due to the impact of data
variability on the model
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Dartboard: Bias and Variance

Dartboard analogy, Introduction to the Practice of Statistics, Moore & McCabe, 2002

Why do we say we trade one against the other in ML?



Can we do something to reduce them?

I First we should somehow make sure our evaluation
methods are able to take them into account, and the most
commonly used is cross validation

I Higher dimensionality often implies higher variance and
one could reduce it through principal component
analysis or feature selection

I Ensemble methods are often used, bagging is used to
reduce variance, while boosting to reduce bias [homework!]
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Testing: N-Fold Cross-Validation

I We have one dataset and we need to use it both for
training and validation in order to evaluate our model.
How can we do this best?

I Split the dataset into N subsets and use N-1 of those for
training and one for testing

I Average the MSE accross all N trials
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Testing: N-Fold Cross-Validation

Figure : 5-Fold Cross-Validation



Testing: N-Fold Cross-Validation

I Advantage: makes best use of available data
I Disadvantage: very expensive computationally
I Leave-one-out (LOO): N = number of samples

I scikit-learn already has everything you need 2

2
http://scikit-learn.org/stable/modules/cross_validation.html
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Quick Review

I General workflow of supervised learning

I Statistics behind the data
I Types of models and some particular models
I Optimization criterias and kinds of error rates

I How about getting the most out of the data we have?
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Feature Engineering

I Tough problem, this is where a lot of engineering time goes
in the industry

I Everyone’s dream of automating this part is getting closer
to reality through deep learning, but there’s still a long way

I Unfortunately, there’s no recipe for this part and domain
specific knowledge for designing features leads to huge
improvements
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Feature Engineering: Workflow

I Understand the problem you’re trying to solve, read
through bibliography what characteristics of data seem the
most relevant (high chance somebody else did it before?)

I Some of the features you engineer might not help at all or
even have a negative impact, when combined with the
specific model you’re using

I Understand how much the model is able ignore features
that "hurt" it (e.g. in linear models, how many weights are
zero?)

I Experimentally vary the subset of features you’re using

I Let’s look at a couple of problems and their features
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Feature Engineering: On-line Handwriting Recognition

Data: {pi = (xi , yi , ti)} (two-dimensional points with time)

Two classes of features:

I Features for each point pi , considering its neighbours

I Off-line matrix representation of the handwriting

["Feature Selection for On-Line Handwriting Recognition of Whiteboard Notes", M. Liwicki and H. Bunke, ’07]
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Feature Engineering: On-line Handwriting Recognition

Data: {pi = (xi , yi , ti)} (two-dimensional points with time)

Some of the first class features:
I [continous] normalized x, y coordinates
I [boolean] pen-up/pen-down
I [continous] cosine and sine of the writing direction
I [continous] average square distance to vicinity points
I [continous] length and aspect of trajectory
I [continous] angle of the straight line between vicinity ends

["Feature Selection for On-Line Handwriting Recognition of Whiteboard Notes", M. Liwicki and H. Bunke, ’07]



Feature Engineering: Arrhythmia Analysis

Goal: identify one of the 16 types of arrhythmia
Data: ecg images of patients (279 features)

Types of features:

I Patient personal records
I Features extracted from ECG

["A Supervised Machine Learning Algorithm for Arrhythmia Analysis", H. A. Guvenir et al., ’98]
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Feature Engineering: Arrhythmia Analysis

Goal: identify one of the 16 types of arrhythmia
Data: ecg images of patients

Some of the patient characteristics:
I [continous] age
I [boolean] sex
I [continous] height, weight

Some of the patient characteristics:
I [continous] average QRS duration in msec.
I [continous] average duration between onset of P and Q
I [continous] average width of Q, R, S waves
I [boolean] existence of notched R,P,T wave

["A Supervised Machine Learning Algorithm for Arrhythmia Analysis", H. A. Guvenir et al., ’98]



Feature Engineering: Titanic [Kaggle Tutorial]

Goal: predict which types of people are going to survive
Data: passengers information

Some of the features:
I [continous] passenger class
I [boolean] sex
I [continous] age
I [continous] number of siblings/spouses aboard
I [continous] number of parents/children aboard
I [continous] ticket number
I [continous] port of embarkation

Check it out at: http://www.kaggle.com/c/titanic-gettingStarted

http://www.kaggle.com/c/titanic-gettingStarted


Feature Engineering: ?

I What particular problems are you interested in?



Feature Engineering: Preprocessing

I Preprocessing is an important step in helping the model
get the most out of the data

I Luckily, scikit-learn implements a lot of these methods 3

3
http://scikit-learn.org/stable/modules/preprocessing.html

http://scikit-learn.org/stable/modules/preprocessing.html


Feature Preprocessing: Missing Values

I The dataset might have missing or corrupted values,
especially in the case where features were extracted
manually by experts or through crowd-sourcing

I Solution 1: replace missing values with mean, median or
the most frequent values

I Solution 2: first cluster entries together through similarity
between known features, and then complete missing ones



Feature Prepocessing: Rescaling and Normalization

I Each numerical feature has it’s own dimensionality
(meters, kg, nanometers, seconds)

I Models might be sensible to these simple dimensionality
variations

I Think of linear models, regularization and the impact of
feature dimensionality on the weights

I Common approach is to normalize features to have zero
mean and unit variance, thus following N (0,1), regardless
whether they are actually normally distributed
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Feature Prepocessing: Correlations

I Correlations between features [how do you identify them?] are subtle
and can impact the performance of the underlying model

["Feature Selection for On-Line Handwriting Recognition of Whiteboard Notes" M. Liwicki and H. Bunke, ’07]



Principal Component Analysis: Overview

I Simple unsupervised model for dimensionality reduction
I Build new K-dimensional of uncorrelated features

onlinecourses.science.psu.edu/stat857

onlinecourses.science.psu.edu/stat857


Principal Component Analysis: Understanding Data

I Simple model to start and understand better the data
I Simple to implement, and available in scikit-learn

I Eigenfaces - 4096 features (64 x 64)→ 16 features
http://scikit-learn.org/0.13/modules/decomposition.html

http://scikit-learn.org/0.13/modules/decomposition.html


Nonlinear Models

I The input-output mapping function can be nonlinear

I Through nonlinear models one can learn this mapping
I Through nonlinear models, such as deep learning, one

might also project data in a new higher-order feature
spaces



Nonlinear Models: Naive Bayes

I Naive Bayes is a popular model, often used as benchmark

I Recall Bayes Rule

P(y |x) = P(y)P(x |y)
P(x)

I Terminology

Posterior = Prior x Likelihood
Evidence
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Nonlinear Models: Naive Bayes

I We’re interested in defining the prior and likelihood

I The prior P(y) can either be modeled from train data
(counts), or if there’s a known distribution of the class
labels, it can be directly used

I Consider x = (x1, x2, ..., xn), then the likelihood is
P(x |y) = P(x1, x2, ..., xn|y) =
P(x1|y)P(x2, x3, ..., xn|y , x1) =

P(x1|y)P(x2|y , x1)P(x3, ..., xn|y , x1, x2) =
P(x1|y)P(x2|y , x1)P(x3|y , x1, x2)..P(xn|y , x1, ..., xn−1)
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Nonlinear Models: Naive Bayes

I The naive part: features are conditionally independent

I Mathematically, P(xi |y , x1, ...xi−1) = P(xi |y)

I Back to our original problem
P(y |x1, ..., xn) ∝ P(y)

∏
i P(xi |y)

I So what about P(xi |y)?
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Nonlinear Models: Naive Bayes

I Think about spam classification of a document (words wi ):
P(y = spam|w1, ...wn) ∝ P(y = spam)

∏
i P(wi |y = spam)

I How can we compute P(wi |y = spam) from training set?
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Nonlinear Models: Gaussian Naive Bayes

I In the case of continous features, the probability is often
modeled using a normal distribution

I The mean and variance are computed from the feature
values found in the training data

P(xi = v |y) = 1√
2πσ2

xi ,y
exp

−
(v−µxi ,y )

2

2σ2
xi ,y



Questions?

I Questions?

I Next: classifying arrhythmia patterns using naive bayes



Questions?

I Questions?

I Next: classifying arrhythmia patterns using naive bayes


	Quick Review
	Model Complexity
	Bias - Variance Tradeoff

	Performance
	N-Fold Cross-Validation

	Features
	Feature Engineering
	Feature Preprocessing

	Nonlinear Models
	Naive Bayes

	Arrhythmia Classification

