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Preface 

The recent European Programme Specifications have forced a reassessment of the 
structure and syllabi of the entire system of Italian higher education, and an 
ensuing rethinking of the teaching material. 

Nowadays many lecture courses, especially rudimentary ones, demand that stu-
dents master a large amount of theoretical and practical knowledge in a span of 
just few weeks, in order to gain a small number of credits. As a result, instructors 
face the dilemma of how to present the subject matter. They must make appro-
priate choices about lecture content, the comprehension level required from the 
recipients, and which kind of language to use. 

This textbook is meant to help students acquire the basics of Calculus in cur-
ricula where mathematical tools play a crucial part (so Engineering, Physics, Com-
puter Science and the like). The fundamental concepts and methods of Differential 
and Integral Calculus for functions of one real variable are presented with the pri-
mary purpose of letting students assimilate their effective employment, but with 
critical awareness. The general philosophy inspiring our approach has been to sim-
plify the system of notions available prior to the university reform; at the same 
time we wished to maintain the rigorous exposition and avoid the trap of compiling 
a mere formulary of ready-to-use prescriptions. 

From this point of view, the treatise is 'stratified' in three layers, each corre-
sponding to increasingly deeper engagement by the user. The intermediate level 
corresponds to the unabridged text. Notions are first presented in a naive manner, 
and only later defined precisely. Their features are discussed, and computational 
techniques related to them are exhaustively explained. Besides this, the fundamen-
tal theorems and properties are followed by proofs, which are easily recognisable 
by the font's colour. 

At the elementary level the proofs and the various remarks should be skipped. 
For the reader's sake, essential formulas, and also those judged important, have 
been highlighted in blue, and gray, respectively. Some tables, placed both through-
out and at the end of the book, collect the most useful formulas. It was not our 
desire to create a hierachy-of-sorts for theorems, instead to leave the instructor 
free to make up his or her own mind in this respect. 
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The deepest-reaching level relates to an internet website, and enables the 
strongly motivated reader to explore further into the subject. We believe that 
the general objectives of the Programme Specifications are in line with the fact 
that willing and able pupils will build a solid knowledge, in the tradition of Italy's 
academic education. The book contains several links to a webpage where the reader 
will find complements to, and insight in various topics. In this fashion every result 
that is stated possesses a corresponding proof. 

To make the approach to the subject less harsh, and all the more gratifying, 
we have chosen a casual presentation in the first two chapters, where relevant 
definitions and properties are typically part of the text. From the third chapter 
onwards they are highlighted by the layout more discernibly. Some definitions and 
theorems are intentionally not stated in the most general form, so to privilege 
a brisk understanding. For this reason a wealth of examples are routinely added 
along the way right after statements, and the same is true for computational 
techniques. Several remarks enhance the presentation by underlining, in particular, 
special cases and exceptions. Each chapter ends with a large number of exercises 
that allow one to test on the spot how solid one's knowledge is. Exercises are 
grouped according to the chapter's major themes and presented in increasing order 
of difficulty. All problems are solved, and at least half of them chaperone the reader 
to the solution. 

We have adopted the following graphical conventions for the constituent build-
ing blocks: definitions appear on a gray background, theorems' statements on blue. 
a vertical coloured line marks examples, and boxed exercises, like | 12. |, indicate 
that the complete solution is provided. 

An Italian version of this book has circulated for a number of years in Italy, 
and has been extensively tested at the Politecnico in Turin. We wish to dedicate 
this volume to Professor Guido Weiss of Washington University in St. Louis, a 
master in the art of teaching. Generations of students worldwide have benefited 
from Guido's own work as a mathematician; we hope that his own clarity is at 
least partly reflected in this textbook. 

We are thankful to the many colleagues and students whose advice, suggestions 
and observations have allowed us to improve the exposition. Special thanks are due 
to Dr. Simon Chiossi, for the careful and effective work of translation. 

Torino, June 2008 Claudio Canuto, Anita Tabacco 



Online additional material 

At the address 

http://calvino.polito.it/canuto-tabacco/analysis_l 

further material and complementary theory are available. These online notes are 
organised under the following headings: 

Principle of Mathematical Induction 
The number e 
Elementary functions 
Limits 
Continuous functions 
Sequences 
Numerical series 
Derivatives 
De THopital's Theorem 
Convex functions 
Taylor expansions 
Cauchy integral 
Riemann integral 
Improper integrals 

and provides, in particular, rigorous proofs for the statements that are not shown 
in the text. The reader is encouraged to refer to the relevant section whenever the 
symbol --^ appears throughout the treatise, as in ' ^ The nxmbex e. 

http://calvino.polito.it/canuto-tabacco/analysis_l
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Basic notions 

In this introductory chapter some mathematical notions are presented rapidly, 
which lie at the heart of the study of Mathematical Analysis. Most should already 
be known to the reader, perhaps in a more thorough form than in the following 
presentation. Other concepts may be completely new, instead. The treatise aims 
at fixing much of the notation and mathematical symbols frequently used in the 
sequel. 

1.1 Sets 

We shall denote sets mainly by upper case letters X, F , . . . , while for the members 
or elements of a set lower case letters x, ^ , . . . will be used. When an element x is 
in the set X one writes x G X ('x is an element of X', or 'the element x belongs 
to the set X') , otherwise the symbol x 0 X is used. 

The majority of sets we shall consider are built starting from sets of numbers. 
Due to their importance, the main sets of numbers deserve special symbols, namely: 

N = set of natural numbers 
Z = set of integer numbers 
Q = set of rational numbers 
M = set of real numbers 
C = set of complex numbers. 

The definition and main properties of these sets, apart from the last one, will 
be briefiy recalled in Sect. 1.3. Complex numbers will be dealt with separately in 
Sect. 8.3. 

Let us fix a non-empty set X, considered as ambient set. A subset A of X 
is a set all of whose elements belong to X; one writes A C X ('A is contained, 
or included, in X') if the subset A is allowed to possibly coincide with X, and 
A C X {'A is properly contained in X') in case A is a proper subset of X, that 
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Figure 1.1. Venn diagrams (left) and complement (right) 

is, if it does not exhaust the whole X. From the intuitive point of view it may 
be useful to represent subsets as bounded regions in the plane using the so-called 
Venn diagrams (see Fig. 1.1, left). 

A subset can be described by listing the elements of X which belong to it 

^ = |a: ,y, . . . ,2^}; 

the order in which elements appear is not essential. This clearly restricts the use 
of such notation to subsets with few elements. More often the notation 

A=^{xeX \ p{x)} or A = {x eX : p{x)} 

will be used (read 'A is the subset of elements x of X such that the condition p{x) 
holds'); p{x) denotes the characteristic property of the elements of the subset, i.e., 
the condition that is valid for the elements of the subset only, and not for other 
elements. For example, the subset A of natural numbers smaller or equal than 4 
may be denoted 

A - { 0 , 1 , 2 , 3 , 4 } or A = {xeN\x<A}. 

The expression p{x) ='x < 4' is an example of predicate, which we will return to 
in the following section. 

The collection of all subsets of a given set X forms the power set of X, and 
is denoted by V{X). Obviously X G V{X). Among the subsets of X there is the 
empty set, the set containing no elements. It is usually denoted by the symbol 
0, so 0 G V{X). All other subsets of X are proper and non-empty. 

Consider for instance X — {1,2,3} as ambient set. Then 

V{X) = { 0, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X}. 

Note that X contains 3 elements (it has cardinality 3), while V{X) has 8 = 2^ 
elements, hence has cardinality 8. In general if a finite set (a set with a finite 
number of elements) has cardinality n, the power set of X has cardinality 2"̂ . 
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Starting from one or more subsets of X, one can define new subsets by means 
of set-theoretical operations. The simplest operation consists in taking the com-
plement: if 4̂ is a subset of X, one defines the complement of A (in X) to be the 
subset 

CA^{xeX \x^A} 

made of all elements of X not belonging to A (Fig. 1.1, right). 
Sometimes, in order to underline that complements are taken with respect to 

the ambient space X, one uses the more precise notation CxA. The following 
properties are immediate: 

CX = C0 = X, C{CA) = A. 

For example, if X = N and A is the subset of even numbers (multiples of 2), then 
CA is the subset of odd numbers. 

Given two subsets A and 5 of X, one defines intersection of A and B the 
subset 

AnB = {xeX \ x€ Aandme B} 

containing the elements of X that belong to both A and B, and union of A and 
B the subset 

AU B = {x e X \ X e A ov X e B} 

made of the elements that are either in 4̂ or in 5 (this is meant non-exclusively, 
so it includes elements of An B), see Fig. 1.2. 

We recall some properties of these operations. 

i) Boolean properties: 

A n C A = 0, AUCA = X; 

Figure 1.2. Intersection and union of sets 
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ii) commutative, associative and distributive properties: 

AnB = BnA, 
{AnB)nC = An{BnC), 

{AnB)uC = {AuC)n{Bu C), 

AUB = BUA, 

{AUB)UC = AU{BUC), 

{AUB)nC={AnC)U{Bn C); 

Hi) De Morgan laws: 

C{A nB)^CAU CB, C{A UB)=CAn CB. 

Notice that the condition AC. B \s equivalent to AC]B — A^ OY A\J B = B. 

There are another couple of useful operations. The first is the difference be-
tween a subset A and a subset B^ sometimes called relative complement of B 
in A 

A\B = {x e A\ X ^ B] = Ar\CB 

(read ' ^ minus 5 ' ) , which selects the elements of A that do not belong to B. The 
second operation is the symmetric difference of the subsets A and B 

AAB = {A\B)iJ{B\A) = {AlJB)\{Ar\B), 

which picks out the elements belonging either to A or B, but not both (Fig. 1.3). 

For example, let X = N, 4̂ be the set of even numbers and 5 = {n G N | n < 
10} the set of natural numbers smaller or equal than 10. Then 5 \ A = {1,3, 5, 7,9} 
is the set of odd numbers smaller than 10, A\B is the set of even numbers larger 
than 10, and AAB is the union of the latter two. 

Figure 1.3. The difference A\B (left) and the symmetric difference AAB (right) of 
two sets 
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1.2 Elements of mathematical logic 

In Mathematical Logic a formula is a declarative sentence, or statement, the t ru th 
or falsehood of which can be established. Thus within a certain context a formula 
carries a truth value: True or False. The t ru th value can be variously represented, 
for instance using the binary value of a memory bit (1 or 0), or by the state of 
an electric circuit (open or close). Examples of formulas are: '7 is an odd number ' 
(True), '3 > A/12 ' (False), 'Venus is a star ' (False), 'This text is writ ten in english' 
(True), et cetera. The statement 'Milan is far from Rome' is not a formula, at least 
without further specifications on the notion of distance; in this respect 'Milan is 
farther from Rome than Turin' is a formula. We shall indicate formulas by lower 
case letters p, g', r , . . . . 

1.2.1 C o n n e c t i v e s 

New formulas can be built from old ones using logic operations expressed by certain 
formal symbols, called connectives. 

The simplest operation is called negat ion: by the symbol ^p (spoken 'not p') 
one indicates the formula whose t ru th value is True if p is False, and False if p 
is True. For example if p = ' 7 is a rational number ' , then -^p = ' 7 is an irrational 
number' . 

The c o n j u n c t i o n of two formulas p and q is the formula p A q ('p and Q') , 
which is t rue if both p and q are true, false otherwise. The d i s junct ion of p and 
q is the formula p\/ q {'p or q^); the disjunction is false if p and q are both false, 
true in all other cases. Let for example p = ' 7 is a rational number ' and q = ^1 is 
an even number'; the formula p A g' = '7 is an even rational number ' is false since 
q is false, and p V g = '7 is rational or even' is t rue because p is true. 

Many statements in Mathematics are of the kind 'If p is true, then q is t rue ' , 
also read as 'sufficient condition for q to be true is tha t p be t rue ' , or 'necessary 
condition for p to be true is tha t q be t rue ' . Such statements are different ways 
of expressing the same formula p ^ q {'p implies q\ or 'if p, then g''), called 
impl icat ion , where p is the 'hypothesis' or 'assumption' , q the 'consequence' 
or 'conclusion'. By definition, the formula p ^ q is false if p is t rue and q false, 
otherwise it is always true. In other words the implication does not allow to deduce 
a false conclusion from a true assumption, yet does not exclude a t rue conclusion 
being implied by a false hypothesis. Thus the statement 'if it rains, I'll take the 
umbrella' prevents me from going out without umbrella when it rains, but will not 
interfere with my decision if the sky is clear. 

Using p and q it is easy to check tha t the formula p ^ q has the same t ru th 
value of ^pV q. Therefore the connective ^ can be expressed in terms of the basic 
connectives ^ and V. 

Other frequent s tatements are structured as follows: ' the conclusion q is t rue 
if and only if the assumption p is t rue ' , or 'necessary and sufficient condition for a 
true ^ is a t rue p'. Statements of this kind correspond to the formula p ^ q ('p is 
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(logically) equivalent to g'), called logic equivalence. A logic equivalence is true 
if p and q are simultaneously true or simultaneously false, and false if the truth 
values of p and q differ. An example is the statement 'a natural number is odd if 
and only if its square is odd'. The formula p <^ g is the conjuction oi p ^ q and 
q => p^ m other words p ^ q and {p => q) /\ {q => p) have the same truth value. 
Thus the connective <=> can be expressed by means of the basic connectives -•, V 
and A. 

The formula p ^ q {SL statement like 'if p, then g') can be expressed in various 
other forms, all logically equivalent. These represent rules of inference to attain 
the truth of the implication. For example, p ^ q is logically equivalent to the 
formula ^q ^ ->p, called contrapositive formula; symbolically 

(p^q) ^^^ {-^q=>-^p). 

This is an easy check: p ^ g is by definition false only when p is true and q false, 
i.e., when ^q is true and ^p false. But this corresponds precisely to the falsehood 
of -ig => ^p. Therefore we have established the following inference rule: in order 
to prove that the truth of p implies the truth of g, one may assume that the 
conclusion q is false and deduce from it the falsehood of the assumption p. To 
prove for instance the implication 'if a natural number is odd, then 10 does not 
divide it', we may suppose that the given number is a multiple of 10 and (easily) 
deduce that the number must be even. 

A second inference rule is the so-called proof by contradiction, which we will 
sometimes use in the textbook. This is expressed by 

{p=^q) <^^ (pA^q^^p). 

In order to prove the implication p => q one can proceed as follows: suppose p is 
true and the conclusion q is false, and try to prove the initial hypothesis p false. 
Since p is also true, we obtain a self-contradictory statement. 

A more general form of the proof by contradiction is given by the formula 

{p ^ q) <<=^ {p A-^q =^ r A ->r), 

where r is an additional formula: the implication p ^ q is equivalent to assuming 
p true and q false, then deducing a simultaneously true and false statement r (note 
that the formula r A ->r is always false, whichever the truth value of r). 

1.2.2 Predicates 

Let us now introduce a central concept. A predicate is an assertion or property 
p{x^...) that depends upon one or more variables x , . . . belonging to suitable sets, 
and which becomes a formula (hence true or false) whenever the variables are 
fixed. Let us consider an example. If x is an element of the set of natural numbers, 
the assertion p{x) — 'x is an odd number' is a predicate: p{7) is true, p{10) false 



1.2 Elements of mathematical logic 7 

et c. If X and y denote students of the Polytechnic of Turin, the statement p(x, y) 
— 'x and y follow the same lectures' is a predicate. 

Observe that the aforementioned logic operations can be applied to predicates 
as well, and give rise to new predicates (e.g., -'p(x), p{x) V q{x) and so on). This 
fact, by the way, establishes a precise relation among the essential connectives 
^, A, V and the set-theoretical operations of taking complements, intersection and 
union. In fact, recalling the definition A = {x ^ X \ p{x)} of subset of a given 
set X, the 'characteristic property' p{x) of the elements of A is nothing else but 
a predicate, which is true precisely for the elements of A. The complement CA is 
thus obtained by negating the characteristic property 

CA = {xeX\ -p(x)}, 

while the intersection and union of A with another subset B — {x ^ X \ q{x)} are 
described respectively by the conjuction and the disjunction of the corresponding 
characteristic properties: 

AnB = {x eX \ p{x) A q{x)}, AUB = {x e X \ p{x) V q{x)}. 

The properties of the set-theoretical operations recalled in the previous section 
translate into similar properties enjoyed by the logic operations, which the reader 
can easily write down. 

1.2.3 Quantifiers 

Given a predicate p(x), with the variable x belonging to a certain set X, one is 
naturally lead to ask whether p{x) is true for all elements x, or if there exists at 
least one element x making p{x) true. When posing such questions we are actually 
considering the formulas 

Vx, p{x) (read 'for all x, p{x) holds ^) 

and 

3x, p{x) (read 'there exists at least one x, such thatp{x) holds'). 

If indicating the set to which x belongs becomes necessary, one writes 'Vx G 
X, p{xy and '3x G X, p(x)'. The symbol V ('for all') is called universal quan-
tifier, and the symbol 3 ('there exists at least') is said existential quantifier. 
(Sometimes a third quantifier is used, 3!, which means 'there exists one and only 
one element' or 'there exists a unique'.) 

We wish to stress that putting a quantifier in front of a predicate transforms 
the latter in a formula, whose truth value may be then determined. The predicate 
p{x) — 'x is strictly less than 7' for example, yields the false formula 'Vx G N, p{xy 
(since p(8) is false, for example), while '3x G N, p(x)' is true (e.g., x = 6 satisfies 
the assertion). 
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The effect of negation on a quantified predicate must be handled with attention. 
Suppose for instance x indicates the generic student of the Polytechnic, and let p{x) 
= 'x is an Italian citizen'. The formula 'Vx, p(x)' ('every student of the Polytechnic 
has Italian citizenship') is false. Therefore its negation '-i(Vx, p(x))' is true, but 
beware: the latter does not state that all students are foreign, rather that 'there 
is at least one student who is not Italian'. Thus the negation of 'Vx, p(x)' is 
'3x, -ip(x)'. We can symbohcally write 

n(Vx, p{x)) 3x, -ip(x). 

Similarly, it is not hard to convince oneself of the logic equivalence 

n(3x, p{x)) Vx, -'p(x). 

If a predicate depends upon two or more arguments, each of them may be 
quantified. Yet the order in which the quantifiers are written can be essential. 
Namely, two quantifiers of the same type (either universal or existential) can be 
swapped without modifying the truth value of the formula; in other terms 

VxVy, p{x,y) 
3x3y, p{x,y) 

MyMx, p{x,y), 
3y3x, p{x,y). 

On the contrary, exchanging the places of different quantifiers usually leads to 
different formulas, so one should be very careful when ordering quantifiers. 

As an example, consider the predicate p(x, y) = 'x > y\ with x, y varying in the 
set of natural numbers. The formula 'Vx V?/, p{x^ yY means 'given any two natural 
numbers, each one is greater or equal than the other', clearly a false statement. 
The formula 'Vx3y, p{x,y)\ meaning 'given any natural number x, there is a 
natural number y smaller or equal than x', is true, just take y = x for instance. 
The formula 'BxV^/, p{x,yy means 'there is a natural number x greater or equal 
than each natural number', and is false: each natural number x admits a successor 
X + 1 which is strictly bigger than x. Eventually, '3x3?/, p(x,?/)' ('there are at 
least two natural numbers such that one is bigger or equal than the other') holds 
trivially. 

1.3 Sets of numbers 

Let us briefiy examine the main sets of numbers used in the book. The discussion 
is on purpose not exhaustive, since the main properties of these sets should already 
be known to the reader. 

The set N of na tu ra l numbers . This set has the numbers 0,1, 2 , . . . as elements. 
The operations of sum and product are defined on N and enjoy the well-known 
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commutative, associative and distributive properties. We shall indicate by N+ the 
set of natural numbers different from 0 

N+ = N \ { 0 } . 

A natural number n is usually represented in base lOhy the expansion n = c^lO^ + 
c/c-ilO^"^ H h Clio + Co, where the c^'s are natural numbers from 0 to 9 called 
decimal digits; the expression is unique if one assumes Ck ^ 0 when n ^ 0. We 
shah write n = {ckCk-i . . . ciCo)io5 or more easily n = CkCk-i . . . CICQ. Any natural 
number > 2 may be taken as base, instead of 10; a rather common alternative is 
2, known as binary base. 

Natural numbers can also be represented geometrically as points on a straight 
line. For this it is sufficient to fix a first point O on the line, called origin^ and 
associate it to the number 0, and then choose another point P different from 
O, associated to the number 1. The direction of the line going from O to P is 
called positive direction, while the length of the segment OP is taken as unit for 
measurements. By marking multiples of OP on the line in the positive direction 
we obtain the points associated to the natural numbers (see Fig. 1.4). 

T h e se t Z of i n t e g e r numbers . This set contains the numbers 0 , 4 - 1 , - 1 , 
-f 2, — 2 , . . . (called integers). The set N can be identified with the subset of Z 
consisting of 0, + 1 , + 2 , . . . The numbers + 1 , + 2 , . . . (—1, —2,. . . ) are said positive 
integers (resp. negative integers). Sum and product are defined in Z, together with 
the difference, which is the inverse operation to the sum. 

An integer can be represented in decimal base z = ±c/eC/c_i . . . CICQ. The geo-
metric picture of negative integers extends tha t of the natural numbers to the left 
of the origin (Fig. 1.4). 

T h e se t Q of rat ional n u m b e r s . A rational number is the quotient, or ratio, 
of two integers, the second of which (denominator) is non-zero. Without loss of 
generality one can assume tha t the denominator is positive, whence each rational 
number, or rational for simplicity, is given by 

z 
r = —, with z G Z and n G N+. 

n 

Moreover, one may also suppose the fraction is reduced, tha t is, z and n have no 
common divisors. In this way the set Z is identified with the subset of rationals 
whose denominator is 1. Besides sum, product and difference, the operation of 
division between two rationals is defined on Q, so long as the second rational is 
other than 0. This is the inverse to the product. 

- 2 - 1 0 1 I 2 

O P 

Figure 1.4. Geometric representation of numbers 
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A rational number admits a representation in base 10 of the kind r = 
±CkCk-i • • • CiCo.c?irf2 • • •, corresponding to 

r = ±{cklO^ + Cfc_ilO^-^ + • • • + Clio + CO + c^ilO"^ + ^210"^ + •••). 

The sequence of digits di, ^2,. • • written after the dot satisfies one and only one of 
the following properties: i) all digits are 0 from a certain subscript z > 1 onwards (in 
which case one has a finite decimal expansion; usually the zeroes are not written), 
or ii) starting from a certain point, a finite sequence of numbers not all zero -
called period - repeats itself over and over {infinite periodic decimal expansion; 
the period is written once with a line drawn on top). For example the following 
expressions are decimal expansions of rational numbers 

Q l̂gQ 11579 
———- = -351.6300 • • • = -371.63 and -—— = 12.51783783 • • • = 12.51783. 

100 925 

The expansion of certain rationals is not unique. If a rational number has a finite 
expansion in fact, then it also has a never-ending periodic one obtained from the 
former by reducing the right-most non-zero decimal digit by one unit, and adding 
the period 9. The expansions 1.0 and 0.9 define the same rational number 1; 
similarly, 8.357 and 8.3569 are equivalent representations of ^ ^ . 

The geometric representation of a rational r = ± ^ is obtained by subdividing 
the segment OP in n equal parts and copying the subsegment m times in the 
positive or negative direction, according to the sign of r (see again Fig. 1.4), 

The set M of real numbers. Not every point on the line corresponds to a rational 
number in the above picture. This means that not all segments can be measured 
by multiples and sub-multiples of the unit of length, irrespective of the choice of 
this unit. 

It has been known since the ancient times that the diagonal of a square is not 
commensurable with the side, meaning that the length d of the diagonal is not a 
rational multiple of the side's length i. To convince ourselves about this fact recall 
Pythagoras's Theorem. It considers any of the two triangles in which the diagonal 
splits the square (Fig. 1.5), and states that 

^2 ^^2 ^^2^ î ^̂ ^ d^^2e\ 

Figure 1.5. Square with side £ and its diagonal 
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Calling p the ratio between the lengths of diagonal and side, we square d = p£ and 
substitute in the last relation to obtain p^ = 2. The number p is called the square 
root of 2 and it is indicated by the symbol \/2. 

Property 1.1 / / the number p satisfies p^ = 2, it must be non-ratiomd. 

Proof. By contradiction: suppose there exist two integers m and n. necessarily 
non-zero, such that p = ^- Assiune m. n are relatively prime. Taking 

squares we obtain ^ = 2. lience ni^ = 2n^. Thus m^ is even, which is to 
say that m is ev(̂ n. For a suitable natural number k then, m = 2k. Using 
this in the previous relation yields ik^ = 2n^. i.e.. n^ — 2k^. Then n". 1 ^ 

whence also //, is even. But this contradicts the fact that m and n have no 
conunon factor, which corners from the assumption that p is rational. • 

Another relevant example of incommensurable lengths, known for centuries, 
pertains to the length of a circle measured with respect to the diameter. In this 
case as well, one can prove that the lengths of circumference and diameter are 
not commensurable because the proportionality factor, known by the symbol TT, 
cannot be a rational number. 

The set of real numbers is an extension of the rationals and provides a math-
ematical model of the straight line^ in the sense that each real number x can be 
associated to a point P on the line uniquely, and vice versa. The former is called 
the coordinate of P. There are several equivalent ways of constructing such exten-
sion. Without going into details, we merely recall that real numbers give rise to any 
possible decimal expansion. Real numbers that are not rational, called irrational^ 
are characterised by having a non-periodic infinite decimal expansion, like 

\/2 = 1.4142135623731 • • • and TT = 3.1415926535897 • • • 

Rather than the actual construction of the set M, what is more interesting to us 
are the properties of real numbers, which allow one to work with the reals. Among 
these properties, we recall some of the most important ones. 

i) The arithmetic operations defined on the rationals extend to the reals with 
similar properties. 

ii) The order relation x < y of the rationals extends to the reals^ again with similar 
features. We shall discuss this matter more deeply in the following Sect. 1.3.1. 

iii) Rational numbers are dense in the set of real numbers. This means there are 
infinitely many rationals sitting between any two real numbers. It also implies 
that each real number can be approximated by a rational number as well 
as we please. If for example r = CkCk-i • • • ciCQ.did2 • • • di^i+i • • • has a non-
periodic infinite decimal expansion, we can approximate it by the rational 
q^ = CkCk-i '' - ciCQ.did2-'' di obtained by ignoring all decimal digits past the 
zth one; as i increases, the approximation of r will get better and better. 
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iv) The set of real numbers is complete. Geometrically speaking, this is equivalent 
to asking that each point on the line is associated to a unique real number, as 
already mentioned. Completeness guarantees for instance the existence of the 
square root of 2, i.e., the solvability in R of the equation x^ = 2, as well as of 
infinitely many other equations, algebraic or not. We shall return to this point 
in Sect. 1.3.2. 

1.3.1 The ordering of real numbers 

Non-zero real numbers are either positive or negative. Positive reals form the 
subset IR+, negative reals the subset M_. We are thus in presence of a partition 
R = R_ U{0}UR+. The set 

R* = {0} U R+ 

of non-negative reals will also be needed. Positive numbers correspond to points 
on the line lying at the right - with respect to the positive direction - of the origin. 

Instead of x G R+, one simply writes x > 0 ('x is bigger, or larger, than 
0'); similarly, x G R* will be expressed by x > 0 ('x is bigger or equal than 0'). 
Therefore an order relation is defined by 

X <y y — X > 0. 

This is a total ordering, i.e., given any two distinct reals x and y^ one (and only 
one) of the following holds: either x < y or y < x. From the geometrical point of 
view the relation x < y tells that the point with coordinate x is placed at the left 
of the point with coordinate y. Let us also define 

x<y x < y or X = y. 

Clearly, x < y implies x < y. For example the relations 3 < 7 and 7 < 7 are true, 
whereas 3 < 2 is not. 

The order relation < (or <) interacts with the algebraic operations of sum and 
product as follows: 

ii X <y and z is any real number, then x + z <y -{- z 

(adding the same real number to both sides of an inequality leaves the latter 
unchanged); 

a X <y and "{ 
2: > 0, then xz < yz, 

2: < 0, then xz > yz 

(multiplying by a non-negative number both sides of an inequality does not alter it, 
while if the number is negative it inverts the inequality). Example: multiplying by 
— 1 the inequahty — 3 < 2 gives — 2 < 3. The latter property implies the well-known 
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sign rule: the product of two numbers with aUke signs is positive, the product of 
two numbers of different sign is negative. 

Absolute value. Let us introduce now a simple yet important notion. Given a 
real number x, one calls absolute value of x the real number 

__ ( X if x > 0, 
~ \-x if cc < 0. 

Thus \x\ > 0 for any x in R. For instance |5| = 5, |0| = 0, | — 5| = 5. Geometrically, 
I a: I represents the distance from the origin of the point with coordinate x; thus, 
\^ ~ y\ — \y ~ ^\ is the distance between the two points of coordinates x and y. 

The following relations, easy to prove, will be useful 

i \xi-y\< \x\ + \y\, 

ml ity) and 

\xy\ = |a;||^|, 

for all a:, y G E 

for all x^y eM. 

(1.1) 

Throughout the text we shall solve equations and inequalities involving abso-
lute values. Let us see the simplest ones. According to the definition, 

|a;|:=0 

has the unique solution x = 0. If a is any number > 0, the equation 

|x| = a 

has two solutions x = a and x = —a, so 

\x\ ~ a X = ±a, V a > 0 . 

In order to solve 
\x\ < a, where a > 0, 

consider first the solutions x > 0, for which |x| = x, so that now the inequality 
reads x < a; then consider x < 0, in which case |x| = — x, and solve —x < a, or 
—a < X. To summarise, the solutions are real numbers x satisfying 0 < x < a or 
—a < X < 0, which may be written in a shorter way as 

M < a —a < x < a. (1.2) 
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Similarly, it is easy to see that if 6 > 0, 

\x\ > b 4==> X < —b or x>b. (1.3) 

The slightly more general inequality 

1̂  ~ XQ\ < a, 

where xo G R is fixed and a > 0, is equivalent io —a < x — XQ < a] adding XQ gives 

(1.4) F — xo| < a XQ — a < X < XQ -\- a. 

In all examples we can replace the symbol < by < and the conclusions hold. 

Intervals. The previous discussion shows that Mathematical Analysis often deals 
with subsets of M whose elements lie between two fixed numbers. They are called 
intervals. 

Definition 1.2 Let a and b be real numbers such that a < b. 
interval with end-points a 

[̂^ 

If a < b, one defines open 

(«^ 

An equivalent notation is ] 

, b is the set 

6] = {a; G M 1 a<x<b}. 

interval with end-points a, 

b)=^{xeM. 

a,6[. 

a < X <b}. 

b the set 

The closed 

If one includes only one end-point, then the interval with end-points a, b 

1 [a,b) 

right, 

{a.b] 

= {xeR 

while 

== {x G E 1 

a<x <b} 

a < X <b}. 

is half-open on the left. 

Figure 1.6. Geometric representation of the closed interval [a, 6] (left) and of the open 
interval (a, 6) (right) 
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Example 1.3 

Describe the set A of elements x G M such that 

2 < |x| < 5. 
Because of (1.2) and (1.3), we easily have 

A = ( -5 , -2]U[2 ,5) . D 

Intervals defined by a single inequality are useful, too. Define 

and 

The symbols — CXD and +oo do not indicate real numbers; they allow to extend 
the ordering of the reals with the convention that — oo < x and x < +oo for all 
X E M. Otherwise said, the condition a < x is the same as a < x < +co, so the 
notation [a, +oo) is consistent with the one used for real end-points. Sometimes it 
is convenient to set 

(-oo,+oo) = R . 

In general one says that an interval / is closed if it contains its end-points, open 
if the end-points are not included. All points of an interval, apart from the end-
points, are called interior points. 

Bounded sets. Let us now discuss the notion of boundedness of a set. 

[a, -hoo) ^ 

(-00,6] 

= {x € R 1 a < x}, 

= {x G E 1 X < 6}, 

(a, -hoc) = {x G E 1 a < x}, 

(-00,6) = {x G E 1 X < 6}. 

Definition lA A subset A of R is called bounded from above if there 
exists a real number b such that 

X <b, for all x G A. 

Any b with this property is called an upper bound of A. 

The set A is bounded from below if there is a real number a with 

a < x^ for all x £ A. 

Every a satisfying this relation is said a lower bound of A. 
At last, one calls A bounded if it is bounded from above and below. 

In terms of intervals, a set is bounded from above if it is contained in an interval 
of the sort (—00, 6] with 6 G E, and bounded if it is contained in an interval [a, b] 
for some a, 6 G E. It is not difficult to show that A is bounded if and only if there 
exists a real c > 0 such that 

Ixl < c, for all X e A. 
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Examples 1.5 

i) The set N is bounded from below (each number a < 0 is a lower bound), but 
not from above: in fact, the so-called Archimedean property holds: for any 
real b > 0, there exists a natural number n with 

n>b. (1.5) 

ii) The interval (—oo, 1] is bounded from above, not from below. The interval 
(—5,12) is bounded. 

iii) The set 

n 
is bounded, in fact 0 < < 1 for any n G N. 

n + 1 
iv) The set 5 = {x G Q I x^ < 2} is bounded. Taking x such that \x\ > | for 
example, then x^ > | > 2, so x 0 5 . Thus 5 C [-§ , §]. • 

Definition 1.6 A set A C R admits a maximum if an element XM ^ A 
exists such that 

X < XM, for any x E A. 

The element XM (necessarily unique) is the maximum of the set A and 
one denotes it by XM — max^d. 
The minimum of a set A, denoted by Xm — min A, is defined in a similar 
way. 

A set admitting a maximum must be bounded from above: the maximum is an 
upper bound for the set, actually the smallest of all possible upper bounds, as we 
shall prove. The opposite is not true: a set can be bounded from above but not 
admit a maximum, like the set A of (1.6). We know already that 1 is an upper 
bound for A. Among all upper bounds, 1 is privileged, being the smallest upper 
bound. To convince ourselves of this fact, let us show that each real number r < 1 
is not an upper bound, i.e., there is a natural number n such that 

n 
> r. n + 1 

rr.. 1. . n 7 1 + 1 1 1 1 1 1 - r ^^ , 
The mequality is equivalent to < - , hence 1 -\— < - , o r — < . This 

n r n r n r 
r 

is to say n > , and the existence of such n follows from property (1.5). So, 
1 — r 

1 is the smallest upper bound of A., yet not the maximum, for 1 ^ A: there is no 
77/ 

natural number n such that = 1. One calls 1 the supremum, or least upper 
n + 1 

bound, of A and writes 1 = sup A. 
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Analogously, 2 is the smallest of upper bounds of the interval / = (0,2), but 
it does not belong to / . Thus 2 is the supremum, or least upper bound, of / , 
2 = sup / . 

Definition 1.7 Let A CR be hounded from above. The supremum or least 
upper bound of A is the smallest of all upper bounds of A, denoted by sup A. 
If A C W is bounded from below, one calls infimum or greatest lower 
bound of A the largest of all lower bounds of A. This is denoted by ini A. 

The number s = sup A is characterised by two conditions: 

(1.7) 
i) X < s for all x E A; 
ii) for any real r < s, there is an x £ A with x > r. 

While i) tells that s is an upper bound for ^4, according to ii) each number smaller 
than s is not an upper bound for A, rendering s the smallest among all upper 
bounds. 

The two conditions (1.7) must be fulfilled in order to show that a given number 
is the supremum of a set. That is precisely what we did to claim that 1 was the 
supremum of (1.6). 

The notion of supremum generalises that of maximum of a set. It is immediate 
to see that if a set admits a maximum, this maximum must be the supremum 
as well. 

If a set A is not bounded from above, one says that its supremum is +oo, i.e., 
one defines 

sup A = +00. 

Similarly, mi A — —oo for a set A not bounded from below. 

1.3.2 Completeness of R 

The property of completeness of R may be formalised in several equivalent ways. 
The reader should have already come across {Dedekind^s) separability axiom: de-
composing R into the union of two disjoint subsets Ci and C2 (the pair (Ci,C2) 
is called a cut) so that each element of Ci is smaller or equal than every element 
in (^2, there exists a (unique) separating element 5 G R: 

Xi < s < X2, Vxi G Ci , Vx2 E C2. 

An alternative formulation of completeness involves the notion of supremum of 
a set: every bounded set from above admits a supremum in R, i.e., there is a real 
number smaller or equal than all upper bounds of the set. 

With the help of this property one can prove, for example, the existence in 
R of the square root of 2, hence of a number j? (> 0) such that p^ = 2. Going 
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back to Example 1.5 iv), the completeness of the reals ensures that the bounded 
set B = {x e Q \ x'^ < 2} has a supremum, say p. Using the properties of M it 
is possible to show that p^ < 2 cannot occur, otherwise p would not be an upper 
bound for B, and neither p^ > 2 holds, for p would not be the least of all upper 
bounds. Thus necessarily p^ — 2. Note that B, albeit contained in Q, is not allowed 
to have a rational upper bound, because p^ — 2 prevents p from being rational 
(Property 1.1). 

This example explains why the completeness of R lies at the core of the pos-
sibility to solve in R many remarkable equations. We are thinking in particular 
about the family of algebraic equations 

x^ = a, (1.8) 

where n G N+ and a G R, for which it is worth recalling the following known fact. 

Property 1,8 i) Let n € N^. be odd. Then for any a € E equation (1.8) has 
exactly one solution in K, denoted by x = ^ orx~ a^^'^ and called the nth 
root of a, 

a) Let n € N4- be even. For any a > 0 equation (1.8) has two real solutions 
wiih the same absolute value but opposite signs; when a = 0 there is one 
solution X = 0 only; for a < 0 there are no solutions in R. The non-negative 
solution is indicated by a: =^ \/aorx = a^/^, and called the nth (arithmetic) 
root of a. 

1.4 Factorials and binomial coefficients 

We introduce now some noteworthy integers that play a role in many areas of 
Mathematics. 

Given a natural number n > 1, the product of all natural numbers between 
1 and n goes under the name of factorial of n and is indicated by n\ (read 'n 
factorial'). Out of conveniency one sets 0! = 1. Thus 

0! = 1, 1! = 1, n! = l - 2 . . . . - n = (n~- l ) !n for n > 2. (1.9) 

Factorials grow extremely rapidly as n increases; for instance 5! = 120, 10! = 
3628800 and 100! > 10^^^ 

Example 1.9 

( Suppose we have n > 2 balls of different colours in a box. In how many ways 
can we extract the balls from the box? 
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When taking the first ball we are making a choice among the n balls in the box; 
the second ball will be chosen among the n - 1 balls left, the third one among 
n — 2 and so on. Altogether we have n{n — 1) • . . . • 2 • 1 = n! different ways to 
extract the balls: n! represents the number of arrangements of n distinct objects 
in a sequence, called permutations of n ordered objects. 
If we stop after k extractions, 0 < fc < n, we end up with n{n — 1 ) . . . (n — /c + 1) 

n\ 
possible outcomes. The latter expression, also written as ——r, is the number 

(n — k)l 
of possible permutations of n distinct objects in sequences of k objects. 
If we allow repeated colours, for instance by reintroducing in the box a ball of 
the same colour as the one just extracted, each time we choose among n. After 
k > 0 choices there are then n^ possible sequences of colours: n^ is the number 
of permutations of n objects in sequences of k, with repetitions (i.e., 
allowing an object to be chosen more than once). D 

Given two natural numbers n and k such that 0 < A: < n, one calls binomial 
coefficient the number 

ni 
k\{n - fc)! 

(1.10) 

(the symbol (^) is usually read 'n choose fc'). Notice that if 0 < fc < n 

n! = l-. . .-n = l-...-(n-fc)(n-fc+l)-...-(71-1)71 = (n-fc)!(n-fc+l)- . . .-(n-l)?!, 

so simplifying and rearranging the order of factors at the numerator, (1.10) be-
comes 

(1.11) 

another common expression for the binomial coefficient. From definition (1.10) it 
follows directly that 

^n\ f n 
,k) \n - fc; 

(n\ n{n — 1) • 
\\kj-

. . . • (n- fc + l) 
fc! 

and 

= 1, n 

n-l 
n. 

Moreover, it is easy to prove that for any n > 1 and any fc with 0 < fc < n 

n-l 

fc-1 

n - l 

fc 
(1.12) 

which provides a convenient means for computing binomial coefficients recursively^ 
the coefficients relative to n objects are easily determined once those involving 
n — 1 objects are computed. The same formula suggests to write down binomial 

file:////kj-
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coefficients in a triangular pattern, known as PascaVs triangle^ (Fig. 1.7): each 
coefficient of a given row, except for the I's on the boundary, is the sum of the two 
numbers that he above it in the preceding row, precisely as (1.12) prescribes. The 
construction of Pascal's triangle shows that the binomial coefficients are natural 
numbers. 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 . . . . . . 1 

Figure 1.7. Pascal's triangle 

The term 'binomial coefficient' originates from the power expansion of the 
polynomial a -\-h m terms of powers of a and h. The reader will remember the 
important identities 

(a -h hf = a^ + 2ab + h^ and (a + bf = a^ + ^aH + 3a6^ + b^. 

The coefficients showing up are precisely the binomial coefficients for n = 2 and 
n = 3. In general, for any n > 0, the formula 

(a + 6)" = a" + 
n 

k=0 

naJ" -'h+.. 

^^yn^ 
.+ 

\i\,y 

la"--kf^k + . . + nab"--"^+6" 
(1.13) 

holds, known as (Newton's) binomial expansion. This formula is proven with 
(1.12) using a proof by induction ^^ Principle of Mathematical Induction. 

Example 1.9 (continuation) 

Given n balls of different colours, let us fix k with 0 < A: < n. How many different 
sets of k balls can we form? 
Extracting one ball at a time for k times, we already know that there are 
n{n — 1 ) . . . (n — fc + 1) outcomes. On the other hand the same k balls, extracted 
in a different order, wiU yield the same set. Since the possible orderings of k 
elements are fc!, we see that the number of distinct sets of k balls chosen from n 

is -^, = ( 7 I • This coefficient represents the number of 
A:! \kj 

combinations of n objects taken k at a. time. Equivalently, the number of 
subsets of k elements of a set of cardinality n. 

^ Sometimes the denomination Tartaglia's triangle appears. 



1.5 Cartesian product 21 

Formula (1.13) with a = b = 1 shows that the sum of ah binomial coefficients 
with n fixed equals 2^, non-incidentally also the total number of subsets of a set 
with n elements. • 

1.5 Cartesian product 

Let X, y be non-empty sets. Given elements x in X and y in F , we construct the 
ordered pair of numbers 

whose first component is x and second component is y. An ordered pair is concep-
tually other than a set of two elements. As the name says, in an ordered pair the 
order of the components is paramount. This is not the case for a set. li x y^ y the 
ordered pairs {x,y) and (y^x) are distinct, while {x^y} and {y,x} coincide as sets. 

The set of all ordered pairs (x^y) when x varies in X and y varies in Y is the 
Cartesian product of X and F , which is indicated hy X xY. Mathematically, 

XxY = {{x,y)\xeX, y€Y}. 

The Cartesian product is represented using a rectangle, whose basis corre-
sponds to the set X and whose height is Y (as in Fig. 1.8). 

If the sets X, Y are different, the product X xY will not be equal to F x X, 
in other words the Cartesian product is not commutative. 

But if y — X, it is customary to put X x X = X^ for brevity. In this case the 
subset of X^ 

A = {{x,y)eX^ \x = y} 

of pairs with equal components is called the diagonal of the Cartesian product. 

Figure 1.8. Cartesian product of sets 
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The most significant example of Cartesian product stems from X = Y = 'R. The 
set R^ consists of ordered pairs of real numbers. Just as the set R mathematically 
represents a straight line, so R^ is a model of the plane (Fig. 1.9, left). In order 
to define this correspondence, choose a straight line in the plane and fix on it an 
origin O, a positive direction and a length unit. This shall be the x-axis. Rotating 
this line counter-clockwise around the origin by 90° generates the y-axis. In this 
way we have now an orthonormal frame (we only mention that it is sometimes 
useful to consider frames whose axes are not orthogonal, and/or the units on the 
axes are different). 

Given any point P on the plane, let us draw the straight lines parallel to the 
axes passing through the point. Denote by x the real number corresponding to the 
intersection of the x-axis with the parallel to the y-axis, and by y the real number 
corresponding to the intersection of the y-axis with the parallel to the x-axis. An 
ordered pair (x, y) G R^ is thus associated to each point P on the plane, and vice 
versa. The components of the pair are called (Cartesian) coordinates of P in the 
chosen frame. 

The notion of Cartesian product can be generalised to the product of more 
sets. Given n non-empty sets Xi , X 2 , . . . , X^, one considers ordered n—tuples 

( x i , X 2 , . . . , X n ) 

where, for every i = 1,2,.. . , n, each component Xi lives in the set Xi. The Carte-
sian product Xi X X2 X . . . X Xn is then the set of all such n—tuples. 

When Xi = X2 = . •. = Xn = X one simply writes X x X x ... x X = X^. 
In particular, R^ is the set of triples [x^y^z] of real numbers, and represents a 
mathematical model of three-dimensional space (Fig. 1.9, right). 

Figure 1.9. Models of the plane (left) and of space (right) 
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1.6 Relations in the plane 

We call Cartesian plane a plane equipped with an orthonormal Cartesian frame 
built as above, which we saw can be identified with the product R^. 

Every non-empty subset R of R^ defines a relation between real numbers; 
precisely, one says x is R-related to y^ or x is related to y by i?, if the ordered 
pair (x, y) belongs to R. The graph of the relation is the set of points in the plane 
whose coordinates belong to R. 

A relation is commonly defined by one or more (in)equalities involving the 
variables x and y. The subset R is then defined as the set of pairs (x, y) such that 
X and y satisfy the constraints. Finding R often means determining its graph in 
the plane. Let us see some examples. 

Examples 1.10 

i) An equation like 

ax -\-by = c, 

with a, b constant and not both vanishing, defines a straight line. If 6 = 0, the line 
is parallel to the ^-axis, whereas a — 0 yields a parallel to the x-axis. Assuming 
6 7̂  0 we can write the equation as 

y — mx + g, 

where m = — | and ^ = f • The number m is called slope of the line. The line 
can be plotted by finding the coordinates of two points that belong to it, hence 
two distinct pairs (x, y) solving the equation. In particular c = 0 (or g' = 0) if 
and only if the origin belongs to the line. The equation x — y = 0 for example 
defines the bisectrix of the first and third quadrants of the plane. 

ii) Replacing the '= ' sign by '< ' above, consider the inequality 

ax -^by < c. 

It defines one of the half-planes in which the straight line of equation ax-\-by = c 
divides the plane (Fig. 1.10). If 6 > 0 for instance, the half-plane below the line 
is obtained. This set is open, i.e., it does not contain the straight line, since the 
inequality is strict. The inequality ax ^by < c defines instead a closed set, i.e., 
including the line. 

Figure 1.10. Graph of the relation of Example 1.10 ii) 
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iii) The system 

' ? / > 0 , 

x-y>0, 
defines the intersection between the open half-plane above the x-axis and the 
closed half-plane lying below the bisectrix of the first and third quadrants. Thus 
the system describes (Fig. 1.11, left) the wedge between the positive x-axis and 
the bisectrix (the points on the x-axis are excluded). 

iv) The inequality 

\x-y\<2 

is equivalent, recall (1.2), to 

-2<x-y <2. 
The inequality on the left is in turn equivalent to y < x + 2, so it defines the open 
half-plane below the line y = x -\-2; similarly, the inequality on the right is the 
same a>sy > x — 2 and defines the open half-plane above the line y — x — 2. What 
we get is therefore the strip between the two lines, these excluded (Fig. 1.11, 
right). 

v) By Pythagoras's Theorem, the equation 

x^-^y^ = l 

defines the set of points P in the plane with distance 1 from the origin of the 
axes, that is, the circle centred at the origin with radius 1 (in trigonometry it 
goes under the name of unit circle). The inequality 

x^^y^ <1 
then defines the disc bounded by the unit circle (Fig. 1.12, left). 

vi) The equation 

y^x'^ 

yields the parabola with vertical axis, vertex at the origin and passing through 
the point P of coordinates (1,1). 

Figure 1.11. Graphs of the relations of Examples 1.10 iii) (left) and 1.10 iv) (right) 
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Figure 1.12. Graphs of the relations in Examples 1.10 v) (left) and 1.10 vi) (right) 

Thus the inequalities 

x^ <y <1 
define the region enclosed by the parabola and by the straight line given by y = 1 
(Fig. 1.12, right). • 

1.7 Exercises 

1. Solve the following inequalities: 

a) 
2 x - l 

X — 3 
> 0 

c) 
x-1 2x - 3 
X — 2 X — 3 

, 2x + 3 X + 1 
e) < 

X -\- 5 \x — 1\ 

3 < \/x^ - 2x 

) ^1x2-41 -X >0 

b) 

~K 

l-lx ^ 

\x\ X + 1 
x - l 2 x - 1 

f) V r̂̂  - 6x > X + 2 

x + 3 
h) (x + i)2y^2rr3 >o 

Xy/jx^ - 4 | _ ^ 
x^ - 4 

> 0 

2. Describe the following subsets of M; 

[a^l A = {x G M : x^ + 4x + 13 < 0} n {x G M : 3x2 + 5 > 0} 

b) B = {x G R : (x + 2)(x - l)(x - 5) < 0} n {x G M : 

x^ - 5x 4- 4 

3x + l 
x - 2 

> 0 } 

c) C = {xe 
x 2 - 9 

< 0} U {x G M : \/7x + l + X = 17} 

d) L) = { X G R : X - 4 > V:^2 _ g^ _̂  5} U { X G M : X + 2 > \ / ^ " ^ } 
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3. Determine and draw a picture of the following subsets ofM!^: 

[^ A = {{x,y) eR'^ :xy>0} h) B = {{x,y) G E^ : x^ - y^ > o} 

c) C = {{x,y)eR^:\y-x^\<l} d) D = {{x,y) eR^ : x^ ^ ^ > 1} r 
4 

e) E = {{x,y)eR^ :l + xy>0} f) F = {{x,y) eR^ : x-y y^ 0} 

4. Tell whether the following subsets ofR are bounded from above and/or below, 
specifying upper and lower bounds, plus maximum and minimum (if existent): 

a) {x eR: x = n 01 X =^ —, neN\ {0}} 
n^ 

b) B = {x eR : -1< X < 1 OT X = 20} 

2 n - 3 
c) C = { X G M : 0 < X < 1 o r x = - , n G N \ { 0 , 1}} 
—I n — 1 
d) D = {zeR: z = xy with x, t/ G M, - 1 < x < 2, - 3 < y < - 1 } 

1.7.1 Solutions 

1. Inequalities: 

a) This is a fractional inequality. A fraction is positive if and only if numerator 
and denominator have the same sign. As N{x) = 2x — l > O i f x > 1/2, and 
D{x) = X — 3 > 0 for X > 3, the inequality holds when x < 1/2 or x > 3. 

b) - | < x < f 
c) Shift all terms to the left and simplify: 

X - 1 2x - 3 

x - 2 x - 3 
> 0 , I.e., 

-x2 + 3x - 3 
( x - 2 ) ( x - 3 ) 

> 0 . 

The roots of the numerator are not real, so N{x) < 0 always. The inequality 
thus holds when D{x) < 0, hence 2 < x < 3. 

d) Moving terms to one side and simplifying yields: 

x + 1 
X - 1 2x 

> 0 , I.e. 
| x | ( 2 a ; - l ) - a ; ^ + l 

{x - l)(2a; - 1) 
> 0 . 

Since |a;| = a; for x > 0 and |ar| = —x for a; < 0, we study the two cases 
separately. 
When X >0 the inequahty reads 

2a;2 - X - x^ + 1 
(x - l)(2x - 1) 

> 0 , or 
x + 1 

(x - l)(2x - 1) 
> 0 . 
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The numerator has no real roots, hence x^ — x + 1 > 0 for all x. Therefore 
the inequality is satisfied if the denominator is positive. Taking the constrain 
X > 0 into account, this means 0 < x < 1/2 or x > 1. 
When X < 0 we have 

~2x^ -h X - x^ -h 1 ^ . -3x2 + X + 1 
> 0 , I.e., — r T > 0 . ( x - l ) ( 2 x - l ) ' * '' ( x - l ) ( 2 x - l ) 

N{x) is annihilated by xi = ^ ~ ^ and X2 = ^"^/^, so 7V(x) > 0 for xi < x < 
X2 (notice that xi < 0 and X2 G (^,1))- As above the denominator is positive 
when X < 1/2 and x > 1. Keeping x < 0 in mind, we have Xi < x < 0. 
The initial inequality is therefore satisfied by any x G (xi, ^) U (1, -hoc). 

e) - 5 < X < - 2 , - | < X < 1, 1 < X < ^ ± ^ ; f) x < - § . 

g) First of all observe that the right-hand side is always > 0 where defined, hence 
when x^ — 2 x > 0 , i . e . , x < 0 o r x > 2 . The inequality is certainly true if the 
left-hand side x — 3 is < 0, so for x < 3. 
If X — 3 > 0, we take squares to obtain 

2 9 1 9 
X — 6x + 9 < X — 2x , i.e., 4x > 9 , whence x > - . 

Gathering all information we conclude that the starting inequality holds wher-
ever it is defined, that is for x < 0 and x > 2. 

h) X G [-3, - A / 3 ) U ( V ^ , -hoc). 

i) As \x^ — 4| > 0, \/\x'^ — 4| is well defined. Let us write the inequality in the 
form 

Vk2-4| >x. 
If X < 0 the inequality is always true, for the left-hand side is positive. If x > 0 
we square: 

\x^ - 4| > x ^ 

Note that 
2 ,1 1 X ^ - 4 i f x < - 2 o r x > 2 , 

r - 4 | - -
fx^ 
I - a -x^ + 4 if - 2 < X < 2 . 

Consider the case x > 2 first; the inequality becomes x^ — 4 > x"̂ , which is 
never true. 
Let now 0 < x < 2; then - x ^ -h 4 > x^, hence x^ - 2 < 0. Thus 0 < x < \/2 
must hold. 
In conclusion, the inequality holds for x < A/2. 

)̂ xG ( - 2 , - A / 2 ) U ( 2 , + O C ) . 

2. Subsets of R: 

a) Because x^ -h 4x -h 13 = 0 cannot be solved over the reals, the condition 
x^ -h 4x -h 13 < 0 is never satisfied and the first set is empty. On the other 
hand, 3x2 _̂  5 -> Q holds for every x G M, therefore the second set is the whole 
M. Thus ^ = 0 n R = 0. 
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b) 5 = ( -oc , -2 )U(2 ,5 ) . 

c) We can write 
x^ - 5 x + 4 _ ( x - 4 ) ( x - 1) 

^ 2 - 9 ~ ( J : - 3 ) ( X + 3 ) ' 

whence the first set is (—3,1) U (3,4). 
To find the second set, let us solve the irrational equation \Jlx + 1 + x = 17, 
which we write as \/lx + 1 = 17—x. The radicand must necessarily be positive, 
hence x > — y. Moreover, a square root is always > 0, so we must impose 
17 — X > 0, i.e., X < 17. Thus for —y < x < 17, squaring yields 

7x + 1 = (17 - xf , x^ - 41x + 288 = 0. 

The latter equation has two solutions xi = 9, X2 = 32 (which fails the con-
straint X < 17, and as such cannot be considered). The second set then contains 
only X = 9. 
Therefore C = (-3,1) U (3,4) U {9}. 

d) D=[1,+(X)). 

3. Subsets of R^-

a) The condition holds if x and y have equal signs, thus in the first and third 
quadrants including the axes (Fig. 1.13, left). 

b) See Fig. 1.13, right. 

c) We have 
y — x'^ if 2/ > ^^ , 

1 ^ - ^ 1= 1 2 -r / 2 
y It y < x^ . 

Demanding y > x^ means looking at the region in the plane bounded from 
below by the parabola y — x^. There, we must have 

1/ - x^ < 1, i.e., ?/ < x^ + 1, 

Figure 1.13. The sets A and B of Exercise 3 
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Figure 1.14. The sets C and D of Exercise 3 

that \s x^ <y < x^ -\-l. 
Vice versa \i y < x^, 

x^ — y < 1, i.e., y > x^ — \ ^ 

hence x^ — 1 < y < x^. 
Eventually, the required region is confined by (though does not include) the 
parabolas y = x'^ - I and y = x'^ + 1 (Fig. 1.14, left). 

d) See Fig. 1.14, right. 

e) For X > 0 the condition 1 -\- xy > 0 is the same as ?/ > —-. Thus we consider 
all points of the first and third quadrants above the hyperbola y = —-. 

1 ^ For X < 0, l-\-xy > 0 means y < —-, satisfied by the points in the second and 
• ^ 1 

fourth quadrants this time, lying below the hyperbola y = —^^ 
At last, ifx = 0, 1 -h xy > 0 holds for any ?/, implying that the ^-axis belongs 
to the set E. 
Therefore: the region lies between the two branches of the hyperbola (these 
are not part of E") y = — ̂ , including the y-axis (Fig. 1.15, left). 

f) See Fig. 1.15, right. 

Figure 1.15. The sets E and F of Exercise 3 
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4. Bounded and unbounded sets: 

a) We have A = {1 ,2 ,3 , . . . , | , | , ^ , . . . } . Since N \ {0} C A, the set A is not 
bounded from above, hence sup A — H-oo and there is no maximum. 
In addition, the fact that every element of A is positive makes A bounded from 
below. We claim that 0 is the greatest lower bound of A. In fact, if r > 0 were 
a lower bound of A, then ^ > r for any non-zero n G N. This is the same as 
n^ < ^, hence n < 4^. But the last inequality is absurd since natural numbers 
are not bounded from above. Finally 0 ^ A, so we conclude inf A = 0 and A 
has no minimum. 

b) ini B = —1, supB = maxB = 20, and minB does not exist. 

c) C = [0,1] U { | , | , | , | , . . . } C [0,2); then C is bounded, and inf C = min C = 

0. Since — = 2 - , it is not hard to show that supC = 2, although 
n — 1 n — 1 

there is no maximum in C. 
d) inf C = min C = —6, sup B = max B = 3. 



Functions 

Functions crop up regularly in everyday life (for instance: each student of the 
Polytechnic of Turin has a unique identification number), in physics (to each point 
of a region in space occupied by a fluid we may associate the velocity of the particle 
passing through that point at a given moment), in economy (each working day at 
Milan's stock exchange is tagged with the Mibtel index), and so on. 

The mathematical notion of a function subsumes all these situations. 

2.1 Definitions and first examples 

Let X and Y be two sets. A function / defined on X with values in Y is 
a correspondence associating to each element x e X at most one element y E Y. 
This is often shortened to 'a function from X to Y\ A synonym for function is 
map. The set of a: G X to which / associates an element in Y is the domain of 
/ ; the domain is a subset of X, indicated by dom/ . One writes 

/ : d o m / C X ^ y . 

If dom / = X, one says that / is defined on X and writes simply f : X ^ Y. 
The element y EY associated to an element x G dom / is called the image of 

X by or under / and denoted y = f{x). Sometimes one writes 

f :x^ f{x). 

The set of images y — f{x) of all points in the domain constitutes the range of 
/ , a subset of Y indicated by i m / . 

The graph of / is the subset r ( / ) of the Cartesian product X xY made of 
pairs (x, f{x)) when x varies in the domain of / , i.e.. 

r{f) = {{xJ{x))eXxY : x e d o m / } . (2.1) 
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Figure 2.1. Naive representation of a function using Venn diagrams 

In the sequel we shall consider maps between sets of numbers most of the time. 
If y == R, the function / is said real or real-valued. If X = R, the function is 
of one real variable. Therefore the graph of a real function is a subset of the 
Cartesian plane R^. 

A remarkable special case of map arises when X = N and the domain contains 
a set of the type {n G N : n > no} for a certain natural number no > 0. Such a 
function is called sequence. Usually, indicating by a the sequence, it is preferable 
to denote the image of the natural number n by the symbol a^ rather than a{n); 
thus we shall write a : n i-̂  a^. A common way to denote sequences is {an}n>no 
(ignoring possible terms with n < no) or even {an}-

Examples 2.1 

Let us consider examples of real functions of real variable. 

i) / : R —> R, f{x) = ax-\-b {a,b real coefficients), whose graph is a straight line 
(Fig. 2.2, top left). 

ii) / : R ^^ R, f{x) = x^, whose graph is a parabola (Fig. 2.2, top right). 

iii) / : R\{0} C R -^ R, f{x) = ^, has a rectangular hyperbola in the coordinate 

system of its asymptotes as graph (Fig. 2.2, bottom left). 

iv) A real function of a real variable can be defined by multiple expressions on 
different intervals, in which case is it cahed a piecewise function. An example 
is given by / : [0,3] -^ R 

{ 3x i f O < x < l , 

4 - X if 1 < a: < 2, (2.2) 

x-1 if 2 < X < 3, 
drawn in Fig. 2.2, bottom right. 
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Figure 2.2. Graphs of the maps f{x) — 2x — 2 (top left), j[x) — x^ (top right), f(x) 

(bottom left) and of the piecewise function (2.2) (bottom right) 

Among piecewise functions, the following are particularly important: 

v) the a b s o l u t e va lue (Fig. 2.3, top left) 

/ : f{x) 
X if X > 0, 

—X if X < 0; 

vi) the s ign (Fig. 2.3, top right) 

/ : R - - Z , f{x) = sign(a;) = 
r + 1 ifa;>0, 
1 0 ifa; = 0, 
l - l ifa;<0; 

vii) the in teger part (Fig. 2.3, bot tom left), also known as floor funct ion. 

/ : R -^ Z, f{x) = [x] = the greatest integer < x 

(for example, [4] = 4, [\/2] = 1, [-!] = - ! , [ - | ] = - 2 ) ; notice tha t 

[x] < X < [x] + 1 , Vx G M; 
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Figure 2.3. Clockwise from top left: graphs of the functions: absolute value, sign, man-
tissa and integer part 

viii) the mantissa (Fig. 2.3, bottom right) 

/ : M -^ M, fix)= M{x) = X - [x] 

(the property of the floor function implies 0 < M{x) < 1). 

Let us give some examples of sequences now. 

ix) The sequence 

a„ = ^ (2.3) 

is defined for all n > 0. The first few terms read 
1 2 - 3 

ao = 0, ai = - = 0.5, a2 = - = 0.6, as = -= 0.75 . 

Its graph is shown in Fig. 2.4 (top left). 

x) The sequence 

an={l + iy (2.4) 
is defined for n > 1. The first terms are 

9 64 625 
ai = 2, a2 = - = 2.25, as =--= 2.37037, a^ =--= 2.44140625. 

4 27 256 
Fig. 2.4 (top right) shows the graph of such sequence. 
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Figure 2.4. Clockwise: graphs of the sequences (2.3), (2.4), (2.6), (2.5) 

xi) The sequence 

an = n\ (2.5) 

associates to each natural number its factorial, defined in (1.9). The graph of 
this sequence is shown in Fig. 2.4 (bottom left); as the values of the sequence 
grow rapidly as n increases, we used different scalings on the coordinate axes. 

xii) The sequence 

f +1 if n is even, 

«" = (-!)" = 1-1 if n is odd, ( -^0) (2-6) 
has alternating values +1 and —1, according to the parity of n. The graph of the 
sequence is shown in Fig. 2.4 (bottom right). 

At last, here are two maps defined on R^ (functions of two real variables). 

xiii) The function 

maps a generic point P of the plane with coordinates (x, y) to its distance from 
the origin. 

xiv) The map 
/ : R 2 ^ M ^ f{x,y) = {y,x) 

associates to a point P the point P' symmetric to P with respect to the bisectrix 
of the first and third quadrants. • 
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Consider a map from X to Y. One should take care in noting that the symbol 
for an element of X (to which one refers as the independent variable) and the 
symbol for an element in Y {dependent variable), are completely arbitary. What 
really determines the function is the way of associating each element of the domain 
to its corresponding image. For example, \i x^y^z^t are symbols for real numbers, 
the expressions y = f{x) = 3x, x = f{y) = 3?/, or z = f{t) = Zt denote the same 
function, namely the one mapping each real number to its triple. 

2.2 Range and pre-image 

Let A be a subset of X. The image of A under / is the set 

f{A) = {f{x) : xeA}C{mf 

of all the images of elements of A. Notice that f{A) is empty if and only if A 
contains no elements of the domain of / . The image f{X) of the whole set X is 
the range of / , already denoted by i m / . 

Let y be any element of F ; the pre-image of ^ by / is the set 

r\y)^{x&domf : f{x)^y} 

of elements in X whose image is y. This set is empty precisely when y does not 
belong to the range of / . If 5 is a subset of F , the pre-image of B under / is 
defined as the set 

f-\B) = {xedomf : f{x)eB}, 

union of all pre-images of elements of B. 

It is easy to check that A C f~^{f{A)) for any subset A of dom/ , and 
f{f-^{B)) = Bnimf CBior any subset B of Y. 

Example 2.2 

Let / : R -> M, f{x) = x^. The image under / of the interval A = [1, 2] is the 
interval B = [1,4]. Yet the pre-image of B under / is the union of the intervals 
[—2, —1] and [1,2], namely, the set 

f-\B) = {xeR : 1 < |x| < 2 } 
(see Fig. 2.5). • 

The notions of infimum, supremum, maximum and minimum, introduced in 
Sect. 1.3.1, specialise in the case of images of functions. 
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Figure 2.5. Image (left) and pre-image (right) of an interval relative to the function 
fix) = x' 

Definition 2.3 Let f be a real map and A a subset of domf. One calls 
supremum of / on A (or in A) the supremum of the image of A under f 

sup/ (x) = s u p / ( ^ ) = sup{/(x) \xe A), 
xeA 

Then f is bounded from above on A if the set f{A) is bounded from above, 
or equivalently, if sup f{x) < -hoc. 

xeA 
If sup f{x) is finite and belongs to fiA), then it is the maximum of this set. 

xeA 
This number is the maximum value (or simply, the maximum^ of / on 
A and is denoted by max/ (x) . 

x€A 

The concepts of infimum and of minimum of f on A are defined similarly. 
Eventually, f is said bounded on A if the set f{A) is bounded. 

At times, the shorthand notations supy^ / , maxyĵ  / , et c. are used. 

The maximum value M = max^ / of / on the set A is characterised by the 
conditions: 

i) M is a value assumed by the function on A, i.e., 

there exists XM ^ A such that / ( X M ) = M] 

ii) M is greater or equal than any other value of the map on A, so 

for any xeA, fix) < M. 

Example 2.4 

Consider the function fix) defined in (2.2). One verifies easily 

max f(x) = 3, min f(x) — 0, max fix) — 3, inf fix) = 1. 

The map does not assume the value 1 anywhere in the interval [1,3], so there is 
no minimum on that set. • 
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2.3 Surjective and injective functions; inverse function 

A map with values in Y is called onto if i m / = Y. This means that each y E Y 
is the image of one element x e X at least. The term surjective (on Y) has the 
same meaning. For instance, / : R -^ R, f{x)=ax-j-h with a 7̂  0 is surjective 
on R, or onto: the real number y is the image of x = ^ ^ . On the contrary, the 
function / : R -^ R, f{x)=x'^is not onto, because its range coincides with the 
interval [0,+oo). 

A function / is called one-to-one (or 1-1) if every ^ G i m / is the image of a 
unique element x G dom/ . Otherwise put, if ^ = / ( ^ i ) = /(^2) for some elements 
xi,X2 in the domain of / , then necessarily xi = X2- This, in turn, is equivalent to 

Xi i-X2 f{xi)^f{x2) 

for all Xi,X2 G d o m / (see Fig. 2.6). Again, the term injective may be used. If a 
map / is one-to-one, we can associate to each element y in the range the unique x 
in the domain with f{x) = y. Such correspondence determines a function defined 
on Y and with values in X, called inverse function of / and denoted by the 
symbol f~^. Thus 

x = f~^{y) ^^ y = f{x) 

(the notation mixes up deliberately the pre-image of y under / with the unique 
element this set contains). The inverse function f~^ has the image of / as its 
domain, and the domain of / as range: 

dom / 1 = im / , im / " dom / . 

Figure 2.6. Representation of a one-to-one function and its inverse 
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A one-to-one map is therefore invertible; the two notions (injectivity and invert-
ibility) coincide. 

What is the link between the graphs of / , defined in (2.1), and of the inverse 
function /~^? One has 

nr') = {{yJ-Hy))^yxX -. yedomf-'} 
= {{f{x),x)eY xX : xedomf}. 

Therefore, the graph of the inverse map may be obtained from the graph of / by 
swapping the components in each pair. For real functions of one real variable, this 
corresponds to a reflection in the Cartesian plane with respect to the bisectrix 
y — X (see Fig. 2.7: a) is reflected into b)). On the other hand, finding the explicit 
expression x = f~^{y) of the inverse function could be hard, if possible at all. 

Provided that the inverse map in the form x — f~^{y) can be determined, often 
one prefers to denote the independent variable (of f~^) by x, and the dependent 
variable by ^, thus obtaining the expression y — f~^{x). This is merely a change 
of notation (see the remark at the end of Sect. 2.1). The procedure allows to draw 
the graph of the inverse function in the same frame system of / (see Fig. 2.7, from 
b) to c)). 

i 

y 

i m / 

a) 

, 

V'' 

y = X 

y^ 

dom/ 

--fix) 

X 

x = r\y) 

dom/ 

im/-^ 

cj I d o m / ^ X 

Figure 2.7. From the graph of a function to the graph of its inverse 
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Examples 2.5 

i) The function / : R ^ R, f{x) = ax + bis one-to-one for all a 7̂  0 (in fact, 
/ ( ^ i ) = /(^2) => CLXi = ax2 ^ Xi = X2). Its inverse is a: = f~^{y) = ^ ^ , or 

ii) The map / : R ^> R, f{x)=x'^is not one-to-one because f{x) = f{—x) for 
any real x. Yet if we consider only values > 0 for the independent variable, i.e., 
if we restrict / to the interval [0, +CXD), then the function becomes 1-1 (in fact, 
f{xi) = /(^2) =^ xl — X2 = {xi — a:2)(3:̂ i + X2) = 0 =^ xi = X2). The inverse 
function x = f~^{y) = y/y is also defined on [0,+oc). Conventionally one says 
that the 'squaring' map y = x'^ has the function 'square root' y = y/x for inverse 
(on [0, +00)). Notice that the restriction of / to the interval (—(X),0] is 1-1, too; 
the inverse in this case is y = —y/x. 
iii) The map / : R ^ R, / (x) = x^ is one-to-one. In fact f{x\) = /(X2) =^ 
x\— x\ = {X\ — X2){x\ + X\X2 + X2) = 0 ^ X\ = X2 siuCC xf + X\X2 ^ x\ — 

\\x\ + ^2 + (â i + 3:2)̂ ] > 0 for any x\ 7̂  X2. The inverse function is the 'cubic 

root' y — ^ , defined on all R. • 

As in Example ii) above, if a function / is not injective over the whole domain, 
it might be so on a subset A C dom / . The restriction of / to A is the function 

j\^\A^Y such that / |^ {x) = j[x), Vx G ^ , 

and is therefore invertible. 

Let / be defined on X with values F . If / is one-to-one and onto, it is called 
a bijection (or bijective function) from X to Y. If so, the inverse map j ~ ^ is 
defined on y , and is one-to-one and onto (on X); thus, f~^ is a bijection from Y 
t o X . 

For example, the functions / (x) = ax + 6 (a ^ 0) and / (x) = x^ are bijections 
from R to itself. The function / (x) = x^ is a bijection on [0,+oc) (i.e., from 
[0,+oo) to [0,+(X))). 

If / is a bijection between X and F , the sets X and Y are in bijective cor-
rispondence through / : each element of X is assigned to one and only one element 
of F , and vice versa. The reader should notice that two finite sets (i.e., containing 
a finite number of elements) are in bijective correspondence if and only if they 
have the same number of elements. On the contrary, an infinite set can correspond 
bijectively to a proper subset; the function (sequence) / : N ^ N, / (n) = 2n, for 
example, establishes a bijection between N and the subset of even numbers. 

To conclude the section, we would like to mention a significant interpretation 
of the notions of 1-1, onto, and bijective maps just introduced. Both in pure Math-
ematics and in applications one is frequently interested in solving a problem, or 
an equation, of the form 

/ (^) = y , 
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where / is a suitable function between two sets X and Y. The quantity y represents 
the datum of the problem, while x stands for the solution to the problem, or the 
unknown of the equation. For instance, given the real number y^ find the real 
number x solution of the algebraic equation 

Well, to say that / is an onto function on Y is the same as saying that the problem 
or equation of concern admits at least one solution for each given y mY] asking / 
to be 1-1 is equivalent to saying the solution, if it exists at all, is unique. Eventually, 
/ bijection from X to F means that for any given y mY there is one, and only 
one, solution x G X. 

2.4 Monotone functions 

Let / be a real map of one real variable, and / the domain of / or an interval 
contained in the domain. We would like to describe precisely the situation in which 
the dependent variable increases or decreases as the independent variable grows. 
Examples are the increase in the pressure of a gas inside a sealed container as 
we raise its temperature, or the decrease of the level of fuel in the tank as a car 
proceeds on a highway. We have the following definition. 

Definition 2.6 The function f is increasing on / if, 
in I with xi < X2, 

Vxi 

one has 

,^2 e ^, 

The function f is strictly 

Vxi X2 e / , 

f{xi) < f{x2); in 

Xi < X2 => 

increasing on / 

Xi < X2 ^ 

symbols 

f{xi) < 

if 

f{xi) < 

given elements 

f{X2). 

f{x2). 

Xi, X2 

(2.7) 

(2.8) 

f{xi) 

y = f{x) 

f{xi) = /(X2) 

; / : 
Xi X2 I Xl X2 

Figure 2.8. Strictly increasing (left) and decreasing (right) functions on an interval / 

y = f{x) 
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If a map is strictly increasing then it is increasing as well, hence condition (2.8) is 
stronger than (2.7). 

The definitions of decreasing and strictly decreasing functions on / are 
obtained from the previous definitions by reverting the inequality between f{xi) 
and f{x2). 

The function / is (strictly) monotone on / if it is either (strictly) increasing 
or (strictly) decreasing on / . An interval / where / is monotone is said interval 
of monotonicity of / . 

Examples 2.7 

i) The map / : R -^ R, f{x) = ax + 6, is strictly increasing on R for a > 0, 
constant on R for a = 0 (hence increasing as well as decreasing), and strictly 
decreasing on R when a < 0. 

ii) The map / : R -^ R, f{x) = x'^ is strictly increasing on 7 = [0, +oc). Taking 
in fact two arbitrary numbers xi,0^2 > 0 with xi < X2, we have x\ < X1X2 < x^. 
Similarly, / is strictly decreasing on (—oc,0]. It is not difficult to check that 
all functions of the type y = x'^, with n > 4 even, have the same monotonic 
behaviour as / (Fig. 2.9, left). 

iii) The function / : R ^ R, f{x)=x^ strictly increases on R. All functions like 
y = x'^ with n odd have analogous behaviour (Fig. 2.9, right). 

iv) Referring to Examples 2.1, the maps y = [x] and y = sign(a:) are increasing 
(though not strictly increasing) on R. 
The mantissa y = M{x) of x, instead, is not monotone on R; but it is nevertheless 
strictly increasing on each interval [ n , n - h l ) , n G Z . • 

- 1 

- 1 

Figure 2.9. Graphs of some functions y = x^ with n even (left) and n odd (right) 
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Now to a simple yet crucial result. 

Proposition 2.8 / / / is strictly monotone on its domain, then f is one-to-
one. 

Proof. To fix ideas, let us suppose / is strictly increasing. Given Xi,X2 G d o m / 
with xi / X2, then either xi < X2 or X2 < xi. In the former case, using 
(2.8) we obtain / (x i ) < /(X2), hence f{xi) ^ /(X2). In the latter case the 
same conclusion holds by swapping the roles of xi and X2. • 

Under the assumption of the above proposition, there exists the inverse function 
f~^ then; one can comfortably check that f~^ is also strictly monotone, and in the 
same way as / (both are strictly increasing or strictly decreasing). For instance, 
the strictly increasing function / : [0, +00) -^ [0, +CXD), f{x) — x^ has, as inverse, 
the strictly increasing function f~^ : [0,+CXD) -^ [0,+00), f~^{x) = ^/x. 

The logic implication 

/ is strictly monotone on its domain =4> / i s one-to-one 

cannot be reversed. In other words, a map / may be one-to-one without increasing 
strictly on its domain. For instance / : R ^ R defined by 

1 

/(^) = 
if X 7̂  0, 

0 if X = 0, 

is one-to-one, actually bijective on R, but it is not strictly increasing, nor strictly 
decreasing or R. We shall return to this issue in Sect. 4.3. 

A useful remark is the following. The sum of functions that are similarly mono-
tone (i.e., all increasing or all decreasing) is still a monotone function of the same 
kind, and turns out to be strictly monotone if one at least of the summands is. 
The map /(x) = x^ + x, for instance, is strictly increasing on R, being the sum 
of two functions with the same property. According to Proposition 2.8 / is then 
invertible; note however that the relation / (x) = y cannot be made explicit in the 
form X = f~^{y)' 

2.5 Composition of functions 

Let X, y, Z be sets. Suppose / is a function from X to Y, and g a function from 
Y to Z. We can manifacture a new function h from X to Z by setting 

hix)^g{f{x)). (2.9) 

The function h is called composition of / and g, sometimes composite map, 
and is indicated by the symbol h — g o f (read ^g composed (with) / ' ) . 
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Example 2.9 

•

Consider the two real maps y — f[x) = x — Z and z — g{y) — y'^ -\-1 oi one real 
variable. The composition of / and g reads z = h{x) —go f{x) = (x — 3)^ + 1. D 

Bearing in mind definition (2.9), the domain of the composition g o f is deter-
mined as follows: in order for x to belong to the domain of ^ o / , f[x) must be 
defined, so x must be in the domain of / ; moreover, f(x) has to be a element of 
the domain of g. Thus 

X G dom g o f <=> x E dom/ and f{x) E dom^. 

The domain of ^ o / is then a subset of the domain of / (see Fig. 2.10). 

Examples 2.10 

X + 2 
) The domain of f{x) = is R \ {1}, while g{y) — -yjy is defined on the 

interval [0, +CXD). The domain oi g o f[x) — 

x + 2 

x + 2 
\x-l\ 

consists of the x ^1 such 

that > 0; hence, dom^ o / = [—2, +(X)) \ {1}. 

ii) Sometimes the composition g o f has an empty domain. This happens for 

instance for f{x) = (notice f{x) < 1) and g{y) — ̂ Jy — h (whose domain 
1 + x^ 

is [5,+00)). • 

^"f9{v") 

Figure 2.10. Representation of a composite function via Venn diagrams. 
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The operation of composition is not commutative: if g o f and fog are both 
defined (for instance, when X = Y = Z)^ the two composites do not coincide in 

1 1 X 
general. Take for example f{x) = — and g{x) = -—^—^^ for which go f{x) 

but / o g(x) = 1 + X. 
1 1 

If / and g are both one-to-one (or both onto, or both bijective), it is not difficult 
to verify tha t gof has the same property. In the first case in particular, the formula 

{g°f)-'^r'og-' 

holds. 

Moreover, if / and g are real monotone functions of real variable, gof too will 
be monotone, or better: g o f is increasing if both / and g are either increasing 
or decreasing, and decreasing otherwise. Let us prove only one of these properties. 
Let for example / increase and g decrease; if xi < X2 are elements in d o m ^ o / , 
the monotone behaviour of / implies f{xi) < /(X2); now the monotonicity of g 
yields g{f{xi)) > g{f[x2)), so g o f is decreasing. 

We observe finally tha t if / is a one-to-one function (and as such it admits 
inverse / ~ ^ ) , then 

/ " ' o fix) = r\f{x)) =x, Vx e dom / , 

forHy) = firHy)) = y, Vyeim/. 
Calling ident i ty m a p on a set X the function idx : X ^ X such tha t idx {x) = x 
for all X G X , we have f~^ o f = iddom/ and / o f~^ = id im/ . 

2.5.1 Trans lat ions , rescal ings , ref lect ions 

Let / be a real map of one real variable (for instance, the function of Fig. 2.11). 
Fix a real number c 7̂  0, and denote by tc : M -^ R the function tc{x) = x -\- c. 
Composing / with tc results in a t rans la t ion of the graph of / : precisely, the 

y = f{x) 

Figure 2.11. Graph of a function f{x) 
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graph of the function fotc{x) = f{x-\-c) is shifted horizontally with respect to the 
graph of / : towards the left if c > 0, to the right if c < 0. Similarly, the graph of 
tc o / (x) = / (x) + c is translated vertically with respect to the graph of / , towards 
the top for c > 0, towards the bottom if c < 0. Fig. 2.12 provides examples of these 
situations. 

Fix a real number c > 0 and denote by Sc : M —̂  R the map Sc{x) = ex. The 
composition of / with Sc has the effect of rescaling the graph of / . Precisely, 
if c > 1 the graph of the function / o sdx) = f{cx) is 'compressed' horizontally 
towards the y-axis, with respect to the graph of / ; if 0 < c < 1 instead, the 
graph 'stretches' away from the ^/-axis. The analogue effect, though in the vertical 
direction, is seen for the function Sc o f[x) — cf{x): here c > 1 'spreads out' the 
graph away from the x-axis, while 0 < c < 1 'squeezes' it towards the axis, see 
Fig. 2.13. 

Notice also that the graph of f{—x) is obtained by reflecting the graph of f{x) 
along the ^/-axis, like in front of a mirror. The graph of /( |x |) instead coincides 
with that of / for X > 0, and for x < 0 it is the mirror image of the latter with 
respect to the vertical axis. At last, the graph of | / (x) | is the same as the graph of 
/ when / (x) > 0, and is given by reflecting the latter where / (x) < 0, see Fig. 2.14. 

, 

y = f{x + c),c>0 

y = f{x) + c, c < 0 

/ (x + c), c < 0 

/(x) + c, c > 0 

Figure 2.12. Graphs of the functions /(x + c) (c > 0: top left, c < 0: top right), and 
f{x) + c (c < 0: bottom left, c > 0: bottom right), where f(x) is the map of Fig, 2,11 
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y = /(ex), c < 1 

y = c/(x), c < 1 

Figure 2.13. Graph of f{cx) with c > 1 (top left), 0 < c < 1 (top right), and of cf{x) 
with c > 1 (bottom left), 0 < c < 1 (bottom right) 

2.6 Elementary functions and properties 

We start with a few useful definitions. 

Definition 2.11 Let f : d o m / C M -^ R 6e a map with a symmetric domain 
with respect to the origin, hence such that x G dom / forces —x G dom / as 
well. The function f is said even if f{—x) = f{x) for all x G dom/, odd if 
f{—x) = —f{x) for all X G d o m / . 

The graph of an even function is symmetric with respect to the ^-axis, and that 
of an odd map symmetric with respect to the origin. If / is odd and defined in the 
origin, necessarily it must vanish at the origin, for /(O) = —/(O). 

Definition 2.12 A function f : 
p (with p > 0 real) if dom / is 

dom f CR -^R is said periodic of period 
invariant under translations by ±p (i.e., if 

X ± p £ dom/ for all x G domf) and if f{x 4- p) = f{x) holds for any 
X G d o m / . 
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y = f{-x) 

Figure 2.14. Clockwise: graph of the functions /(—x), /(|a:|), | / ( |x | ) | , | / (x ) | 

One easily sees tha t an / periodic of period p is also periodic of any multiple 
mp (m G N \ {0}) oi p. If the smallest period exists, it goes under the name 
of m i n i m u m p e r i o d of the function. A constant map is clearly periodic of any 
period p> ^ and thus has no minimum period. 

Let us review now the main elementary functions. 

2.6.1 Pov^ers 

These are functions of the form y — x^. The case a = 0 is trivial, giving rise to the 
constant function y = x^ — \. Suppose then a > 0. For a = n G N \ {0}, we find 
the monomial functions y = x'^ defined on R, already considered in Example 2.7 ii) 
and iii). When n is odd, the maps are odd, strictly increasing on M and with range 
R (recall Proper ty 1.8). When n is even, the functions are even, strictly decreasing 
on (—00,0] and strictly increasing on [0, +CXD); their range is the interval [0, +CXD). 

Consider now the case a > 0 rational. If a = ^ where m G N \ {0}, we define a 
function, called m t h root of x and denoted y — x^l"^ — A/X, inverting y — x^. It 
has domain R if m is odd, [0, +oo) if m is even. The m t h root is strictly increasing 
and ranges over R or [0, +oc) , according to whether m is even or odd respectively. 

In general, for a — ^ G Q, n^m G N \ { 0 } with no common divisors, the 

function y — x^l'^ is defined as 2/ = {x^Yl'^ = \ / ^ - As such, it has domain R 
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Figure 2.15. Graphs of the functions y = x^^^ (left), y = x^^^ (middle) and y = x^^^ 
(right) 

if m is odd, [0, +oo) if m is even. It is strictly increasing on [0, +oo) for any n, 
m, while if m is odd it strictly increases or decreases on (—(X), 0] according to the 
parity of n. 

Let us consider some examples (Fig. 2.15). The map y = x^/^, defined on R, 
is strictly increasing and has range M. The map y = x^l'^ is defined on M, strictly 
decreases on (—oo, 0] and strictly increases on [0, +oo) , which is also its range. To 
conclude, y — x^l^ is defined only on [0,+00), where it is strictly increasing and 
has [0, +00) as range. 

Let us introduce now the generic function y — x^ with irrational a > 0. To this 
end, note tha t if a is a non-negative real number we can define the power a" with 
a G R + \ Q , start ing from powers with rational exponent and exploiting the density 
of rationals inside M. If a > 1, we can in fact define oP" — supja '^ /^ | ^ < ce}, 
while for 0 < a < 1 we set a^ = inf{a"^/"^ | ^ < OL\. Thus the map y — x^ with 
a G M+ \ Q is defined on [0, +00) , and one proves it is there strictly increasing and 
its range is [0, +00) . 

Summarising, we have defined y — x^ for every value a > 0. They are all 
defined a least on [0, +00) , interval on which they are strictly increasing; moreover, 
they satisfy y(0) = 0, y(l) = 1. It will tu rn out useful to remark tha t if a < /3, 

0 < a:̂  < x"" < 1, for 0 < X < 1, 1 < x^ < x^, for x > 1 (2.10) 

(see Fig. 2.16). 

i/Vs 

0 I 1 

Figure 2.16. Graphs of y = x^, x > 0 for some a > 0 
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Figure 2.17. Graphs of y = x"^ for a two values a < 0 

At last, consider the case of a < 0. Set y = x^ = by definition. Its 
x~^ 

domain coincides with the domain of ^ = x~^ minus the origin. All maps are 
strictly decreasing on (0, H-oo), while on (—cx), 0) the behaviour is as follows: writing 
a = —^ with m odd, the map is strictly increasing if n is even, strictly decreasing 
if n is odd, as shown in Fig. 2.17. In conclusion, we observe that for every a 7̂  0, 
the inverse function oi y = x^^ where defined, is y = x^l^. 

2.6.2 Polynomial and rational functions 

A polynomial function, or simply, a polynomial, is a map of the form P{x) — 
anX^ ̂  h aix -h ao with a^ 7̂  0; ^ is the degree of the polynomial. Such a map 
is defined over all R; it is even (resp. odd) if and only if all coefficients indexed by 
even (odd) subscripts vanish (recall that 0 is an even number). 

P{x) 
A rational function is of the kind R{x) — , where P and Q are poly-

Q[x) 
nomials. If these have no common factor, the domain of the rational function will 
be M without the zeroes of the denominator. 

2.6.3 Exponential and logarithmic functions 

Let a be a positive real number. According to what we have discussed previously, 
the exponential function y — a^ \s defined for any real number x\ it satisfies 
^(0) = aO = 1. 

If a > 1, the exponential is strictly increasing; if a = 1, this is the constant 
map 1, while if a < 1, the function is strictly decreasing. When a 7̂  1, the range 
is (0, +CXD) (Fig. 2.18). Recalling a few properties of powers is useful at this point: 
for any x, 2/ ^ M 

^x+rw^*^ir 0 * " ^ = ? ^\^^^^ 

m 
(a-r^ii 
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1 2 3 
Figure 2.18. Graphs of the exponential functions y = 2^ (left) and y = {^)^ (right) 

When a 7̂  1, the exponential function is strictly monotone on R, hence invertible. 
The inverse y = log^ x is called logarithm, is defined on (0, +oo) and ranges over 
R; it satisfies y{l) = log^ 1 = 0. The logarithm is strictly increasing if a > 1, 
strictly decreasing if a < 1 (Fig. 2.19). The previous properties translate into the 
following: 

1 iogc 

iogr 

logc 

ti^y) 
X 

X^') 

-= log^ ^ 

l o g ^ ^ -

==?/loga 

* -f logo y. 

- loga y. 

yx,y>Q, 

Va;, y > 0, 

X, Vx > 0, Vi/ € E , 1 

Figure 2.19. Graphs of y = log2 x (left) and y = log^/2 x (right) 

2.6.4 Trigonometric functions and inverses 

Denote here by X, Y the coordinates on the Cartesian plane R^, and consider the 
unit circle, i.e., the circle of unit radius centred at the origin O = (0,0), whose 
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equation reads X'^ + F^ = 1. Starting from the point A = (1,0), intersection 
of the circle with the positive x-axis, we go around the circle. More precisely, 
given any real x we denote by P{x) the point on the circle reached by turning 
counter-clockwise along an arc of length x if x > 0, or clockwise by an arc of 
length —X if X < 0. The point P{x) determines an angle in the plane with vertex 
O and delimited by the outbound rays from O through the points A and P(x) 
respectively (Fig. 2.20). The number x represents the measure of the angle in 
radians. The one-radian angle is determined by an arc of length 1. This angle 
measures ^ = 57.2957795 •• • degrees. Table 2.1 provides the correspondence 
between degrees and radians for important angles. Henceforth all angles shall be 
expressed in radians without further mention. 

degrees 

radians 

0 

0 

30 

TT 

6 

45 

TT 

4 

60 

TT 

3 

90 

TT 

2 

120 

27r 

3 

135 

37r 

4 

150 

57r 

6 

180 

TT 

270 

37r 

2 

360 

27r 

Table 2.1. Degrees versus radians 

Increasing or decreasing by 27r the length x has the effect of going around the 
circle once, counter-clockwise or clockwise respectively, and returning to the initial 
point P(x). In other words, there is a periodicity 

P(x±27r) = F(x), V X G : (2.11) 

Denote by cosx ('cosine of x') and sinx ('sine of x') the X- and F-coordinates, 
respectively, of the point P(x). Thus P(x) = (cosx, sinx). Hence the cosine func-
tion y = cosx and the sine function y = sinx are defined on R and assume all 

Figure 2.20. The unit circle 
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-27r / ' \ —TT '\7: ITT 27r / 

Figure 2.21. Graph of the map y = sinx 

values of the interval [—1,1]; by (2.11), they are periodic maps of minimum period 
27r. They satisfy the crucial trigonometric relation 

cos^ X + sin^ X = 1, Vx € R. (2.12) 

It is rather evident from the geometric interpretation tha t the sine function 
is odd, while the cosine function is even. Their graphs are represented in Figures 
2.21 and 2.22. 

Important values of these maps are listed in the following table (where k is any 
integer): 

sina: = 0 for x = fcTr, 

TV 

sin x = 1 for X — -^ + 2k7r, 

s inx = —1 for x = ——-f2fc7r, 

TT 
COS X = 0 for X = ~ 4- fcTT, 

cos X = 1 for X = 2fc7r, 

cosx = —1 for X = TT -f 2fc7r. 

v̂ .....̂ -; / 27r 

Figure 2.22. Graph of the map y = cosx 
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Concerning monotonicity, one has 

strictly increasing on 

y = smx IS < 
strictly decreasing on 

- - + 2fc7r, - + 2/c7r 

^ ^ , 3 7 r ^ , • 

- + 2/c7r, —- + 2k7r 

y = cos X IS 
strictly decreasing on [2fc7r, TT + 2A:7r] 

strictly increasing on [TT + 2A:7r, 27r + 2/c7r]. 

The addition and subtraction formulas are relevant 

sm(a± /3) == sinacc^/? ± cosasin/3 

Gos(of ± ^ = cos Of cos /? T sin a sin /?. 

Suitable choices of the arguments allow to infer from these the duplication formulas 

(2.13) siii2^ == 2sHiar<;osrr, C0s2a:^ 2cos x — 1, 

rather than 

o . x-y x-{-y 
smx — smy = 2sm——- cos —~—, 

x-y , x-hy 
cos X — cosy = —2 sm •——sm —-—, 

or the following 

sin(x + TT) =: — sin x, cos(a: -f TT) = — cos x, 

sm(aT 4- ; j^)^ eosx, cos{x + :ir)=^ ^ s m x . 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

In the light of Sect. 2.5.1, the first of (2.17) tells that the graph of the cosine is 
obtained by left-translating the sine's graph by 7r/2 (compare Figures 2.21 and 
2.22). 

The tangent function y — t anx (sometimes 2/ = tgx) and the cotangent 
function y — cotan x (also y = ctg x) are defined by 

tanx smx 
cosx' 

cotan X = cosx 
sinx 

Because of (2.16), these maps are periodic of minimum period TT, and not 27r. The 
tangent function is defined on M\ {^ + A:7r : fc G Z}, it is strictly increasing on the 
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il 

IT ' 

2 1 

, 

0 

TT 

2 

TT 

1-

!i j 

' ' 1—TT '̂̂  0 TT \ 

Figure 2.23. Graphs of the functions y = tanx (left) and y = cotanx (right) 

intervals (—| + fc7r, ̂  + fc7r) where it assumes every real number as value. Similarly, 
the cotangent function is defined on M \ {kn : fc G Z}, is strictly decreasing on 
the intervals (/c7r,7r + fcyr), on which it assumes every real value. Both maps are 
odd. Their respective graphs are found in Fig. 2.23. 

Recall that tan x expresses geometrically the F-coordinate of the intersection 
point Q{x) between the ray from the origin through P{x) and the vertical line 
containing A (Fig. 2.20). 

The trigonometric functions, being periodic, cannot be invertible on their whole 
domains. In order to invert them, one has to restrict to a maximal interval of strict 
monotonicity; in each case one such interval is chosen. 

The map y = sinx is strictly increasing on [—f, f ]• The inverse function on 
this particular interval is called inverse sine or arcsine and denoted y = arcsin x 

- 1 

Figure 2.24. Graphs oi y = arcsin x (left) and y = arccosx (right) 
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or y = as inx; it is defined on [—1,1], everywhere strictly increasing and ranging 
over the interval [-f, f ] . This function is odd (Fig. 2.24, left). 

Similarly, the function y — cosx is strictly decreasing on the interval [0, TT]. By 
restricting it to this interval one can define the inverse cos ine , or arccos ine , 
y — arccosx or y = acosx on [—1,1], which is everywhere strictly decreasing and 
has [0, TT] for range (Fig. 2.24, right). 

The function y = t a n x is strictly increasing on ( — f , f ) . There, the inverse 
is called inverse tangent , or arc tangent , and denoted y — a r c t a n x or y = 
atan X (also a rc tgx ) . It is strictly increasing on its entire domain R, and has range 
( - f , f ) . Also this is an odd map (Fig. 2.25, left). 

In the analogous way the inverse c o t a n g e n t , or arcco tangent , y = arccotan x 
is the inverse of the cotangent on (0, TT) (Fig. 2.25, right). 

Figure 2.25. Graphs of y = arctanx (left) and y — arccotanx (right) 

2.7 Exercises 

1. Determine the domains of the following functions: 

a) / ( x ) = 
3x + l 

x^ + X — 6 

c) f{x) = log(x^ - x) 

2. Determine the range of the following functions: 

1 

^ 

5 

f(^) _ Vx2 - 3x - 4 
^^'''- x + 5 

f ^ if 
f{x)^l 2x + l 

^Vx+i if a; < 0 

a) / ( x ) 
^2 + 1 

c) fix) = e^-+3 d) fix) = I 

3. Find domain and range for the map f{x) = \ /cos x — 1 and plot its graph. 

b^/(x) = x / ^ T 2 - l 

log X if X > 1, 

2x - 5 if X < 1 
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Let f{x) = - l o g ( x - l ) ; determine f-\[0,+oo)) a n d / - ^ ( - o o , - 1 ] ) . 

5. Sketch the graph of the following functions indicating the possible symmetries 
and/or periodicity: 

a) f{x) = V^^^^\ 

c) f{x) = tan (x + 

b) f{x) = l + cos2x 

{ x^ — X — I i f x < l , 

-X if X > 1 

6. Using the map f{x) in Fig. 2.26, draw the graphs of 

f{x)-l, fix+ 3), f{x-l), -fix), fi-x), \fix)\. 

I 7.1 Check that the function f : defined by f{x) 2x -\- b is not 
invertible. Determine suitable invertible restrictions of f and write down the 
inverses explicitly. 

8.1 Determine the largest interval I where the map 

f{x) = ^\x-2\-\x\ + 2 

is invertible, and plot a graph. Write the expression of the inverse function of 
f restricted to L 

Verify that f{x) = (1 + 3x){2x — \x — 1\), defined on [0,+(X)), is one-to-one. 
Determine its range and inverse function. 

10. Let f and g be the functions below. Write the expressions for g o f^ f ^ g, ^nd 
determine the composites^ domains. 

9. 

a) f{x) = x'^ — 3 and g{x) = log(l + x) 

b) fix) 
7x 

x + 1 
and g{x) = \/2 ~ x 

Figure 2.26. Graph of the function / in Exercise 6 
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2e^ + 1 
11. Write h{x) — -^—- as composition of the map f{x) = e^ with some other 

function. 

12. I Given f{x) = x'^ — 3x -\-2 and g{x) = x'^ — 5x + 6, find the expressions 
and graphs of 

h{x) = min(/(x),^(x)) and k{x) = max(/i(x),0). 

2.7.1 Solutions 

1. Domains: 

a) d o m / - R \ { - 3 , 2 } . 

b) The conditions x^ — 3x — 4 > 0 and x -\- 5 ^ 0 are necessary. The first is 
tantamount to (x + l)(x — 4) > 0, hence x G (—oo, — 1] U [4, +oo); the second 
to X 7̂  —5. The domain of / is then 

dom / = (-00, -5 ) U ( -5 , -1] U [4, +oo). 

c) d o m / - ( - 0 0 , 0 ) U(l,-foo). 

d) In order to study the domain of this piecewise function, we treat the cases 
X > 0, X < 0 separately. 
For X > 0, we must impose 2x + l 7̂  0, i.e., x 7̂  — ̂ . Since — | < 0, the function 
is well defined on x > 0. 
For X < 0, we must have x + 1 > 0, o r x > —1. For negative x then, the 
function is defined on [—1,0). 
All in all, d o m / = [—l,+oo). 

2. Ranges: 

a) The map y = x"^ has range [0,-foo); therefore the range of y = x^ + 1 is 
[1, +00). Passing to reciprocals, the given function ranges over (0,1]. 

b) The map is obtained by translating the elementary function y = y/x (whose 
range is [0, +00)) to the left by —2 (yielding y = \Jx + 2) and then downwards 
by 1 (which gives y — \/x -h 2 — 1). The graph is visualised in Fig. 2.27, and 
clearly mvj— [—1, +00). 
Alternatively, one can observe that 0 < \Jx + 2 < +00 implies — 1 < \Jx + 2 — 
1 < +00, whence i m / = [—l,+oo). 

-1 

Figure 2.27. Graph oiy = y/x + 2 - 1 
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c) i m / = (0 ,+oo) ; d) i m / = ( - 7 , + o c ) . 

3. Imposing cosx — 1 > 0 tells tha t cosx > 1. Such constraint is t rue only for 
X — 2k7r, k e Z, where the cosine equals 1; thus d o m / = {x G R : x = 2/c7r, /c G Z} 
and i m / = {0}. Fig. 2.28 provides the graph. 

— G T T -47r -27r 0 27r 47r Qn 

Figure 2.28. Graph of y = Vcos x — 1 

4. /- i([0,+<^)) - (1,2] and / - i ( ( - o o , - 1 ] ) = [e+ 1 ,+^ ) . 

5. Graphs and symmetries/periodicity: 

a) The function is even, not periodic and its graph is shown in Fig. 2.29 (top left). 

b) The map is even and periodic of period TT, with graph in Fig. 2.29 (top right). 

c) This function is odd and periodic with period TT, see Fig. 2.29 (bottom left). 

d) The function has no symmetries nor a periodic behaviour, as shown in Fig. 2.29 
(bottom right). 

Figure 2.29. Graphs relative to Exercises 5.a) (top left), 5.b) (top right), 5.c) (bottom 
left) and 5.d) (bottom right) 
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f(x + 3) 

Figure 2.30. Graphs of Exercise 6 

6. See Fig. 2.30. 

7. The function represents a parabola with vertex (1,4), and as such it is not 
invertible on R, not being one-to-one (e.g., /(O) = /(2) = 5). But restricted to the 
intervals (—00,1] and [1,+oc) separately, it becomes invertible. Setting 

A = /i(-oo,i] • (-00,1] -^ [4, +oo) , /2 = /|[i,+oo) • [1, +oo) -> [4, +oc) , 

we can compute 

/ - I . [4, +oc) ^ (-00,1] , f^' : [4, +oo) ^ [1, +oo) 

explicitly. In fact, from x^ — 2x + 5 — y = 0 we obtain 

X = 1 ± x /2 / -4 . 

With the ranges of f^^ and /2~^ in mind, swapping the variables x, y yields 

f^\x) = 1 - x / ^ ^ , /2-Hx) = 1 + V ^ ^ . 

8. Since 
if X < 0, 

f{x)= { A / 4 ^ = ^ i f 0 < x < 2 , 

0 if X > 2, 

the required interval / is [0, 2], and the graph of / is shown in Fig. 2.31. 
In addition /([0,2]) = [0,2], so / "^ : [0,2] -> [0,2]. By putting y = ^ 4 - 2x we 

obtain x = ^ ^ ^ , which implies f~^(x) = 2 — ^x^. 
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2 

0 

. 

"N^ 
2 

Figure 2.31. Graph of y = ^\x - 2\ - |x| + 2 

9. We have 

/(.^) 
9 x ^ - 1 if 0 < X < 1, 

3x^ + 4x + 1 if X > 1 

and the graph of / is in Fig. 2.32. 
The range of / is [—1, +(X)). To determine /~^ we discuss the cases 0 < x < 1 and 
X > 1 separately. For 0 < x < 1, we have — 1 < y < 8 and 

y = 9x^ - 1 

For X > 1, we have y > S and 

y = 3x^ + 4x + 1 

y + 1 

-2 + y3^TT 

Figure 2.32. Graph of y = (1 + 3x)(2x - \x - 1|) 
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Thus 

n{x) = { 

x + l if - 1 < X < 

-2 + A/3X + 1 . 
if X > 8. 

10. Composite functions: 

a) As ^ o f{x) = g{f{x)) = g{x'^ - 3) = log(l + x^ - 3) = log(x2 - 2), it follows 
dom^ O / = { X G R : X 2 - 2 > 0 } = (-CX), - \ / 2 ) U (^/2, +oo). 

We have / o g{x) = f{g{x)) = /(log(l + x)) = (log(l + x) ) ' - 3, so 
d o m / o ^ = { X G M : 1 + X > 0 } = ( -1 ,H-OC). 

b) gof{x) 
2 - 5 x 
x + 1 

7 V 2 - ^ 
V 2 ^ ^ + l 

and d o m ^ o / = ( - l , f ] ; 

and d o m / o ^ = (—00,2]. 

11- 9{x) = ^2_^^ and /i(x) = ^ o / (x) . 

12. After drawing the parabolic graphs / (x) and ^(x) (Fig. 2.33), one sees that 

x^ - 3x + 2 if X < 2 , 

. x^ - 5x + 6 if X > 2 , 
h{x) = , 2 

1 2 3 

Figure 2.33. Graphs of the parabolas f{x) = x^ — 3x -\-2 and g{x) = x^ — 5x -\- 6 



2.7 Exercises 63 

1 — — 3 I I 3 

Figure 2.34. Graphs of the maps h (left) and k (right) relative to Exercise 12 

and the graph of h is that of Fig. 2.34, left. 
Proceeding as above, 

2:2 - 3x + 2 if ^ < 1 ^ 

k{x) 0 if 1 < X < 3 , 

a:̂  — 5x + 6 if x > 3 , 

and k has a graph as in Fig. 2.34, right. 



Limits and continuity I 

This chapter tackles the limit behaviour of a real sequence or a function of one 
real variable, and studies the continuity of such a function. 

3.1 Neighbourhoods 

The process of defining limits and continuity leads to consider real numbers which 
are 'close' to a certain real number. In equivalent geometrical jargon, one considers 
points on the real line 'in the proximity' of a given point. Let us begin by making 
mathematical sense of the notion of neighbourhood of a point. 

Definition 3.1 Let 
number. 
interval 

xo e R he a 
We call neighbourhood 

Ir{xo) = -- {xo -- r, Xo + 

point 
of Xo 

r) = { 

on the real line, 
of radius r 

X G M : |x -

the 

•xo\ 

and r > 0 a real 
open 

< r}. 

and bounded 

Hence, the neighbourhood of 2 of radius 10~^, denoted /io-i(2), is the set of real 
numbers lying between 1.9 and 2.1, these excluded. By understanding the quantity 
|x — xo| as the Euclidean distance between the points XQ and x, we can then say 
that /r(xo) consists of the points on the real line whose distance from xo is less 
than r. If we interpret |x — xo| as the tolerance in the approximation of xo by 
X, then /r(xo) becomes the set of real numbers approximating xo with a better 
margin of precision than r. 

Xo - r Xo Xo -\-r 

Figure 3 .1 . Neighbourhood of xo of radius r 
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Varying r in the set of positive real numbers, while mantaining XQ in R fixed, 
we obtain a family of neighbourhoods of XQ. Each neighbourhood is a proper 
subset of any other in the family that has bigger radius, and in turn it contains 
all neighbourhoods of lesser radius. 

R e m a r k 3.2 The notion of neighbourhood of a point XQ G R is nothing but a 
particular case of the analogue for a point in the Cartesian product R^ (hence the 
plane if d = 2, space if c? = 3), presented in Definition 8.11. 

The upcoming definitions of limit and continuity, based on the idea of neigh-
bourhood, can be stated directly for functions on R^, by considering functions of 
one real variable as subcases for d = 1. We prefer to follow a more gradual ap-
proach, so we shall examine first the one-dimensional case. Sect. 8.5 will be devoted 
to explaining how all this generalises to several dimensions. • 

It is also convenient to include the case where XQ is one of the points -hcxD or — oo. 

Definition 3.3 For any real a > Q, we call neighbourhood of +oc with 

end-point a the open, unbounded interval 

Ia{+oo) = (a,-fcx)). 

Similarly, a neighbourhood of —oo with end-point —a will be defined as 

/a(-oc) = ( -00 , -a ) . 

—cxD —a 0 a +CXD 

Figure 3.2. Neighbourhoods of —CXD (left) and +oo (right) 

The following convention will be useful in the sequel. We shall say that the 
property P{x) holds 'in a neighbourhood' of a point c (c being a real number XQ or 
H-oc, — oo) if there is a certain neighbourhood of c such that for each of its points 
X, P{x) holds. Colloquially, one also says 'P(x) holds around c\ especially when 
the neighbourhood needs not to be specified. For example, the map f{x) = 2a: — 1 
is positive in a neighbourhood of XQ = 1; in fact, f{x) > 0 for any x G / i /2(l) . 

3.2 Limit of a sequence 

Consider a real sequence a:n\-^ a^ We are interested in studying the behaviour of 
the values a^ as n increases, and we do so by looking first at a couple of examples. 
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Examples 3.4 

i) Let dn — n . The first terms of this sequence are presented in Table 3.1. We 
n + 1 

see that the values approach 1 as n increases. More precisely, the real number 1 
can be approximated as well as we like by a^ for n sufficiently large. This clause 
is to be understood in the following sense: however small we fix s > 0, from a 
certain point n^ onwards all values a^ approximate 1 with a margin smaller that 

The condition la^ - 1| < £, in fact, is tantamount to < e, i.e., n + 1 > - ; 
n + 1 e 

r thus defining n^ = and taking any natural number n > ris^we have n + 1 > 

1 
-1 > - , hence |a^ — 1| < e. In other words, for every s > 0, there exists an 

ris such that 

n > Tie ^ la^ — 1| < S-

Looking at the graph of the sequence (Fig. 3.3), one can say that for all n > Ue 
the points (n, a^) of the graph he between the horizontal lines y = \ — e and 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
100 
1000 
10000 
100000 
1000000 
10000000 
100000000 

an 

0.00000000000000 
0.50000000000000 
0.66666666666667 
0.75000000000000 
0.80000000000000 
0.83333333333333 
0.85714285714286 
0.87500000000000 
0.88888888888889 
0.90000000000000 
0.90909090909090 
0.99009900990099 
0.99900099900100 
0.99990000999900 
0.99999000010000 
0.99999900000100 
0.99999990000001 
0.99999999000000 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
100 
1000 
10000 
100000 
1000000 
10000000 
100000000 

Cin 

2.0000000000000 
2.2500000000000 
2.3703703703704 
2.4414062500000 
2.4883200000000 
2.5216263717421 
2.5464996970407 
2.5657845139503 
2.5811747917132 
2.5937424601000 
2.7048138294215 
2.7169239322355 
2.7181459268244 
2.7182682371975 
2.7182804691564 
2.7182816939804 
2.7182817863958 

Table 3.1. Values, estimated to the 14th digit, of the sequences an (left) and 

1 + (right) 
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l + e 

1 

1-s 

Figure 3.3. Convergence of the sequence an = ^^^ 

/ 1 \ 
ii) The first values of the sequence a^ = 1 H— are shown in Table 3.1. One 

could imagine, even expect, that as n increases the values a^ get closer to a 
certain real number, whose decimal expansion starts as 2.718... This is actually 
the case, and we shall return to this important example later. D 

We introduce the notion of converging sequence. For simplicity we shall assume 
the sequence is defined on the set {n G N : n > TIQ} for a suitable no > 0. 

Definition 3.5 A sequence a 
converges to £ or has limit 

: n 1—> a^ converges 
i), in symbols 

lim On 
n-^oo 

if for any real number e > 0 there exists 

Vn > no, n > n^ 

= e, 

to the limit £ 

an integer n^ such that 

=^ \an - £\<e. 

e R\or 

Using the language of neighbourhoods, the condition n > n^ can be written n G 
/-^^(+oo), while \an — £\ < £ becomes a^ G Ie{£)- Therefore, the definition of 
convergence to a limit is equivalent to: for any neighbourhood Ie{£) of ^, there 
exists a neighbourhood In^{~\-oc) of +CXD such that 

'in>nQ, nG/n^(+oc) =^ an^Iei^)' 

Examples 3.6 

i) Referring to Example 3.4 i), we can say 

lim - ^ = 1. 
n ^ o o n + 1 
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ii) Let us check that 

Given e > 0, we must show 

l i m —-7Z = 0 . 

3n 
< e 2 + 5n2 I 

for all n greater than a suitable natural number n^. Observing that for n > 1 
3n 

2 + 5n2 
3n 3n 3 

< 

we have 

But 

so we can set n^ = 

5n 

2 + 5n^ 5n^ 5n' 

3n 

5n 
< £ 

2 + 5n2 

n > 

< e. 

5e' 

D 

Let us examine now a different be-
haviour as n increases. Consider for 
instance the sequence 

a : n ^-^ an = n^' 

Its first few values are written in Ta-
ble 3.2. Not only the values seem not 
to converge to any finite limit £, they 
are not even bounded from above: 
however large we choose a real num-
ber A > 0, if n is big enough (meaning 
larger than a suitable n^) , cin will be 
bigger than A. In fact, it is sufficient 
to choose UA — [\/^] and note 

n> UA =^ n> VA ^ n^ > A. 

One says that the sequence diverges 
to +(X) when that happens. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
100 
1000 
10000 
100000 

dn 

0 
1 
4 
9 
16 
25 
36 
49 
64 
81 
100 
10000 
1000000 
100000000 

10000000000 

Table 3.2. Values of an 

In general the notion of divergent sequence is defined as follows. 
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Definition 3.7 The sequence a : n v-^ an tends to +oo {or diverges to 
-foo, or has limit +oo), written 

lim an = +00, 
n—>oo 

if for any real A > 0 there exists an UA such that 

Vn > no, n> UA =^ an> A. (3.1) 

Using neighbourhoods, one can also say that for any neighbourhood IA{-^OO) of 
+00, there is a neighbourhood InA{+oo) of +(X) satisfying 

Vn > no, neInA{+^) => an G/A(+oc). 

The definition of 

lim an = —oo 

is completely analogous, with the proviso that the implication of (3.1) is changed 
to 

Vn > no, n> UA => ^n < —A. 

Examples 3.8 

i) From what we have seen it is clear that 

lim n = +CX). 
n— •̂oo 

ii) The sequence a^ = 0 + 1 + 2 + . . . + n = \ J k associates to n the sum of the 
k=0 

natural numbers up to n. To determine the limit we show first of all that 

n(n + l) 

k=0 

(3.2) 

a relation with several uses in Mathematics. For that, note that a^ can also be 

written as an = n + (n — 1) + . . . + 2 + 1 + 0 = y ^ ( ^ — k), hence 
k=0 

2an = y ^ k + /_](n — k) = Y^ n = n Y"̂  1 = n{n + 1), 
k=0 k=0 k=0 k=0 

jiffi -]- \\ Tiin + 1) n 
and the claim follows. Let us verify lim = +(X). Since > —-, 

n^cx) 2 2 2 
we can proceed as in the example above, so for a given A > 0, we may choose 
UA = [V2A] D 
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The previous examples show that some sequences are convergent, other di-
vergent (to +00 or —CXD). But if neither of these cases occurs, one says that the 
sequence is indeterminate. Such are for instance the sequence a^ = (—1)^, which 
we have already met, or 

/, / ,.r>\ f 2n for n even, 

A sufficient condition to avoid an indeterminate behaviour is monotonic-
ity. The definitions concerning monotone functions, given in Sect. 2.4, apply to 
sequences, as well, which are nothing but particular functions defined over the 
natural numbers. For them they become particularly simple: it will be enough to 
compare the values for all pairs of subscripts n, n + 1 belonging to the domain of 
the sequence. So, a sequence is monotone increasing if 

V n > n o , a n < ^ n + i , 

the other definitions being analogous. The following result holds. 

Theorem 3.9 A monotone sequence a : n ^-^ an is either convergent or 
divergent. Precisely^ in case an is increasing: 

i) if the sequence is bounded from above, i.e., there is an upper bound 6 € E 
such that an < b for all n > UQ, then the sequence converges to the 
supremum £ of its image: 

lim an — i = sup {an • n > no}; 
n—^00 

a) if the sequence is not bounded from above, then it diverges to -hoc. 

In case the sequence is decreasing, the assertions modify in the obvious way. 

Proof. -^ Sequences. • 

Example 3.10 
71 

Let us go back to Example 3.4 i). The sequence a^ = is strictly increasing, 
n -\-1 

Tl Ti ~\~ \ 
for an < ttn+i, i.e., < - , is equivalent to n(n + 2) < (n + l)* ,̂ hence 

n + 1 n + 2 
n^ + 2n < n^ + 2n + 1, which is valid for any n. 

Moreover, a^ < 1 for all n > 0; actually, 1 is the supremum of the set {an : n G 
N}, as remarked in Sect. 1.3.1. Theorem 3.9 recovers the already known result 
lim Qn = I. • 
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The number e 

Consider the sequence a^ = 1 H— introduced in Example 3.4 ii). It is possible 

to prove that it is a strictly increasing sequence (hence in particular a^ > 2 = ai for 
any n > 1) and that it is bounded from above (a^ < 3 for all n). Thus Theorem 3.9 
ensures that the sequence converges to a limit between 2 and 3, which traditionally 
is indicated by the symbol e: 

( - ^ ) " 
lim I 1 -f - I = e. 

n—>oo 
(3.3) 

This number, sometimes called Napier's number or Euler's number, plays a 
role of the foremost importance in Mathematics. It is an irrational number, whose 
first decimal digits are 

e = 2.71828182845905 • •• 

For proofs ^^ The number e. 
The number e is one of the most popular bases for exponentials and logarithms. 

The exponential function y — e^ shall sometimes be denoted hy y — expx. The 
logarithm in base e is called natural logarithm and denoted by log or In, instead 
of logg (for the base-10 logarithm, or decimal logarithm, one uses the capitalised 
symbol Log). 

3.3 Limits of functions; continuity 

Let / be a real function of real variable. We wish to describe the behaviour of 
the dependent variable y — f{x) when the independent variable x 'approaches' a 
certain point XQ G M, or one of the points at infinity — oo, +oo. We start with the 
latter case for conveniency, because we have already studied what sequences do at 
infinity. 

3.3.1 Limits at infinity 

Suppose / is defined around +oo. In analogy to sequences we have some definitions. 

Definition 3.11 The function f tends to the limit £ eR for x going to 
+00, m symbols 

lim f{x) = i, 

if for any real number e > 0 there is a real B >0 such that 

\/x e dom / , x> B => \f{x) -i\<£. (3.4) 
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This condition requires that for any neighbourhood I^^i) of £, there exists a neigh-
bourhood IB{+OO) of +00 such that 

^x G dom/ , X G /^(-hoc) fix) € ie{e). 

Definition 3.12 The function f tends to +oo for x going to -hoc, in 
symbols 

Hm f{x) = -hoc, 

if for each real A>Q there is a real B >0 such that 

Vx G dom / , x> B =^ f{x) > A. (3.5) 

For functions tending to — oo one should replace f{x) > A by f{x) < —A. The 
expression 

lim f{x) = oc 

means lim \f{x)\ = +oo. 
x ^ + oo 

If / is defined around — oo, Definitions 3.11 and 3.12 modify to become defi-
nitions of limit (L, finite or infinite) for x going to — oo, by changing x > B to 
X < -B: 

lim f{x) = L. 
X—> —oo 

At last, by 

lim f{x) = L 

one intends that / has limit L (finite or not) both for x -^ +oo and a: —> — oo. 

Examples 3.13 

i) Let us check that 

x^ + 2x 1 
lim — = - . 

X-.+00 2x2 + 1 2 

Given ^ > 0, the condition \f{x) - ^| < e is equivalent to 

4 x - 1 
2(2x2 + 1) < e. 

Without loss of generality we assume x > | , so that the absolute value sign can 
be removed. 
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Using simple properties of fractions 
4:X-l 2x 2x _ \ 1 

2(2x2 + 1) ^ 2 ^ M ^ ^2^~~x^^ ^^~e' 

1 1 
Thus (3.4) holds for B = max - , -

\ 4 e 
ii) We prove 

lim y/x — +00. 

Let A > 0 be fixed. Since ^/x> A implies x> J^, putting B ^ J^ fulfills (3.5). 

iii) Consider 
1 

With 5 > 0 fixed, 

lim = 0. 

v T ~ ^ V T ^ 
< e 

is tantamount to \/l — x > - , that i s l — x > —, o r x < l 5-. So taking 

B = max (0, -^ — 1 j , we have 

X < -B ^ 
y/l^^ 

< e. D 

3.3.2 Continuity. Limits at real points 

We now investigate the behaviour of the values y = f{x) of a function / when x 
'approaches' a point XQ G M. Suppose / is defined in a neighbourhood of XQ, but 
not necessarily at the point XQ itself. Two examples will let us capture the essence 
of the notions of continuity and finite limit. Fix XQ = 0 and consider the real 

sin X 
functions of real variable f{x) — x^ + 1, g{x) = x -f [1 — x^l and h{x) = 

X 

(recall that [z] indicates the integer part of z); their respective graphs, at least in 
a neighbourhood of the origin, are presented in Fig. 3.4 and 3.5. 

As far as g is concerned, we observe that |x| < 1 implies 0 < 1 — x^ < 1 and 
g assumes the value 1 only at x = 0; in the neighbourhood of the origin of unit 
radius then, 

9{x) 
_ (I if X 

\x if X 

= 0, 

^0, 

as the picture shows. Note the function h is not defined in the origin. 
For each of / and ^, let us compare the values at points x near the origin with 

the actual value at the origin. The two functions behave rather differently. The 
value /(O) = 1 can be approximated as well as we like by any / (x) , provided x 
is close enough to 0. Precisely, having fixed an (arbitrarily small) 'error' £ > 0 in 
advance, we can make |/(x) — /(0) | smaller than e for all x such that |x — 0| = |x| 
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Figure 3.4. Graphs of f{x) = x"̂  + 1 (left) and g{x) = x + [1 — x ]̂ (right), in a 
neighbourhood of the origin 

is smaller than a suitable real 5 > 0. In fact | /(x) — /(0) | = |x^| = \x\^ < e means 
|x| < v^, so it is sufficient to choose 5 — ^ . We shall say that the function / is 
continuous at the origin. 

On the other hand, ^(0) = 1 cannot be approximated well by any g{x) with 
X close to 0. For instance, let e = | . Then \g[x) — 5̂ (0)1 < e is equivalent to 
I < g{x) < | ; but all x different from 0 and such that, say, |x| < | , satisfy 

— ̂  < g{x) = X < ^, in violation to the constraint for g{x). The function g is not 
continuous at the origin. 

At any rate, we can specify the behaviour of g around 0: for x closer and closer 
to 0, yet different from 0, the images g{x) approximate not the value ^(0), but 
rather ^ = 0. In fact, with 6: > 0 fixed, if x 7̂  0 satisfies \x\ < min(e, 1), then 

sm X 
Figure 3.5, Graph of h{x) = around the origin 
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g{x) = X and \g{x) — ^| = \9{x)\ = |^| < -̂ We say that g has hmit 0 for x going 
toO. 

As for the function /i, it cannot be continuous at the origin, since comparing 
the values /i(x), for x near 0, with the value at the origin simply makes no sense, 
for the latter is not even defined. Neverthless, the graph allows to 'conjecture' that 
these values might estimate £ = 1 increasingly better, the closer we choose x to 
the origin. We are lead to say h has a limit for x going to 0, and this limit is 1. 
We shall substantiate this claim later on. 

The examples just seen introduce us to the definition of continuity and of 
(finite) limit. 

Definition 3.14 Let XQ be a point in the domain of a function f. This func-
tion is called continuous at XQ if for any e > 0 there is a S > 0 such that 

\/x € dom / , \x - XQ\ < S \f{x)-f{xo)\<e. (3.6) 

In neighbourhood-talk: for any neighbourhood I^{f{xo)) of / (XQ) there exists a 
neighbourhood Is{xo) of XQ such that 

Vx G dom/ , X G Is{xo) fix) e / e ( / (xo ) ) . (3.7) 

Definition 3.15 Let f be a function defined on a neighbourhood of XQ E M, 
except possibly at XQ. Then f has limit £ € M {or tends to £ or converges 
to £) for X approaching XQ, written 

lim fix) = £, ' 
X—>Xo 

if given any e > 0 there exists a S > 0 such that 

VxGdom/ , 0<\x-xo\<d =^ \f{x)-£\<e. (3.8) 

Alternatively: for any given neighbourhood Is{£) of £ there is a neighbourhood 
/^(xo) of XQ such that 

Vx G dom/ , X G Is{xo) \ {XQ} fix) G /.(£). 

The definition of limit is represented in Fig. 3.6. 

Let us compare the notions just seen. To have continuity one looks at the values 
fix) from the point of view of / (XQ), whereas for limits these / (x) are compared 
to £, which could be different from / (XQ) , provided / is defined in XQ. TO test the 
limit, moreover, the comparison with x = XQ is excluded: requiring 0 < |x — Xo| 
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Figure 3.6. Definition of finite limit of a function 

means exactly x 7̂  XQ; on the contrary, the implication (3.6) is obviously true for 

Let / be defined in a neighbourhood of XQ. If f is continuous at XQ, then (3.8) 
is certainly true with £ = / (XQ); vice versa if / has limit i = /(XQ) for x going to 
xo, then (3.6) holds. Thus the continuity of / at XQ is tantamount to 

lim f{x) = /(xo). (3.9) 

In both definitions, after fixing an arbitrary e > 0, one is asked to find at 
least one positive number S ('there is a 5') for which (3.6) or (3.8) holds. If either 
implication holds for a certain ^, it will also hold for every S^ < S. The definition 
does not require to find the biggest possible S satisfying the implication. With this 
firmly in mind, testing continuity or verifying a limit can become much simpler. 

Returning to the functions / , g\ h of the beginning, we can now say that / is 
continuous at XQ = 0, 

limf{x) = l = f{0), 
x-^0 

whereas g, despite having limit 0 for x -^ 0, is not continuous: 

lim a ( x ) = 0 ^ 5 ( 0 ) . 

We shall prove in Example 4.6 i) that h admits a limit for x going to 0, and actually 

lim h{x) = 1. 
x-^O 

The functions g and h suggest the following definition. 
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Definition 3.16 Let f be defined on a neighbourhood of XQ, excluding the 
point XQ. / / / admits limit £ E R for x approaching XQ, and if a) f is defined 
in XQ but fixo) ^ i, or b) f is not defined in XQ, then we say XQ is a (point 
of) removable discontinuity for / . 

The choice of terminology is justified by the fact that one can modify the function 
at XQ by defining it in XQ , so that to obtain a continuous map at XQ . More precisely, 
the function 

/ ( , ) = ( / ( - ) i f - ^ - o , 
{£ if X = xo, 

is such that 
lim f{x) = lim f{x) = ^ = /(^o), 

X—>Xo X—>Xo 

hence it is continuous at XQ. 
For the above functions we have g{x) = x in a neighbourhood of the origin, 

while 

{ sinx .- . ^ 

1 if X = 0. 
sin X 

In the latter case, we have defined the continuous prolongation oi y = , 
X 

by assigning the value that renders it continuous at the origin. From now on when 
sin X 

referring to the function y = , we will always understand it as continuously 
X 

prolonged in the origin. 

Examples 3.17 

We show that the main elementary functions are continuous. 

i) Let f : R ^ R, f{x) = ax -\- b and XQ G R be given. For any e > 0, 
\f{x) — f{xo)\ < s ii and only if \a\ \x — Xo\ < s. When a = 0, the condition holds 

e 
for any x G R; if a 7̂  0 instead, it is equivalent to x — XQ < •T—^'> and we can put 

\a\ 

5 — —- m (3.6). The map / is thus continuous at every XQ G R . 

ii) The function / : R —> R, f{x) — x^ is continuous at XQ — 2. We shall prove 
this fact in two different ways. Given £ > 0, \f{x) — / (2) | < £, or |x^ — 4| < e, 
means 

4 - £ < x 2 < 4 + ^. (3.10) 

We can suppose e < A (for if | /(x) — /(2) | < e for a certain e, the same will 
be true for all e' > e)] as we are looking for x in a neighbourhood of 2, we can 
furthermore assume x > 0. Under such assumptions (3.10) yields 



3.3 Limits of functions; continuity 79 

\ / 4 - £ < X < v T T i , 
hence 

A / 4 ^ ) < X - 2 < \ / 4 T i - 2. (3.11) 

This suggests to take 5 = min(2 — y/A — e^ y/A + e — 2) (= y/A + e — 2, easy to 
verify). If |a:̂  — 2| < (5, then (3.11) holds, which was equivalent to |x^ — 4| < e. 
With a few algebraic computations, this furnishes the greatest S for which the 
inequality |a;̂  — 4| < e is true. 
We have already said that the largest value of S is not required by the definitions, 
so we can also proceed alternatively. Since 

\x^ - 4| = \{x - 2)(x + 2)1 = \x-2\\x + 2\, 

by restricting x to a neighbourhood of 2 of radius < 1, we will have — 1 < x — 2 < 
1, hence 1 < x < 3. The latter will then give 3 < x -h 2 = |x + 2| < 5. Thus 

| x 2 - 4 | < 5 | x - 2 | . (3.12) 

To obtain |x^ — 4| < e it wih suffice to demand |x - 2| < - ; since (3.12) holds 
0 

when |x — 2| < 1, we can set 5 = min ( l , - ) and the condition (3.6) will be 
satisfied. The neighbourhood of radius < 1 was arbitrary: we could have chosen 
any other sufficiently small neighbourhood and obtain another (5, still respecting 
the continuity requirement. 
Note at last that a similar reasoning tells / is continuous at every XQ G M. 

iii) We verify that / : R ^ M, f{x) = sinx is continuous at every XQ G M. We 
establish first a simple but fundamental inequality. 

Lemma 3.18 For any x £% 

|sina:| < |a;|, 

with equality holding if and only if x = 0. 

(3.13) 

Proof. Let us start assuming 0 < x < | and look at the right-angled triangle 
PHA of Fig. 3.7. The vertical side PH is shorter than the hypotenuse PA^ 
whose length is in turn less than the length of the arc PA (the shortest 
distance between two points is given by the straight line joining them): 

YE <TA<PA. 

By definition PH = sinx > 0, and PA= x > 0 (angles being in radians). 
Thus (3.13) is true. The case — | < x < 0 is treated with the same 
argument observing | sinx| = sin |x| for 0 < |x| < f. At last, when |x| > | 
one has | sinx| < 1 < ^ < |x|, ending the proof. • 
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Figure 3.7. |sinx| < \x\ 

Thanks to (3.13) we can prove that sine is a continuous function. Recalhng 
formula (2.14), 

x-xo x-\-xo 
sm X — smxo = 2 sm — - — cos , 

(3.13) and the fact that | cost\ < 1 for all t G M, imply 

I sin X — sin XQ | = 2 

< 2 

X — XQ 

sm -

X — XQ 

COS 
x-\-xo 

1 = \x - x o | . 

Therefore, given an £: > 0, if |x — xo| < ^ we have | sinx — sinxo| < e; in other 
words, condition (3.6) is satisfied by 6 = s. 
Similarly, formula (2.15) allows to prove g{x) — cosx is continuous at every 
xo G M. • 

Definition 3.19 Let I he a subset of domf. The function f is called con-
tinuous on / (or over / ) if f is continuous at every point of I. 

We remark that the use of the term 'map' (or 'mapping') is very diff'erent from 
author to author; in some books a map is simply a function (we have adopted 
this convention), for others the word 'map' automatically assumes continuity, so 
attention is required when browsing the literature. 

The following result is particularly relevant and will be used many times with-
out explicit mention. 
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Proposition 3.20 All elementary functions {polynomials^ rational func-
tions^ powers^ trigonometric functions^ exponentials and their inverses) are 
continuous over their entire domains. 

Proof. Elementary functions. D 

Now back to limits. A function / defined in a neighbourhood of XQ, XQ excluded, 
may assume bigger and bigger values as the independent variable x gets closer to 
XQ. Consider for example the function 

f{^) = ( x - 3 ) 2 

on M \ {3}, and fix an arbitrarily large real number A>0. Then f{x) > A for all 

X ^ XQ such that Ix — 31 < —=. We would like to say that / tends to +(X) for x 
VA 

approaching XQ] the precise definition is as follows. 

Definition 3.21 Let f be 
sibly at XQ. 
proaching 

if for any A 

defined in a neighbourhood of XQ 
The function f has limit +CXD (or tends to 

XQ, in symbols 

> 0 there is a 

\/x G dom / , 

lim f{x) = -hoo, 

S > 0 such that 

0 < \x — xo\ < S ^ m. 

eR, 
+oo; 

> A 

except pos-
for X ap-

(3.14) 

Otherwise said, for any neighbourhood IA{-\-OO) of +(X) there exists a neighbour-
hood Is{xo) di XQ such that 

\/x G dom / , x e Is{xo) \ {xo} fix) e IA{+OO), 

The definition of 

lim f{x) = —oo 
X-^XQ 

follows by changing f{x) > A to f{x) < —A. One also writes 

lim f{x) = 00 
X—^XQ 

to indicate lim \f{x)\ = +oo. For instance the hyperbola f{x) = - , with graph 
X-^XQ ^ 

in Fig. 2.2, does not admit limit for x -^ 0, because on each neighbourhood hiO) of 
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the origin the function assumes both arbitrarily large positive and negative values 
together. On the other hand, \f{x)\ tends to +00 when x nears 0. In fact, for fixed 
A>0 

V X G M \ { 0 } , \X\<- =^ n > ^ ' 
A \x\ 

Hence lim — = 00. 
x^O X 

3.3.3 One-sided limits; points of discontinuity 

The previous example shows that a map may have different limit behaviours at 

the left and right of a point XQ. The function f{x) — — grows indefinitely as x 
X 

takes positive values tending to 0; at the same time it becomes smaller as x goes 
to 0 assuming negative values. Consider the graph of the mantissa y = M{x) (see 
Fig. 2.3) on a neighbourhood of XQ == 1 of radius < 1. Then 

_ (x if 

~ U - 1 if 
nr, ^ I - if X < 1, 
M{x) = { . ., ^ / 

11 X > 1. 

When X approaches 1, M tends to 0 if x takes values > 1 (i.e., at the right of 1), 
and tends to 1 if x assumes values < 1 (at the left). 

The notions of right-hand limit and left-hand limit (or simply right limit and 
left limit) arise from the need to understand these cases. For that, we define right 
neighbourhood of XQ of radius r > 0 the bounded half-open interval 

The left neig 

J^(xo) = [xo,xo + r) = {x G E : 0 < x — XQ < r} . 

hbourhood of XQ of radius r > 0 will be, similarly, 

I~(xo) = (xo - r, xo] = {x G E : 0 < XQ - x < r} . 

Substituting the condition 0 < |x — xo| < S (i.e., x G Is{xo) \ {XQ}) with 0 < 
X — Xo < S (i.e., X G / / (xo) \ {^0}) in Definitions 3.15 and 3.21 produces the 
corresponding definitions for right Hmit of / for x tending to XQ, otherwise 
said limit of / for x approaching XQ from the right or limit on the right; 
such will be denoted by 

lim^/(x). 

For a finite limit, this reads as follows. 

Definition 3.22 Let f be defined on a right neighbourhood of XQ G E^ except 
possibly at XQ. The function f has right limit ^ G E for x -> XQ, if for every 
£ > 0 there is a 6 > 0 such that 

Vx G dom / , 0 < x - x o < < 5 => | /(x) - £\ < e. 
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Alternatively, for any neighbourhood I^ (i) di i there exists a right neighbourhood 
I^{xo) of XQ such that 

\/x e dom/ , X e I^{xo) \ {xo} =^ f{x) £ Ie{i). 

The notion of continuity on the right is analogous. 

Definition 3.23 A function f defined on a right neighbourhood O/XQ G M is 
called continuous on the right at XQ {or right-continuous) if 

lim f{x) = f{xo). 

If a function is only defined on a right neighbourhood of XQ, right-continuity co-
incides with the earlier Definition (3.6). The function f{x) — yjx for example is 
defined on [0, +oo), and is continuous at 0. 

Limits of / from the left and left-continuity are completely similar: now one 
has to use left neighbourhoods of XQ; the left limit shall be denoted by 

lim_/(x). 

The following easy-to-prove property provides a handy criterion to study limits 
and continuity. 

Proposition 3.24 Let f he defined in a neighbourhood of XQ € M; with the 
possible exception of XQ . The function f has limit L {finite or infinite) for 
X —^ XQ if and only if the right and left limits of / , for x —^ XQ^ exist and 
equal L. 

A function f defined in a neighbourhood of XQ is continuous at XQ if and only 
if it is continuous on the right and on the left at XQ . 

Returning to the previous examples, it is not hard to see 

lim — = +oo; lim — = —oo 
x-^0+ X x-^0- X 

and 
lim M{x) = 0; lim M{x) = 1. 

Note M(l) = 0, so lim M{x) = M(l ) . Ah this means the function M{x) is con-

tinuous on the right at XQ = 1 (but not left-continuous, hence neither continuous, 
at Xo = 1). 
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Definition 3.25 Let f be defined on a neighbourhood of XQ £ M, except pos-
sibly at XQ. If the left and right limits of f for x going to XQ are different, we 
say that XQ is a (point of) discontinuity of the first kind (or a jump 
point) for f. The gap value of f at Xo is the difference 

[f]xo = lim / ( a : ) - lim f{x). 

Thus the mantissa has a gap — —1 at XQ = I and, in general, at each point 
XQ = n e Z. 

Also the floor function y = [x] jumps, at each XQ = n G Z, with gap = 1, for 

lim [x] = n; lim [x] = n — 1. 

The sign function y = sign (x) has a jump point at XQ = 0, with gap = 2: 

lim sign(x) = l; lim sign(x) = —1. 
x-^0+ x-^0-

Definition 3.26 A discontinuity point which is not removable, nor of the 
first kind is said of the second kind. 

This occurs for instance when / does not admit limit (neither on the left nor 
on the right) for x ^ XQ. The function / (x) = sin ^ has no limit for x ^ 0 (see 
Fig. 3.8 and the explanation in Remark 4.19). 

Figure 3.8. Graph of f{x) = sin ^ 



3.3 Limits of functions; continuity 85 

3.3.4 Limits of monotone functions 

Monotonicity affects the possible limit behaviour of a map, as the following results 
explain. 

Theorem 3,27 Let f be a monotone function defined on a right neighbour-
hood I^{c) of the point c (where c is reed or —ooj, possibly without the point 
c itself Then the right limit for x -^ c exists {finite or infinite) ^ and precisely 

{inf{/(a:) : x € I'^{c)j x > c} if f is increasing^ 

s\xp{f{x) : X E /"^(c), X > e} if f is decreasing. 

In the same way^ f monotone on a left neighbourhood /~(c)\{c} of c (c real 
or 4-OQ) satisfies 

{x)^\ 
^ sup{/(ar) : X £ I'~{c)^ X <c} if f is increasing^ 

lim / (a ' 
" inf{/(a:) : x G /~(c) , x <c} if f is decreasing. 

Proof. --> Limits. • 

A straightforward consequence is that a monotone function can have only a 
discontinuity of the first kind. 

Corollary 3.28 Let f be monotone on a neighbourhood I{XQ) of XQ € E. 
Then the right and left limits for x -^ XQ exist and are finite. More precisely^ 

i) if f is increasing 

lim_ f{x) < f{xo) < lim^ f{x); 

ii) if f is decreasing 

lim fix) > f{xo) > lim f{x). 

Proof. Let /' be increasing. Then for all ;/' G /(:i'o) with ;/• < .XQ. /(.r) < /(^o) 
The above tlieoreni guaraiitc^es that 

hm /(./') = sup{/(.i') : x G /(XQ). X < XQ} < / (XQ). 

Similarly, for ./' G lixo) with x > XQ. 
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f{xo) < inf{/(x) : x G /(XQ), X > XQ} = lim f{x) 

from which i) follows. The second implication is alike. D 

3.4 Exercises 

1. Using the deGnition prove that 

a) lim n! = +oo 
n-^+oo 

b) n" lim ^ 
i^+oo 1 — 2n 

-CXD 

c) l im(2x2-f3)-5 
1 a;—>1 

d) lim = ±(X) 

e) lim 

2^ Let / (x) = sign (x^ — x). Discuss the existence of the Umits 

2± x^ - 4 

x^ 
f) lim — —CO 

X—)- + CXD 1 — X 

lim / (x) and lim /(x) 
rr—>0 x—>1 

and study the function's continuity. 

3. Determine the values of the real parameter a for which the following maps are 
continuous on their respective domains: 

a) I / ( a ; ) - ^ " " ' " ^ - ' ^ 
asin(x + f ) if X > 0, 

2x^ + 3 if X < 0 
b) fix) 

3e"^-i i f x > l , 

. X + 2 if X < 1 

3.4.1 Solutions 

1. Limits: 

a) Let a real number ^ > 0 be given; it is sufficient to choose any natural number 
nA> A and notice that if n > n̂ ^ then 

i\ = n{n -l)'-'2'l>n>nA>A. 

Thus lim n! = +00. 

b) Fix a real 4̂ > 0 and note j ^ ^ < —A is the same as 2^3^ > A. For n > 1, that 
means n^—2An-\-A > 0. If we consider a natural number UA > A-\-y/A{A + 1), 
the inequality holds for all n > UA-
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c) Fix e > 0 and study the condition |/(x) — £\ < e: 

\2x^ + 3 - 5| = 2\x^ - 1| = 2|x - 1| |x + 1| < £. 

Without loss of generahty we assume x belongs to the neighbourhood of 1 of 
radius 1, i.e., 

- 1 < X - 1 < 1, whence 0 < x < 2 and 1 < x -f-1 = |x + 1| < 3. 

Therefore 
|2x2 + 3 - 5 | < 2 . 3 | x - l | = 6 | x - l i . 

The expression on the right is < e if |x — 1| < | . It will be enough to set 
5 — min(l, | ) to prove the claim. 

2. Since x^ — x > 0 when x < 0 or x > 1, the function / (x) is thus defined: 

{ 1 if X < 0 and x > 1, 

0 if X = 0 and X = 1, 

- 1 i f O < x < l . 

So / is constant on the intervals (—oo,0), (0,1), (1,+oc) and 

lim /(x) = 1, lim /(x) = - 1 , 

lim / (x) = — 1, lim / (x) = 1. 
x^l- x^l + 

The required limits do not exist. The function is continuous on all R with the 
exception of the jump points x = 0 and x = 1. 

3. Continiuty: 

a) The domain of / is M and the function is continuous for x 7̂  0, irrespective of 
a. As for the continuity at x = 0, observe that 

lim /(x) = lim (2x^ + 3) = 3 = /(O), 

lim f(x) = lim asinfx H—) = a. 

These imply / is continuous also in x = 0 if a = 3. 

b) a = 1. 



Limits and continuity II 

The study of limits continues with the discussion of tools that facilitate compu-
tations and avoid having to resort to the definition each time. We introduce the 
notion of indeterminate form, and infer some remarkable limits. The last part of 
the chapter is devoted to continuous functions on real intervals. 

4.1 Theorems on limits 

A bit of notation to begin with: the symbol c will denote any of XQ, X J , X ^ , 
+00, — oo, oo introduced previously. Correspondingly, I{c) will be a neighbourhood 
l6{xo) of xo G M of radius 5, a right neighbourhood / ^ ( X Q ) , a left neighbourhood 
/^(xo), a neighbourhood / B ( + O O ) of +00 with end-point 5 > 0, a neighbourhood 
IB{—OO) of —00 with end-point — B, or a neighbourhood /^(oc) = /B(—oc) U 
IB {-\-Oc) of (X). 

We shall suppose from now on / , ^, / i , . . . are functions defined on a neighbour-
hood of c with the point c deleted, unless otherwise stated. In accordance with the 
meaning of c, the expression lim /(x) will stand for the limit of / for x —> XQ G M, 

X—>C 

the right or left limit, the limit for x tending to +00, —00, or for |x| -^ +CXD. 

4.1.1 Uniqueness and sign of the limit 

We start with the uniqueness of a limit, which justifies having so far said 'the limit 
of / ' , in place of 'a limit of / ' . 

Theorem 4.1 (Uniqueness of the limit) Suppose f admits (finite or in-
finite) limit i for x —> c. Then f admits no other limit for x -^ c. 
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f ~ ~ — - — - - 1̂ 1-™«-.«.»».-.__»„| • y 

£-£ £-^£ t'-e m^e 

Figure 4.1. The neighbourhoods of t, H! of radius e < ^\i — £'\ are disjoint 

Proof. We assume there exist two limits i' ^ i and infer a contradiction. We 
consider only the case where i and i' are both finite, for the other situations 
can be easily deduced adapting the same argument. First of all, since i' ^ i 
there exist disjoint neighbourhoods /(^) of i and K^C) of i' 

i{e)ni{e')^(l}. (4.i) 

To see this fact, it is enough to consider neighbourhoods of radius e smaller 
or equal than half the distance of £ and i', e < ^\i — i'\ (Fig. 4.1). 
Taking l(£\ the hypothesis lim /(x) = £ implies the existence of a neigh-

bourhood /(c) of c such that 

VxGdom/ , x G / ( c ) \ { c } ^ f{x)el{£). 

Similarly for I{i'), from lim f{x) — £' it follows there is I'{c) with 

VxGdom/ , x^l'{c)\{c} ^ f{x)el{£'). 

The intersection of /(c) and I\c) is itself a neighbourhood of c: it contains 
infinitely many points of the domain of / since we assumed / was defined 
in a neighbourhood of c (possibly minus c). Therefore if x G d o m / is any 
point in the intersection, different from c, 

f{x)el{£)nl{f), 

hence the intervals I{£) and I{f) do have non-empty intersection, contra-
dicting (4.1). D 

The second property we present concerns the sign of a limit around a point c. 

Theorem 4.2 Suppose f admits limit i (finite or infinite) for x -^ c. If 
£>0or£=^ -fc», there exists a neighbourhood I{c) ofc such that f is strictly 
positive on I{c) \ {c}. A similar assertion holds when £ <0 or£^ —oo. 

Proof. Assume £ is finite, positive, and consider the neighbourhood 1^(1) of £ of 
radius £ = £/2 > 0. According to the definition, there is a neighbourhood 
/(c) of c satisfying 
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Figure 4.2. Around a limit value, the sign of a map does not change 

Vx G dom./\ X e I{c) \ {c} => fix) e Ie{i)-

As I^ii) = ( | , Y ) C (0, +oc), all values f{x) are positive. 
If /; = +0C it suffices to take a neighbourhood //i^(+oo) = (A, +oo) of +oo 
(.4 > 0) and use the corresponding definition of limit. • 

The next result explains in which sense the implication in Theorem 4.2 can be 
'almost' reversed. 

Corollary 4,3 Assume f admits limit i (finite or infinite) for x tending to 
c. If there is a neighbourhood I{c) of c such that f{x)> 0 in 1(c) \ {c}, then 
£>0 or £^ -f cx). A similar assertion holds for a -negative^ limit 

Proof. By contradiction, if ^ = — oc or £ < 0. Theorem 4.2 would provide a neigh-
bourhood r{c) of c such that f{x) < 0 on /'(c) \{c}. On the intersection of 
/(c) and r{c) we would then simultaneously have f{x) < 0 and f{x) > 0, 
whicli is not possible. • 

Note that even assuming the stronger inequality f{x) > 0 on /(c), we would 
not be able to exclude £ might be zero. For example, the map 

/(^; 
^ (x^ if X ^ 0, 

\ 1 if a: = 0, 

is strictly positive in every neighbourhood of the origin, yet lim /(x) = 0. 

4.1.2 Comparison theorems 

A few results are known that allow to compare the behaviour of functions, the first 
of which generalises the above corollary. 
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Corollary 4.4 (First comparison theorem) Let a function f have limit 
£ and a function g limit m (i^ m finite or not) for x -^ c. If there is a 
neighbourhood I{c) of c such that f{x) < g{x) in I{c) \ {c}, then i <m. 

Proof. If £ ~ —oo or m = +oo there is nothing to prove. Otherwise, consider the 
map h{x) = g{x) — f{x). By assumption h{x) > 0 on /(c) \ {c}. Besides, 
Theorem 4.10 on the algebra of hmits guarantees 

hm h{x) =^ hm g{x) — hm f{x) = m — £. 
X—>C X—^C X—^C 

The previous corollary applied to h forces m — ^ > 0, hence the claim. • 

We establish now two useful criteria on the existence of limits based on com-
paring a given function with others whose limit is known. 

Theorem 4.5 (Second comparison theorem - finite case, also known 
as "Squeeze rule") Let functions / , g and h he given, and assume f and h 
have the same finite limit for x —> c, precisely 

lim f{x) = lim h{x) = i. 

If there is a neighbourhood I{c) of c where the three functions 
{except possibly at c) and such that 

f{x)<g{x)<h(x), V x € / ( c ) \ { c } , 

then 
lim g{x) == £. 
x~-*c 

are defined 

(4.2) 

Proof. We follow the definition of limit for g. Fix a neighbourhood Is{i) of £; by 
the hypothesis lim f{x) = £ we deduce the existence of a neighbourhood 

x-^c 

I'{c) of c such that 

VxGdom/ , x^l\c)\{c} ^ f{x)els{£). 

The condition f{x) E Ie{£) can be written as \f{x) — £\ < e, or 
£-€<f{x) <£ + e, (4.3) 

recalling (1.4). Similarly, lim h{x) = £ implies there is a neighbourhood 

r^(c) of c such that 
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Figure 4.3. The squeeze rule 

VxGdom/?. xe I'^{c)\{c} i-s<h{x) <£-\-s. (4.4) 

Define then r''(r) = I{c) D r{c) H r'{c). On r''{c) \ {c} the constraints 
(4.2). (4.3) and (4.4) all hold, hence in particular 

.r G r{c) \ {(•} ^ i-E < fix) < g{x) < h{x) <i + e. 

This means g{x) G IE{^')' concluding the proof. • 

Examples 4.6 

i) Let us prove the fundamental limit 

sma: 
hm = 1. 

^ . ^ , sinx . _ sin(—x) 
Observe iirst that y = is even, tor — sm X sm X 

(4.5) 

It is thus 

sm X 
sufficient to consider a positive x tending to 0, i.e., prove that lim = 1. 

x-^0+ X 

Recalling (3.13), for all x > 0 we have sinx < x, or smx < 1. To find a 

lower bound, suppose x < ^ and consider points on the unit circle: let A have 
coordinates (1,0), P coordinates (cosx,sinx) and let Q be defined by ( l , tanx) 
(Fig. 4.4). The circular sector OAP is a proper subset of the triangle OAQ, so 

Area OAP < Area OAQ. 
Since 

Area OAP -
OA- AP X 

and Area OAQ = 
OA ' AQ tan x 
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Figure 4.4. The sector OAP is properly contained in OAQ 

it follows 

Eventually, on 

X 

2 < 
0 < x < f 

smo: 
zcosx 
one has 

sin a: 
cosx < 

cosx < 

< 1. 

smx 
X 

X 
The continuity of the cosine ensures lim cos x = 1. Now the claim follows from 

the Second comparison theorem. 
sin X 

ii) We would like to study how the function g{x) = behaves for x tending 

to -hoo. Remember that 

- l < s i n x < l (4.6) 

for any real x. Dividing by x > 0 will not alter the inequalities, so in every 
neighbourhood IA{-\-OO) of +00 

1 sin X 1 
X ~~ X ~ X 

Now set f(x) = — , h{x) = - and note lim - = 0. By the previous theorem 
X X x ^ + 0 0 X 

sinx 
lim 0. • 

x—^-\-oo X 

The latter example is part of a more general result which we state next (and 
both are consequences of Theorem 4.5). 
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j Corollaiy 4*7 Let f be a bounded function around c, i.e., 
neighbourhood I(c) and a constant C > 0 such that 

Let g &e such that 

Thm it follows 

\m < C, \fx e I{c) \ {c}. 

lim f{x)g{x) = 0. 
x—*c 

there exist a 

^ (4.7) 

Proof. By definition lim g(:r) = 0 if and only if lim |^(.T)| = 0, and (4.7) implies 

0<\f{x)g{x)\<C\g{x)\. V.x e / ( c ) \ {c}. 

The claim follows by applying Theorem 4.5. • 

Theorem 4«8 (Second comparison theorem ~ infinite case) Let / , g be 
given functions and 

lim f{x) = +00. 
x-^c 

If there eomts a neighbourhood I{c) of Cj where both functions are defined 
{except jK)saibly at c)f such that 

f{x)<gix), V X € / ( G ) \ { € } , (4.8) 

then 
lim g{x) = -hoc. 
x—*c 

A result of the same kind for f holds when the limit of g is —oo. 

Proof. The proof is. with the necessary changes, like that of Theorem 4.5, hence 
left to the reader. D 

Example 4.9 

Compute the limit of g{x) = x + sinx when x -^ +(X). Using (4.6) we have 

X — 1 < X + sin X, Vx G R. 

Set / (x) = X — 1; since lim /(x) = +oc, the theorem tells us 

lim (x + sinx) ==+(X). D 
x—>+oo 
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4.1.3 Algebra of limits. Inde te rmina te forms of algebraic type 

This section is devoted to the interaction of Umits with the algebraic operations 
of sum, difference, product and quotient of functions. 

First though, we must extend arithmetic operations to treat the symbols +oc 
and —(X). Let us set: 

the fol 

+00 -f 5 == +00 

—00 -h 5 = —CO 

± 0 0 • S = ± 0 0 

±00 • s = =Foo 

±00 
— =: ±00 

s 
±00 

= =Foo 
s 

s 

±oo 

lowing expressions 

±oo 4- (^oo), ±oo -

(if s G R or s = +oo) 

(if 5 € R or 5 = -oo) 

{if s >0 ov s — +oo) 

(if 5 < 0 or s = —oo) 

(if 5 > 0) 

(if s<0) 

(if 5 G R \ { 0 } o r s = ±oo) 

(if 5 G R) 

are not defined 

±00 
-(±oo), ±00-0 , - ^ , 

±oo 
0 1 
0' 

A result of the foremost importance comes next. 

Theorem 4.10 Suppose f admits limit £ 
limit m {finite or infinite) for x -^ c. Then 

lim {f{x)±gix)): 

lim {j{x)g{x)) --

x->c Q{X) 

{finite or 

= £m^ 

i 

provided the right-hand-side expressions make sense, 
assumes g{x) ^0 on some I{c)\{c}.) 

infinite) 

{In 

and 

the last 

g admits 

case one 
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Proof. \\̂ ^ shall prove two relations only, referring the reader to "^ Limits for 
the ones left behind. The first we concentrate upon is 

lim (f{x)+g{x)) =i^rn 

when ( and ni are finite. Fix c > 0, and consider the neighbourhood of l 
of radius c/2. By assumption there is a neighboin-hood /^(c) of c such that 

V.I' e doni / . X e: I'{c) \ [c] ^ \f{x) -i\< c/2. 

For the same reason there is also an I"ic) with 

V.r e domry. x G ^{(') \ {c} => \g{x) - m| < c/2. 

Put I{c) = r(c) n r'{c). Then if x G d o m / H dom.g belongs to /(c) \ {c}, 
both inequalities liold: the triangle inequality (1.1) yields 

|(/(.r) + cj{x)) ^ (t + ///)1 = \U{x) ~ ^) + {g{2:) - m)\ 

I)roviiig the assertion. 

The seeoiid relation is 

< !/(•£•) - 1̂ + \g{x) - m\ < 2 + 2 " ^' 

lim (/(,r),g(,r))=+c 

with / = +OC and /// > 0 finite. For a given real A > 0. consider the 
neiglil)ourhood of +'3C with c^nd-point B — 2A/rn > 0. We know there is 
a neighbourhood r(c) sucli that 

V.r G dom/ . ./• G l'{c) \ {c} ^ f{x) > B. 

On the other hand, considc^ring the neighbourhood of m of radius m/2, 
therc^ exists an !''{(') such that 

V.r G dom g. x G l'{c) \ {c} ^ \gix) - 7n\ < m/2, 

i.e.. ni/2 < g(x) < lhn/2. Set /(c) = /'(c) n r{c). If x G dom/ H doni^ is 
in 1(c) \ {('}. the previous relations will be both fulfilled, whence 

f{x)g(x)>f{x)j>B'^=A. 

D 

Corollary 4.11 / / / and g are continuous maps at a point XQ € M̂  then also 
f(x) 

f{x) ± g{x)^ f(x)g(x) and -j-r (provided g{xo) ^ 0) are continuous at XQ, 
9{x) 
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Proof. The condition that / and g are continuous at XQ is equivalent to hm f{x) = 
X—>XQ 

f{xo) and hm g(x) = g{xo) (recah (3.9)). The previous theorem ahows 
X^XQ 

to conclude. • 

Corollary 4.12 Raiioiml functions are mntinwous on their domain. In par-
ticular j polynomiab are cmitinmms onMi 

Proof. We verified in Example 3.17, part i), that the constants y = a and the 
linear function y = x are continuous on R. Consequently, maps like y = ax'^ 
{n G N) are continuous. But then so are polynomials, being sums of the 
latter. Rational functions, as quotients of polynomials, inherit the property 
wherever the denominator does not vanish. • 

Examples 4.13 

i) Calculate 
2x —3cosx 

hm = L 
x^o 5 + xsinx 

The continuity of numerator and denominator descends from algebraic oper-
ations on continuous maps, and the denominator is not zero at x = 0. The 
substitution of 0 to x produces (. — —3/5. 
ii) Discuss the limit behaviour of y — t anx when x —> | . Since 

lini smx = sm — — 1 and ^™ cosx = cos 77 == 0, 

the above theorem tells 
sin X 1 

lim tanx = lim = - = CXD. 
a;->f x ^ f COSX 0 

But one can be more precise by looking at the sign of the tangent around ^. Since 
sinx > 0 in a neighbourhood of | , while cosx > 0 (< 0) in a left (resp. right) 
neighbourhood of | , it follows 

lim tanx = =FCXD. 

P(x) 
iii) Let i?(x) = be rational and reduced, meaning the polynomials P , Q 

have no common factor. Call XQ G R a zero of Q, i.e., a point such that Q{xo) = 0. 
Clearly P(xo) 7̂  0, otherwise P and Q would be both divisible by (x —XQ). Then 

lim R{x) — 00 
X—>XQ 

follows. In this case too, the sign of R{x) around of XQ retains some information. 
^2 _ 2^ _j_ 2 

For instance, y — ^ is positive on a left neighbourhood of XQ = 1 and 
x^ — X 

negative on a right neighbourhood, so 
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,. x ^ - S x + l 
lim = =Foo. 

x^l^ X^ — X 

X - 2 

In contrast, the function y = -r. is negative in a whole neighbourhood 
x^ — 2x + 1 

of xo = 1, hence 
X — 2 

lim -T:— 7 = -oo. • 
x^i x^ - 2x + 1 

Theorem 4.10 gives no indication about the limit behaviour of an algebraic 
expression in three cases, listed below. The expressions in question are called in-
determinate forms of algebraic type. 

i) Consider f{x)-j-g{x) (resp. f{x)-g{x)) when both / , g tend to oo with different 
(resp. same) signs. This gives rise to the indeterminate form denoted by the 
symbol 

00 — 00 . 

ii) The product f{x)g{x), when one function tends to oo and the other to 0, is 
the indeterminate form with symbol 

oo-O. 

ffx) 
iii) Relatively to , in case both functions tend to oo or 0, the indeterminate 

forms are denoted with 
00 0 
— or - . 
oo 0 

In presence of an indeterminate form, the limit behaviour cannot be told a 
priori, and there are examples for each possible limit: infinite, finite non-zero, zero, 
even non-existing limit. Every indeterminate form should be treated singularly and 
requires often a lot of attention. 

Later we shall find the actual limit behaviour of many important indeterminate 
forms. With those and this section's theorems we will discuss more complicated in-
determinate forms. Additional tools to analyse this behaviour will be provided fur-
ther on: they are the local comparison of functions by means of the Landau symbols 
(Sect. 5.1), de THopital's Theorem (Sect. 6.11), the Taylor expansion (Sect. 7.1). 

Examples 4.14 

i) Let X tend to +oo and define functions fi{x) = x-hx^, f2{x) = x + 1, /3(x) = 
^ + ^, f4{x) = x + sinx. Set ^(x) = x. Using Theorem 4.10, or Example 4.9, one 

verifies easily that all maps tend to +oo. One has 

lim [/i(x) — ^(x)] = lim x^ = -hoo, 

lim [/2(x) -^ (x ) ] = lim 1 = 1, 
x-^+oo x—>+oo 

lim [fsix) - g{x)] = lim - = 0 , 
x-^+oo a:—>-+oo X 



100 4 Limits and continuity II 

whereas the hmit of /4(x) — g{x) — sinx does not exist: the function sinx is 
periodic and assumes each value between —1 and 1 infinitely many times as 
X -^ + 0 0 . 

ii) Consider now x -^ 0. Let fi{x) = x^, /2(x) — x^, /3(x) = x, f4{x) = x'^ sin ^, 
and g{x) = x^. All functions converge to 0 (for /4 apply Corollary 4.7). Now 

V A W r n 
lim —T-— = lim X = 0, x^O g[x) x-^0 

n —T-— = lim 
0̂ g(x) x^o 

n —-̂ -— — lim 
0̂ ^(x) x-^o X 

liin ^ ^ lim 1 = 1 

lim — 7 ^ = lim —,= 00, 

£ ( \ 1 

but —--— = s i n - does not admit limit for x ^^ 0 (Remark 4.19 furnishes a 
^(x) X 

proof of this). 

iii) Let us consider a polynomial 

P(x) — anx"^ + . . . + a\x + ao (a^ 7̂  0) 

for X ^ ±00. A function of this sort can give rise to an indeterminate form 
(X) — 00 according to the coefficients' signs and the degree of the monomials 
involved. The problem is sorted by factoring out the leading term (monomial of 
maximal degree) x^ 

The part in brackets converges to a^ when x —> ±oc, so 

lim P{x) — lim a^a:^ = 00 

The sign of the limit is easily found. For instance, 

lim (-5x^ + 2x^ + 7) = lim (-5x^) = +00. 
cc—> — 0 0 a ; - ^ —cx) 

Take now a reduced rational function 
P(x) a^x^ + . . . + aix + ao , L / n ^ n\ 

When X —̂  ±00, an indeterminate form ^ arises. With the same technique as 
before, 

00 if n > m , 

P{x) ,. an^r"" an ,. n - m I ^n . . 
lim -~T = lim T = 7— hm x'̂  "̂  = < 7— lin — m, 

x->±oo <y(x) x->±oo bmX^ Om 2c-̂ ±oo j 0^ 

0 if n < m . 
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For example: 

lim 
3x^ 2x + l ,. 3x^ 

— = l im — - = —00 . 
X — X^ x->+oo —X^ 

- 4 x ^ + 2 x ^ - 7 ,. -Ax^ 

x^-oo Sx^ — x^ + 5x 
lim 

8x5 

1 

2 ' 

lim ;̂  = lim 
x - ^ - o o —X"^ + 9 x ^ - o o —X' 

3 

iv) The function ?/ s m x becomes indeterminate ^ for x —> 0; we proved in part 

i), Examples 4.6 tha t y converges to 1. From this, we can deduce the behaviour 

of y — 'z as X -^ 0, another indeterminate form of the type ^. In fact, 

1—cosx .̂ (1 — cosx) ( l + cosx) 
hm ^ = hm ^—— r 
x^O X^ x-^0 X ^ ( 1 + C 0 S X ) 

.̂ 1 — cos^x .. 
hm • hm 

1 

x^O x^O 1 + COSX 

The fundamental trigonometric equation cos^ x + sin x = 1 together with The-
orem 4.10 gives 

lim 
sin^x 

lim s m x lim s m x 1. 
•-^0 X^ x-^0 \ X J \x-^0 X 

The same theorem tells also tha t the second limit is ^, so we conclude 

lim 
1 — COS X 

x^ n 

With these examples we have taken the chance to look at the behaviour of 
elementary functions at the boundary points of their domains. For completeness we 
gather the most significant limits relative to the elementary functions of Sect. 2.6. 
For explanations -^ E lemen ta ry f i i n c t i o n s . 

lim x^ = -j-oo , 
X—*-4-oo 

lim x^ = 0, 
X—> + 00 

hm — 
x->±oo bmX'^ + . . . + OiX 

l i m a^ = -f-cxD, 
x—>4-cx) 

lim a^ = 0, 
X—>+oo 

lim log^ X = +0C, 

lim log^ X = —00, 
X—»- + 0 0 

-f-6o 

lim x" = 0 
X-+0+ 

lim x^ = +00 
x->0+ 

= p- lim X— 

lim a^'^O 
X—^ —C» 

lim a^ = +00 
X—»• —00 

a > 0 

a < 0 

a > 1 

a < 1 

lim log(, X = —00 a > 1 
x->0+ 

lim log^ X — +00 a < 1 
x->-0+ 
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lim sin a?, lim cosx, lim tana: do not exist 

lim tanx = ^oo, Vfc € Z 
x-.(f+fc7r)* 

TT 

lim arcsina? = ± ~ = arcsin(±l) 

lim arccosx = 0 = arccos 1, lim arccc^a? = TT = arccos(—1) 

lim arctana: = ±7-
a:—»"±oo 2 

4.1.4 Substitution theorem 

The so-called Substitution theorem is important in itself for theoretical reasons, 
besides providing a very useful method to compute limits. 

Theorem 4,15 Suppose a map f admits limit 

lim fix) = £, (4.9) 
x-^c 

finite or not. Let g be defined on a neighbourhood of£ (excluding possibly the 
point i) and such that 

i) if £ GMJ g is continuous at i; 

a) if £ = -\-oo or £ = —oo, the limit lim g{y) existsj finite or not. 

Then the composition go f admits limit for x -^ c and 

\imgifix))^]imgiy). (4.10) 
x—*c y—*t 

Proof. Set m = lim g{y) (noting that under i), m = g{i)). Given any neighbour-

hood I{m) of m, by i) or ii) there will be a neighbourhood I{£) of i such 
that 

V^Gdom^, yel{i) ^ g{y)el{m). 

Note that in case i) we can use I{£) instead of I{i) \ {£} because g is 
continuous at i (recall (3.7)), while i does not belong to I{£) for case ii). 
With such I{i), assumption (4.9) implies the existence of a neighbourhood 
/(c) of c with 

VxGdom/ , xel{c)\{c} => f{x)el{i). 
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Sinc(̂  .r G doing o / means ./' G doni / pins y = f\x) G donigf. the previons 
two implications now give 

V.r G dom r/ o / . r G /(r) \ {c] => fAfi^^)) ^ H^^O-

Bnt /(//?) was arbitrary, so 

Um //(/(.r)) = /7/. D 

Remark 4.16 An alternative condition that yields the same conclusion is the 
following: 

2 9 if £ G M, there is a neighbourhood I{c) of c where f{x) ^ i for all x ^ c^ and 
the limit hm g{y) exists, finite or infinite. 

The proof is analogous. • 

In case £ G R and g is continuous at i (case i))^ then limg{y) = g{i), so (4.10) 

reads 

' ' (4.11) lim g{f{x)) = g{lim f{x)). 

An imprecise but effective way to put (4.11) into words is to say that a continuous 
function commutes (exchanges places) with the symbol of limit. 

Theorem 4.15 implies that continuity is inherited by composite functions, as 
we discuss hereby. 

Corollary 4.17 Let f be continuous at XQ^ and define po = f{xo). Let fur-
thermore g be defined around yo and continuous at yo. Then the composite 
go f is continuous at XQ . 

Proof. From (4.11) 

Ihn (ry o /)(,•) = //( lim /(.r)) = .^/(/(.ro)) = {g o /)(.ro). 

wliicli is eqnivaknit to the claim. D 

A few practical examples will help us understand how the Substitution theorem 
and its corollary are employed. 

Examples 4.18 

I i) The map h{x) = sin(x^) is continuous on M, being the composition of the 
continuous functions f{x) = x^ and g{y) — sinz/. 
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ii) Let us determine 

sin(x^) 
lim 

Set f{x) = x'^ and 
siny 

if 2/7^0, 
g{y) = { y 

1 if 2/ = 0. 
Then lim / (x) = 0, and we know that g is continuous at the origin. Thus 

x-^O 

sin(x^) ,. sin 7/ 
hm — V ^ - hm = 1. 
x-^O x^ y-^0 y 

iii) We study the behaviour of h{x) — arctan I 1 around the point 1. 

Defining f{x) = , we have hm f{x) = ZLCXD. If we cah g{y) = arctan^, 
X — 1 x^i± 

TT 
hm g{y) = ib— (see the Table on page 101). Therefore 

y^±oo 2 

lim arctan ( ) = lim g{y) = ± - . 
x^l± \X — 1J y->±oo 2 

iv) Determine 

lim log sin — . 
x^+oo X 

Setting fix) = sin - has the effect that ^ = lim f[x) = 0. Note that fix) > 0 

for all X > - . With g{y) = logy we have lim g{y) — —oc, so Remark 4.16 yields 
^ y^o+ 

lim log sin— = lim g{y) = —oc . D 

R e m a r k 4.19 Theorem 4.15 extends easily to cover the case where the role of / 
is played by a sequence a : n\-^ a^ with limit 

lim an — L 

Namely, under the same assumptions on g^ 

lim g{an) = lim 0(2/). 

This result is often used to disprove the existence of a limit, in that it provides a 
Criterion of non-existence for limits: if two sequences a : n ^-^ an, b : n \-^ bn 
have the same limit i and 

lim g{an) / lim g{bn), 

then g does not admit limit when its argument tends to L 
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For example we can prove, with the aid of the criterion, that y = sin x has no 
limit when x -^ +cx): define the sequences a^ = 2n7r and 6^ = | -h 2n7r, n G N, so 
that 

lim sina^ = lim 0 = 0, and at the same time lim sin 6^ = lim 1 = 1. 
n-^oo n—>-oo n—^oo n—>CXD 

Similarly, the function ?/ = sin ^ has neither left nor right limit for x -^ 0. • 

4.2 More fundamental limits. Indeterminate forms of 
exponential type 

f ^Y 
Consider the paramount hmit (3.3). Instead of the sequence a^ = 1 H— , we 

V nJ 
look now at the function of real variable 

It is defined when 1 + ^ > 0, hence on (—oo,—1)U(0,+(X)). The following result 
states that h and the sequence resemble each other closely when x tends to infinity. 

Property 4.20 The following limit holds 

lim (1 + - ) =e . 

Proof. ^^ The number e. D 

By manipulating this formula we achieve a series of new fundamental limits. 
The substitution ^ = - , with a 7̂  0, gives 

lim fl + - V = lim (1 + - ) = I lim ( 1 + - ) 
x-^±oo V xJ y^±oo y yJ [ y ^ ± o o ^ yJ 

In terms of the variable y = - then, 

lim (l + x)^/"'= lim ( l + - ) = e. 
X—>0 y-^±oo y y J 

The continuity of the logarithm together with (4.11) furnish 

lim i ^ i a ( l ± ^ = lim log, {l + x)'/^= log, lim (1 + x)^/^ = log, e = J -
x->o X x-^0 x-̂ 0 log a 
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for any a > 0. In particular, taking a — e: 

l imMi±£)=l . 
x-^0 X 

Note by the way a^ — 1 — y \s equivalent to x = log^(l + y)^ and 7/ ^ 0 if x ^ 0. 
With this substitution, 

a^ — 1 
lim = lim y 
x^O X ?/^0 log^( l + 2/) 

Taking a = e produces 

y^O y 

- 1 - 1 

= loga. (4.12) 

lim = 1. 
x-^O X 

Eventually, let us set 1 + x = e^. Since y -^ 0 when x —̂  0, 

,. ( l + x ) " - l , e ^ ^ - 1 ,. e " ^ - l y 
lim = lim — = lim 
x-)-0 X y^o ey -1 2/->o y ey -1 

log e*̂  = a 
.. ( e ^ ) ^ - l ,. y 
hm ^^^^ lim ^ 

(4.13) 

2/^0 y y^O ey - 1 

for any a G 

For the reader's conveniency, all fundamental limits found so far are gathered 
below. 

sma: 
hm = 1 
x-^O X 

1 —cosa: 
l im = = 
a;-*0 X^ 

1 
2 

Um ('n--y=:e" (OGE) 
a;->±oo \ xJ 

Yimll + xfl'' = e 
x-^0 

., log^(l + a:) 1 / nN . . . 1 1 - Iog(l + x) ^ 
hm -^^ ' = :; (a > 0); m particular, hm --̂ ^̂  = 1 
x~*o X log a x-^o X 

a^ — 1 e^ — 1 
lim = log a (a > 0); in particular, lim = 1 
x-^Q X 

,. ( l + a ; ) « - l 
hm -̂̂  ' 
x—*0 X 

x-^0 X 

= a (a G M). 
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Let us return to the map h{x) — ll -\— 1 .By setting f{x)= ( 1 H— | and 

g{x) = X, we can write 
h{x) = [/(x)]«(-). 

In general such an expression may give rise to indeterminate forms for x tending 
to a certain c. Suppose / , g are functions defined in a neighbourhood of c, except 
possibly at c, and that they admit limit for x ^ c. Assume moreover f{x) > 0 
around c, so that h is well defined in a neighbourhood of c (except possibly at c). 
To understand h it is convenient to use the identity 

/ ( x ) = e l ^ g / ( ^ ) . 

From this in fact we obtain 

/ i (x )=e^(^)^^g / (^ ) . 

By continuity of the exponential and (4.11), we have 

lim[/(x)]«(") = exp (lim \g{x)\ogf{x)]) . 

In other words, h{x) can be studied by looking at the exponent g{x)\ogf{x). 
An indeterminate form of the latter will thus develop an indeterminate form 
of exponential type for h{x). Namely, we might find ourselves in one of these 
situations: 

i) g tends to oo and / to 1 (so log / tends to 0): the exponent is an indeterminate 
form of type oo • 0, whence we say that h presents an indeterminate form of 
type 

-j oo 

ii) g and / both tend to 0 (so log / tends to — CXD): once again the exponent is of 
type oo • 0, and the function h is said to have an indeterminate form of type 

0°. 

iii) g tends to 0 and / tends to +oo (log/ -^ +oo): the exponent is of type oo • 0, 
and h becomes indeterminate of type 

oo°. 

Examples 4.21 

i) The map h{x) = ll -\— j is an indeterminate form of type 1^ when x -^ 

±00, whose limit equals e. 

ii) The function h{x) = x^, for a: -^ 0^, is an indeterminate form of type 0°. We 
shall prove in Chap. 6 that lim xlogx = 0, therefore lim h(x) = 1. 
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iii) The function h{x) — x^l^ is for x -^ +cxo an indeterminate form of type oo^. 

Substituting y — -, and recalling that log - = — logy, we obtain lim = 
^ y x-^+oo X 

— lim ylogy = 0 , hence lim h{x) = 1. n 

When dealing with h{x) = [/(^)]^^^\ a rather common mistake - with tragic 
consequences - is to calculate first the limit of / and/or g, substitute the map 
with this value and compute the limit of the expression thus obtained. This is to 
emphasize that it might be incorrect to calculate the limit fovx^c of the 
indeterminate form h{x) = [f{x)]^^^^ by finding first 

m = lim g{x), and from this proceed to lim[/(a;)]^. 

Equally incorrect might be to determine 

lim £^^^\ already knowing £ = lim f{x). 
X^i-C X^C 

( ^y 

For example, suppose we are asked to find the limit oi h{x) — \\^— J for 

X —^ zb(X); we might think of finding first i = lim I 1 H— ) = 1 and from this 
x^icx) y X ) 

lim 1^ = lim 1 = 1. This would lead us to believe, wrongly, that h converges 

to 1, in spite of the fact the correct limit is e. 
4.3 Global features of continuous maps 

Hitherto the focus has been on several local properties of functions, whether in the 
neighbourhood of a real point or a point at infinity, and limits have been discussed 
in that respect. Now we turn our attention to continuous functions defined on a 
real interval, and establish properties of global nature, i.e., those relative to the 
behaviour on the entire domain. 

Let us start with a plain definition. 

Definition 4.22 A zero oj a real-valued function f is a point XQ E d o m / 
at which the function vanishes. 

For instance, the zeroes of y = sinx are the multiples of TT, i.e., the elements of 
the set {mTT | m G Z}. 

The problem of solving an equation like 

fix) = 0 
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is equivalent to determining the zeroes of the function y — f{x). That is why it 
becomes crucial to have methods, both analytical and numerical, that allow to 
find the zeroes of a function, or at least their approximate position. 

A simple condition to have a zero inside an interval goes as follows. 

Theorem 4,23 (Existence of zeroes) Let f be a continuous map on a 
closed^ bounded interval [a, 6]. If f{a)f{b) < 0, i e . , if the images of the end-
points under f have different signs, f admits a zero within the open inter-
val {a^b). 
If moreover f is strictly monotone on [a, 6], the zero is unique. 

Figure 4.5. Theorem of existence of zeroes 

Proof. Throughout th(̂  proof we shall use properties of sequences, for which we 
refer to the following Sect. 5.4. Assuming / (a) < 0 < f{b) is not restrictive. 
Define ao = o- bo = b and let co = ^M±ki |)(. ĵ̂ g middle point of the 
interval [ciQ.bo]. There are three possibilities for /(CQ). If / (QJ) = 0, the 
point .I'o = C{) is a zero and the proof ends. If /(CQ) > 0. we set cii = ao and 
6i = ('(), so to consider tlu^ left half of the original interval. If /(CQ) < 0, 
let 0] = CQ. b] = b{) and take the right half of [ao^^o] this time. In either 
case we liavĉ  generated a sulvinterval [ai.6i] C [ao.bo] such that 

/ (ai X 0 < fih) and 61 - a, = h ^ . 

Repeating the procedure we either reach a zero of / after a finite number 
of steps, or we l)uild a sequence of nested intervals [a„.6„] satisfying: 
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[ao.bo] D [ai.bi] D . . . D [an.bn] D . . . , 

f{an) < 0 < f{bn) and bn - an = " ^ ^ 

(the rigorous proof of the existence of such a sequence rehes on the Prin-
ciple of Induction -^ Principle of Mathematical Induction). In this 
second situation, we claim that there is a unique point XQ belonging to ev-
ery interval of the sequence, and this point is a zero of / . For this, observe 
that the sequences {a^} and {bn} satisfy 

CtQ < CLi < . . . < an < • • - < bn < • • - < bi < bo. 

Therefore {an} is monotone increasing and bounded, while {bn} is mono-
tone decreasing and bounded. By Theorem 3.9 there exist XQ.X'^ G [a, 6] 
such that 

hm an = XQ and hm bn = ^ J • 
n—^oo n—>-oo 

On the other hand. Example 5.18 i) tells 

XQ -XQ = hm [bn - an) = hm - — - = 0, 
n-^oo n ^ o o Z 

SO X n '^D * 

Let XQ denote this number. Since / is continuous, and using 
the Substitution theorem (Theorem 9, p. 138), we have 

lim f{an) = lim f{bn) = / (XQ). 

But f{an) < 0 < f{bn)j so the First comparison theorem (Theorem 4, 
p. 137) for {/(ttn)} and {f{bn)} gives 

lim f{an) < 0 and lim f{bn) > 0. 

As 0 < f{xo) < 0, we obtain /(XQ) = 0. 
In conclusion, if / is strictly monotone on [a, b] it must be injective by 
Proposition 2.8, which forces the zero to be unique. • 

Some comments on this theorem might prove useful. We remark first that 
without the hypothesis of continuity on the closed interval [a, 6], the condition 
f{a)f{b) < 0 would not be enough to ensure the presence of a zero. The function 
/ : |0 ,1]^R 

; „ = (-! f>" = 0. 
^ ^ I -hi for 0 < X < 1 

takes values of discordant sign at the end-points but never vanishes; it has a jump 
point at a = 0. 

Secondly, f{a)f{b) < 0 is a sufficient requirement only, and not a necessary one, 
to have a zero. The continuous map f{x) = {2x — 1)^ vanishes on [0,1] despite 
being positive at both ends of the interval. 
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Thirdly, the halving procedure used in the proof can be transformed into an al-
gorithm of approximation, known in Numerical Analysis under the name Bisection 
method. 

A first application of the Theorem of existence of zeroes comes next. 

Example 4.24 

The function f{x) = x^ + x^ — 1 on [0,1] is a polynomial, hence continuous. 
As /(O) = —1 and / ( I ) = 1, / must vanish somewhere on [0,1]. The zero is 
unique because the map is strictly increasing (it is sum of the strictly increasing 
functions y = x^ and y = x^^ and of the constant function y = —I). D 

Our theorem can be generalised usefully as follows. 

Corollary 4.25 Let f be continuous on the interval I and suppose it admits 
non-zero limits {finite or infinite) that are different in sign for x tending to 
the end-points of I. Then f has a zero in / , which is unique if f is strictly 
monotone on I, 

Proof. The result is a consequence of Theorems 4.2 and 4.23 (Existence of zeroes). 
For more details -^ Continuous functions. • 

Example 4.26 

Consider the map f{x) = x + logx, defined on / = (0, +oc). The functions y = x 
and y = logx are continuous and strictly increasing on / , and so is / . Since 
lim f{x) = —00 and lim f{x) = +oo, / has exactly one zero on its domain. 

D 

Corollary 4.27 Consider f and g continuous maps on the closed bounded 
interval [a,b]. If f{a) < g{a) and f{b) > g{b), there exists at least one point 
XQ in the open interval (a, b) with 

f{xo) = gixo). (4.14) 

Proof. Consider tlu^ auxiliary function h{x) = f{x) — g{x), which is continuous in 
[ry.6j as smn of continuous maps. By assumption, h{a) = / (a) — g{a) < 0 
and h{b) = f{l)) - (j(b) > 0. So. // satisfies the Theorem of existence of 
zercx ŝ and admits in {a.b) a point j'o such that h{xo) = 0. But this is 
l)recisely (4.14). 
Not(̂  that if h is strictly increasing on [a. 6], the solution of (4.14) has to 
l)e unique in the inte^rval. D 
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Figure 4.6. Illustration of Corollary 4.27 

Example 4.28 

Solve the equation 

cosx = X. (4.15) 

For any real x, — 1 < cosx < 1, so the equation cannot be solved when x < — 1 or 
X > 1. Similarly, no solution exists on [—1,0), because cos a: is positive while x is 
negative on that interval. Therefore the solutions, if any, must hide in [0,1]: there 
the functions f{x) — x and g{x) = cosx are continuous and /(O) = 0 < 1 = ^(0), 
/ ( I ) = 1 > cos 1 = ^(1) (cosine is 1 only for multiples of 27r). The above corollary 
implies that equation (4.15) has a solution in (0,1). There can be no other 
solution, for / is strictly increasing and g strictly decreasing on [0,1], making 
h[x) = f{x) — g{x) strictly increasing. D 

When one of the functions is a constant, the corollary implies this result. 

Theorem 4.29 (Intermediate value theoremi) / / a function f is contin-
uous on the closed and bounded interval [a, 6], it assumes all values between 
f{a) and f{b). 

Proof. When f{a) = f{b) the statement is trivial, so assume first f{a) < f{b). 
Call z an arbitrary value between / (a) and f{b) and define the constant 
map g{x) — z. From /(a) < z < f{b) we have / (a) < g{a) and f{b) > g{b). 
Corollary 4.27, applied to / and g in the interval [a, 6], yields a point XQ 
in [a, b] such that f{xo) = g{xo) — z. 
If f{a) > f{b), we just swap the roles of / and g. • 

The Intermediate value theorem has, among its consequences, the remarkable 
fact that a continuous function maps intervals to intervals. This is the content of 
the next result. 
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Figure 4.7. Intermediate value theorem 

Corol lary 4 ,30 Let f be continuous on an interval I. The range / ( / ) of I 
under f is an interval delimited by inf j / and supj / . 

Proof. A siil)set of M is an intcu'val if and only if it contains the interval [a, [3] as 
sn])set. for any n < i. 
Let tlien tji < y-2 be points of / ( / ) . There exist in / two (necessarily dis-
tinct) pre-irnag(^s X] and xo- i.e.. f{x\) = yi. f{x2) — y2- If J C / denotes 
th(^ closed interval between xi and X2- we need only to apply the Intermedi-
ate^ valne th(H)r(^in to / restricted to J . which yit^lds [yi, y2] ^ f(J) C / ( / ) . 
The range / ( / ) is then an interval, and according to Definition 2.3 its 
end-points are inf/ /' and snp/ / . D 

Either one of inf/ / , supj f may be finite or infinite, and may or not be an 
element of the interval itself. If, say, inf/ / belongs to the range, the function 
admits minimum on I (and the same for sup/ / ) . 

In case / is open or half-open, its image / ( / ) can be an interval of any kind. Let 
us see some examples. Regarding f{x) — s inx on the open bounded / = (—|, | ) , 
the image / ( / ) = (—1,1) is open and bounded. Yet under the same map, the image 
of the open bounded set (0, 27r) is [—1,1], bounded but closed. Take now f{x) — 
t a n x : it maps the bounded interval ( —f, f ) to the unbounded one (—oo,+oo). 
Simple examples can be built also for unbounded / . 

But if / is a closed bounded interval, its image under a continuous map cannot 
be anything but a closed bounded interval. More precisely, the following funda-
mental result holds, for a proof of which - ^ Continuous f u n c t i o n s . 
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Theorem 4.31 (Weierstrass) A continuous map f ona closed and bounded 
interval [a, 6] is bounded and admits minimum and maximum 

m = min f{x) and M = max f{x), 
a;€[a,fe] aj€[a,fe] 

Consequently, 
f{{a,b]) = [m,M]. (4.16) 

Figure 4.8. The Theorem of Weierstrciss 

In conclusion to this section, we present two results about invertibility (the 
proofs can be found at ' ^ Continuous functions). We saw in Sect. 2.4 that a 
strictly monotone function is also one-to-one (invertible), and in general the oppo-
site implication does not hold. Nevertheless, when speaking of continuous functions 
the notions of strict monotonicity and injectivity coincide. Moreover, the inverse 
function is continuous on its domain of definition. 

Theorem 4.32 A continuous function f on an interval I is one-to-one if 
and only if it is strictly monotone. 

Theorem 4.33 Let f be continuous and invertible on an interval I. Then 
the inverse f~^ is continuous on the interval J = / ( / ) . 

Theorem 4.33 guarantees, by the way, the continuity of the inverse trigonomet-
ric functions y = arcsinx, y = arccosx and y — arctanx on their domains, and 
of the logarithm y = log^x on M^ as well, as inverse of the exponential y — a^. 
These facts were actually already known from Proposition 3.20. 
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Figure 4.9. Graph of a continuous invertible map (left) and its inverse (right) 

4.4 Exercises 

1. Compute the following limits using the Comparison theorems: 

cosx 
iim — - ^ 

2x — sin X 
Iim 

x^-oo 3x + cosx 

e) Iim sin x • sin -
a:;^0 X 

2. Determine the limits: 

a) Iim -
2x^ -h 5x 

X^ — X 

x"^ -\- x'^ + X 

-J x^-oo 2x^ — X + 3 

x-^1 

Iim 

Iim ^ 
^ — 1 \/6x2 + 3 + 3x 

g) Iim {Vx + 1 - \ /x ) 

i) Iim ( A ^ ^ ^ T T - \/X-1) 

b) Iim (>/x + s inx) 
x—>- + oo 

id) Iim ^^ 

f) Iim 
X — t an X 

b) Iim 
x + 3 

x-^+oo x'̂  — 2x + 5 

2x2 + 5x - 7 
d) Iim 

x->+oo 5x2 — 2x + 3 

f) Iim 
^ l O - x - 2 

h) Iim 

2 x - 2 

x/x+ x 

x^+oo X 

Iim 
\/2x2 + 3 

oo 4x + 2 

3. Relying on the fundamental limits, compute: 

x t a n x 
a) Iim 

sin^ X 

x-^O X 
b) Iim 

x-^O 1 — COSX 
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sin 2x — sin 3x 
c) lim 

e) lim 

Ax 

t an X — sin X 

x^ 

cos %x 
lim ^— 
x^l 1 — X 

COS X + 1 
i) lim 

X^TT COS 3X + 1 

4. Calculate: 

log(l + x) 
a) lim — ;— 

.. log X — 1 
lim 

2e2=̂  - 1 

c) 

e) lim 
x^o+ 2x 

g) lim 
x-^O 

.y i + 3x - 1 

5. Compute the limits: 

x^l^ -2xJx^\ 
a) lim ^ 

x^+oo 2 v x ^ - 1 

1 
c) 

e) 

lim ( cotan x — 
x-^o Y s m x 

x - \ 

g) lim 

lim . 
x->+oo y x + 3 

X — 5 

i) lim 

^-^^ y/x — A/5 

1 1 

x^o V X t an X x sin x 

m) lim x(2 + s inx) 

d) 
1 — cos \/x 

f) 

lim 
x^0+ 

cos( tanx) — 1 
lim 
x-^o t a n x 

h) lim 
sin X — 1 

^Mf-̂ )̂  
\J\ + t a n x — \J\ — t an x 

lim 
x^o s inx 

b) lim 

d) lim 

e ^ ^ - l 

x^h e^^ — 1 

f) 

h) 

X—>+oo e^ — 1 

x ^ i e^ — e 

x + 1 
lim ^, 

^ — 1 ^ y ^ T T 7 - 2 

b) lim 
x-^o s inx 

d) lim y/x (\Jx + 1 — A/X — l ) 
x-^ + oo ^ ^ 

f) l i m ( l + ; r r 
x^-0 

h) lim 
3x _ 3-x 

oo 3^ + 3-^ 

lim xe^ sin I e ^ sin — 
x^+oo \ X 

n) lim xe^ 
X—> —oo 

6. Determine the domain of the functions below and their limit behaviour at the 
end-points of the domain: 

x^ - x^ + 3 
a) / ( x ) = 

x2 + 3x + 2 b) fix) = 
l + x4 

c) / ( x ) = log 1 + exp 
x^ + 1 

d) / ( x ) = ^ e - -
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4.4.1 So lut ions 

1. Limits: 

a) 0 ; b) +00. 

c) We have 

2 x - s i n x .̂ x ( 2 - ^ ) 2 
lim = lim —7 ^ - ^ = -

x^-oo3x + COSX a;̂ -(X) X (3 + ^ ^ j 3 

1 1- s inx .̂ cos a: ^ , ^ ,1 
because iim = iim = 0 by Corollary 4.7. 

a:-^ —00 X x - ^ —cxD X 

d) From [x] < a:: < [x] + 1 (Example 2.1 vii)) one deduces straightaway x — I < 
[x] < X, whence 

X — 1 \x] 
< — < 1 

X X 

for X > 0. Therefore, the Second comparison theorem 4.5 gives 

lim M ^ i . 
x - ^ + o o X 

e) 0. 

f) First of all fix) = is an odd map, so lim f(x) = — lim f(x). Let 

now 0 < X < ̂ . From 
s inx < X < t a n x 

(see Example 4.6 i) for a proof) it follows 

sin X — t an x x — t an x 
s m x — t a n x < x — t a n x < 0, tha t is, < < 0. 

x^ x^ 

Secondly, 

^ sin X — t a n x ^ s i n x ( c o s x —1) ^ s i n x c o s x —1 
lim = lim = lim = 0 . 

x->0+ X^ x^0+ X^COSX a : ^ 0 + COSX X^ 

Thus the Second comparison theorem 4.5 makes us conclude tha t 

X — tan X 
lim = 0, 

x ^ 0 + X^ 

therefore the required limit is 0. 

2. Limits: 

a) - 5 ; b) 0. 
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c) Simple algebraic operations give 

lim —^ = lim -—7 f \-{ = hm - = - o c . 
x-^-00 2x^ — X + 3 x^-cxD 2:̂  f 2 — - + - % j a:-»--oo 2 

d ) i . 
e) Rationalising the denominator we see 

x + 1 ,. (x + l ) ( \ /6x2 + 3 - 3 x ) 
lim = = lim -—̂ r 

^ ^ - 1 V6x2 + 3 + 3x x - . - ! 6x2 + 3 - 9 x 2 

,. (x + l)(V6x2 + 3 - 3 x ) ^ 
== lim ^ r^ r = 1. 

x-^-i 3 ( i _ x ) ( l + x) 

f) Use the relation a^ - 6^ = (a - b){a'^ + ab + b'^) in 

,. 1 ^ 1 ^ ^ ^ - 2 ,. l O - x - 8 
lim = lim x-^2 x-2 x^2 ^x - 2)( y ( 1 0 - x)2 + 215^1^^=^ + 4) 

= lim 
^ - 2 3/(10 - x)2 + 21^/10"^^ + 4 12 

g) 0 ; h ) l ; i ) 0 . 

i) We have 

V2x2 + 3 ,. l ^ l \ / 2 + ^ 7 2 .̂ - X 7 2 
hm —- = lim — 7 7y^- = —— hm — — — . 

x^-oo 4x H-2 x^ -oo x[4-\--) 4 a;—^-cx) X 4 

3. Limits: 

a) 0 ; b) 2. 

c) We manipulate the expression so to obtain a fundamental limit: 

_ s in2x —sin3x .. s in2x .. s in3x 1 3 1 
hm = hm — hm — - — = - — - = — - . 
x-^o 4x x^o 4x x-^o 4x 2 4 4 

d) We use the cosine's fundamental limit: 

1 — C O S A / ^ ^. 1 —COSA/X ^. 1 1 . 1 
hm = hm hm — = - hm — = +(X). 

x^o+ 2x^ x^o+ X x^o+ 2x 2 x^o+ 2x 

e) 1. 

f) Pu t t ing 2/ = t an x and substituting, 

cos( tanx) — 1 ,. cos^ —1 ,. cos?/—1 
hm ^ = hm = hm % 2/ = 0 . 
x^O t a n x ?/->0 y y^O y^ 
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g) Letting y = 1 — x transforms the limit into: 

cosfx cos 1 ( 1 - y ) sinfi/ n 
lim —̂ = lim = lim —̂ = — . 
x-^i 1 — X y-^0 y y-^0 y 2 

i) One has 
h ) - | ; i)l 

\ / l + tan X — y/1 — tan x .. 1 + tana; — 1 + tan x 
hm = iim x^o sin X x-^o sin x [y/l + t a n x + \/l - t an x) 

1 .. 2 tanx .. 1 
= - hm = hm = 1 

2 a:-^0 s m x x-^OCOSX 

4. Limits: 

^^ I ^ ' ^̂ ) 3-

c) By defining y — x — e we recover a known fundamental limit: 

lim ^ ^ g " ^ - ^ ^ lim lQg(^ + e) - 1 ^ ^.^ loge (1 + ^ /e ) - 1 
a -̂̂ e X — e y^O y y^O y 

= lim M l + ^ / e ) ^ 1 
2/->o ^ e 

Another possibility is to set z = x/e: 

logo: — 1 .̂ log(e^) — 1 1 . logz 1 
hm = hm —; -— = - hm — 
â ê X — e z^i e{z — 1) e z^i z — 1 e 

d) 1. 
e) We have 

,. 2e2^ - 1 ,. 2(e2^ - 1) + 1 
hm = hm 

a:^0+ 2x x-^0+ 2x 

e^^ - 1 1 1 
lim 2 — h lim — - = 2 + lim -—=-\-oo . 

x-^o+ 2x x^o+ 2x x-^o+ 2x 

f) Substitute ^ = x — 1, so that 

logx ,. logx 
hm = hm x-^i e^ — e x^i e(e^~-'̂  — 1) 

= lim ̂ °f+^) = i lim i^^(i±^ . _ ^ = 1 
y^o e{ey - 1) e y^o y ey -1 e 

g ) i -
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h) The new variable y = x -\-1 allows to recognize (4.13), so 

lim ,̂ = lim ,̂ = lim 

2 ,;^oyrr^-i = l g l i m j ! } l - = 8 . 4 = 32. 

5. Limits: 

a) i . 

b) We have 

lim = lim ^ = hm e ^ 2 = 2. 
x^o smx x^o smx x^o 2x sinx 

c) One has 

.. , 1 \ _ cosx —1 .̂ cosx —1 X 
lim cotan x : = lim = lim • • x = 0 . 
a:^o V smx J x-^0 smX x^o x^ 

d) 1. 

e) Start with 

1 \ ^ - 2 / 1 

^ — 1 \ / , . / ^,, X — 1 lim I 1 = exp lim (x — 2) log 
x-^+oo^x + S/ yx^+oo x + 3 

= e x p ( ^ l i m J x - 2 ) l o g ( l - ^ ) ) = e ^ 

Now define y — , and substitute x — 3 at the exponent: 
x + 3 y 

L= lim ( ^ - - 5 ) log ( 1 - 4 2 / ) = lim (^-^^^^—^-5\og(l-4y)]=-A. 
y-o+ \y J y^o+ \ y J 

The required limit equals e~^. 

f) e; g)2V5. 

h) We have 
3x _ 3-x 3-x /32X _ i\ 

lim = lim )-^ = — 1. 
^^_oo 3^ + 3 -^ x->-oo 3 -^ (32^ + 1) 

i) Start by multiplying numerator and denominator by the same function: 

2 sin (e~^ s in - ) 2 sin (e~^ s in - ) 
lim xe^e sin - • ^ ;—^^^ = lim x s i n - • lim ^ ;—^^^ 

X—>+oo X e~^ s in - x-^+00 x x-^+00 e~^ s in -
X X 

= Li • L2 . 
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Now put y = ^ in the first factor to get 

L,^ Inn ? ^ ^ 2 ; 
?/->o+ y 

next, let t = e~^ sin - . Since t —̂  0 for a: -^ +oo, by Corollary 4.7, the second 
factor is 

Lo = lim = 1, 

and eventually the limit is 2. 

m) The fact that — 1 < sinx < 1 implies 1 < 2 + sinx < 3, so x < x{2 + sinx) 
when X > 0. Since lim x = +oc, the Second comparison theorem 4.8 gives 

+00 for an answer. 
n) —00. 

6. Donmins mid Ihnits: 

a) d o m / - R \ { - 2 , - l } , 
lim f{x) — ±00, lim f{x) = ±oo, lim f{x) = ±oo. 

x^-2^ x^~l± cc^ioo 

t) The function is defined on the entire M and 

lim fix) — lim —- • :; = lim —r = -f oo , 
x^+oo x^+oo X \ -\- X x ->+oo X 

lim /(x) = lim e^ • lim j = 0 . 
x ^ —oo X—> —oo x -^ —oo 1 -|- X 

c) This function makes sense when x 7̂  0 (because 1 + exp ( ^ ̂ ^ J > 0 for any 

non-zero x). As for the limits: 

lim f{x) = log lim I 1 -h exp I ) I = log 1 = 0, 
x ^ —00 X—̂  —00 \ \ X J I 

( / x^ + l 
lim f{x) = log lim I 1 + exp I 

x^+00 x^+00 y \ X 

lim j{x) — log hm ( 1 + exp ( | 1 = log 1 = 0, 
x^O- x^O- \ \ X ' ' 

hm /(x) = log lim I 1 + exp ( ) ) = +00. 
x^0+ x-̂ 0+ \ \ X ' ' 

d) d o m / = R; lim /(x) = 0. 
x-^±oo 



Local comparison of functions. Numerica l 
sequences and series 

In the first part of this chapter we learn how to compare the behaviour of two 
functions in the neighbourhood of a point. To this aim, we introduce suitable 
symbols - known as Landau symbols - that make the description of the possible 
types of behaviour easier. Of particular importance is the comparison between 
functions tending to 0 or CXD. 

In the second part, we revisit some results on limits which we discussed in 
general for functions, and adapt them to the case of sequences. We present specific 
techniques for the analysis of the limiting behaviour of sequences. At last, numeri-
cal series are introduced and the main tools for the study of their convergence are 
provided. 

5.1 Landau symbols 

As customary by now, we denote by c one of the symbols XQ (real number), XQ", 
XQ , or +00, —00. By 'neighbourhood of c' we intend a neighbourhood - previously 
defined - of one of these symbols. 

Let / and g be two functions defined in a neighbourhood of c, with the possible 
exception of the point c itself. Let also ^(x) 7̂  0 for x ^ c. Assume the limit 

lim 4 4 = ̂  (5-1) 
x^c g{x) 

exists, finite or not. We introduce the following definition. 

1 Definition 5.1 Ifiis 
to c, and we shall use 

read as ^f is big 0 of 

' finite^ we say that f 
the notation 

f 

9 forx 

= Oig), X 

tending to c\ 

is controlled by 

- > c , 

g forx tending 
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This property can be made more precise by distinguishing three cases: 

a) If i is finite and non-zero, we say that f has the same order of magni-
tude as 5̂  (or is of the same order of magnitude) for x tending to c; 
if so, we write 

f ^g, x-^c. 

As sub-case we have: 
b) Ifi=l,we call f equivalent to g for x tending to c; in this case we use 

the notation 
f ^ g, x-^c. 

c) Eventually, if£ = 0, we say that f is negligible with respect to g when 
X goes to c; for this situation the symbol 

f = o{g), x^c, 

will be used, spoken ^f is little o of g for x tending to c \ 

Not included in the previous definition is the case in which l is infinite. But in 
such a case 

x-^c 

so we can say that g = o{f) for x ^ c. 

The symbols O, x , ~, o are called Landau symbols. 

Remark 5.2 The Landau symbols can be defined under more general assump-
tions than those considered at present, i.e., the mere existence of the limit (5.1). 
For instance the expression f = 0{g) as x -^ c could be extended to mean that 
there is a constant C > 0 such that in a suitable neighbourhood / of c 

|/(a:)| < C|5(x)|, Vx G/ , x ^ c. 

The given definition is nevertheless sufficient for our purposes. D 

Examples 5.3 

i) Keeping in mind Examples 4.6, we have 
• r ,. sinx ^ 

smx ~ X, X -^ 0, m tact lim = 1, 
x-^O X 

/ \ • -. sinx ^ 
smx — o(x), X -^ +CXD, smce lim = 0; 

a^^+oo X 

ii) We have sinx = o(tanx), x ^- f since 
sm X 

lim = lim cos x = 0. 
x^ f tanx x^f 
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iii) One has cosx x 2x — TT, a: 

cos a: 
l im 

cc^f 2X — 7T 
lim 

| , because 

cos(t+ f ) 

2t 

smt 1 
lim ——- = — - . 
t--o 2t 2 

D 

Properties of the Landau symbols 

i) It is clear from the definitions that the symbols x , ^ , o are particular instances 
of O, in the sense that 

f^g^f^Oig), f^g=^f = 0{g), f = o{g) =^ f = 0{g) 

for X -^ c. Moreover the symbol ~ is a subcase of x 

f^g ^ f^g-

Observe that if f >^ g, then (5.1) implies 

fix) , 
x-^c ig{x) 

ii) The following property is useful 

hence £5-

/ f = 9 + o{g). (5.2) 

By defining h{x) = f{x) — g{x) in fact, so that f{x) = g{x) + h{x), we have 

fix) 
f lim 

lim 

x^c g{x) 

h{x) 

g{x) 

limlM-l]=0 
.g{x) 

h = o{g). 

iii) Computations are simplified once we notice that for any constant A 7̂  0 

o(A/) = o(/) and A o ( / ) = o ( / ) . (5.3) 

Q\X) Q{X^ 
In fact g = oiXf) means that lim ^ ,, , = 0, otherwise said lim ——— = 0, 

x->c A/(x) x^c f{x) 

01 g = o[f). The remaining identity is proved in a similar way. Analogous 
properties to (5.3) hold for the symbol O. 
Note that o(/) and 0{f) do not indicate one specific function, rather a precise 
property of any map represented by one of the two symbols. 

iv) Prescribing / = o(l) amounts to asking that / converge to 0 when x ^ c. 
Namely 

lim f{x) = lim ^ = 0. 
x—^c x—>-c 1 
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Similarly / = 0(1) means / converges to a finite limit for x tending to c. 
More generally (compare Remark 5.2), / = 0(1) means that / is bounded in 
a neighbourhood of c: that is to say, there exists a constant C > 0 such that 

| / ( x ) | < C , V x G / , x ^ c , 

/ being a suitable neighbourhood of c. 
v) The continuity of a function / at a point XQ can be expressed by means of the 

symbol o in the equivalent form 

f{x) = f{xo) + 0(1), X -^ XQ. 

Recalling (3.9) in fact, we have 

lim f{x) = f{xo) 
X—>XQ 

(5.4) 

lim {fix) - f{xo)) = 0 
X^>-Xo 

f{x) - f{xo) = 0(1), X -^ XQ. 

The algebra of "little o's" 

i) Let us compare the behaviour of the monomials x^ as x -^ 0: 

X oix"^), r r - ^ 0 , 4==> n> m. 

In fact 

lim — 
x^O X^ 

lim x ^ - ^ 
x^O 

= 0 if and only if n — m > 0. 

Therefore when x —^ 0, the bigger of two powers of x is negligible. 

ii) Now consider the limit when x -^ ±oo. Proceeding as before we obtain 

o(x'^) , X -> ±00 , n < m. 

So, for X -^ ±00; the lesser power of x is negligible. 

iii) The symbols of Landau allow to simplify algebraic formulas quite a lot when 
studying limits. Consider for example the limit for x ^^ 0. The following prop-
erties, which define a special "algebra of little o^s", hold. Their proof is left to 
the reader as an exercise: 

a) oix"^) ± o{a;") == o(a:^); 

b) o{x'^) ± o{x^) = o{x^), with p = min(n, m) ; 

c) o(Ax")=:D(a:^), for eadhi A € E \ {0} ; 

(5.5) 
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d) ^{x)0(x^) = o{x^) if <p is bounded in a neighbouriiacKi of (T = 0; 

e) ^"'o{x^) = o(aT^+''); 

f) o(ar^}o(ar^) = o(a:^+^); 

g) [a(^^)j^= o(a:^^). 

Fundamenta l limits 

The fundamental limits in the Table of p. 106 can be reformulated using the sym-
bols of Landau: 

sinx ~ X, 

1 CCNS X ^ X ^ 

10g(l -\-x) r^ X, 

e^ - 1 ~ rr, 

(l + a : ) ^ - ! ' - aa?, 

x - ^ 0 ; 

a? -^ 0; 

x-^0] 

x - ^ O ; 

a : -^0. 

precisely, 1 — cosx ~ |ar^, 

equivalently, logx ^ a: — 1, 

a; ~> 0; 

a; -^ 1; j 

With (5.2), and taking property (5.5) c) into account, these relations read: 

sina; = x + 0{x)^ 

1 - cos a: =:|a:^ + o(a:^), 

log(H-a;) -x-ho{x), 

e^ = 1 -ha;-f o(x), 

(1-ha:)" = l4-aar + o(x), 

a; —> 0; 

a:-*0, 

a; -^ 0, 

a;->0; 

x-^0. 

or cosa? = 1 -

or logx = a; -

- | x 2 + o(ar2), 

- l + o ( x - l ) , 

a:-~>-0; 

a? -^ 1; 

Besides, we shall prove in Sect. 6.11 that: 

a) 

b) 

c) 

d) 

x" = o(e*), 

e^ = o(|x|"), 

log a; = o(a;°), 

log^ = « ( ^ ) > 

X —>• + 0 0 , 

X -+ —00, 

X —>• + 0 0 , 

X -^ 0+, 

V a € R ; 

V a e E ; 

V a > 0 ; 

, Va>0. 

(5.6) 

Examples 5.4 

I i) From e* = 1 + 1 + o(t), t ^ 0, by setting t = 5a: we have e^^ = 1 + 5a: + o{5x) 

i.e., e^^ = 1 + 5x + o{x), x —> 0. In other words e^^ - 1 ~ 5x, x -^ 0. 
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ii) Setting ^ = -Sa:^ in (l + t)^/^ = 1 +^^ + o(t), t ^ 0, we obtain ( l -Sx^)^/^ = 

1 - §^2 + o(-3x2) =: 1 - |x2 + o(x2), X -> 0. Thus (1 - 3x2)1/2 _ ^ _ _ | ^ 2 ^ 

x - ^ 0 . 

iii) The relation sint = t + o{t), t —> 0, implies, by putting t = 2x, xsin2x = 

x{2x + o(2x)) = 2x2 + o(x2), X ^ 0. Then xsin2x -̂  2x2, ^ ^ Q. D 

We explain now how to use the symbols of Landau for calculating limits. All 
maps dealt with below are supposed to be defined, and not to vanish, on a neigh-
bourhood of c, except possibly at c. 

Proposition 5.5 Let us consider the limits 

fix) * 
lim/(a:)^(x) and lim ——-. 

Given functions f and g such that f ^ f and g ^^ g for x -^ c^ then 

lim f{x)g{x) = lim f{x)g{x), (5.7) 
x—*c x—*c 

lim 4 4 = liin § 4 . (5.8) 
- - g{x) x^c g{x) 
X—+C 

Proof. Start with (5.7). Then 

lim/(x)^(x) = l i m M / ( ^ ) | M ^ ( ^ ) 
x-^c x->c f(^x) g[x) 

= lim -J-- lim —-- lim f{x)g{x). 

From the definition of / ~ / and g ^ g the result follows. The proof of 
(5.8) is completely analogous. • 

Corollary 5.6 Consider the limits 

lim (/(x) + h{x)){9{x) + 51 (x)) and Um {|^| + f ^ | j . 

If / i = o{f) and gi = a(^) when a; ~-> c, t/ien 

lim (/(a:) + fi{x)) (gix) + pi(x)) - lim /(x)^(x), (5.9) 

ta M±/!M = H„ M. (5.10) 
^-*c g{x)-{-gi{x) x-^c g(x) 
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Proof. Set / = / + / i ; by assumption f = f + o{f), so from (5.2) one has f ^ f. 
Similarly, putting g = g + g\ yields g ^ g. The claim follows from the 
previous Proposition. • 

The meaning of these properties is clear: when computing the limit of a product, 
we may substitute each factor with an equivalent function. Alternatively, one may 
ignore negligible summands with respect to others within one factor. In a similar 
way one can handle the limit of a quotient, numerator and denominator now being 
the 'factors'. 

Examples 5.7 

i) Compute 
.̂ 1 — cos2x 

lim 2 • 
x^o sin 3x 

1 
2 

From the equivalence 1 — cost ~ ^t^, t -^ 0, the substitution t = 2x gives 

1 — cos 2x ^ 2x^, X —> 0. 
Putting t = 3x in sint '^ t, t —> 0, we obtain sinSx ~ 3x, x -^ 0, hence 

Therefore (5.8) implies 
sin^ 3x ^ 9x^, x ^ 0. 

ii) Evaluate 

.̂ l - c o s 2 x ,. 2^2 2 
lim ^ = lim — - = -. 
x-^o sin 3x x^o 9x^ 9 

.. sin2x + x'̂  
lim x-^o 4x + 51og(l + x2)* 

We shall show that for x -^ 0, x'̂  is negligible with respect to sin 2x, and similarly 
5 log(l + x^) is negligible with respect to 4x. With that, we can use the previous 
corollary and conclude 

sin2x + x'̂  ^ sin2x 1 
iini —— ^ = lim — = - . 
x^o 4x + 5 log(l + x^) x-^o 4x 2 

Recall sin 2x ^ 2x for x ^ 0; thus 

lim = lim — = 0 , 
x^osin2x x-^o 2x 

that is to say x^ — o(sin2x) for x -^ 0. On the other hand, since log(l +1) ^ t 
for t -^ 0, writing t = x^ yields log(l + x^) ^ x^ when x -^ 0. Then 

lim ^Mi±£:!) = li^ ^ = 0, 
x^o 4x x^o 4x 

i.e., 5log(l + x^) == o(4x) for x —> 0. • 

These 'simplification' rules hold only in the case of products and quotients. 
They do not apply to limits of sums or differences of functions. Otherwise put, 

the fact that f ^ f and g ^ g when x ^ c, does not allow to conclude that 
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lim[f{x)±gix)] = \im[fix)±g{x)]. 

For example set f{x) — \/x^ + 2x and ^(x) = Vx^ — 1 and consider the limit 

lim ( \ / x 2 - h 2 x - \ / x 2 - l ) . 

Rationalisation turns this limit into 

(x2 + 2x) - (x2 - 1) .̂ 2x + l 
lim , , = lim —;—, , — 1. 

x->+oo ^ ^ 2 + 2x + >/x2 - 1 x-^+oo (v/i^+y^) 
Had we substituted to j{x) the function / (x) = x, equivalent to f iov x —^ +oo, 
we would have obtained a different limit, actually a wrong one. In fact, 

lim (x — V ̂  1) = hm -===^ = lim •===^ = 0. 
a;-^+oo ^ ^ ^ + o o :C + ^ X ^ - 1 ^"^^"^ x ( l + / l - ^ ) 

The reason for the mismatch lies in the cancellation of the leading term x^ ap-
pearing in the numerator after rationalisation, which renders the terms of lesser 
degree important for the limit, even though they are negligible with respect to x^ 
for X —> +00. 

5.2 Infinitesimal and infinite functions 

Definition 5.8 Let f be a function defined in a neighbourhood of Cy except 
possibly at c. Then f is said infinitesimal {or an infinitesimal) at c if 

lim / (x) = 0, 

z.e., if f = o(l) for x ^ c. The function f is said infinite at c if 

lim / (x) = 00. 

Let us introduce the following terminology to compare two infinitesimal or 
infinite maps. 

Definition 5.9 Let f, g be two infinitesimals at c. 
If f ^ Q for x -^ Cy f and g are said infinitesimals of the same order. 
If f = o{g) for X -^ c, f is called infinitesimal of bigger order than g. 
U 9 = o{f) for X ^ Cy f is called infinitesimal of smaller order than g. 
If none of the above are satisfied, f and g are said non-comparable in-
finitesimals. 
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Definition 5.10 Let f and g be two infinite maps at c. 
If f ^ g for X —^ c, f and g are said to be infinite of the same order. 
If f — o{g) for X —^ c, f is called infinite of smaller order than g, 
if 9 ~ o{f) for X -^ c, f is called infinite of bigger order than g. 
If none of the above are satisfied, the infinite functions f and g are said 
non-comparable. 

Examples 5.11 

Bearing in mind the fundamental limits seen above, it is immediate to verify the 
following facts: 
i) e^ — 1 is an infinitesimal of the same order as x at the origin. 

ii) sinx^ is an infinitesimal of bigger order than x at the origin. 
sin X 1 

iii) — is infinite of bigger order than — at the origin. 
(1 — cosx)^ X 

iv) For every a > 0, e^ is infinite of bigger order than x^ for x —̂  -hoc. 

v) For every a > 0, logx is infinite of smaller order than — for x -^ 0" .̂ 
x^ 

vi) The functions f{x) = xs in^ and g{x) = x are infinitesimal for x tending 
ffx) 

to 0 (for / recall Corollary 4.7). But the quotient —-— = sin - does not admit 
g{x) 

limit for x -^ 0, for in any neighbourhood of 0 it attains every value between —1 
and 1 infinitely many times. Therefore none of the conditions / >< ^, / = o{g)^ 
g = o{f) hold for x ^ 0. The two functions / and g are thus not comparable. • 

Using a non-rigorous yet colourful language, we shall express the fact that / 
is infinitesimal (or infinite) of bigger order than g by saying that / tends to 0 (or 
oo) faster than g. This suggests to measure the speed at which an infinitesimal (or 
infinite) map converges to its limit value. 

For that purpose, let us fix an infinitesimal (or infinite) map (p defined in a 
neighbourhood of c and particularly easy to compute. We shall use it as term of 
comparison ('test function') and in fact call it an infinitesimal tes t function 
(or infinite tes t function) at c. When the limit behaviour is clear, we refer to 
if as test function for brevity. The most common test functions (certainly not the 
only ones) are the following. If c = XQ G M, we choose 

(f{x) = X - XQ or (f{x) = \x — Xo\ 

as infinitesimal test functions (the latter in case we need to consider non-integer 
powers of (̂ , see later), and 

^(x) = or y^(x) = -. r 
X — XQ \X — XO\ 



132 5 Local comparison of functions. Numerical sequences and series 

as infinite test functions. For c = xJ (c = x^), we will choose as infinitesimal test 
function 

(p{x) = X — XQ i^{x) = XQ — x) 

and as infinite test function 

X — XQ XQ — X 

For c — +00, the infinitesimal and infinite test functions will respectively be 

(/p(x) = — and ifix) = x, 
X 

while for c— —00, we shall take 

Lp{x) = T—: and ip{x) = \x\. 
\x\ 

The definition of 'speed of convergence' of an infinitesimal or infinite / depends 
on how / compares to the powers of the infinitesimal or infinite test function. To 
be precise, we have the following definition 

Definition 5.12 Let f be infinitesimal {or infinite) ate. If there exists a real 
number a > 0 such that 

/ x ^ - , x ^ c , (5.11) 

the constant a is called the order of / at c with respect to the infinites-
imal (infinite) test function (f. 

Notice that if condition (5.11) holds, it determines the order uniquely. In the 
first case in fact, it is immediate to see that for any (3 < a one has / = o((p^), 
while /? > a implies Lp^ — o{f). A similar argument holds for infinite maps. 

If / has order a at c with respect to the test function (/?, then there is a real 
number 1^0 such that 

lim -M_=l 

Rephrasing: 

which is to say - recalling (5.2) - / = icp^ + o{icp^), for x ^ c. For the sake of 
simplicity we can omit the constant i in the symbol o, because if a function h 
satisfies h — o{£(f^)^ then h — o{(p^) as well. Therefore 
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Definition 5.13 The function 

p{x)=£(p''{x) 

is called the principal part of the infinitesimal (infinite) 
with respect to the infinitesimal (infinite) test function 

map 
if. 

(5.12) 

/ at c 

From the qualitative point of view the behaviour of the function / in a small 
enough neighbourhood of c coincides with the behaviour of its principal part (in 
geometrical terms, the two graphs resemble each other). With a suitable choice of 
test function (p, like one of those mentioned above, the behaviour of the function 
i(f^{x) becomes immediately clear. So if one is able to determine the principal 
part of a function, even a complicated one, at a given point c, the local behaviour 
around that point is easily described. 

We wish to stress that to find the order and the principal part of a function / 
at c, one must start from the limit 

ic^c (p^[x) 

and understand if there is a number a for which such limit - say ^ - is finite and 
different from zero. If so, a is the required order, and the principal part of / is 
given by (5.12). 

Examples 5.14 

i) The function f{x) = sinx — tanx is infinitesimal for x —> 0. Using the basic 
equivalences of p. 127 and Proposition 5.5, we can write 

s i n x ( c o s x - l ) X ' ( - ^ x ^ ) 1 ^ 
smx — tanx = ~ ^—-—- = — x , x ^ 0. 

cos X 1 2 
It follows that f{x) is infinitesimal of order 3 at the origin with respect to the 
test function (p{x) = x; its principal part is p{x) — —\x^. 

ii) The function 

f{x) = \ /x2-f3 - V x 2 - 1 

is infinitesimal for x —^ +oo. Rationalising the expression we get 

(x2 + 3) - {x^ - 1) 4 
/(^) 

The right-hand side shows that if one chooses (f{x) = - then 

lim 
X—> + (X) (f[X) 
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Therefore / is infinitesimal of first order for x —̂  H-CXD with respect to the test 
function ^, with principal part p{x) = | . 

iii) The function 

f{x) = \/9x5 + 7 x 3 - 1 

is infinite when x -^ +CXD. TO determine its order with respect to ^{x) — x, we 
consider the limit 

lim l ^ = lim - ^ - . 

By choosing a = | the limit becomes 3. So / has order | for x ^ ' +CXD with 

respect to the test function ip{x) = x. The principal part is p{x) = 3x^/^. • 

R e m a r k 5.15 The previous are typical instances of how to determine the order 
of a function with respect to some test map. The reader should not be mislead to 
believe that this is always possible. Given an infinitesimal or an infinite / at c, and 
having chosen a corresponding test map (/9, it may well happen that there is no real 
number a > 0 satisfying / x (/?" for x —> c. In such a case it is convenient to make 
a different choice of test function, one more suitable to describe the behaviour of 
/ around c. We shall clarify this fact with two examples. 

Start by taking the function f{x) — e^^ for x —> +oc. Using (5.6) a), it follows 
immediately that x^ — o(e^^), whichever a > 0 is considered. So it is not possible 
to determine an order for / with respect to ^{x) = x: the exponential map grows 
too quickly for any polynomial function to keep up with it. But if we take as test 
function ^{x) = e^ then clearly / has order 2 with respect to ip. 

Consider now f{x) = xlogx for x ^^ 0" .̂ In (5.6) d) we claimed that 

lim ^ = 0, V/3 > 0. 

los x 
So in particular f{x) — -—— is infinitesimal when x —> 0" .̂ Using the test function 

(p(x) — X one sees that 

xlogx ,. logx fO i fQ ;< l , 
lim = lim — ^ l -c 0̂+ x^ x-^o+ x^~i [ -00 otherwise. 

Definition 5.9 yields that / is an infinitesimal of bigger order than any power of 
X with exponent less than one. At the same time it has smaller order than x and 
all powers with exponent greater than one. In this case too, it is not possible to 
determine the order of / with respect to x. The function | / (x) | = x| logx| goes to 
zero more slowly than x, yet faster than x" for any a <1, Thus it can be used as 
alternative infinitesimal test map when x -^ 0~̂ . • 
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5.3 Asymptotes 

We now consider a function / defined in a neighbourhood of -f-oo and wish to 
study its behaviour for x —̂  +oo. A remarkable case is that in which / behaves 
as a polynomial of first degree. Geometrically speaking, this corresponds to the 
fact that the graph of / will more and more look like a straight line. Precisely, we 
suppose there exist two real numbers m and q such that 

lim (/(x) — {mx -f q)) = 0, (5.13) 

or, using the symbols of Landau, 

f{x) = mx -\-q-\- o{l), X —> + 0 0 . 

We then say that the line g{x) = mx + g is a right asymptote of the function / . 
The asymptote is called oblique if m 7̂  0, horizontal if m = 0. In geometrical 
terms condition (5.13) tells that the vertical distance d{x) = \f{x)—g{x)\ between 
the graph of / and the asymptote tends to 0 as x ^- +cx) (Fig. 5.1). 

The asymptote's coefficients can be recovered using limits: 

m : lim m 
^+00 X 

and lim {f(x) — m3£) . (5.14) 

The first relation comes from (5.13) noting that 

f{x) — m.x — q 
0 = lim = lim lim 

a:—̂  + 00 X 

m.x - lim — = 
X—>+oo X 

lim l^-m, 

while the second one follows directly from (5.13). The conditions (5.14) furnish the 
means to find the possible asymptote of a function / . If in fact both limits exist 

Figure 5.1. Graph of a function with its right asymptote 
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and are finite, / admits y = mx + g as a right asymptote. If only one of (5.14) is 
not finite instead, then / will not have an asymptote. 

Notice that if / has an oblique asymptote, i.e., if m ^ 0, the first of (5.14) 
tells us that / is infinite of order 1 with respect to the test function (/P(X) = x for 
X ^ +00. The reader should beware that not all functions satisfying the latter 
condition do admit an oblique asymptote: the function f{x) = x + y ^ for example 
is equivalent to x ior x -^ +oo, but has no asymptote since the second limit in 
(5.14) is +00. 

Remark 5.16 The definition of (linear) asymptote given above is a particular 
instance of the following. The function / is called asymptotic to a function g for 
X -^ +00 if 

lim {f{x)-g{x))=0. 

If (5.13) holds one can then say that / is asymptotic to the hne g{x) — mx + q. 
The function / (x) = ^^ + ^ instead has no line as asymptote for x -^ +oo, but is 
nevertherless asymptotic to the parabola g{x) = x"^. • 

In a similar fashion one defines oblique or horizontal asymptotes for x -^ — oo 
(that is oblique or horizontal left asymptotes). 

If the line y = mx + ĝ  is an oblique or horizontal asymptote both for x -^ +oo 
and X —> — oo, we shall say that it is a complete oblique or complete horizontal 
asymptote for / . 

Eventually, if at a point XQ G R one has lim /(x) = oo, the line x = XQ is 
X—^XQ 

called a vertical asymptote for / at XQ. The distance between points on the 
graph of / and on a vertical asymptote with the same ^-coordinate converges to 
zero for x -^ XQ. If the limit condition holds only for x —̂  xJ or x —̂  x^ we talk 
about a vertical right or left asymptote respectively. 

Examples 5.17 
X 

i) Let f(x) = - . As 
^ -̂ ^ ^ x + 1 

lim /(x) = 1 and lim / (x) = +oo, 

the function has a horizontal asymptote y = I and a vertical asymptote x = — 1. 

ii) The map / (x) — y/l + x^ satisfies 

and 

lim j[x) — +00, lim = lim = ±1 
X—^±oo X—^itoo X x ^ - i o o X 

/ / \ 1 + X — X 
lim ( v l + x ^ — x ) = lim . = 0 , 

/ / \ 1 + X — X 
lim ( v 1 + x^ + X) = lim , = 0. 
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Therefore / has an obhque asymptote for x ^ +00 given by ^ = x, plus another 
one of equation y = —x forx—^ —00. 

ill) Let f{x) = X + logx. Since 

hm {x + logx) = —00, hm {x + logx) = +00, 

x + l o g x ^ 1. / 1 X 
hm = 1, hm (x + logx — x) = + 0 0 , 

x ^ + 0 0 X x ^ + 0 0 

the function has a vertical right asymptote x = 0 but no horizontal nor oblique 
asymptotes. • 

5.4 Further propert ies of sequences 

We return to the study of the limit behaviour of sequences begun in Sect. 3.2. 
General theorems concerning functions apply to sequences as well (the latter being 
particular functions defined over the integers, after all). For the sake of complete-
ness those results will be recalled, and adapted to the case of concern. We shall 
also state and prove other specific properties of sequences. 

We say that a sequence {an}n>no satisfies a given property eventually, if there 
exists an integer N > no such that the sequence {an}n>N satisfies that property. 
This definition allows for a more flexible study of sequences. 

Theorems on sequences 

1. Uniqueness of the limit the limit of a sequence, when defined, is unique. 

2. Boundedness: a converging sequence is bounded. 

3. Existence of limit for monotone sequences: if an eventually monotone se-
quence is bounded, then it converges; if not bounded then it diverges (to 
-hoc if increasing, to —00 if decreasing). 

4. First comparison theorem: let {an} and {bn} be sequences with finite or 
infinite limits lim On = i and lim bn = nn. li an < b^ eventually, then 

n—>oo n—»-oo 

e<m. 
5. Second comparison theorem (^'Squeeze ruW): let {an}^ {6n} tod {cn} be 

sequences with lim an = lim Cn = i- If dn ^ bn < Cn eventually, then 
n—>(X) 

lim bn = i> 

n—>oo 

6. Theorem: a sequence {an} is infinitesimal, that is lim an = 0, if and only 

if the sequence {|an|} is infinitesimal. 

7. Theorem: let {an} be an infinitesimal sequence and {bn} a bounded one. 
Then the sequence {a„&n} is infinitesimal. 
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8. Algebra of limits: let {an} and {6^} be such that Um an= i and Um bn 
n—^oo n—*oo 

m (£, m finite or infinite). Then 

Um (ttn ± 6n) = ^ ± m, 
n—•oo 

Um anbn =^im, 

um T— if 6n 7̂  0 eventually, 
n-^oo bn m 

each time the right-hand sides are defined according to the Table on p. 96. 

9. Substitution theorem: let {an} be a sequence with lim an— f^ and suppose 
n—*oo 

^ is a function defined in a neighbourhood of t 
a) if € € M and g is continuous at i^ then lim gifln) = g{()\ 

n—j-oo 

b) if £ ^ R and lim (̂a:) = m exists, then lim gifin) = m. 

Proof. We shall only prove Theorem 2 since the others are derived adapting the 
similar proofs given for functions. 
Let the sequence {an}n>nQ be given, and suppose it converges to ^ G M. 
With e — \ fixed, there exists an integer n\ > TIQ so that \an — i\ < 1 for 
all n > Til. For such n's then the triangle inequality (1.1) yields 

K\ = \an-i + i\<K-i\-h\i\<i^\ei 

By putting M — max{|ar2o|,. 
Vn > no-

| an j , l + 1-̂1} one obtains \an\ < M, 
D 

Examples 5.18 

i) Consider the sequence a^ = g^,where q is Si fixed number in R. It goes under 
the name of geometric sequence. We claim that 

lim g^ = 

0 if \q\ < 1, 

1 ifg = l, 

+00 if g > 1, 

does not exist if g < — 1. 

If either g = 0 or g = 1, the sequence is constant and thus trivially convergent 
to 0 or 1 respectively. When q = —1 the sequence is indeterminate. 
Let q > 1: the sequence is now strictly increasing and so admits a limit. In order 
to show that the limit is indeed +oo we write q = 1 + r with r > 0 and apply 
the binomial formula (1.13): 
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k=0 ^ ^ k=2 ^ ^ 

As all terms in the last summation are positive, we obtain 

( H - r ) ^ > l + n r , V n > 0 , (5.15) 

called Bernoul l i inequality^. Therefore g"̂  > 1 -h nr\ passing to the limit for 
n ^ oo and using the First comparison theorem we can conclude. 

Let us examine the case |^| < 1 with g / 0. We just saw tha t — > 1 implies 

( 1 Y lim -pr = +00. The sequence {|^|^} is thus infinitesimal, and so is {^^}. 
n—>oo Y l̂ 'l j 
At last, take q< —\. Since 

lim (^^ = lim (g^)^ = -f 00, lim (^^^^ = q lim (^^ = - o o , 
k-^oo fc—)-oo k—*oo k—»-oo 

the sequence q'^ is indeterminate. 

ii) Let p be a fixed positive number and consider the sequence ^ . Applying the 
Substitution theorem with g{x) — p^ we have 

lim ^ = lim p i / ^ = / = 1 . 

iii) Consider the sequence A/TI; using once again the Substitution theorem to-
gether with (5.6) c), it follows tha t 

T n / - T l o g ^ 0 1 lim y/n = lim exp = e = 1. 
n D 

There are easy criteria to decide whether a sequence is infinitesimal or infinite. 
Among them, the following is the most widely employed. 

T h e o r e m 5.19. (Rat io t e s t ) Let {an} he a sequence for which a^ > 0 eventu-

ally. Suppose the limit 

lim = q 

exists, finite or infinite. If q < 1 then lim a^ = 0; if q > 1 then lim a^ = +oo . 
n^oo n-^oo 

Proof. Sui)pose ô ^ > 0. V// > T/Q- Take ([ < 1 and set t = 1 — ĝ . By definition of 
limit tlier(^ (\xists an intĉ gcM' lu > no such that for all // > rip 

(hi + i 
< ( / + £ = ! . i.e.. a,,+i < a„ . 

^ By induction, -^ P r inc ip l e of Mathematical Induct ion, one can prove that (5.15) 
actually holds for any r > — 1. 

file:///xists
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So the sequence {«„} is monotone decreasing eventually, and as such it 
admits a finite non-negative limit L Now if ^ were different from zero, the 
fact that 

q = lim = - = 1 
n ^ o o an ^ 

would contradict the assumption q <l. 
If g > 1, it is enough to consider the sequence {l/an}- D 

Nothing can be said \i q — 1. 

Remark 5.20. The previous theorem has another proof, which emphasizes the 
speed at which a sequence converges to 0 or -hcxo. Take for example the case ^ < 1. 
The definition of limit tells that for all r with g < r < 1, if one puts e = r — q 
there is a n^ > no such that 

< r that IS, ttn+i < ran 

for each n> n^. Repeating the argument leads to 

ttn+i < ran < r'^an-1 < ... < r^'^'^a^.+i (5.16) 

(a precise proof of which requires Induction ^^ Principle of Mathematical 
Induction). The First comparison test and the limit behaviour of the geomet-
ric sequence (Example 5.18 i)) allow to conclude. Formula (5.16) shows that the 
smaller q is, the faster the sequence {a^} goes to 0. 
Similar considerations hold when q > 1. D 

At last we consider a few significant sequences converging to -hoo. We compare 
their limit behaviour using Definition 5.10. To be precise we examine the sequences 

logn, n"*, g"", n!, n"* {a > 0, q > 1) 

and show that each sequence is infinite of order bigger than the one preceding it. 
Comparing the first two is immediate, for the Substitution theorem and (5.6) c) 
yield logn = o{n^) for n -^ oo. 
The remaining cases are tackled by applying the Ratio test 5.19 to the quotient of 

two nearby sequences. Precisely, let us set an — — . Then 
qn 

an+i (n + 1)- g- fn^iy 1 1 ^ 
qn-\-i n^ \^ n J q q 

Thus lim a^ = 0, or n*̂  = o{q^) for n —> oo. 
n—^oo 

qu 
Now take a^ == —r, so 

n! 
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^n+i q""^^ nl q . Q n / 1 
= 1 rr — = 7 r—7 ^- = 7 -^ 0 < 1, n -^ 00 , 

an (n + 1)! q"" (n + l )n! n + 1 

and then q^ = o{n\) per n -^ oo. 
n! 

Eventually, let an — — • Then 

a^+i (n + 1)! n^ _ (n + l )n! n^ _ 

a^ ( n + 1 ) ^ + 1 n! (n + l ) ( n + l ) ^ n! V^ + 1 

and so n! = o(n^) for n ^ oo. To be more precise, one could actually prove the 
so-called St ir l ing formula. 

/ - — / n \ ^ 
/zTrn 1 — 1 , n —> oo , 

a helpful approximation of the factorial of large natural numbers. 

5.5 Numerical series 

Consider a segment of length i = 2 (Fig. 5.2). The middle point splits it into 
two parts of length ao = i/2 = 1. While keeping the left half fixed, we further 
subdivide the right one in two parts of length ai = i/A = 1/2. Iterating the 
process indefinitely one can think of the initial segment as the union of infinitely 
many 'left' segments of lengths 1, | , | , | , JQ, • - • Correspondingly, the total length 
of the start ing segment can be thought of as sum of the lengths of all sub-segments, 
in other words 

On the right we have a sum of infinitely many terms. The notion of infinite sum 
can be defined properly using sequences, and leads to numerical series. 

Given the sequence {ak}k>Oi one constructs the so-called s e q u e n c e of part ial 
s u m s {sn}n>o i^ the following manner: 

1 
2 

I 

3 
2 

1 
4 

1 

7 
4 

1 
8 

1 
16 

1 1 I I I 
I 1 I I I 

15 9 
8 ^ 

Figure 5.2. Successive splittings of the interval [0, 2]. The coordinates of the subdivision 
points are indicated below the blue line, while the lengths of subintervals lie above it 



142 5 Local comparison of functions. Numerical sequences and series 

So = ao , 5i = ao + a i , S2 = ao -\- ai -\- a2, 

and in general 

fe=0 

Note that Sn = Sn-i + a-n- Then it is only natural to study the limit behaviour of 
such a sequence. Let us (formally) define 

E ak = lim y^afe = lim s„ . 
n—voo ^—' n—>-oo 

fc=0 fe=0 

The symbol 2_]^i^ ^^ called (numerical) series, and â  is the general term of 

the series. 
A:=0 

Definition 5.21 Given the sequence {ak}k>o cif^d ^n = /^^fe? consider the 
fc=0 

limit lim Sn-
n—*oo 

i) If the limit exists and is finite, we say that the series ^ J ak converges. 
/c=0 

The value s of the limit is called sum of the series and one writes 

I]«fc-
A;=0 

a) If the limit exists and is infinite, we say that the series y j ak diverges. 
k=0 

Hi) If the limit does not exist, we say that the series YJ <^k is indetermi-
k=o 

nate. 

Examples 5.22 

i) Let us go back to the interval spht infinitely many times. The length of the 
shortest segment obtained after k -\- 1 subdivisions is ajt = ^ , A: > 0. Thus, we 

consider the series 2_\ i^• I^s partial sums read 
k=0 
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, 1 3 ^ 1 1 7 
. 0 = 1 , ^ 1 = 1 + 2 = 2 ' '^ = ^ + 2 + 4 = 4 ' 

, 1 1 

Using the fact that a"+i - 6"+^ = {a - b){a" + a^'-^b +...+ a6"-i + 6"), and 
choosing a — I and b = x arbitrary but different from one, we obtain the identity 

1 _ rpTl + l 

l + x + ... + x" = - - . (5.18) 
1 — X 

Therefore 
1 1 - 2 ^ . / . 1 \ . 1 

and so 

lim Sn = lim I 2 - —- ) = 2. 
n ^ o o n—^cx) \ Z J 

The series converges and its sum is 2. This provides sohd ground for having 
written (5.17) earher. 

oo 

ii) Consider the series /__]/^. Recalhng (3.2), we have 

n(n + l) 
Sn — / ^ fZ — 

Then 
n(n + l) 

hm Sn = hm = -hoo, 
n—^oo n^oo 2 

and the series diverges (to +00). 
(X) 

ill) The partial sums of the series / J ( —1)̂  satisfy 
k=0 

5o = l , 5 i = l — 1 = 0 

52 = S i + 1 = 1 S3 = S2 - I = 0 

S2n = 1 5 2 n + l = 0 . 

The terms with even index are ah equal to 1 while the odd ones are 0. Therefore 
lim Sn cannot exist and the series is indeterminate. • 

n—^oo 

Sometimes the sequence {ak} is only defined for k > ko with fco > 0; Defini-
tion 5.21 then modifies in the obvious way. The following fact holds, whose rather 
immediate proof is left to the reader. 
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Property 5.23 The behaviour of a series does not change by adding^ chang-
ing or removing a finite number of terms. 

This property does not tell anything about the sum of a converging series, which 
in general changes by manipulating the terms. For instance 

k=l k=0 

Examples 5.24 

i) The series 7^ —- is called series of Mengoli. As 
^-^ (k — i]k 

1 1 1 
, . , (^-i)fc 

'^'^ {k-i)k fc-i fc' 
it follows that 

1 1 1 

3̂ = a2 + a 3 = ( l - ^ ) + ( i - i ) = l - i , 

and in general 

Thus 

lim Sn — lim ( 1 I = 1 

and the series converges to 1. 

ii) For the series Y^ log ( 1 + T I one has 

( 1 \ A: + 1 

1 + - j = log —^ = log(A: + 1) - log k 
so 

5i = l o g 2 
S2 = log2 + (log3 - log2) = logs 

Sn = log2 + (logs - log2) + . . . +(log(n + 1) - logn) = log(n + 1). 

Then 

lim Sn — lim log(n + 1) = +00 

and the series diverges (to +CXD). D 
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The two instances just considered belong to the larger class of telescopic 
series. These are defined by ak — /̂c+i — ^k for a suitable sequence {6/c}fc>/co-
Since Sn — &n+i — /̂cô  the behaviour of a telescopic series is the same as that of 
the sequence {6/^}. 

We shall now present a simple yet useful necessary condition for a numerical 
series to converge. 

Property 5.25 Lei V^ a^ he a converging series. Then 
fc=0 

lim afc = 0. (5.19) 

Proof. L(̂ t s = lim .s,;. Sincĉ  r//,. = -ŝ ' — -'''A-i- then 

lim (ii- = lim (.s/̂ . — Sk-\) = .s — 5 = 0 , 

i.e.. {(Ik) is infinitesimal. • 

Observe that condition (5.19) is not sufficient to guarantee that the series 
converge. The general term of a series may tend to 0 without the series having to 

converge. For example we saw that the series 2_\ fog ( ^ "̂  7 ) diverges, but at the 

same time hm log ( 1 + 7 I = 0 (Example 5.24 h)). 
fc^oo y kj 

If a series converges to 5, the quantity 

Tn = S - Sn = ^ ttfe . 

/c=n+l 

is called n th remainder . 

Property 5.26 Take a converging series ^ J dk- Then the remainder satisfies 
fc=0 

lim r^ = 0. 

Proof. IndecHi. 
lim r,; = lim (,s — 5„) = s — .s = 0 . ^ 
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Example 5.27 

Consider the geometric series 

/e=0 

where q is a> fixed number in R. 
If g = 1 then Sn — ao + ai + . . . + an = 1 + 1 + .. . + 1 = n + l and lim Sn = +oc, 

n—>oo 

whence the series diverges to +CXD. 
li q ^ 1 instead, (5.18) implies 

1 - g^+^ 
5n = 1 + 9 + ĝ  + . . . + g"" = 

l-q 
Example 5.18 gives 

l im Sn = l im —: = < 
n—^oo n—>oo l-q 

1 

l-q 

+0C 

L does not exist if g < — 1 

if l̂ l < 1, 

if Q > 1 , 

In conclusion, 

fc=0 

I converges to -— i f M < i , 

I diverges to + oo if q>l, 

I is indeterminate ifq<-l. 
D 

That said, it is not always possible to predict the behaviour of a series \ ^ a^ 

using merely the definition. It may well happen that the sequence of partial sums 
cannot be computed explicitly, so it becomes important to have other ways to es-
tablish whether the series converges or not. Only in case of convergence, it could be 
necessary to determine the actual sum. This may require using more sophisticated 
techniques, which go beyond the scopes of this text. 

5.5.1 Posi t ive- term series 
oo 

We deal with series \ a^ for which ak > 0 for any fc G N. The following result 
k=0 

holds. 

oo 

Proposition 5.28 A series / J ^ ^ ^^ '̂̂  positive terms either converges 

diverges io +o6. 

or 
fc=o 
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Proof. The se(|uenc(; .s,/ is inonotonicalh' incrc^asing sinc(̂  

It is tlieii sufficient to use llieoreni 3.9 to conclude that lini Sn exists, 

and is c îther hnite or +oc. • 

We list now a few tools for studying the convergence of positive-term series. 
For the proofs see --> Numerical s e r i e s . 

oo oo 

Theorem 5.29 (Comparison test) Let yak and y]bk 

series such that 0 < ak 

i) If the 

oo 

J2ak 
k=0 

oo 

iiJlfT.' 
fc=0 

oo 
series /^bk 

k=0 
oo 

fc=0 

fe=0 
< bky for any k>0. 

fc=0 

be positive-term 

oo j 

converges, then also the series / ^ a / t converges and | 

oo 

2k diverges^ then y^bk diverges as well 
fc=0 

fc=0 

Examples 5.30 
oo ^ 

i) Consider N . j ^ - Since 
k=l 

oo ^ 

and the series of Mengoli Y^ — — converges (Example 5.24 i)), we conclude 

that our series converges and its sum is smaller or equal than 2. One could prove 
that the precise value of the sum is 7r^/6. 

oo ^ 

ii) The series 7^ - is known as harmonic series. In Chap. 6 (Exercise 12) we 
k=l 

shall prove the inequality log(l + x) < x, for all x > —1, whereby 

log(l + l ) < i , V .>1 . 
00 -

Since the series Y^^log ( l + -r) diverges (Example 5.24 ii)), then also the har-
k=i 

monic series must diverge. • 
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Here is a useful criterion that generalizes the Comparison test. 

Theorem 5.31 (Asymptotic comparison test) Let V^ cbk cind Y J H be 

positive-term series and suppose the sequences {afc}fc>o o,nd {hk}k>o have the 

same order of magnitude for k —> oo. Then the series have the same behaviour. 

Examples 5.32 
oo oo oo iu _|_ o 1 

) Consider N^ ak — > —rr, and let hk = -• Then 
k=0 k=0 

, . CLk 1 

lim 7— = -

and the given series behaves as the harmonic series, hence diverges. 
0 0 0 0 ^ -J ^ 

ii) Take the series Y^ Ok = Y^ sin —. As sin — ~ — for A: ^ 00, the series has 
k^' k'^ k'^ 

k=l k=l 
00 

the same behaviour of > —r^ so it converges. • 
k=i 

Eventually, here are two more results - of algebraic flavour and often easy to 
employ - which provide sufficient conditions for a series to converge or diverge. 

Theoremi 5.33 (Ratio test) Let Y^^fc have ak > 0, Vfc > 0. Assume the 
fc=0 

limit 

fc—^oo ajz 

exists, finite or infinite. Ifi<l the series converges; if£>l it diverges. 

Theorem 5.34 (Root test) Given a series Y J Uk with non-negative terms, 
fc=0 

suppose 
lim Ĵ/ofc = i 

fe—>-oo 

exists, finite or infinite. If i <l the series converges, ifi>l it diverges. 
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Examples 5.35 

k v"^ k k k + 1 
i) For X , ^ we have ctk = ^ and a^+i == ^^ipr, therefore 

k=0 ' 

hm = hm - —-— = - < 1. 
k—^oo d}^ k—^oo o k 3 

The given series converges by the Ratio test 5.33. 

1 
ii) The series V^ ~JT ^^^ 

k=i 

hm Y ^ = hm - = 0 < 1. 

The Root test 5.34 ensures that the series converges. • 

We remark that the Ratio and Root tests do not ahow to conclude anything 
oo ^ oo ^ 

if i = 1. For example, 2. J diverges and 2. j ^ converges, yet they both satisfy 
k=i 

Theorems 5.33, 5.34 with f = 1. 

k ^ ^ k^ 
k=l k=l 

5.5.2 Al ternat ing series 

These are series of the form 

oc 

Ei-^rh 
fc=0 

with bk>0, Vfe > 0. 

For them the following result due to Leibniz holds. 

Theorem 5.36 (Leibniz's alternating series test) An alternating series 
CX) 

V^(—l)^6jt converges if the following conditions hold 
k=0 

i) lim bk = 0 ; 
k—^oo 

a) the sequence {bk}k>o decreases monotonically. 

Denoting by s its sum, for all n>0 

\rn\ = \s — Sn\ < bn-^1 and S2n+1 < S < S2n' 

Example 5.37 

Consider the alternating harmonic series 2^^~~^^^T.' Given that 
k=i 
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lim bk = lim 7 = 0 

and the sequence { T\ is strictly monotone decreasing, the series converges. 
^ J k>i 

D 

In order to study series with arbitrary signs it is useful to introduce the notion 
of absolute convergence. 

Definition 5.38 The series 2 J »fc converges absolutely if the positive-
k 

term series Y j \ak\ converges. 

fc=0 

fe=0 

Example 5.39 
00 - 00 ^ 

The series y^(—II '^T^ converges absolutely because 7 —z converges. • 
fc=0 fc=0 

The next fact ensures that absolute convergence implies convergence. 

Theorem 5*4fl (Absolute ronvergence test) If^^^dk mrmerges ahso-

lutely then it also converges and 

fc=0 
<J2\ak\. 

fc=0 

R e m a r k 5.41 There are series that converge, but not absolutely. The alternating 
00 ^ 

harmonic series / _ ] ( ~ 1 ) ^ T is one such example, for it has a finite sum, but does not 
k 

k=i 

converge absolutely, since the harmonic series V^ — diverges. In such a situation 
k=l 

one speaks about conditional convergence. • 

The previous criterion allows to study alternating series by their absolute con-
vergence. As the series of absolute values has positive terms, the criteria seen in 
Sect. 5.5.1 apply. 
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5.6 E x e r c i s e s 

1. Compare the infinitesimals: 

1 
X — 1, \l 1, (v^—1)^ for x - ^ 1 

X 

b) 
1 

e"^, x^e"^, x^a-^ 

2. Compare the infinite maps: 

x\ \ /x i i - 2x2, 
l o g ( l + x ) 

for a; —> +00 

when a; -^ +00 

b) 
logx 

, xlogx, x^Z^, S^logx when X - ^ + 0 0 

3. I Verify tfiat f{x) = y/x + 3 — y/S and g{x) = ^/x + 5 — \/5 are infinitesimals 
of tfie same order for x ^ 0 and determine -f G M such, that f{x) ~ ig{x) for 
x^O. 

4. Verify that f{x) = \/x^ — 2x^ + 1 and g{x) = 2x + 1 are infinite of the same 
order for x -^ —cxo and determine i eR with f{x) ~ ig{x) when x -^ -oo . 

5. Determine the order and the principal part with respect to (p{x) — ^, for 
X ^ -hoc, of the inBnitesimal functions: 

2x^ + ^ 
0 /(^) = b) / (x) = 

x + 3 
- 1 

[c j ] / (x) = sin r \ /x2 + 1 - x") rd)1/(x) = log (9 + s i n - j - 21og3 

6. Determine the order and the principal part with respect to (p{x) = x, for 
X —> -hoo, of tiie infinite functions: 

[aj"| / (x) = X - \/x2 + x4 b) / (x) ^ 
V x 2 T 2 - i/^2Tfl 

7. Find tiie order and the principal part with respect to ip{x) = x, for x -^ 0, of 
the infinitesimal functions: 

layi / (x) = {Vl + 3x - 1) sin2x^ b) / (x) = v^cosx - 1 

e) / (x) = log cos X 

d) / (x) 
1 + X2 

f) fix) = e ,COSX _ y/x^-j-l 
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8. Find the order and the principal part with respect toLp{x) = X—XQ, for x 
of the infinitesimals: 

xo, 

a) I f{x) = logx - log3, xo = 3 

-e, XQ = 1 

e) I f{x) = 1 + cos X , XQ = TT 

c) / (^) 

9. Compute the limits: 

a) 
x^O X^ \ COS X 

h) f{x) = y/x-V2, xo = 

d) / (x) = sinx, xo = TT 

f) / (x) — sin(7rcosx), XQ 

x^2 a; - 2 

= 0 

lim 
x^3 

log(3 - V ^ + T ) 

3 — x 
d) lim 

gVS+2_gV3 

a;- l (X - 1)2 

10. Determine domain and asymptotes of the following functions: 

x^ + 1 m 

c) fix) = 
x'^ -(x^\)\x-1\ 

2x + 3 

e ) / ( x ) ^ ( l + l ) ^ 

11. Stndj the behaviour of the sequences: 

a) an = n — \fn 

b) / (x) = X + 2 arctan x 

d) / (x) - xe^/l^'-i | 

f) / (x) = log(x + e-) 

b) a , = ( - i r 
n^ + 1 

Vn2 + 2 

c) 

e) Gin = 

| i ) | Qn "" 

1 + 4^ 

(2n)! 
(n!)2 

/ n 2 -

U' + 
n 

ncos — 

n + 1 
n + 2 

+ ITT 

d) an = 

f) ttn = 

(2n)! 

n! 

n \ 6 

3 / ^ 

Vn2+2 

h) a^ = 2^ sin(2-^7r) 

n 2 

12. Compute the following limits: 

i) an = n\ I cos 

a) lim 
n^ + l 

n-^oo 2̂ ^ + 5^ 
b) lim n I \ / l + 

n->oo \ V n 

2 
n 
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c) lim cosn 
n-^oo n 

d) l im( l + ( - i r ) 

lim VSnS + 2 [fjl lim 
(n + 3 ) ! - n ! 

oo rfi^n -{- 1)! 

g) lim n\ (/1 H 1 h) lim n^ + sm n 
n->oo n^ + 2n — 3 

13. Study the convergence of the following positive-term series: 

fc=0 
2fc2 + l ^E 

OO ^ / . 

/c! 

k=2 

oo 

/ c 5 - 3 

IE 
/c=0 

^Ef 
/c = l 

^E^ 7 
arcsm —^ f) ^ l o g ( l + 

fc2 
fc=l fc=l 

14. Study the convergence of the following alternating series: 

a) ^ ( - l ) ' = l o g Q + l ) 

^ J ] s i n ( A ; 7 r + - J 
fc=i ^ ^ 

15. Study the convergence of: 

a ) X ^ ( l - c o s p ) 
A ; = l ^ ^ 

/c=0 

mrKi'^^f-') 
^E 

fc=i 

sin A: 

; d j ] 5 : ( - i ) ' = ( y 2 - i ) 
/e=0 

16. Verify tiiat the following series converge and determine their sum: 

a) E(-l) 
/ C = l 

5^ '»E " 3' 

E 
fc = l 

2fc + l 

fc2(fc + l ) 

k=0 

oo 

2-42fe 

< i ) E £f„(2 t+ l ) (2<: + 3) 



154 5 Local comparison of functions. Numerical sequences and series 

5 .6 .1 S o l u t i o n s 

1. Comparing infinitesimals: 

a) Since 

lim im - 4 = ^ = lim f / - ^ - ( x - 1) - - lim ^{x - l )^ /^ ^ 0 

lim — = lim 777-7=—7T^ = lim ^^—-TT^ = 0 , 

X-.1 x - 1 x^l{x-l){y/x+l)^ :r->l(^+l)2 
we have, for x —> 1, 

x - l = o i d - - l \ , ( V ^ - 1)2 = o(x - 1 ) . 

Thus we can order the three infinitesimals by increasing order from left to 
right: 

V X 

The same result can be at tained observing tha t for x ̂ ^ 1 

X 

and 

3/ i_l^ 3/l^^_^^_^^l/3 

V ^ - 1 ^ 7 l + ( x - l ) - l ^ i ( x - l ) , 

S 0 ( V ^ - 1 ) 2 ^ | ( X - 1 ) 2 . 

1 
X^ 

b) Pu t t ing in increasing order we have: — ,̂ x^e ^, e ^, x^S ^. 

2. Comparison of infinite maps: 

a) As 

^4 ^4 ^1/3 

lim = = lim ^— = = lim — 7 = = = = +00 , 
x^+oo 1^x11 - 2x2 ^-+00 ^11/3 ^ 1 _ 2x-9 x^+00 1^1 - 2x-9 

it follows v ^ ^ ^ — 2x2 = o(x^) for x -^ +cx), so v^x^^ — 2x2 is infinite of smaller 
order t han x^. 

^4 
It is immediate to see tha t :;—; r = o(x^). Moreover 

log(l + x) ^ ̂  
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^ x i i - 2 x 2 log(l + x) ,. log(l + x)v^l-2x-9 
hm = hm -jz 

log(l + x) 
= ^̂'P — m — = ̂ ' 

that is, v^x^^ — 2^2 = o -—;- r I. Therefore the order increases from left 
Vlog(l + x)y 

to right in 
v / x i i - 2 x 2 , f x ^ 

log(l + x) 

b) Fohowing the increasing order we have X log X, , S^logx, x^3^. 
logx 

3. Since 

,. V^+^-VS .̂ (x + 3-3)(V^T5 + y5) 
hm , 7= = hm , -=r-
^-0 v/^T5 - A/5 ^-0 (X + 5 - 5)(V^T3 + ^3) 

_ A/X + 5 + \/5 /5" 
^^^ ^/F^-\-\/^ V3 

we conclude that / (x) ~ y f ^(^) as x -^ 0. 

4. The result is / (x) ~ | ^(x) for x -^ —oo. 

5. Order of infimtesinuil and principal part: 

a) We have 

/ (x) , 2 x ^ + J ^ ,. , 2 + x - ^ ,_2 
hm - 7 — = hm x = hm x — hm 2x . 

x ^ + 0 0 1 /x^ x-^+00 x"* x^+cxD a;̂  x ^ + o o 

This limit is finite and equals 2 if a = 2. Therefore the order of / (x) is 2 and 
its principal part p{x) = ^ . 
Alternatively one could remark that for x -^ +00, ^ = C)(x2), so 2x2 + y^ ^ 
2x2 and t h e n / ( x ) - ^ = : ^ . 

b) This is an infinitesimal of first order with principal part p{x) = — ̂ • 

c) Note first of all that 

/ J \ ^ -^ -L \ — r^^ 

lim ( V x2 - 1 — X) = lim —=^ = 0, 
x ^ + 0 0 V / x^+cx) ^x^ - 1 + X 

hence the function /(x) is infinitesimal for x -^ +00. In addition 

sin i^Jx^ - 1 - x) .̂ sinv 
hm . = hm = 1. 

x ^ + 0 0 ^x^ - 1 - X y-^o y 
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Then 

lim x^ sin ( vx^ — \ — x\ — lim x^ ( y x^ — 1 — x ) 
x - ^ + o o V / X—)-+oo V / yj X^ — \ — X 

— lim x^ ( y x^ — \ — x\ . 

One can otherwise observe that sin^(x) ~ g[x) for x ^^ XQ if the function g{x) 
is infinitesimal for x ̂  XQ. For x -^ +oo then, 

X sin ( V x^ — 1 — X j ^ V x^ — 1 

and Proposition 5.5 yields directly 

lim x^ sin ( v x^ — 1 — x ) = hm x^ ( v x^ — 1 — x ) . 

Computing the right-hand-side limit yields 

lim x" ( V x^ — 1 — X ) = lim —==^ = lim — p = = = -

if a = 1. Therefore the order is 1 and the principal part reads 'p{x) — ^ . 

d) Consider 

log ( 9 + sin - j - 2 log 3 = log 9 ( 1 + - sin - j - log 9 

= log^ l + - s m -

For X -^ +00 we have ^ sin | ~ ^ (see the previous exercise) and log(l+2/) ~ y 
for ?/ ̂  0. So 

1 2 2x°' 2 
lim x^/(x) = lim x^-sin— = lim = -

X—)-+oo X—>-+oo 9 X x - ^ + o o 9 x 9 

if a = 1. Thus the order of / is 1 and its principal part p(x) = ̂ . 

6. Order of inRnite and principal part: 

a) A computation shows 

r /(x) .̂ ^' (̂  - y?^) .̂ ,_, 
hm ^^-^^ = hm ^ = - hm x"^ "^ 

x^+oo x*̂  x^+oo X^ X—>+oo 

when a — 2. Then / has order 2 and principal part p{x) = —x .̂ 

b) The order of / is 1 and the principal part is p{x) = 2x. 



5.6 Exercises 157 

7. Order of iutinitcsiniHl niid principnl pm't: 

a) First, \/TT~3x — 1 ̂  | x for x ̂  0, in fact 

,. VI + 3x - 1 ,. 2 1 + 3 X - 1 .̂ 2 
lim 5 = iim , = lim , 

But sin2x^ ~ 2x^ for x -^ 0, so 

3 
f{x)^^x-2x'^, i.e., / (x) ~ SJ:*̂  , x - ^ 0 . 

Therefore the order of / is 3 and the principal part is p{x) = 3x^. 

2-̂  

I)) The order of / is 2 and the principal part is p{x) = — |x^ . 

c) The function / has order 3 and principal part p{x) = ~\^^• 

Using the relation e^ = 1 + x + o{x) for x ̂  0 we have 

fix) .̂ e ^ - l - x ^ .̂ e^ - 1 - x^ 
lim = lim ; pr- = lim 

(1 

x-^O X " x-^0x^( l+x2) x-̂ 0 X^ 

= lim (^^^-x^-A =1 
x-^0 \ X« J 

for a = 1. The order of / is 1 and the principal part is p{x) = x. 

e) The function / has order 2 with principal part p{x) — —\x^. 

f) Recalling that 

cos X = 1 - -x^ + o(x^) X -^ 0 , 

Vx^ + l = (14- x^)^/2 ^ 1 ̂  ^^3 _̂  (̂̂ ^3^ X -> 0 , 

e* = 1 + t + o{t) t ̂  0 , 

we have 

-x2 + o ( x 2 ) - l - - : e I 1 - ^x^ + o(x^) - 1 - -x^ + o(x^; 

e ( - - x ^ + o(x^) j = - - x ^ + o(x^), X -> 0 . 

e^2 This means / is infinitesimal of order 2 and has principal part p(x) = — | x 

8. Order of intinitcsinml nnd priucipnl pHrt: 

a) Set t = X — 3 so that t -^ 0 when x ̂  3. Then 
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logx - logs - log(3 +1) - logs = logs ( 1 + 0 - logs - log M + J 

Since log (l + | ) ~ | for t ^ 0, it follows 

f{x) = logx - logs - - ( x - S), X ^ S, 

hence / is infinitesimal of order 1 and has principal part p{x) = ^{x — 3). 

b) The order of / is 1 and the principal part is p{x) — ^ ( x — 2). 

c) Remembering that e* — 1 ~ t as t -^ 0, 

f{x) = e(e^'-i - 1) - e(x2 - 1) 

=:e(x + l ) ( x - 1 ) - 2 e ( x - 1 ) for x-^ I. 

Thus / is infinitesimal of order 1 and has principal part p{x) — 2e(x — 1). 

d) The order of / is 1 and the principal part p{x) — — (x — TT). 

e) By setting t = x — TT it follows that 

1 + cos X = 1 + cos(t + TT) = 1 — cos t. 

But t —> 0 for X -^ TT, so 1 — cos^ ~ ^^^ and 

/(x) = 1 + cos x ~ - ( x — TT)^, X—^TT. 

Therefore / ha order 2 and principal part p{x) = | ( x — TT) .̂ 

f) The order of / is 2 and the principal part reads p{x) = | ( x — TT) .̂ 

9. Limits: 

a) We remind that when x —> 0, 

O 1 

A/I + Sx2 = 1 -h -x^ + o(x^) and cosx = 1 - -x^ + o(x^), 

so we have 
Vl + S x 2 - c o s x ^̂  1 + ^x^ - l + ^x^-^o{x^) 

lim r = lim 
x^O X^COSX x^O 

2x2 + o(x^) 
= lim / ^ = 2. 

x-^O X^ 

b) 0. 
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c) Let y = 3 — X, so that 

x-^3~ 6 — X y-^o+ y 

But since ^/ l - j / /4 = 1 - | y + o(j/), y —;• 0, we have 

log(3 - 2 + I + 0(2/)) log(l + I + o(y)) 
L = lim = lim 

y^o+ y y-^o+ y 

y-^o+ y 4 

d) Albeit the hmit does not exist, the right hmit is +00 and the left one —00. 

10. Dommn and asymptotes: 

a) The function is defined for x^ - 1 > 0, that is to say x < —1 and x > 1; thus 
d o m / = (—00, —1) U (l ,+oo). It is even, so its behaviour on x < 0 can be 
deduced from x > 0. We have 

lim j{x) = lim — = lim — = -foo 
X—>-ioo u.—'_Lui^ I I /-I 

| X | ^ 1 - ^ 
2 2 

lim f{x) = —- = -f 00 , lim f{x) = -— = +00 . 

The line x = — 1 is a vertical left asymptote and x = 1 is a vertical right 
asymptote; there are no horizontal asymptotes. Let us search for an oblique 
asymptote for x —> +(X): 

X A/ i _2 

hm (/(x) - x) = hm 7 T = f 

(x2 + 1)2 - x^ + X̂  
= lim 

x-^+00 Vx2 - l(x2 + 1 + xy/x'^ - 1) 

.. 3x^ + 1 .. 3x2 
= hm , . — = = - = hm - — = 0 , 

showing that the line ^ = x is a oblique right asymptote. 
For X -^ —00 we proceed in a similar way to obtain that the line t/ = — x is an 
oblique left asymptote. 
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b) dom / = R; ?/ = x + 7risan oblique right asymptote, y = x — TT an oblique left 
asymptote. 

c) The function is defined for x 7̂  — | , hence d o m / = R \ {—|}. Moreover 

x ^ - ( x + l ) ( 2 - x ) 2x^ - X - 2 
lim fix) = lim = lim = —oc 

lim /(x) = lim ^'^ ' "^^'^—— = lim 
x^-

x^ 

2a:+ 3 
(a; + l)(a;-
2a;+ 3 

- ( x + l ) ( 2 

2) 

- x ) 
x^+oo x-^+00 2x + 3 cc-»+oo 2x + 3 2 

,^ , . , , - ^, 4 
lim f (x) = lim = -— = ±00 ; 

x-.-^± X—^± 2x + 3 0± 
J. 2 2 

making the line y = | a horizontal right asymptote and x = — | a vertical 
asymptote. Computing 

lim M= lim ^ - ; - - - ^ = l 
x-^-oo X x-^-00 x(2x H- 3) 

—4x — 2 
lim (/(x) - x) = lim = - 2 

x - ^ - 0 0 X—>-+oo ZX -\- 6 

tells that 2/ = a; — 2 is an oblique left asymptote. 

d) d o m / = R\{zbl}; x = ±1 are vertical asymptotes; the line y = x is a complete 
oblique asymptote. 

e) d o m / = (—00, —1) U (0, +oc); horizontal asymptote y = e, vertical left asymp-
tote X = — 1. 

f) the function / is defined for x + e^ > 0. To solve this inequality, note that 
^(x) = X + e^ is a strictly increasing function on R (as sum of two such maps) 
satisfying ^(—1) = —1 + ^ < 0 and ^(0) = 1 > 0. The Theorem of existence of 
zeroes 4.23 implies that there is a unique point XQ G (—1,0) with ^(XQ) = 0. 
Thus g{x) > 0 for X > Xo and d o m / = (XQ, +00). Moreover 

lim / (x) = log lim (x + e^) = —00 and lim /(x) = +(X), 
-(- -|- X—^-|-00 

so X = Xo is a vertical right asymptote and there are no horizontal ones for 
X -^ +CXD. For oblique asymptotes consider 

f(x) ,. loge^fl+ xe~^) ,. X + log( l+ xe~^) 
hm -^—^ = hm ^ = lim 

x ^ + 0 0 X X—)'+co X x ^ + 0 0 X 

= 1+ lim M l ± ^ Q = i, 
x^'+oo X 

lim (/(x) - x) = lim log(l + xe""^) = 0 

because lim xe""^ — 0 (recalling (5.6) a)). Thus the line y = x is an oblique 
x ^ + 0 0 

right asymptote. 
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11. Seqiwiices behaviour: 

a) Diverges to +oo; b) indeterminate. 

c) The geometric sequence (Example 5.18 i)) suggests to consider 

,. ,. 4 " ( ( | ) " - 1 ) 
lim an = lim ^ , ^ — = — 1, 

n-^oo n ^ o o 4 ^ ( 4 " ^ + 1) 

hence the given sequence converges to —1. 

d) Diverges to -hoc. 

e) Let us write 

_ 2 n ( 2 n - l ) - - - ( n + 2)(n + l) _ 2n 2n - 1 n + 2 n + 1 
"""" n(n- l ) - . .2 .1 " T ' T T ^ T 2 ^ > ^ + l -

As hm (n + 1) = +oo, the Second comparison theorem (with infinite hmits) 

forces the sequence to diverge to +oo. 

f) Converges to 1. 

g) Since 
2 f r^—^ ^ n^ - ri + 1 \ 

an = exp V^^ + 2 log -^- -— 
\ n^ + n + 2 / 

we consider the sequence 

n^ + n + 2 \ n^ + n + 2 / 

Note that 
r 2n + l 
hm ^r = 0 

n->oo n^ + n + 2 

implies 
, / 2n + l \ 2n + l 
log 1 ^ :z , n ^ oo . 

Then 

lim bn = — lim ^ = — lim —— = —2 

and the sequence {a^} converges to e~^. 

h) Call X = 2~"̂ 7r, so that x ^ 0^ for n ^ CXD. Then 

T T s inx 
hm an = hm TT = n 

and {a^} converges to TT. 
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i) Because 
n + l T T /TT 7r \ . T T 

COS — = COS — + : r - = — sm — , 
n 2 V2 2n/ 2n ' 

putting X — ^ has the effect that 

T , . . TT , . TTSinX TT 
lim an — — hm n sm — = — lim = , 

n-^oo n-^oo 2 n x->0+ 2 X 2 

thus {an} converges to — | . 

tj Converges to — ^. 

12. Limits: 

a) 0. 

b) Since - —̂  0 for n ^^ oo, 

H - - = l + - - + o ( - ) and W l - - = l - - + o f -
n 2n \n J \ n n \n 

so 

lim n I Wl + - - i / l - - 1 = lim n ( - ^ + o I - ) ) = ^ 
n^oo \ V n V n / n-̂ oo \ 2n \n J J 2 

c) 0; d) does not exist. 

e) Let us write 

VSn^ + 2 = exp ( - log(3n^ + 2) j 

and observe 

n n n n n 

In addition 

Thus 

lim - log(3n^ + 2) = 0 
n—»cx) 77, 

and the required limit is e° = 1. 

f) From 

(n + 3 ) ! -n ! _ n!((n + 3)(n + 2)(n + 1) - 1) _ (n + 3)(n + 2)(n + 1) - 1 

n2(n + l)! ~ n2(n + l)n! ~ n2(n + l) 

it follows that 

l i m ^ + ^ ) ' - f = , ^ ( n + 3)(n + 2)(n + l ) - l ^ ^ _ 
n^oo n^(n + l)! n-̂ oo n^(n4-l) 
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R) AS 

-, 1 . 1 / 1 . 
l + - = H - 7 — + 0 - , n ^ o o , 

n 6n V n , 
we have 

lim n l {/1 + - - 1 ) = lim n ( ^ + o ( - ) ) ^ \ 

h) 1. 

13. Convergence of positive-term series: 

a) Converges. 

b) The general term ak tends to +oo for A: ^ oo. By Property 5.25 the series 
diverges. Alternatively, the Root test 5.34 can be used. 

c) By the Ratio test 5.33 one obtains 

l im = l im -7 —r ; 

writing {k -\-1)\ = {k -\- l)k\ and simplifying we see that 

lim = lim = 0 
k—yoo dk k^oo k -\- 1 

and the series converges. 

d) Again with the help of the Ratio test 5.33, we have 

k^oo ak /c-̂ oo (A: + 1)̂ +-̂  k\ k-^oo \k-\-1J e 

and the series converges. 

e) Notice 
7 7 

o^k ^ k-—7 = — for k —^ oo. 
/ĉ  k 

By the Asymptotic behaviour test 5.31, and remembering that the harmonic 
series does not converge, we conclude that the given series must diverge too. 

f) Converges. 

14. Convergence of alternating series: 

a) Converges; b) does not converge. 
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c) Since 

sin I kiT + cos(A:7r) sin - = (—1)̂  sin - , 
k k 

the given series has alternating sign, with bk = sin ^ • As 

lim bk = 0 
k—^oo 

and 5/e+l <bk 

Leibniz's test 5.36 guarantees convergence. The series does not converge abso-
lutely since sin ^ ~ ^ for A: ^ oo, so the series of absolute values behaves as 
the (diverging) harmonic series. 

d) By using one of the equivalences of p. 127 one sees that 

(-"'(04) 
V2 

00 . 

Example 5.30 i) suggests to apply the Asymptotic comparison test 5.31 to the 
series of absolute values. We conclude that the given series converges abso-
lutely. 

15. Study of convergence: 

a) Converges. 

b) Observe first that 
sin A: 

k^ 
< — , for all A: > 0; 

rv 

the series 2 , y^ converges and the Comparison test 5.29 tells that the series 
k=i 

of absolute values converges. Thus the given series converges absolutely. 

c) Diverges. 

d) This is an alternating series where bk = V^ — 1. The first term 6o = 0 apart, 
the sequence {bk}k>i decreases because \/2 > ''^\/2 for all fc > 1. Thus Leib-
niz's test 5.36 allows us to conclude that the series converges. Notice that 
convergence is not absolute, as 

^ 2 - 1 
log 2 

e k 
log 2 

k 
fc -^ 00, 

confirming that the series of absolute values is like the harmonic series, which 
diverges. 

16. Computing the sum of a converging series: 

a) 1 
"7 • 
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b) Apart from a constant, this is essentially a geometric series; by Example 5.27 
then, 

^/c 1^?_/3^^^ \ ( \ \ 3 

Z ^ 9 . 42fc 9 Z ^ 2.42fc 2 ^ ^ V l 6 y 2 V l - 4 V 26 
fc=l fc=l ^ ^ ^ 1 6 ^ 

(note that the first index in the sum is 1). 

c) The series is telescopic since 

2fc + l 1 

/c2(A: + l)2 /c2 (A:+ 1)2' 

so 

(n + l)2 

This implies 5 = lim s^ = 1-
n-^oo 

d) i . 
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Differential calculus 

The precise definition of the notion of derivative, studying a function's differen-
tiability and computing its successive derivatives, the use of derivatives to analyse 
the local and global behaviours of functions are all constituents of Differential 
Calculus. 

6.1 The derivative 

We start by defining the derivative of a function. 
Let / : dom / C E -^ R be a real function of one real variable, take XQ G dom / 

and suppose / is defined in a neighbourhood Ir{xo) of XQ. With x G Iri^o), x j^ XQ 
fixed, denote by 

Ax = X — XQ 

the (positive or negative) increment of the independent variable between 
XQ and X, and by 

^ / = f{^) - /(^o) 

the corresponding increment of the dependent variable. Note that x = XQ + 
Ax, fix) = f{xo) + Af. 

The ratio 

Af _ 
Ax 

__ fix) - fjxo) 
X — XQ 

^ fjXQ + Ax) ~ fjxo) 
Ax 

is called difference quotient of / between XQ and x. 

In this manner Af represents the absolute increment of the dependent variable 
/ when passing from XQ to XQ -f zix, whereas the difference quotient detects the 
rate of increment (while Af/f is the relative increment). Multiplying the difference 
quotient by 100 we obtain the so-called percentage increment. Suppose a rise by 
Ax = 0.2 of the variable x prompts an increment Af = 0.06 of / ; the difference 
quotient ^ equals 0.3 = ^ , corresponding to a 30% increase. 
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i 

f{xo-\-Ax) 

f{xo) 

1 

Po 

1 

Xo 

Pi 

Xo + Ax 

y = f{x) 

y = s{x) 

y = t{x) 

Figure 6.1. Secant and tangent lines to the graph of / at Po 

Graphically, the difference quotient between XQ and a point xi around XQ is the 
slope of the straight line s passing through PQ = (XQ, / ( ^ O ) ) and Pi = (a^i, / (x i ) ) , 
points that belong to the graph of the function; this line is called secant of the 
graph of / at PQ and Pi (Fig. 6.1). Putting Ax = XI—XQ and Af = f{xi) —/(XQ), 

the equation of the secant line reads 

y = s{x) = f{xo) + — ( x - Xo), X e (6.1) 

A typical application of the difference quotient comes from physics. Let M be 
a point-particle moving along a straight line; call s = s{t) the x-coordinate of the 
position of M at time t, with respect to a reference point O. Between the instants 
to and ti — to + At, the particle changes position by As = s{ti) — s{to). The 
difference quotient ^ represents the average velocity of the particle in the given 
interval of time. 

How does the difference quotient change, as Ax approaches 0? This is answered 
by the following notion. 

Definition 6,1 A map f defined on a neighbourhood o/ XQ G M is called 

differentiable a t XQ if the limit of the difference quotient —— between XQ 
Ax 

and X exists and is finite, as x approaches XQ. The real number 

fixo) lim /(^) - /(^o) ^ Yim f(^o^Ax)-f{xo) 
^XQ X — XQ 

is called (first) derivative of / at XQ. 

Ax^O Ax 
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The derivative at XQ is variously denoted, for instance also by 

y\xo), -^{xo)^ ^f{xo)-

The first symbol goes back to Newton, the second is associated to Leibniz. 
From the geometric point of view f\xo) is the slope of the tangent line at 

^0 = (^0 5 /(^o)) to the graph of / : such line t is obtained as the limiting position 
of the secant s at PQ and P = (x , / (x)) , when P approaches PQ- From (6.1) and 
the previous definition we have 

y = t{x) = f{xo) + f\xQ){x - xo), X eR. 

As 
In the physical example given above, the derivative v{to) = 5'(to) = lim —— 

is the instantaneous velocity of the particle M at time to-

Let 
dom f' = [x^ dom / : / is differentiable at x} 

and define the function f : d o m / ' C M ^ M, f : x ^^ f {x) mapping x G d o m / ' 
to the value of the derivative of / at x. This map is called (first) derivative of / . 

Definition 6.2 Let I he a subset of dom f. We say that f is different iable 
on / (or in / ) if f is differentiable at each point of I, 

A first yet significant property of differentiable maps is the following. 

Proposition 6.3 / / / is differentiable at XQ, it is also continuous at XQ. 

Proof. Colli inuit>" at .r,, pr(^sci'ih(>^ 

lim /(./•) --. / ( . ro) . that is lim (/(.r) - /( .ro)) = 0. 

If /' is (lifi(^r(nitiabl(^ at .i\). then 

liiu (./( . /•)-./( .ro)) = Inn (x~xo) 

.'—.ru X - .;•„ 

= inn lim [x — ./'oj 

= / ( • / ( , ) - 0 = 0. D 
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Not all continuous maps at a point are differentiable though. Consider the map 
f{x) = \x\: it is continuous at the origin, yet the difference quotient between the 
origin and a point x ^ 0 is 

^ / ^ fix) - /(O) ^ kl ^ [ +1 if^>0' 
Ax x-0 X \ - l i f a ; < 0 , 

(6.2) 

so the limit for x —> 0 does not exist. Otherwise said, / is not dijjerentiable at 
the origin. This particular example shows that the implication of Proposition 6.3 
can not be reversed: differentiability is thus a stronger property than continuity, 
an aspect to which Sect. 6.3 is entirely devoted. 

6.2 Derivatives of the elementary functions. Rules of 
differentiation 

We begin by tackling the issue of differentiability for elementary functions using 
Definition 6.1. 

i) Consider the affine map f{x) = ax + 6, and let XQ G E be arbitrary. Then 

{a{xo + Ax)-{-b) - {axo ^ b) 
I (xo) = lim ^ —^ = lim a = a, 

in agreement with the fact that the graph of / is a straight line of slope a. The 
derivative of f{x) = ax -f 6 is then the constant map f'{x) — a. 

In particular if / is constant (a = 0), its derivative is identically zero. 

ii) Take / (x) = x^ and XQ G M. Since 

/ ( x o ) = hm (^0 + ^ ' ^ ) ' - ^0 ^ lim (2xo + Zix) = 2xo, 
Ax^O Ax Ax-^0 

the derivative of / (x) = x^ is the function f'{x) = 2x. 

ill) Now let / (x) = x^ with n G N. The binomial formula (1.13) yields 

(xo + AxY - ^0 
/ ( x o ) = lim 

Ax^O Ax 

x^ + nx^,~'Ax + E ( ^ ) xr\AxY - x^ 
1- k=2 

Ax-^0 Ax 

lun^ Lxr' + E (fc) x^-H^x^-'] = nxr'. 
Ax-

for all Xo G M. Therefore, / ' (x) = nx^~^ is the derivative of / (x) = x^ . 
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iv) Even more generally, consider f{x) = x^ where a G M, and let XQ 7̂  0 be a 
point of the domain. Then 

fixo) lim 
{xo + Ax)'' 

. a - 1 lim 
Ax-^O 

Ax 
l i m • 

Ax^O 

Xo J - 1 

Ax 

Ax 
Xo 

Substituting y = ^ brings the latter into the form of the fundamental limit 
(4.13), so 

fixo) ax. 
,a-l 

When a > 1, / is differentiable at XQ = 0 as well, and / '(O) = 0. The function 
f{x) = x^ is thus differentiable at all points where the expression x^~^ is well 
defined; its derivative is f\x) = ax'^~^. 

For example f{x) — ^/x — x^l^, defined on [0, +c>o), is differentiable on (0, +00) 
1 

with derivative f'{x) 
2v^ 

. The function j{x) /x^ _ ^5/3 -g (defined on 

where it is also differentiable, and f'{x) 5^2/3 3^ ^.'/:;2 

v) Now consider the trigonometric functions. Take f{x) = s inx and XQ G 
Formula (2.14) gives 

fixo) 
sm(xo + / i x ) - smxo , 2 sm ^ cos(xo + 4 r ) 

lim = lim — 
Ax-^O Ax Ax^O Ax 

s m ^ 
= hm yr-^ 

Ax, 
lim cos (XQ H ) 

Ax-^0 

The limit (4.5) and the cosine's continuity tell 

f{xo) = COSXQ. 

Hence the derivative of f{x) = s inx is / ' ( x ) = cosx. 
Using in a similar way formula (2.15), we can see tha t the derivative of / ( x ) = 

cosx is the function f'{x) = — s inx. 

vi) Eventually, consider the exponential function / ( x ) = a^. By (4.12) we have 

f{xo) = lim 
Ax—^O 

xo-\-Ax ^Ax 

Aa Ax-^O Ax 
a^° log a. 

showing tha t the derivative of / ( x ) = a^ is / ' ( x ) = ( loga)a^. 
As loge = 1, the derivative of / ( x ) = e^ is / ' ( x ) = e^ = / ( x ) , whence the 

derivative / ' coincides at each point with the function / itself. This is a crucial 
fact, and a reason for choosing e as privileged base for the exponential map. 
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We next discuss differentiability in terms of operations (algebraic operations, 
composition, inversion) on functions. We shall establish certain differentiation 
rules to compute derivatives of functions that are built from the elementary 
ones, without resorting to the definition each time. The proofs may be found 
at -^ Derivat ives . 

Theorem 6.4 (Algebraic operations) Let f{x),g{x) be 
maps at XQ € M. Then the maps f{x) ± g{x), f{x)g{x) and, 
£( \ 

are differentiable at XQ-

(/±5)'(=ro) 

(/5)'(xo) 

(0'(.o) 

To be precise^ 

= f{xo)±gr{xo), 

= f'{xo)9{xo) + f{xo)g\xo), 

f{xo)g{xo) - f{xQ)g'{xo) 

differentiable 
if 9ixo) 7̂  0, 

(6.3) 

(6.4) 

(6.5) 

Corollary 6.5 ('Linearity' of the derivative) / / f{x) and g{x) are dif-
ferentiable at xo € R, the map af{x) -h l3g{x) is differentiable at XQ for any 
a , / ? G R and 

{af + PgYixo) = afixo) + /3g'{xo). (6.6) 

Proof. Consider (6.4) and recall that differentiating a constant gives zero; then 
{afy{xo) = af'{xo) and {3gy{xo) = pg'{xo) follow. The rest is a conse-
quence of (6.3). • 

Examples 6.6 

i) To differentiate a polynomial, we use the fact that Dx^ — nx'^~^ and apply 
the corollary repeatedly. So, f{x) = 3x^ - 2x^ — x^ H- 3x^ - 5x + 2 differentiates 
to 

f\x) = 3 • 5x^ - 2 • 4x^ - 3x^ + 3 • 2x - 5 = 15x^ - 8x^ - 3^^ + 6x - 5. 

ii) For rational functions, we compute the numerator and denominator's deriva-
tives and then employ rule (6.5), to the effect that 

, , ^ x 2 - 3 x 4 - 1 
^^") == 2 . - 1 

has derivative 

(2x - 3)(2x - 1) - (.2 - 3x + 1)2 _ 2.2 - 2x 4-1 
f\x) ( 2 x - l ) 2 4 x 2 - 4 x + l* 
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)nsi( 
yield 
ill) Consider f{x) ~ x^ sinx. The product rule (6.4) together with (sinx)' = cosx 

f'{x) = 3x^ sinx + x^cosx. 

iv) The function 
sinx 

jix) — tanx = 
cosx 

can be differentiated with (6.5) 

,,, , cosx cosx — sinX (—sinx) cos^ x + sin^ x , sin^ x o 
f\x) = ^ ^ = = 1 + — — = l + t a n 2 x . 

COS^ X COS^ X COS^ X 

Another possibility is to use cos^ x + sin^ x = 1 to obtain 

fix) = - V - D 

Theorem 6.7 ("Chain rule") Let f{x) be differentiable atxo ER and g{y) 
a differentiable map at yo — / (XQ) . Then the composition g o f{x) — g(^f{x)) 
is differentiable at XQ and 

(9 o /)'(xo) = 9'{yo)f'{xo) - g'{f{xo))f'ixo). (6 7) 

Examples 6.8 

i) The map — x^ is the composite of / (x) = 1 — x^, whose derivative 

is /^(x) = —2x, and g{y) — ̂ Jy, for which g'{y) = ——. Then (6.7) directly gives 

\^{x)^-^={-2x) 
2v'l-x2 vT r2 

x^ 

ii) The function h{x) — ê ^̂ *̂ ^ is composed by / (x) = cos3x, g{\j) = e^. But 
/ (x) is in turn the composite of Lp{x) = 3x and ijj{y) = cosy; thus (6.7) tells 
/ ' (x) = —3sin3x. On the other hand g^{y) — e^. Using (6.7) once again we 
conclude 

h\x) = -3e^^^^^sin3x. D 

Theorem 6.9 (Derivative of 
continuous, invertible map on a 
at XQJ with f\xo) ^ 0. Then 
yo = f{xo), and 

if-'nyo)-

the inverse function) 
neighbourhood of XQ S K, 

the inverse map f~^{y) 

1 1 

f'ixo) fV-Hyo)y 

Suppose f{x) is a 
and differentiable 

is differentiable at 

(6 8) 
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Examples 6.10 

i) The function y — f{x) — tanx has derivative f'{x) = 1 + tan^x and inverse 
^ = f~^{y) = arctan^. By (6.8) 

^^ ^^'^^^ ^ l + tan^x ^ T T 7 ' 

Setting for simplicity f~^ = g and denoting the independent variable with x, 

the derivative of q(x) = arctanx is the function q'(x) = ;r. 

ii) We are by now acquainted with the function y = / (x) = sinx: it is invertible 
on [—f, f ], namely x = f~^{y) = arcsin?/. Moreover, / differentiates to / ' (x) = 
cosx. Using cos^x + sin^x = 1, and taking into account that on that interval 
cosx > 0, one can write the derivative of / in the equivalent form / ' (x) = 
V 1 — sin^ X. Now (6.8) yields 

if-'Yiy) ^ ^ 
\/l - sin^ X A/1 -y'^ 

Put once again f~^ = g and change names to the variables: the derivative of 

^(x) — arcsinx is g'{x) = 

2 
In similar fashion ^(x) = arccosx differentiates to g\x) — 

Vl - X 
iii) Consider y — / (x) = a^. It has derivative f'{x) — (loga)a^ and inverse 
X = f~^{y) = loga^- The usual (6.8) gives 

^^ '^'^y^ = (loga)a- = ( b ^ -

Defining f~^=g and renaming x the independent variable gives g'{x) 
(loga)x 

as derivative of g{x) = log^ x (x > 0). 
Take now h{x) = log^(—x) (with x < 0), composition of x i-̂  —x and g(y): then 

1 1 
/i'(x) — — -7 r(—1) = T, ^ - Putting all together shows that g(x) = 

^ ^ (loga)(-x)^ ^ (loga)x ^ B yy J 
log„ |x| (x / 0) has derivative g'(x) = -; —-. 

(loga)x 

With the choice of base a = e the derivative of ^(x) == log |x| is g^{x) = —. • 

Remark 6.11 Let / (x) be differentiable and strictly positive on an interval / . 
Due to the previous result and the Chain rule, the derivative of the composite 
map^(x) = l o g / ( x ) is 

^^""^ fix)-

f 
The expression — is said logarithmic derivative of the map / . • 



6.3 Where differentiability fails 175 

The section ends with a useful corollary to the Chain rule 6.7. 

Property 6,12 / / / is an even (or odd) differentiable fmction on mil its 
domain^ the derivative f is odd (resp. even). 

Proof. Since / is even, /(—.r) = /(.r) for any x G dom/ . Let us differentiate both 
sides. As f{—x) is the composition of ,r -̂> —x and y H^ /(y), its derivative 
reads —f'[—x). Then f'{—x) = —f'{x) for all x G dom/ , so f is odd. 
Similarly if / is odd. • 

We reckon it could be useful to collect the derivatives of the main elementary 
functions in one table, for reference. 

Drr^=aa:^-^ (Va € E) 

D sinx = cosaj 

D cos a: = — sin X 

D tan ar = 1 -f tan^ x 

D arcsinar = 

D arccosa:; == 

D arctana: = 

'•̂  Ki<hki. Jb 

1 
V l - ar2 

1 

y/T^^ 

1 

COS^ X 

l-\-x^ 

Da^ = (loga)a^ 

1 
D log^ \x\ = 

(log a) X 

in particular, D ê  = ê  

in particular, D log (arl = -
X 

6.3 Where differentiability fails 

It was noted earlier that the function f{x) = \x\ is continuous but not differentiable 
at the origin. At each other point of the real line / is differentiable, for it coincides 
with the line y = x when x > 0, and with y = —x for x < 0. Therefore f'{x) = +1 
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for X > 0 and f\x) = —1 on x < 0. The reader will recall the sign function 
(Example 2.1 iv)), for which 

D |x| = sign(x), for all x ^ 0. 

The origin is an isolated point of non-differentiability for y = \x\. 
Returning to the expression (6.2) for the difference quotient at the origin, we 

observe that the one-sided limits exist and are finite: 

lim —— = 1, lim —— = —1. 
:r->0+ Ax x^O- Ax 

This fact suggests us to introduce the following notion. 

Definition 6.13 Suppose f is defined on a right neighbourhood of XQ E R . It 
is called diflFerentiable on the right at XQ if the right limit of the difference 

Af 
quotient —— between XQ and x exists finite, for x approaching XQ. The real 

number 

f^ixo) = lim M l J M = l i ^ fixo + Ax)-fixo) 
x^x^ X — XQ AX->0+ AX 

is the right {or backward) derivative of / at XQ. Similarly it goes for the 
left (or forward) derivative / i (xo) . 

If / is defined only on a right (resp. left) neighbourhood of XQ and is differen-
tiable on the right (resp. the left) at XQ, we shall simply say that / is differentiable 
at xo, and write f{xo) = f-^{xo) (resp. f{xo) ^ / i (xo)) . 

From Proposition 3.24 the following criterion is immediate. 

Property 6.14 A map f defined around a point XQ GW is differentiable at 
XQ if and only if it is differentiable on both sides at XQ and the left and right 
derivatives coincide, in which case 

nxo)^f'{xo) = fL{xo). 

Instead, if / is differentiable at XQ on the left and on the right, but the two 
derivatives are different (as for / (x) = |x| at the origin), XQ is called corner 
(point) for / (Fig. 6.2). The term originates in the geometric observation that the 
right derivative of / at XQ represents the slope of the right tangent to the graph 
of / at Po = {XQJ f{xo))^ i.e., the limiting position of the secant through PQ and 
P = (x, f{x)) as X > Xo approaches XQ. In case the right and left tangent (similarly 
defined) do not coincide, they form an angle at PQ. 
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Figure 6.2. Non-differentiable maps: the origin is a corner point (left), a point with 
vertical tangent (middle), a cusp (right) 

Other interesting cases occur when the right and left limits of the difference 
quotient of / at XQ exist, but one at least is not finite. These will be still denoted 
by f-^{xo) and fL{xo). 

Precisely, if just one of / ^ ( X Q ) , fL (XQ) is infinite, we still say tha t XQ is a corner 
po int for / . 

If both / ^ ( X Q ) and fL{xo) are infinite and with same sign (hence the limit of 
the difference quotient is +(X) or —oo), XQ is a po int w i t h vert ica l t a n g e n t for 
/ . This is the case for f{x) — ^ ' . 

/i(0) lim ^ 
E^0± X 

1 
lim 

X—>0^ \ X 
H-oo. 

When f'j^{xo), fL{xo) are finite and have different signs, XQ is called a cusp 

(point) of / . For instance the map f{x) = y/\x\ has a cusp at the origin, for 

/ ; ( 0 ) = lim 
0± X 

= lim lim 
x-^o± sign(a;) \x\ x^o± sign(x) ^/\x 

±00. 

Another criterion for differentiability at a point XQ is up next. The proof is 
deferred to Sect. 6.11, for it relies on de rHopi ta l ' s Theorem. 

T h e o r e m 6.15 Let f he continuous at XQ and differentiable at all points 
X ^ XQ in a neighbourhood of XQ . Then f is differentiable at XQ provided that 
the limit of f'{x) for x -^ XQ exists fijiite. If so, 

f'ixo) - lim fix). 
X—i-XQ 

E x a m p l e 6.16 

We take the function 

fix) = 
a sin 2x — 4 if x < 0, 

b{x - 1) + e^ if X > 0, 
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and ask ourselves whether there are real numbers a and b rendering / difFeren-
tiable at the origin. The continuity at the origin (recall: differentiable implies 
continuous) forces the two values 

lim fix) = - 4 , lim^ fix) = /(O) = - 6 + 1 
a:—>-0~ X—»0+ 

to agree, hence 6 = 5. With b fixed, we may impose the equality of the right 
and left limits of / ' (x) for x —̂  0, to the effect that fix) admits finite limit for 
X ̂  0. Then we use Theorem 6.15, which prescribes that 

lim fix) = lim 2acos2x = 2a, and lim f\x) = lim (5 + e'̂ ) = 6 

are the same, so a = 3. D 

Remark 6.17 In using Theorem 6.15 one should not forget to impose continuity 
at the point XQ. The mere existence of the limit for f is not enough to guarantee 
/ will be differentiable at XQ. For example, fix) — x + signrr is differentiable at 
every x ^ 0: since fix) = 1, it necessarily follows hm fix) = 1. The function is 

nonetheless not differentiable, because not continuous, at x = 0. • 

6.4 Extrema and critical points 

Definition 6.18 One calls XQ € d o m / a relative {or local) maximum 

point for / if there is a neighbourhood Ir i^o) of XQ such that 

Vx e Irixo)ndomf, fix) < fixo). 

Then fixo) is a relative (or local) maximum o f / . 
One calls xo an absolute maximum point (or global maximum point) 
for / if 

Vx e dom/ , fix) < fixo), 
and fixg) becomes the (absolute) maximum of / . In either case, the max-
imum is said strict if fix) < fixo) when x ^ XQ. 

Exchanging the symbols < with > one obtains the definitions of relative and 
absolute minimum point. A minimum or maximum point shall be referred to 
generically as an extremum (point) of / . 

Examples 6.19 

i) The parabola fix) = 1 -h 2x — x^ = 2 — (x — 1)^ has a strict absolute maximum 
point at Xo = 1, and 2 is the function's absolute maximum. Notice the derivative 
/ ' (x) = 2(1 — x) is zero at that point. There are no minimum points (relative or 
absolute). 
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Xo Xo Xo 

Figure 6.3. Types of maxima 

ii) For g{x) = arcsinx (see Fig. 2.24), XQ = 1 is a strict absolute maximum point, 
with maximum value ^. The point xi = — 1 is a strict absolute minimum, with 
value — 1̂ . At these extrema g is not differentiable. D 

We are interested in finding the extremum points of a given function. Provided 
the latter is different iable, it might be useful to look for the points where the first 
derivative vanishes. 

Definition 6.20 A critical point (or stationary point) of f is a point XQ 
at which f is differentiable with derivative f\xo) = 0. 

The tangent at a critical point is horizontal. 

/^\ 

Xo Xi X2 

Figure 6.4. Types of critical points 

Thmi^mm%.2%^mmm£} Suppose f is defimd in a ftdl m^hbtmrftrnd of a 
point XQ md d'^trerdmbk atz^. tfmQis am ̂ rmman ^rdf tkm^it is mtical 
forf, ie,, 
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Proof. To fix ideas, assume XQ is a relative maximum point and that Ir{xo) is a 
neighbourhood where f{x) < /{XQ) for ah X G /r(^o)- On such neighbour-
hood then Af = f{x) - / ( X Q ) < 0. 

Af 
If X > Xo, hence Ax — x — XQ > 0, the difference quotient —— is non-

Ax 
positive. Corollary 4.3 imphes 

X-.X+ X - Xo 

Af 
Vice versa, if x < XQ, i.e., Ax < 0. then —— is non-negative, so 

Ax 

,. / ( x ) - / (xo ) ^ 
lim ^^^-^—^-^^^ > 0. 

X—>x^ X X Q 

By Property 6.14, 

fixo) = lim M^LIM . li,, fjEhJM , 
X^XQ X XQ X-^XQ X XQ 

SO f'{xo) is simultaneously < 0 and > 0, hence zero. 
A similar argument holds for relative minima. • 

Fermat's Theorem 6.21 ensures that the extremum points of a differentiable 
map which belong to the interior of the domain should be searched for among 
critical points. 

A function can nevertheless have critical points that are not extrema, as in 
Fig. 6.4. The map / (x) = x^ has the origin as a critical point {f'{x) — 3x^ = 0 if 
and only if x = 0), but admits no extremum since it is strictly increasing on the 
whole R. 

At the same time though, a function may have non-critical extremum point 
(Fig. 6.3); this happens when a function is not differentiable at an extremum that 
lies inside the domain (e.g. / (x) = |x|, whose absolute minimum is attained at the 
origin), or when the extremum point is on the boundary (as in Example 6.19 ii)). 
The upshot is that in order to find all extrema of a function, browsing through 
the critical points might not be sufficient. 

To summarise, extremum points are contained among the points of the domain 
at which either 

i) the first derivative vanishes, 

ii) or the function is not differentiable, 

iii) or among the domain's boundary points (inside R). 
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The results we present in this section, called Theorem of Rolle and Mean Value 
Theorem, are fundamental for the study of differentiable maps on an interval. 

T h e o r e m 6 . 2 2 (Itolie) Let f be a function defined on a closed bounded 
interval [a,6], continuous on [a,b] and differentiable on (a,6) {at least). If 
f{a) = f{b), there exists am, XQ € (a, b) such that 

nxo)=o. 
In other words^ f admits at least one critical point in (a, 6). 

a xo b 

Figure 6.5. Rolle's Theorem 

Proof. By the Theorem of Weierstrass the range f{[a,b]) is the closed interval 
[m, M] bounded by the mininmm and maximum values m, M of the map: 

m = min / ( x ) = f{x,n). 
2:e[o.b] 

M = max f{x) = / ( X M ) 
xe[a.b] 

for suitable Xjn^XM G [a,b]. 
In case m = A/. / is constant on [a, 6], so in particular f'{x) — 0 for any 
X G (a, 6) and the theorem follows. 
Suppose then m < M. Since rn < f{a) = f{b) < M , one of the strict 
inequalities f{a) = f{b) < KL rn < f{a) = f{b) wih hold. 
If f((i) = f{b) < M. the absolute maximum point XM cannot be a nor 6; 
thus. X]\[ G (a, b) is an interior extremum point at which / is differentiable. 
By Fermat 's Theorem 6.21 we have that x^/ = XQ is a critical point. 
If rn < f(a) = / ( ^ ) . one proves analogously that Xm is the critical point 
XQ of the claim. D 

The theorem proves the existence of one critical point in (a, b); Fig. 6.5 shows tha t 
there could actually be more. 
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Theorem 6.3̂ 3 (McMm^idue Thi^>rem or Lagraxige Theorem) Let f 
be defined an the chs^ mdMun^^ interml [a, 6], continuo'us on [a,&] and 
differentiable (at ii&mt) <m {m^b), Thenthm^isapamtXQ€{a^b) such that 

m-m 
b-^a 

= /'|a:x,)- (6.9) 

Every such point ;ar6 ttMl\sAail-eollLagrmige poiwfc for / in (a, 6). 

Proof. Introduce an auxiliary map 

b — a 

defined on [a, 6]. It is continuous on [a, 6] and differentiable on (a, 6), as 
difference of / and an affine map, which is differentiable on all of R. Note 

9'{x) = fix) fib) - /(g) ^ 
b — a 

It is easily seen that 

g{a) = / (a ) , gib) = / (a) , 

SO Rolle's Theorem applies to g, with the consequence that there is a point 
xo G (a, 6) satisfying 

g'i.o)^f'i.o)-^^^^0. 
b — a 

But this is exactly (6.9). D 

, 

m 

/(«) 

, 

J 
/ 

/ 

a XQ b 

Figure 6.6. Lagrange point for / in (a, b) 
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The meaning of the Mean Value Theorem is clarified in Fig. 6.6. At each La-
grange point, the tangent to the graph of / is parallel to the secant line passing 
through the points (^a,f{a)) and (6,/(6)). 

Example 6.24 

Consider f{x) — 1 + x + >/l — x^, a continuous map on its domain [—1,1] as 
composite of elementary continuous functions. It is also differentiable on the 
open interval (—1,1) (not at the end-points), in fact 

Thus / fulfills the Mean Value Theorem's hypotheses, and must admit a La-
grange point in (—1,1). Now (6.9) becomes 

1 

satisfied by XQ = 0. 
i - ( - i ) f'ixo) 

0^ D 

6.6 First and second finite increment formulas 

We shall discuss a couple of useful relations to represent how a function varies 
when passing from one point to another of its domain. 

Let us begin by assuming / is diS"erentiable at XQ. By definition 

x^xo X — XQ 

that is to say 

'fix)-fixo) 
lim fixo) 

j . ^ f{x)-f{xo)-f{xo){x-xo) ^ ^ 
X — XQ ' ^ J X-^XQ X — XQ 

Using the Landau symbols of Sect. 5.1, this becomes 

f{x) - f{xo) - f{xo){x - Xo) = 0{X - Xo), X -^ XQ. 

An equivalent formulation is 

f{x) - f{xo) = f{XQ){x - XQ) -f o{x - XQ), X -~> XQ, 

or 
Af == f{xQ)Ax -f o{Ax), Ax -^ 0, 

(6.10) 

(6.11) 

by putting Ax = x — x^ and Af — f[x) — f{xo). 
Equations (6.10)-(6.11) are equivalent writings of what we call the first formula 
of the finite increment , the geometric interpretation of which can be found in 
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xo + Ax 

Figure 6.7. First formula of the finite increment 

Fig. 6.7. It tells that if / ' (XQ) ^ 0, the increment Z\/, corresponding to a change 
Ax, is proportional to Ax itself, if one disregards an infinitesimal which is negligible 
with respect to Ax. For Ax small enough, in practice, Af can be treated as 
f{xo)Ax. 

Now take / continuous on an interval / of R and differentiable on the interior 
points. Fix xi < X2 in I and note that / is continuous on [xi, a;2] and differentiable 
on (xi,a:2). Therefore / , restricted to [xi,X2], satisfies the Mean Value Theorem, 
so there is x G (xi,X2) such that 

f{x2) - f{xi) 
X2 - Xi 

fix), 

that is, a point x G (xi,X2) with 

f{x2) - f{xi) = f{x){x2 - xi). (6.12) 

We shall refer to this relation as the second formula of the finite increment. 
It has to be noted that the point x depends upon the choice of Xi and X2, albeit 
this dependency is in general not explicit. The formula's relevance derives from 
the possibility of gaining information about the increment /(X2) — f{xi) from the 
behaviour of / ' on the interval [xi,X2]. 

The second formula of the finite increment may be used to describe the local 
behaviour of a map in the neighbourhood of a certain XQ with more precision than 
that permitted by the first formula. Suppose / is continuous at XQ and differentiable 
around XQ except possibly at the point itself. If x is a point in the neighbourhood 
of Xo, (6.12) can be applied to the interval bounded by XQ and x, to the effect that 
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(6.13) 

where x lies between XQ and x. This alternative formulation of (6.12) expresses the 
increment of the dependent variable Af as if it were a multiple of Ax; at closer 
look though, one realises that the proportionality coefficient, i.e., the derivative 
evaluated at a point near XQ, depends upon Ax (and on â o), besides being usually 
not known. 

A further application of (6.12) is described in the next result. This will be 
useful later. 

Property 6.25 A function defined on a real interval I and everywhere differ-
entiable is constant on I if and only if its first derivative vanishes identicaily. 

Proof. Let / be the map. Suppose first / is constant, therefore for every XQ G / , 

the difference quotient , with x G / , x 7̂  XQ, is zero. Then 
X - X'o 

f\x{)) = 0 by definition of derivative. 
Vice versa, suppose / has zero derivative on / and let us prove that / is 
constant on / . This would l)e equivalent to demanding 

/ (X l )= / (X2) . Vxi,X2G/. 

Take xi,X2 G / and use formula (6.12) on / . For a suitable x between 
Xi. X2. we have 

f{x2)~.f{x^) = f'{x){x2-x^)^0, 

tlius/(xi) = /(.r2). • 

6.7 Monotone maps 

In the light of the results on differentiability, we tackle the issue of monotonicity. 

Thmrem 6.26 Let I be 
Then: 

a) If f is increasing on I 

bl) If fix) >0 for any a 

bB) if fix) >Qforallx 

an interval 1 

, then fix) 
: € / , limn / 

€ / , then f * 

\kpon which the map f 

> 0 for ail xeL 

is increasing on I; 

m sMctly incrmsmg on 

is differentiable. 

file:///kpon
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Xi X X2 

Figure 6.8. Proof of Theorem 6.26, b) 

Proof. Let us prove claim a). Suppose / increasing on / and consider an interior 
point XQ of / . For all x G / such tha t x < XQ, we have 

fix) - fixo) < 0 and X — xo < 0. 

Thus, the difference quotient —— between XQ and x is non-negative. On 

the other hand, for any x G / with x > XQ, 

/ ( x ) — / (xo) > 0 and x — XQ > 0. 

Af 
Here too the difference quotient —— between XQ and x is positive or zero. 

Ax 
Altogether, 

Corollary 4.3 on 

^ / ^ fix) - /(xo) 
Ax X — XQ 

> 0, Vx 7̂  Xo; 

hm -r- = f (Xo) 
x-^xo ZAX 

yields f\xo) > 0. As for the possible extremum points in / , we arrive 
at the same conclusion by considering one-sided limits of the difference 
quotient, which is always > 0. 
Now to the implications in parts b). Take / with f'{x) > 0 for all x G / . 
The idea is to fix points xi < X2 in / and prove tha t / ( x i ) < /(X2). 
For tha t we use (6.12) and note tha t f'{x) > 0 by assumption. But since 
X2 — xi > 0, we have 

f{x2)-f{Xl) = f{x){X2-X,)>0, 

proving bl). Considering / such tha t f'{x) > 0 for all x G / instead, (6.12) 
implies /(X2) — / ( x i ) > 0, hence also 62) holds. • 
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The theorem asserts that if / is differentiable on / , the following logic equiva-
lence holds: 

Furthermore, 

f{x) > 0, Va; € / <J=̂  / is increasing on / . 

f{x) > 0, Vx € / ==^ / is strictly increasing on J. 

The latter implication is not reversible: / strictly increasing on / does not imply 
f'{x) > 0 for all X G / . We have elsewhere observed that f{x) — x^ is everywhere 
strictly increasing, despite having vanishing derivative at the origin. 

A similar statement to the above holds if we change the word 'increasing' with 
'decreasing' and the symbols >, > with <, <. 

Corollary 6.27 Let f be differentiable on I and XQ an interior critical point 
If f\x) >Q at the left ofxo and f{x) <0 at its rights then XQ is a maximum 
point for f. Similarly, f{x) < 0 at the left, and > 0 at the right ofxo implies 
XQ is a minimum point 

Theorem 6.26 and Corollary 6.27 justify the search for extrema among the 
zeroes of / ' , and explain why the derivative's sign affects monotonicity intervals. 

Example 6.28 

The map / : M -^ R, f{x) - xe^^ differentiates to f{x) = {2x + l)e2^, whence 
xo = — I is the sole critical point. As f'{x) > 0 if and only if x > — ̂ , / (XQ) is an 

absolute minimum. The function is strictly decreasing on (—oo, — | ] and strictly 
increasing on [—|,+CXD). D 

6.8 Higher-order derivatives 

Let / be differentiable around XQ and let its first derivative f be also defined 
around XQ. 

Definition 6.29 / / / ' is a differentiable function at XQ, one says f is twice 
differentiable a t XQ. The expression 

/"(^o) = (/')'(xo) 

is called second derivative of / at XQ. The second derivative of / , 
denoted f", is the map associating to x the number f^{x), provided the latter 
is defined. 
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Other notations commonly used for the second derivative include 

y"(̂ o), 0(xo), DV(^O). 

The third derivative, where defined, is the derivative of the second derivative: 

In general, for any A: > 1, the derivative of order k {kth derivative) of / at 
xo is the first derivative, where defined, of the derivative of order (/c — 1) of / at 
XQ: 

f('){xo) = {f^'-'^nxo). 
Alternative symbols are: 

y^'Hxo), 0(a;o), DV(XO). 

For conveniency one defines f^^\xo) = / (XQ) as well. 

Examples 6.30 

We compute the derivatives of all orders for three elementary functions. 

i) Choose n G N and consider f{x) = x'^. Then 

/(") (x) = n(n - 1) • • • 2 • 1 x " - " = n!. 

More concisely, 

n! f^^Kx) = -. rr-.X ,n—k 

{n-k)V 

with 0 < A: < n. Furthermore, f^'^~^^\x) = 0 for any x G M (the derivative of 
the constant function f^^\x) is 0), and consequently all derivatives f^^"^ of order 
k > n exist and vanish identically. 

ii) The sine function f{x) = sinx satisfies f\x) — cosx, / ' ' (x) = — sinx, 
f"'{x) — —cosx and f^^\x) = sinx. Successive derivatives of / clearly re-
produce this cyclical pattern. The same phenomenon occurs for y — cosx. 

iii) Because / (x) = e^ differentiates to f'{x) — e^, it follows that f^^\x) = e^ 
for every A: > 0, proving the remarkable fact that all higher-order derivatives of 
the exponential function are equal to e^. • 
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A couple of definitions wrap up the section. 

Definition 6,31 A map f is of class C^ (k > 0) on an interval I if f is 
differentiable k times everywhere on I and its kth derivative f^^^ is continuous 
on I, The collection of all C^ maps on I is denoted by C^{I). 
A map f is of class C^ on I if it is arbitrarily differentiable everywhere on 
I. One indicates byC^{I) the collection of such maps. 

In virtue of Proposition 6.3, if / G C^{I) all derivatives of order smaller or 
equal than k are continuous on / . Similarly, if / G C^{I), all its derivatives are 
continuous on / . 

Moreover, the elementary functions are differentiable any number of times (so 
they are of class C^) at every interior point of their domains. 

6.9 Convexity and inflection points 

Let / be differentiable at the point XQ of the domain. As customary, we indicate 
^y y = t{x) — f{xo) + f\xo){x — XQ) the equation of the tangent to the graph of 
/ at XQ. 

Definition 6.32 The map f is convex at XQ if there is a neighbourhood 
Ir{xo) Q d o m / such that 

\/x e Ir{xo), f{x) > t{xy, 

f is strictly convex if f{x) > t{x), Vx ^ XQ. 

The definitions for concave and str ict ly concave functions are alike (just change 
>, > to <, <). 

What does this say geometrically? A map is convex at a point if around that 
point the graph lies 'above' the tangent line, concave if its graph is 'below' the 
tangent (Fig. 6.9). 

y = fix) y = t{x) 

XQ XQ 

Figure 6.9. Strictly convex (left) and strictly concave (right) maps at xo 
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Example 6.33 

We claim that / (x) = x^ is strictly convex at XQ = 1. The tangent at the given 
point has equation 

t{x) - 1 + 2(x - 1) = 2x - 1. 

Since / (x) > t{x) means x^ > 2x — 1, hence x^ — 2x + 1 = (x — 1)^ > 0, t lies 
below the graph except at the touching point x = 1. D 

Definition 6.34 A differentiable map f on an interval I is convex on / if 
it is convex at each point of L 

For understanding convexity, inflection points play a role reminiscent of ex-
tremum points for the study of monotone functions. 

Definition 6.35 The point XQ is an inflection point for / if there is a 
neighbourhood Ir{xo) Q d o m / where one of the following conditions holds: 
either 

{ ifx<xo, f(x)<t{x), 

ifx>Xo, f{x)>t{x)j 
or 

{ ifx <xo , / (x) > t(x), 

ifx>XQ, f{x)<t{x) 

In the former case we speak of an ascending inflection, in the latter the 
inflection is descending. 

In the plane, the graph of / 'cuts through' the inflectional tangent at an in-
flection point (Fig. 6.10). 

/ y ^ f{x) 
/ 

/ y = t{x) , y = t{x) 

• • • - / 

/ 

-/-

\ y = f{x) 

Xo Xo 

Figure 6.10. Ascending (left) and descending (right) inflections at XQ 
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The analysis of convexity and inflections of a function is helped a great deal 
by the next results. 

Theorem 6.36 Given 

a) if f is convex on / , 

bl)Iff 
b2)iff' 

is increasing 

a differentiable map f on the interval / , 

then f is increasing on L 

on I, then f is convex on I; 

is strictly increasing on / , then f is strictly convex on I. 

Proof. -^ Convex functions. • 

Corollary 6.37 / / / ii 

a) f convex on I 

hi) f'{x) > 0 for 

b2) f\x) > 0 for 

y differentiable twice on I, then 

implies /"(ar) > 0 for all x € I. 

all X 

all X 

€ I implies f convex on I; 

G / implies f strictly convex on L 

Proof. This follows (lir(X'tl\' from llieoKnn 6.36 by applying Theorem 6.26 to the 
function f. D 

There is a second formulation for this, namely: under the same hypothesis, the 
following formulas are true: 

f\x) > 0, Va? € / <==> f is convex on / 

and 

f\x) > 0, Vx € / ==> / is strictly convex on / . 

Here, as in the characterisation of monotone functions, the last implication has no 
reverse. For instance, f{x) = x^ is strictly convex on R, but has vanishing second 
derivative at the origin. 

Analogies clearly exist concerning concave functions. 

Corollary 6.38 Let f be twice differentiable around XQ. 

a) If XQ is an inflection pointy then f^{xo) = 0. 

b) Assume /"(XQ) = 0. If / " changes sign when crossing XQ, then XQ is an 
inflection point {ascending if f^{x) <0 at the left of XQ and f\x) > 0 at 
its right, descending otherwise). If f does not change sign, XQ is not an 
inflection point. 
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The proof relies on Taylor's formula, and will be given in Sect. 7.4. 

The reader ought to beware that f"{xQ) — 0 does not warrant XQ is a point 
of inflection for / . The function f{x) = x^ has second derivative f"{x) = 12x^ 
which vanishes at XQ = 0. The origin is nonetheless not an inflection point, for 
the tangent at XQ is the axis y = 0, and the graph of / stays always above it. In 
addition, f" does not change sign around XQ. 

Example 6.28 (continuation) 

For f{x) = xe^^ we have f"{x) = 4(x+l)e^^ vanishing at Xi = - 1 . As f"{x) > 0 
if and only if x > — 1, / is strictly concave on (—(X), — 1) and strictly convex on 
(—l,H-cx)). The point xi = —1 is an ascending inflection. The graph of f{x) is 
shown in Fig. 6.11. • 

6.9.1 Extension of the notion of convexity 

The geometrical nature of convex maps manifests itself by considering a gener-
alisation of the notion given in Sect. 6.9. Recall a subset C of the plane is said 
convex if the segment P1P2 between any two points Pi,P2 E C is all contained 
i n C . 

Given a function / : / C R ^^ R, we denote by 

Ef = {{x,y)GR^:xeI, y > f{x)} 

the set of points of the plane lying above the graph of / (as in Fig. 6.12, left). 

Definition 6.39 The map f : I C 
Ef is a convex subset of the plane. 

is called convex on I if the set 

Figure 6.11. Example 6.28 
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y = f{x) 
H = 1-̂1 

a b X 

Figure 6.12. The set Ef for a generic / defined on / (left) and for f{x) = |a:| (right) 

It is easy to convince oneself that the convexity of Ef can be checked by 
considering points Pi, P2 belonging to the graph of / only. In other words, given 
a:;i,a::2 in / , the segment S12 between (x i , / (x i ) ) and {x2,f{x2) should lie above 
the graph. 

Since one can easily check that any x between xi and X2 can be represented as 

x = (l-t)xi+tx2 with t=-—^G[0, 11, 
X2 - Xi 

the convexity of / reads 

/((I - t)xi + tX2) < (1 - t)f{xi) + tf{x2) V x i , X2 G / , V t G [0, 1] . 

If the inequality is strict for Xi ^ X2 and t G (0,1), the function is called strictly 
convex on / . 

For differentiahle functions on the interval / , Definitions 6.39, 6.32 can be 
proven to be equivalent. But a function may well be convex according to Defini-
tion 6.39 without being differentiahle on / , like f{x) = \x\ on I = R (Fig. 6.12, 
right). Note, however, that convexity implies continuity at all interior points of / , 
although discontinuities may occur at the end-points. 

6.10 Qualitative s tudy of a function 

We have hitherto supplied the reader with several analytical tools to study a 
map / on its domain and draw a relatively thorough - qualitatively speaking -
graph. This section describes a step-by-step procedure for putting together all the 
information acquired. 

Domain and symmetr ies 
It should be possible to determine the domain of a generic function starting from 
the elementary functions that build it via algebraic operations and composition. 
The study is greatly simplified if one detects the map's possible symmetries and 
periodicity at the very beginning (see Sect. 2.6). For instance, an even or odd map 
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Figure 6.13. The function f{x) = e _ ^ - | ^ - 2 | 

can be studied only for positive values of the variable. We point out that a function 
might present different kinds of symmetries, like the symmetry with respect to a 
vertical line other than the y-axis: the graph of f{x) = e~'^~^' is symmetric with 
respect to x = 2 (Fig. 6.13). 

For the same reason the behaviour of a periodic function is captured by its 
restriction to an interval as wide as the period. 

Behaviour at the end-points of the domain 
Assuming the domain is a union of intervals, as often happens, one should find the 
one-sided limits at the end-points of each interval. Then the existence of asymp-
totes should be discussed, as in Sect. 5.3. 
For instance, consider 

log(2 - x) m 
V^ 2x 

Now, log(2 — x) is defined for 2 — x > 0, or x < 2; in addition, Vx^ — 2x has 
domain x^ — 2x > G, so x < 0 or x > 2, and being a denominator, x 7̂  0,2. 
Thus d o m / = (—CXD,0). Since lim /(x) = +CXD, the line x = 0 is a vertical left 

asymptote, while lim /(x) = lim — = 0 yields the horizontal left 
cc—» —00 2;—> —00 \x\ 

asymptote y — 0. 

Monotonicity and extrema 
The first step consists in computing the derivative / ' and its domain dom / ' . Even 
if the derivative's analytical expression might be defined on a larger interval, one 
should in any case have d o m / ' C dom/ . For example / (x) = logx has f'{x) = ^ 
and d o m / = d o m / ' = (0,-KCXD), despite g{x) = ^ makes sense for any x 7̂  0. 
After that, the zeroes and sign of / ' should be determined. They allow to find the 
intervals where / is monotone and discuss the nature of critical points (the zeroes 
of / ' ) , in the light of Sect. 6.7. 

A careless analysis might result in wrong conclusions. Suppose a map / is 
differentiable on the union (a, b) U (6, c) of two bordering intervals where / ' > 0. 
If / is not differentiable at the point 6, deducing from that that / is increasing 
on (a, 6) U (6, c) is wrong. The function / (x) = — ̂  satisfies / ' (x) = ^ > 0 on 
(—00,0) U (0,-I-CXD), but it is not globally increasing therein (e.g. /(—I) > / ( I ) ) ; 
we can only say / is increasing on (—cxo, 0) and on (0, +00) separately. 
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Recall that extremum points need not only be critical points. The function 

/ (x) = w -, defined on x > 0, has a critical point x = 1 giving an abso-

lute maximum. At the other extremum x = 0, the function is not differentiable, 

although /(O) is the absolute minimum. 

Convexity and inflection points 
Along the same lines one determines the intervals upon which the function is 
convex or concave, and its inflections. As in Sect. 6.9, we use the second derivative 
for this. 

Sign of the function and its higher derivatives 
When sketching the graph of / we might find useful (not compulsory) to establish 
the sign of / and its vanishing points (the x-coordinates of the intersections of the 
graph with the horizontal axis). The roots of f{x) = 0 are not always easy to find 
analytically. In such cases one may resort to the Theorem of existence of zeroes 
4.23, and deduce the presence of a unique zero within a certain interval. Likewise 
can be done for the sign of the first or second derivatives. 

The function f{x) = xlogx — 1 is defined for x > 0. One has f{x) < 0 when 
X < 1. On X > 1 the map is strictly increasing (in fact / ' (x) = logx -h 1 > 0 for 
X > 1/e); besides, / ( I ) = — 1 < 0 and /(e) = e — 1 > 0, Therefore there is exactly 
one zero somewhere in (l ,e), / is negative to the left of said zero and positive to 
the right. 

6.10.1 Hyperbol ic functions 

An exemplary application of what seen so far is the study of a family of functions, 
called hyperbolic, that show up in various concrete situations. 

We introduce the maps / (x) = sinhx and ^(x) = coshx by 

sinh X = -—— and cosh x = -r^—. 

They are respectively called hyperbolic sine and hyperbolic cosine. The ter-
minology stems from the fundamental relation 

cosh^ X — sinh^ x = 1, Vx G M, 

whence the point P of coordinates {X,Y) = (coshx, sinhx) runs along the right 
branch of the rectangular hyperbola X^ — F^ = 1 as x varies. 

The first observation is that d o m / = dom^ = R; moreover, / (x) = —/(—x) 
and ^(x) = ^(—x), hence the hyperbolic sine is an odd map, whereas the hyperbolic 
cosine is even. Concerning the limit behaviour, 

lim sinh x = ±oo , lim cosh x = +oo . 
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Figure 6.14. Hyperbolic sine (left) and hyperbolic cosine (right) 

This implies tha t there are no vertical nor horizontal asymptotes. No oblique 
asymptotes exist either, because these functions behave like exponentials for x -^ 
00. More precisely 

sinh X ' ±-e l^ l 
2 ' 

cosh X ' 
1 \x\ ibcxD . 

It is clear tha t s inhx = 0 if and only if x = 0, s inhx > 0 when x > 0, while 
cosh X > 0 everywhere on R. The monotonic features follow easily from 

D sinh X = cosh x and D cosh X = sinh x . V X G : 

Thus the hyperbolic sine is increasing on the entire R. The hyperbolic cosine is 
strictly increasing on [0, +oo) and strictly decreasing on (—oo,0], has an absolute 
minimum cosh 0 = 1 at x = 0 (so cosh x > 1 on R) . 

Differentiating once more gives 

D^ sinh X = sinh x and D^ cosh x = cosh x , V X G R , 

which says tha t the hyperbolic sine is strictly convex on (0, +oo) and strictly 
concave on (—00,0). The origin is an ascending inflection point. The hyperbolic 
cosine is strictly convex on the whole R. The graphs are drawn in Fig. 6.14. 

In analogy to the ordinary trigonometric functions, there is a h y p e r b o l i c 
t a n g e n t defined as 

t anh x = 
s inhx 

coshx 

J2x - 1 

+ 1 

Its domain is R, it is odd, strictly increasing and ranges over the open interval 
( - 1 , 1 ) (Fig. 6.15). 
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Figure 6.15. Hyperbolic tangent 

The inverse map to the hyperbolic sine, appropriately called inverse hyper-
bolic sine, is defined on all of M, and can be made explicit by means of the 
logarithm (inverse of the exponential) 

sinh ^ X = log(x -h yx"^ + 1) ? x E (6.14) 

There normally is no confusion with the reciprocal 1/sinhx, whence the use of 
notation^. The inverse hyperbolic cosine is obtained by inversion of the hyper-
bolic cosine restricted to [0, +(X)) 

cosh ^ X = log(a: -h yx^ — 1) ? ^ € [1, +CXD) . (6.15) 

To conclude, the inverse hyperbolic tangent inverts the corresponding hyper-
bolic map on R 

tanh X = - log 
2 1 — X 

X G ( - 1 , 1 ) . (6T6) 

The inverse hyperbolic functions have first derivatives 

1 
Dsinh"^, 

Vx^Ti 
D cosh ^; 

yx^ 

D tanh ^ x = 
1 

(6.17) 

1-x 2 • 

6.11 The Theorem of de PHopital 

This final section is entirely devoted to a single result, due to its relevance in 
computing the hmits of indeterminate forms. As always, c is one of XQ, X J , XQ", 
+ CX), —CO. 

^ Some authors also like the symbol Arc sinh. 



198 6 Differential calculus 

Theorem 6*40 iet ^j^:;be::i^i^^4i 
possibly'at Cs(^$^ 

t^eApn a 

where L — i)y+C!<>__ 0^::'^r(^ 
possibly ate, jmikg^jkUai^ i/V : :. -

exists (jfinite or mi)flBhen ako 

emit^ and egttoJa ̂  ;^«ie$^w tmit^. 

, • • • • • • • • • • • 

M-^'^ 
'W> 

jftv^^Htyrhood of c, 

^ 

y^ettfiafele around c^ 

• • • " • 

€ZCC|?^ 

except 

(6.18) 

Proof. -^ De l*H5pital*s Theorem. D 

Under said hypotheses the results states that 

y m ,. fix) 
hm -T-^ = hm -—-r. 
a;^c g[x) x^c g'[x) 

(6.19) 

Examples 6.41 

i) The Hmit 

lim 
^2x _ ^-2x 

a;->o sin 5x 

gives rise to an indeterminate form of type ^. Since numerator and denominator 
are differentiable functions, 

Therefore 

2e2^ + 2e-2^ 4 
hm — = - . 
x->o 5 cos ox 5 

^2x _ ^-2x 4 
lim 
x-^o sm bx 5 

ii) When the ratio f'{x)/g'{x) is still an indeterminate form, supposing / and g 
are twice differentiable around c, except maybe at c, we can iterate the recipe of 
(6.19) by studying the limit of f"{x)/g"{x)^ and so on. 
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Consider for instance the indeterminate form 0/0 

.̂ l + 3 x - 7 ( l + 2x)3 
lim 7 . 
x^o x smx 

Differentiating numerator and denominator, we are lead to 
,. 3 - 3x/l + 2x 
lim , 
x->o sinx + xcosx 

still of the form 0/0. Thus we differentiate again 

x^o 2cosX — xsmx 2 

Applying (6.19) twice allows to conclude 

,̂ 1 + 3x - V ( l + 2x)3 3 
lim ^̂2 = — • ^ 
2;-̂ o sin X 2 

Remark 6.42 De THopital's Theorem is a sufficient condition only, for the exis-
tence of (6.18). Otherwise said, it might happen that the limit of the derivatives' 
difference quotient does not exist, whereas we have the limit of the functions' dif-
ference quotient. For example, set f{x) = x + sinx and g{x) = 2x + cosx. While 
the ratio f /g' does not admit limit as x -^ +00 (see Remark 4.19), the limit of 
f/g exists: 

.. x + sinx .̂ X + o(x) 1 D 
lim = lim —- = - . 

x -^ + cx) 2 x + COSX a:-^ + oo 2 x + 0 ( x ) 2 

6.11.1 Applications of de I'Hopital's theorem 

We survey some situations where the result of de I'Hopital lends a helping hand. 

Fundamental limits 

By means of Theorem 6.40 we recover the important limits 

lim — = +00, lim |x|«e^ = 0, Va G R, (6.20) 
X ^ + 0 0 X'^ X ^ —CXD 

lim - ^ ^ = 0, lim x^ logx = 0, Va > 0. (6.21) 

These were presented in (5.6) in the equivalent formulation of the Landau symbols. 
Let us begin with the first of (6.20) when a = 1. From (6.19) 

lim — = lim — — +(X). 
2 : ^ + 0 0 X x ^ + 0 0 1 

For any other a > 0, we have 

, e- ,. fle^Y 1 / ,. e n " 
lim — — lim —— = — lim — = +(X). 

J : - ^ + O O X^ X - ^ + O O \ a - J a ^ yy^-\-oo y J 
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At last, for a < 0 the result is rather trivial because there is no indeterminacy. As 
for the second formula of (6.20) 

lim |x|^e^ = hm ^ = lim J-fp = lim ^ = 0. 

Now to (6.21): 

lim = lim —^—r = — lim — = 0 

and 

lim x*^logx = lim = lim -^ = lim x^ = 0. 
x->0+ x ^ 0 + X~^ x-^0+ [ — a)x~^~^ a a:-^0+ 

Proof of Theorem 6.15 

We are now in a position to prove this earlier claim. 

Proof. By definition only, 

/ (xo) = lim ; 
x^XQ X — XQ 

but this is an indeterminate form, since 

lim (f{x) - f{xo)) = lim (x - XQ) = 0, 
X^XQ X—>Xo 

hence de THopital implies 

f(^) f\xo) = lim 
-^xo 1 

n 

Computing the order of magnitude of a map 

Through examples we explain how de I'Hopital's result detects the order of mag-
nitude of infinitesimal or infinite functions, and their principal parts. 

The function 
/ (x) = e^ - 1 - sinx 

is infinitesimal for x ^ 0. With infinitesimal test function (p{x) — x we apply the 
theorem twice (supposing for a moment this is possible) 

e^ — 1 — sin X ,̂ e^ — cos x .. e^ + sin x 
lim = lim — = lim 
x->o x" x^Q ax^-^ x^o a{a - l)x^~2' 
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\x^ 

When a = 2 the right-most limit exists and is in fact | . This fact alone justifies the 
use of de THopital's Theorem. Thus f{x) is infinitesimal of order 2 at the origin 
with respect to ip{x) — x] its principal part is p{x) — |:̂  

Next, consider 
f[x) — tanx, 

1 
an infinite function for x 

lim 
tanx 

Setting ^{x) 

lim sin x lim 

-, we have 

( f - - ) ' 
cosx 

While the first limit is 1, for the second we apply de FHopital's Theorem 

lim l i ^ ^ - - - " ( i - " 
,a-l 

cosx 
lim 

- sma: 

The latter equals 1 when a = 1, so tanx is infinite of first order, for x ^ | , with 

respect to if{x) = . The principal part is indeed ^{x). 
2" — X 

6.12 Exercises 

1. Discuss differentiability at the point XQ indicated: 

a) f{x) = X + |x — 1| , xo = 1 b) / ( x ) = s i n | x | , xo = 0 

fix) 
-l/x^ x / 0 

, Xo = 0 d) f{x) = ^/lV: Xo 

.0 x = 0 

2. Say where the following maps are differentiahle and find the derivatives: 

a) f{x)=x^/\x\ b) / (x) = cos|x| 

fx^ + l i f x > 0 , r—n f x ^ + X - S if X > 1, 
[d)\ /(x) = \ 

e^ - X if X < 0 I X - 4 if X < 1 
fix) 

3. Compute, where defined, the first derivative of: 

a) fix) = 3 x \ / l + x2 

d) fix) = c) / (x) = COS (e"'+^) 

b) / (x) = log I sinx| 

1 

xlogx 

4. On the given interval, find maximum and minimum of: 

a) /(x) = sin X + cos x , [0, 27r] 
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[bjl fix)=x^-\x+l\-2, [-2,1] 

5. Write the equation of the tangent at XQ to the graph of the following maps: 

X 
a) fix) = log(3a; - 2), XQ = 2 b) f{x) = — - ^ , XQ = 1 

1 -\- x"^ 
1 1 c) fix) = e^^^, xo - 0 d) fix) = s i n - , xo ^ -

1 X 7T 

6.1 Verify that fix) = 5x + x^ + 2x^ is invertible onR, f ^ is differentiable on 
the same set, and compute (/~^)'(0) and (/~^)'(8). 

I 7.1 Prove that fix) = ix — l)e^ + arctan(logx) + 2 is invertible on its domain 
and find the range. 

— I X -\-1 
8.1 Verify that fix) = log(2 + x) + 2 has no zeroes apart from XQ = —1. 

X "T~ ^ 

9. Determine the number of zeroes and critical points of 

x l o g x - 1 
/ W = 12 • 

10. Discuss relative and absolute minima of the map 

fix) = 2 sin X + - cos 2x 

on [0, 27r]. 

11.1 Find the largest interval containing XQ = ^ on which the function 

fix) = logx-

2 

1 

logx 

has an inverse, which is also explicitly required. Calculate the derivative of the 
inverse at the origin. 

12.1 Verify that 
log(l + x) < X, Vx > - 1 . 

13.1 Sketch a graph for fix) = 3x^ — 50x^ + 135x. Then find the largest and smallest 
possible numbers of real roots of fix) -\-k, as k varies in the reals. 

14. Consider fix) = x^ — 2vTogx and 
a) find its domain; 
b) discuss monotonicity; 
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c) prove the point (e^ — 2, e) belongs to the graph of f ^, then compute the 
derivative of f"^ at e^ — 2. 

15. Regarding 

x - h l ' 

a) find domain, limits at the domain^s boundary and possible asymptotes; 
b) study the intervals of monotonicity the maximum and minimum points, 

specifying which are relative, which absolute; 
c) sketch a graph; 
d) define 

(f{x + V3) ifx>0, 

[f{x-V3) ifx<0. 

Relying on the results found for f draw a picture of g, and study its 
continuity and differentiability at the origin. 

16. Given 

fix) = V\x^^\ 
a) find domain, limits at the domain's boundary and asymptotes; 
b) determine the sign of f; 
c) study the intervals of monotonicity and list the extrema; 
d) detect the points of discontinuity and of non-differentiability; 
e) sketch the graph of f. 

17. Consider 

fix) = \/e2^ - 1. 

a) What does f{x) do at the boundary of the domain? 
b) Where is f monotone, where not differentiable? 
c) Discuss convexity and find the inflection points. 
d) Sketch a graph. 

18.1 Let 

/ (x) = l - e - N + -
e 

be given. 
a) Find domain and asymptotes, if any; 
b) discuss differentiability and monotonic properties; 
c) determine maxima, minima, saying whether global or local; 
d) sketch the graph. 
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19.1 Given 
f{x)=e^x^-S\x-3\-S), 

determine 
a) the monotonicity; 
b) the relative extrema and range im f; 
c) the points where f is not continuous, or not differentiable; 
d) a rough graph; 

e) whether there is a real a such that 

g{x) = f{x) -a\x-3\ 

is of class C^ over the whole real line. 

20. Given 
log |1 + x| m = 

21. 

(1 + X)2 ' 

find 
a) domain, behaviour at the boundary, asymptotes, 
b) monotonicity intervals, relative or absolute maxima and minima, 
c) convexity and inflection points, 
d) and sketch a graph. 

Let 
xlog \x\ 

•̂  ^ ^ - 1 1 1 Z \ \ 

1 + log \x\ 
a) Prove f can be prolonged with continuity to R and discuss the differentia-

bility of the prolongation g; 
b) determine the number of stationary points g has; 
c) draw a picture for g that takes monotonicity and asymptotes into account. 

22.1 Determine for 
ft \ ^ kl + 3 
/ [X) = arctan • X — 3 

a) domain, limits at the boundary, asymptotes; 
b) monotonicity, relative and absolute extremum points, inf / and sup f; 
c) differentiability; 
d) concavity and convexity; 
e) a graph that highlights the previous features. 

23.1 Consider the map 

f{x) = arcsin y 2e^ — e^^ 

and say 
a) what are the domain, the boundary limits, the asymptotes of f{x); 



6.12 Exercises 205 

b) at which points the function is differentiahle; 
c) where f is monotone, where it reaches a maximum or a minimum; 
d) what the graph of f{x) looks hke, using the information so far collected. 
e) Define a map f continuously prolonging f to the entire M. 

6.12.1 Solutions 

1. Differ en tia hili ty: 

a) Not differentiable. 

b) The right and left limits of the difference quotient, for x -^ 0, are: 

sinx —0 , ,. sin(—x) — 0 
hm = 1, hm —^ = - 1 . 

x ^ 0 + X — 0 x->0- X — 0 

Consequently, the function is not differentiable at XQ = 0. 

c) For X 7̂  0 the map is differentiable and 

2 
f\x) = —e -l/x^ 

X' 

Moreover l im/(x) = l im/ ' (x) = 0, so / is continuous at XQ = 0. By 
x ^ O x-^0 

Theorem 6.15, it is also differentiable at that point. 

d) Not differentiable. 

2. Differentiability: 

a) Because 

{ 
f is certainly differentiable at x 7̂  0 with 

„, , , X A / X if X > 0 , 

X\/—X 11 X < 0 , 

/'W - 2 

I V " ^ if X < 0. 

The map is continuous on M (composites and products preserve continuity), 
hence in particular also at x = 0. Furthermore, lim / ' (x) = lim f {x) — 0, 

making / differentiable at x = 0 , with /^O) = 0-

b) Differentiable on R, / ' (x) = —sinx. 

c) Differentiable everywhere, j'{x) — \ ~ ' 
I e^ - 1 if X < 0. 
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d) The map is clearly continuous for x 7̂  1; but also at x = 1, since 

lim (x^ + X - 5) = / ( I ) = - 3 = lim {x - 4). 

The derivative is 
r2x + i i f x > i , 
[ 1 if X < 1, 

so / is different iable at least on R \ {!}. Using Theorem 6.15 on the right- and 
left-hand derivatives independently, gives 

/ ; (1 ) = lim fix) = 3 , / i ( l ) = lim fix) = 1. 

At the point x = 1, a corner, the function is not different iable. 

3. Derivatives: 

^) / ' (^ ) = (1^^2)2/3 b) /'(a;) = cotanx 

c) fix) = -2xe^'+' sine-^+i d) /'(a;) = -^-^§^ 
x^ log X 

4. Maxima and minima: 
Both functions are continuous so the existence of maxima and minima is guaran-
teed by Weierstrass's theorem. 

a) Maximum value A/2 at the point x = ^; minimum — \/2 at x = -TT. (The 
interval's end-points are relative minimum and maximum points, not absolute.) 

b) One has 
. . _ J x ^ + x —1 i f x < — 1 , 

^""''{x^-x-S i f x > - l . 

The function coincides with the parabola y — (^+^) '^ — f forx < —1. The 
latter has vertex in (—^5—|) and is convex, so on the interval [—2,-1] of 
concern it decreases; its maximum is 1 at x = —2 and minimum —1 at x = —1 
For X > — 1, we have the convex parabola y = {^~^)^~^ with vertex ( | , — x ) 
Thus on [—1,1], there is a minimum point x = ^ with image / ( ^ ) = — ̂  
Besides, /(—I) = —1 and / ( I ) = —3, so the maximum —1 is reached at x = —1 
In conclusion, / has minimum — ̂  (for x = ^) and maximum 1 (at x = —2) 
see Fig. 6.16. 

5. Tangent lines: 

a) Since 

•̂ '̂(̂ ^ = 3 ^ ' / ( 2 ) = l o g 4 , / ' ( 2 ) - ^ , 

the equation of the tangent is 

y = /(2) + / '(2)(x - 2) = log4 + ^(x - 2). 
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\ 

- 2 ^ 
- 1 

, 

- 3 \ 
13 
4 

1 

_ 

1 

^ ^ 

\ 1 
1 

1 — ^ 

Figure 6.16. Graph of f{x) = x^ - |x + 1| - 2 

h) y=' 

c) As 
2-

fix) = 

the tangent has equation 

g\/2a:+l 

V2x + 1 ' 
/(0) = / ' ( 0 ) = e , 

y = f{0) + f'iO)x = e + ex. 

d) y = 7 r 2 ( x - i ) . 

6. As sum of strictly increasing elementary functions on R, so is our function. 
Therefore invertibility follows. By continuity and because lim f{x) = ±oo, 

Corollary 4.30 implies i m / = R. The function is different iable on the real line, 
f{x) = 5 + 3x2 + iQ^4 y Q f ĵ. ĝ î  X G R; Theorem 6.9 tells that / "^ is differen-
t i a t e on R. Eventually /(O) = 0 and / ( I ) = 8, so 

inno) f{0) 
and (r')'(8) 

1 1 
/ ' ( I ) 18 

7. On the domain (0, +CXD) the map is strictly increasing (as sum of strictly in-
creasing maps), hence invertible. Monotonicity follows also from the positivity of 

/ ( x ) = ( 2 x 2 - 2 x + l)e^ + 
1 

x{l -f log x) 

In addition, / is continuous, so Corollary 4.30 ensures that the range is an interval 
bounded by inf / and sup / : 

TT TT 
i n f / = lim /(x) = - 1 - - + 2 = 1 - - , s u p / = lim /(x) = +oo. 

x->o+ 2 2 x^+oo 

Therefore i m / = (1 — | , +oo). 
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8. The map is defined only for x > —2, and continuous, strictly increasing on the 
whole domain as 

Therefore f{x) < / ( I ) = 0 for x < 1 and f{x) > / ( I ) = 0 for x > 1. 

9. The domain is x > 0. The zeroes solve 

X log X — 1 = 0 i.e. log X 
X 

If we set h{x) = logx and g{x) = ^, then 

h{l) = 0 < 1 = ^(1) and h{e) = 1 > - = g{e); 

Corollary 4.27 says there is an XQ G (l,e) such that h{xo) = g{xo). Such a point 
has to be unique because h is strictly increasing and g strictly decreasing. Thus / 
has only one vanishing point, confined inside (l,e). 
For the critical points, we compute the first derivative: 

, x^(logx + 1) — 2x(xlogx — 1) x + 2 —xlogx 
^ (̂ ^ = ^^ = — ^ 5 — • 

The zeroes of / ' are then the roots of 

2 -h X 
X + 2 — X log X = 0 i.e. log x = . 

Let ^(x) = ^^ = 1 + | , whence 

2 2 
h(e) = 1 < 1 + - = g(e) and /i(e^) = 2 > 1 4- — = ^(e^); 

e e^ 

again. Corollary 4.27 indicates a unique XQ G (e,e^) with h{xo) = ^(XQ) (unique-
ness follows from the monotonicity of h and g). In conclusion, / has precisely one 
critical point, lying in (e, e^). 

10. In virtue of the duplication formulas (2.13), 

/ ' (x) = 2cosx — sin2x = 2cosx(l — sinx). 

Thus f{x) = 0 when x = | and x = fyr, f{x) > 0 for 0 < x < | or |7r < x < 27r. 
This says x = | is an absolute maximum point, where / ( f ) = | , while x = |7r 
gives an absolute minimum /(§7r) = — | . Additionally, /(O) = /(27r) — ̂  so the 
boundary of [0, 27r] are extrema: more precisely, x = 0 is a minimum point and 
X = 27r a maximum point. 

11. Since / is defined on x > 0 with x 7̂  1, the maximal interval containing 
xo = I where / is invertible must be a subset of (0,1). On the latter, we study the 
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monotonicity, or equivalent ly the invertibility, of / which is, remember, continuous 
everywhere on the domain. Since 

f'(^\ - 1 ^ 1 _ l o g ' ^ + l 
/ V^/ ' 1 2 1 2 ' X xlog X xlog X 

it is immediate to see f\x) > 0 for any x G (0,1), meaning / is strictly increasing 
on (0,1). Therefore the largest interval of invertibility is indeed (0,1). 
To write the inverse explicitly, put t = log x so that 

y = t - - , t -ty-1^0, t= "^ , 

and changing variable back to x, 

X = e 2 

Being interested in x G (0,1) only, we have 

_-| y-\/y'^+4 

x = f \y) = 6 2 ^ 

or, in the more customary notation, 

y = f-\x) =e'-^ 

Eventually /"^(O) = e~^, so 

(f-'y(o) = — ^ — = —. 

12. The function f{x) = log(l + x) — x is defined on x > —1, and 

lim /(x) = —oo , lim /(x) = lim ( — x + o{x)) = —oo . 
x^ — l+ X—^ + oo X—>- + oo 

As 

1 + X 1 + X 

X = 0 is critical, plus / ' (x) > 0 on x < 0 and f'{x) < 0 for x > 0. Thus 
/ increases on (—1,0] and decreases on [0,+oo); x = 0 is the point where the 
absolute maximum /(O) = 0 is reached. In conclusion / (x) < /(O) = 0, for all 
X > - 1 . 

13. One checks / is odd, plus 

f'{x) = ISx"̂  - 150x2 + 135 - 15(x^ - lOx^ + 9) 

= 15(x2 - l)(x2 - 9) = 15(x + l)(x - l)(x + 3)(x - 3). 

The sign of f is summarised in the diagram: 

x-y/x^+4 
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a ; 2 - l 
I I I I 

I • • 
1 1 —1 

What this tells is that / is increasing on (—cx), —3], [—1,1] and [3, H-oc), while 
decreasing on [—3, —1] and [1,3]. The points x = —1, x — 3 are relative minima, 
X = 1 and X = —3 relative maxima: 

/ ( I ) = - / ( - ! ) = and /(3) = - / ( - 3 ) = -216. 

Besides, 
lim f{x) = —oo, lim f{x) +CX). 

The graph of / is in Fig. 6.17. 

The second problem posed is equivalent to studying the number of solutions of 
/ (x) = —A: as k varies: this is the number of intersections between the graph of / 
and the line y = —k. Indeed, 

if fc > 216 or fc < -216 

if A: = ±216 

if A: G (-216, -88) U (88, 216) 

if /c = ±88 

if A: G (-88, 88) 

one solution 

two solutions 

three solutions 

four solutions 

five solutions. 

This gives the maximum (5) and minimum (1) number of roots of the polynomial 
3x^ - bOx^ + 135x + k. 

Figure 6.17. The function f{x) = 3x^ - 50x^ + 135x 
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Figure 6.18. Graphs of gi{x) = logx and g2{x) 
16x8 

14. Study of the function / ( x ) = x'̂  — 2V'logx; 

a) Necessarily x > 0 and logx > 0, i.e., x > 1, so d o m / = [1, +oo) . 

b) From 

fix) = 
4x y l o g x — 1 

we have 

fix) = 0 

X\/logX 

4x'^Vlogx = l <=^ 5fi(x) = logx 
16x8 

= ^ 2 ( ^ ) . 

On X > 1 there is an intersection XQ between the graphs of ^ i , ^2 (Fig. 6.18). 

Hence f'{x) > 0 for x > XQ, / is decreasing on [1, XQ], increasing on [XQ, +00) . 

This makes XQ a minimum point, and monotonicity gives / invertible on [1, XQ] 

and [xo,+oo). In addition, ^ i ( l ) = log 1 = 0 < JQ = ^2(1) and gi{2) = log2 > 

2T2 = ^'2(2), which implies 1 < XQ < 2. 

c) As / ( e ) = e^ — 2, the point (e^ — 2, e) belongs to the graph of f~^ and 

f{e) 4 e 4 - l -

15. Study of f{x)- ^^5iH3. 
x+l 

a) The domain is determined by x-̂  — 3 > 0 together with x ^ — 1, hence dom / 
(—00, — \/3] U [A/3, +CX)). At the boundary points: 

\ x \ x / l - ^ M 
lim / ( x ) = lim —y- T-~ — 1™ — = i l ^ 

x ^ ± o o X—^±cx) x(l -\- —) x-^-±oo X 

lim / ( x ) = lim / ( x ) = 0, 
x^>- — V3 X—>\/3 

SO i/ = 1 is the horizontal right asymptote, y = —1 the horizontal left asymp-
tote. 
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-V3 -3+V3 

Figure 6.19. Graphs of / (left) and g (right) of Exercise 15 

b) The derivative 

f W = 
x + 3 

(X + 1 ) 2 ^ ^ 2 - ^ 

vanishes at x = —3 and is positive for x G (—3, —\/3) U (\/3,+oo). Thus / 
is increasing on [—3,—A/3] and [\/3,+oo), decreasing on (—oo,—3]; x = —3 
is an absolute minimum with /(—3) = — ̂  < —1. Furthermore, the points 
X = ± \ / 3 are extrema too, namely x = — >/3 is a relative maximum, x = \/3 
a relative minimum: f{±^/3) = 0. 

c) Fig. 6.19 (left) shows the graph of / . 

d) Right-translating the negative branch of / by \/3 gives g{x) for x < 0, whereas 
shifting to the left the branch on x > 0 gives the positive part of g. The final 
result is shown in Fig. 6.19 (right). 
The map g is continuous on R, in particular 

lim g{x) = lim f{x - Vs) = / ( - \ / 3 ) = 0 = f{V3) = lim g{x). 

Since 
lim g\x) = lim f\x) = lim f\x) = +oo 

g is not differentiable at x = 0. 

16. Study off{x) = ^^1x2-41 - x; 

a) The domain is R and 

lim /(x) = lim = 0 , lim /(x) = +00. 

Thus 2/ = 0 is a horizontal right asymptote. Let us search for oblique asymp-
totic directions. As 
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lim fix) 
-oo X 

lim 
X—>• — o o 

lim (/(x) + 2 x ) = lim (A/X^ - 4 + X) = h 
; ^ —oo x-^ —oo V / x—^ 

the line y = — 2x is an oblique left asymptote. 

lim 
x ^ - 4 

y/x^ 4 - X 

b) It suffices to solve \/\x'^ — 4:\-x > 0. First, ^ / jx^^^^ > x for any x < 0. When 
X > 0, we distinguish two cases: x^ — 4 < 0 (so 0 < x < 2) and x^ — 4 > 0 (i.e., 
x > 2 ) . 
On 0 < X < 2, squaring gives 

2 \ 2 
X > X 2 < 0 0 < x < \ / 2 . 

For X > 2, squaring implies x^ — 4 > x^, which holds nowhere. The function 
then vanishes only at x = V^, is positive on x < y/2 and strictly negative for 

x> V2. 
Since 

we have 

m 

fix) 

v ^ 

Vi 

vr-
y Vx^ 

- X if - 2 < X < 2 , 

- X i f x < - 2 , x > 2 , 

- 1 if - 2 < X < 2, 

- 1 i f x < - 2 , x > 2 . 

When - 2 < X < 2, f{x) > 0 if x + V4 - x^ < 0, that is ^ 4 - x^ < - x . The 
inequality does not hold for x > 0; on — 2 < x < 0 we square, so that 

2 ^ 2 
X < X 

Hence f'{x) = 0 for x 
when -y/2 < x < 2. 

x^ - 2 > 0 <=^ - 2 < X < -V2. 

-V2, f (x) > 0 for - 2 < X < -V2 and f{x) < 0 

If X < - 2 or X > 2, f{x) > 0 if X - Vx^ - 4 > 0, i.e., Vx'^ - 4 < x. The latter 
is never true for x < — 2; for x > 2, x^ > x^ — 4 is a always true. Therefore 
f'{x) > 0 per X > 2 e f{x) < 0 per x < - 2 . 
Summary: / decreases on (—oo, —2] and [—>/2, 2], increases on [—2, —y/2] and 
[2,+oo). The points x = ±2 are relative minima, x = —A/2 a relative maxi-
mum. The corresponding values are / ( - 2 ) = 2, /(2) = - 2 , / ( - v ^ ) = 2\/2, 
so X = 2 is actually a global minimum. 

d) As composite of continuous elementary maps, / is continuous on its domain. 
To study differentiability it is enough to examine / ' for x -^ ±2. Because 

lim f (x) = 00, 
cc^±2 

at X = ±2 there is no differentiability. 
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Figure 6.20. The function f{x) = y/\x'^ - 4| - x 

e) The graph is shown in Fig. 6.20. 

17. Study of f{x) = v^e2^ - 1; 

a) The function is defined everywhere 

lim /(x) = +00 
X—>+oo 

and lim /(x) = - l . 

b) The first derivative 

/'(x) = | ^ 
2x 

3 (e2^ - 1)2/3 

is positive for x G M \ {0}, and / is not differentiable at x = 0, for l im/ '(x) = 
X—»-0 

+00. Therefore / increases everywhere on R. 

c) The second derivative (for x ^ 0) 

. 2 x _ 3 
fix) = ̂ e'^ "' 

9 (e2^ - 1)5/3 

vanishes at x = | log3; it is positive when x G (—oo, 0) U ( | log 3, +oo). This 
makes x = ^log3 an ascending inflection, plus / convex on (—oc, 0] and 
[ | log3,+oo), concave on [0, ^log3]. Suitably extending the definition, the 
point X = 0 may be acknowledged as an inflection (with vertical tangent). 

d) See Fig. 6.21. 

18. Study of fix) = 1 - e-l^l + f ; 

a) Clearly dom / ^ R. As 

we immediately obtain 

lim e-l^l = 0 , 
X—>-iboo 
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Figure 6.21. The map f{x) = v̂ ê ^ - 1 

hm /(x) = ±00 , 

hm ^^-^^ = hm ( + - = - , 
X—^±oo X X—^±oo y X 

lim ( / ( x ) - - ) - lim ( l - e - l - l ) = l. 

This makes y = ^^ -\-1 a complete oblique asymptote. 

b) The map is continuous on E, and certainly differentiable for x ^̂^ 0. As 

n^) = { 
e-^ + - if X > 0, 

e 

-e^ + - if X < 0 , 
e 

it follows 

lim fix) = lim ( - e ^ + 1^ = 1 - 1 
x->o- x^o- V e / e 

^ lim f(x) = lim e-"^ + 
x-̂ o+ x^o+ \ e + 1, 

preventing differentiability at x = 0. 
Moreover, for x > 0 we have f'{x) > 0. On x < 0, / ' (x) > 0 if e^ < ^, 
i.e., X < —1. The map is increasing on (—oo, —1] and [0,+(X)), decreasing on 
[-1, 0]. 

c) The previous considerations imply x = — 1 is a local maximum with /(—I) = 
1 - | , X = 0 a local minimum where /(O) = 0. 

d) See Fig. 6.22. 
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Figure 6.22. Graph of /(x) = 1 - e"!^! + f 

19. Study o{f{x) = e^(x2 - 8|x - 3| - 8): 

a) The domain covers R. Since 

m e"̂ (x2 + 8 x - 3 2 ) if x < 3 , 

e"^(x2-8x + 16) i f x > 3 , 

we have 

n^) Je^(x2 + 10x -24 ) if x < 3 , 

\ e ^ ( x 2 - 6 x + 8) i f x > 3 . 

On X < 3: f{x) == 0 if x^ + lOx - 24 = 0, so x = -12 or x = 2, while f{x) > 0 
if X G (-00, -12) U (2,3). On x > 3: f{x) = 0 if x^ - 6x + 8 - 0, i.e., x = 4 
(x = 2 is a root, but lying outside the interval x > 3 we are considering), while 
f{x) > O i f x G (4,+oo). 
Therefore / is increasing on the intervals (—CXD, —12], [2,3] and [4,+oo), de-
creasing on [—12,2] and [3,4]. 

b) From part a) we know x = —12 and x = 3 are relative maxima, x = 2 and x = 4 
relative minima: / ( - 1 2 ) = IGe-^^^ /(2) = -12e2, /(3) - e^ and /(4) = 0. For 
the range, let us determine 

lim f{x)= lim e'̂ (x^ + 8x - 32) - 0, 
x ^ —oo x ^ —oo 

lim f{x)= lim e'^ix^ - 8x+ 16) =+00. 

Continuity implies 

im / = [min/(x), sup/(x)) = [/(2),+oo) -12e^,H-oc). 
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2-10 

-2•10"^ 

Figure 6.23. Graph of f{x) = e'^ix^ - S\x - 3| 

c) No discontinuities are present, for the map is the composite of continuous 
functions. As for the differentiability, the only unclear point is x = 3. But 

lim f{x) = lim e^(x2 + lOx - 24) = 15e^ , 

lim f{x) = lim e^(x^ - 6x + 8) = - e ^ 

so/ is not different iable at x = 3. 

d) See Fig. 6.23; a neighbourhood ofx = —12 is magnified. 

e) The function g is continuous on the real axis and 

9\x) = 
e^'ix^ + lOx - 24) + a if X < 3 , 

e^ (x2-6x + 8 ) - a if x > 3 . 

In order for g to be different iable at x = 3, we must have 

lim g\x) = 15e^ + a = lim g\x) = —ê  — a ; 
x-^S" X—>-3+ 

the value a = — 8e^ makes g of class C^ on the whole real line. 

20. Study of/(x) = i ^ f M : 

a) dom / = E \ {-1}. By (5.6) c) 

lim f{x) = 0+ 
re—»±oo 
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Figure 6.24. Graph of f{x) = '-^^ 

while 

From this, x = 
asymptote. 

b) The derivative 

CXD 

-1 is a vertical asymptote, and 2/ = 0 is a complete oblique 

n^) = l - 2 1 o g | x + l | 

tells that f{x) is differentiable on the domain; / ' (x) = 0 if |x -h 1| = ^/e, hence 
f o r x - - l ± V e ; / ' ( x ) > OifxG ( - o o , - > / e - l ) U ( - l , V ^ - l ) . All this says / 
increases on (—oo, —^/e — l] and (—1, —l-\-^/e\, decreases on [—v^—1, —1) and 
[—H-^e, +oo), has (absolute) maxima at x = — l iby^, with f{—l±^/e) = ^ . 

c) From 

fix) = 
-5 + 61og|x + 1| 

the second derivative is defined at each point of dom / , and vanishes at | x + l | == 
e^/^,sox = - l ± e ^ / ^ Since/"(x) > O o n x G ( -oo , - l - e^ /^ )U(e^ /^ - l ,+oo) , 
/ is convex on (—oo, —1 — e^/^] and [e^/^ — 1, +oc), while is concave on [—1 — 
e^/^, -1 ) and ( - 1 , e^/^ - 1]. The points x = -l± e^/^ are infiections. 

d) See Fig. 6.24. 

21. Study of f{x) orlog \x\ . 
1+log^ \x\ • 

a) The domain is clear: d o m / = M\{0}. Since lim/(x) = 0 (x 'wins' against the 
cc—>0 

logarithm) we can extend / to R with continuity, by defining ^(0) = 0. The 
function is odd, so we shall restrict the study to x > 0. 
As far as the differentiability is concerned, when x > 0 
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Figure 6.25. The functions h (left) and g (right) of Exercise 21 

fix) = 
log^ X — log^ x + log X + 1 

(1 + l o g ' x ) 

with t = logx, the limit reads 

3̂ _ 2̂ _̂  ^ _̂  I 
lim f^(x) = lim — ; r-^^— 
x^O*^ ^ ^ t-^-oo ( l + t 2 ) 2 

lim - 7 = 0 . 

Therefore the map g^ prolongation of / , is not only continuous but also dif-
ferentiable, due to Theorem 6.15, on the entire R. In particular ^''(0) = 0. 

b) Par t a) is also telling tha t x = 0 is stat ionary for g. To find other critical 
points, we look at the zeroes of the map h{t) = t^ —t'^ -\-t-\-l, where t = logx 
(x > 0). Since 

lim h{t) 
t—>• — o o 

-(X), lim h{t) = +0C, 

h{0) = 1, h\t) - 3t^ - 2t + 1 > 0, Vt G M, 

h is always increasing and has one negative zero to. Its graph is represented in 
Fig. 6.25 (left). 
As to = logxo < 0, 0 < xo = e*o < 1. But the function is odd, so g has two 
more stationary points, XQ and — XQ respectively. 

c) By the previous part g\x) > 0 on (xo ,+oc) and g'{x) < 0 on (0, XQ). TO 
summarise then, g (odd) is increasing on (—oo, —XQ] and [xo, +oo) , decreasing 
on [—Xo, Xo]. Because 

lim ^(x) = +00 
X—> + 00 

and 

hm ^ ^ ^ = hm 
log X ^ t 

= hm x ^ + o o X x ^ + o o 1 -[- log^ X t^Too 1 + t^ 

there are no asymptotes. 
For the graph see Fig. 6.25 (right). 

0, 

file://-/-t-/-l
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22. Study off{x) = arctan if^^: 

a) d o m / = R \ {3}. The function is more explicitly given by 

-x-\-3 

m = 
arctan -

arctan 

whence 

lim f{x) 

x-3 

x + 3 

X — 3 

n 

arctan(—1) 
TT 

"I if X < 0 , 

if X > 0, 

lim 

6 

TT 

' 4 ' 
lim f{x) = arctan 1 = —, 

lim f{x) — arctan -— = arctan(—oo) = — —, 
x-^3~ 0 2 

lim f(x) = arctan —- = arc tan(+oo) = —. 

Then the straight lines y 

right respectively). 

b) The map 

I , ?/ = I are horizontal asymptotes (left and 

0 if X < 0 , 

if X > 0, X ^ 3, 
x2 + 9 

is negative on x > 0, x 7̂  3, so / is strictly decreasing on [0,3) and (3, +cxo), 
but only non-increasing on (—00, 3). The reader should take care tha t / is 
not strictly decreasing on the whole [0,3) U (3, +00) (recall the remarks of 
p . 194). The interval (—oo,0) consists of points of relative non-strict maxima 
and minima, for / ( x ) = — f, whereas x = 0 is a relative maximum. 
Eventually, i n f / ( x ) = — f, s u p / ( x ) = ^ (the map admits no maximum, nor 
minimum). 

Figure 6.26. The function f{x) = arctan 1x1+3 
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c) Our map is certainly differentiable on M\ {0,3}. At x = 3, / is not defined; at 
X = 0, / is continuous but 

lim f{x) = 0 ^ lim fix) = lim - ^ - : = ~\, 

showing that differentiability does not extend beyond R \ {0,3}. 

d) Computing 

fix) 6x 

if X < 0 , 

if X > 0, X 7̂  3 , 
(x2 + 9)2 

reveals that f^'{x) > 0 for x > 0 with x ^ 3, so / is convex on [0,3) and 
(3,+oo). 

e) See Fig. 6.26. 

23. Study off{x) = arcsin\/2e^ - e ^ ^ ; 

a) We have to impose 2e^ — e^^ > 0 and — 1 < V2e^ — e^^ < 1 for the domain; the 
first constraint is equivalent to 2—ê  > 0, hence x < log 2. Having assumed that 
square roots are always positive, the second inequality reduces to 2e^ — e^^ < 1. 
With 7/ = e^, we can write ^^ — 2^ + 1 = (y — 1)^ > 0, which is always true. 
Thus d o m / = (—00, log 2]. Moreover, 

lim /(x) = 0, / ( l o g 2 ) = 0 , 

and ^ = 0 is a horizontal left asymptote. 

b) From 

n^) e ^ ( l - e ^ ) e ^ ( l - e ^ ) 

^ e ^ ( 2 - e ^ ) ( l -2e^H-e2^) v^e^(2 - e^)(l - e^)^ 

Figure 6.27. The map f{x) = arcsin V2e^ - ê ^ 
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= < 
V^e^(2-e^) 

e^ 

[ ^ e ^ ( 2 - e ^ ) 

if 0 < X < log 2, 

if X < 0, 

we see that 

lim f{x) = —cxD , lim f'{x) = —1. lim fix) = 1. 
x—)-0~ 

In this way / is not differentiable at x = log 2, where the tangent is vertical, 
and at the corner point x = 0. 

c) The sign of / ' is positive for x < 0 and negative for 0 < x < log 2, meaning that 
X == 0 is a global maximum point, /(O) = | , while at x = log 2 the absolute 
minimum /(log 2) = 0 is reached; / is monotone on (—cx), 0] (increasing) and 
[0, log2] (decreasing). 

d) See Fig. 6.27. 

e) A possible choice to extend / with continuity is 

fix) = 
fix) i f x < l o g 2 , 

0 if a; > log 2. 



Taylor expansions and applications 

The Taylor expansion of a function around a real point XQ is the representation of 
the map as sum of a polynomial of a certain degree and an infinitesimal function of 
order bigger than the degree. It provides an extremely effective tool both from the 
qualitative and the quantitative point of view. In a small enough neighbourhood of 
Xo one can approximate the function, however complicated, using the polynomial; 
the qualitative features of the latter are immediate, and polynomials are easy to 
handle. The expansions of the main elementary functions can be aptly combined 
to produce more involved expressions, in a way not dissimilar to the algebra of 
polynomials. 

7.1 Taylor formulas 

We wish to tackle the problem of approximating a function / , around a given point 
Xo G R, by polynomials of increasingly higher degree. 

We begin by assuming / be continuous at XQ. Introducing the constant poly-
nomial (degree zero) 

formula (5.4) prompts us to write 

" ' (7.1) f{x) = r /o ,xo(^) + 0(1), X -^ XQ. 

Put in different terms, we may approximate / a r o u n d XQ using a zero-degree-
polynomial, in such a way that the difference f{x) — Tfo^xoi^) (called error of 
approximation, or remainder), is infinitesimal at XQ (Fig. 7.1). The above relation 
is the first instance of a Taylor formula. 

Suppose now / is not only continuous but also differentiable at XQ: then the 
first formula of the finite increment (6.10) holds. By defining the polynomial in x 
of degree one 
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fixo) 

y = fix) 

V = Tfoix) 

Figure 7.1. Local approximation of / by the polynomial T/o = TfQ^XQ 

Tfi^xoi^) = / ( ^o ) H- f\xo){x - xo), 

whose graph is the tangent line to / at XQ (Fig. 7.2), relation (6.10) reads 

f{x) = T/i ,^o(x) -f o{x - XQ), X -^ xo. (7.2) 

This is another Taylor formula: it says tha t a differentiable map at XQ can be 
locally approximated by a linear function, with an error of approximation tha t 
not only tends to 0 as x ^> XQ, but is infinitesimal of order bigger than one. 

f{xo) 

y = f{x) 

y-TMx) 

Figure 7.2. Local approximation of / by the polynomial T / i — T/i,; 
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In case / is differentiable in a neighbourhood of XQ^ except perhaps at XQ, the 
second formula of the finite increment (6.12) is available: putting xi = XQ, X2 = a: 
we write the latter as 

f{x)=Tfo,:,,{x) + f{x){x-xo) (7.3) 

where x denotes a suitable point between XQ and x. Compare this with (7.1): now 
we have a more accurate expression for the remainder. This allows to appraise 
numerically the accuracy of the approximation, once the increment x — XQ and an 
estimate of / ' around XQ are known. Formula (7.3) is of Taylor type as well, and 
the remainder is called Lagrange^s remainder. In (7.1), (7.2) we call it Peano^s 
remainder^ instead. 

Now that we have approximated / with polynomials of degrees 0 or 1, as 
X -^ xo, and made errors o(l) = o((x — XQ)^) or o{x — XQ) respectively, the natural 
question is whether it is possible to approximate the function by a quadratic 
polynomial, with an error o((x — .TQ)^) as X -^ XQ. Equivalently, we seek for a real 
number a such that 

f{x) = /(xo) + / (xo) (x - xo) + a(x - XQ)^ + o((x - XQ)^), xo • (7.4) 

This means 

lim 
/ (x) - /(xo) - f{xo){x - Xo) - a(x - XQ)^ 

( x - x o ) ^ 

By de THopital's Theorem, such limit holds if 

I.e., 

or 

j . ^ fix) - f'ixo) - 2a{x - xo) ^ ^ 
x-^xo 2 ( x — Xo) 

X~^Xo \ 2 X — Xo 

1 ,. fix) - fM 
- lim — a. 
2 x-^xo X — Xo 

We conclude that (7.4) is valid when the right-hand-side limit exists and is finite: in 
other words, when / is twice differentiable at XQ. If SO, the coefficient a is ^f"{xo). 
In this way we have obtained the Taylor formula (with Peano's remainder) 

/ ( x ) = r/2,a:o(a^) + 0{{X - Xo)^) , X -> Xo, (7.5) 

where 

r / 2 , x o (X) = / ( x o ) + f'ixo){x - Xo) + - / " ( X 0 ) ( X - X Q ) ' 

is the Taylor polynomial of / at XQ with degree 2 (Fig. 7.3). 
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fixo) 

Figure 7.3. Local approximation of / by T/2 = Tf2,xo 

The recipe just described can be iterated, and leads to polynomial approxima-
tions of increasing order. The final result is the content of the next theorem. 

Theorem 7.1 Let n > 0 and f be n times differentiahle at XQ, Then Ihe 
Taylor formula Tiofds 

where 

(7.6) 

fe=o'-" (7.7) 

==/(a?o) + / ( a : o ) ( ^ - ^ 0 ) 4 - . . . + ^/^^^^^^ 

The term Tfn^xo (x) is the Taylor polynomial of / at XQ of order (or degree) 
n, while o[{x — XQ)'^) as in (7.6) is Peano's remainder of order n. The repre-
sentation of / given by (7.6) is called Taylor expansion of / at XQ of order n, 
with remainder in Peano's form. 

Under stronger hypotheses on / we may furnish a preciser formula for the 
remainder, thus extending (7.3). 
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l^ummmm 7*% IM n > 0 mtd f differentiabk n MmmMxo, with continuous 
nth J^ftvm^^, hB ^fm%; suppose f is diffemnUabh n 4-1 times around XQ, 
exf^t jm^^y ui XQ, Then the Taylor formula 

fix) = TU,^{x) + ^ - l ^ / ( " + i ) ( 5 ) ( x - xo)"+^, (7.8) 

^^bj^ra^mM&Uex hetwmn XQ and x. 

This remainder is said Lagrange's remainder of order n, and (7.8) is the Taylor 
expansion of / at XQ of order n with Lagrange's remainder. 

For proofs regarding Theorems 7.1 and 7.2 see ^^ Taylor expansions. 

A Taylor expansion centred at the origin (XQ = 0) is sometimes called Maclau-
rin expansion. A useful relation to simplify the computation of a Maclaurin 
expansion goes as follows. 

P r ^ i p ^ y 7,3 The Madaunn^li^mmal of an mmn^re^ctimli^ridd^^ m^f 
inmolnes only even (odil) powers of the mdb^^ndefU mmaUe, 

Proof. If / is even and n times different iable around the origin, the claim follows 
from (7.7) with XQ = 0, provided we show all derivatives of odd order 
vanish at the origin. 
Recalling Property 6.12, / even implies f odd, f^' even, f'^' odd et cetera. 
In general, even-order derivatives f^'^^^ are even functions, whereas y"(2 '̂+i) 
are odd. But an odd map g nmst necessarily vanish at the origin (if defined 
there), because ./" = 0 in (j{—x) = —g{x) gives ^(0) = —<7(0), whence 
m = 0. • 
The argument is the same for / odd. • 

7.2 Expanding the elementary functions 

The general results permit to expand simple elementary functions. Other functions 
will be discussed in Sect. 7.3. 

The exponential function 
Let f{x) = e^. Since all derivatives are identical with e^, we have/(^)(0) - 1 for 
any A: > 0. Maclaurin's expansion of order n with Peano's remainder is 

(7.9) 
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Using Lagrange's remainder, we have 

n u 

(n-f-1)! 
X .n-hl for a certain x between 0 and x. (7.10) 

Maclaurin's polynomials for e^ of order n = 1, 2,3,4 are shown in Fig. 7.4. 

Remark 7.4 Set x = 1 in the previous formula: 

x ^ 1 e^ 
e = > — + -—-—- (con 0 < X < 1). 

.=0^ ' (n + 1)! 
For any n > 0, we obtain an estimate (from below) of the number e, namely 

en = E ^ ; (7.11) 
fc=0 

because 1 < e^ < e < 3 moreover, the following is an estimate of the error: 

1 3 
(n + 1)! < e - e„, < " (n + 1)!-

In contrast to the sequence {a^ = (l + ^) } used to define the constant e, the 
sequence {cn} converges at the rate of a factorial, hence very rapidly (compare 
Tables 7.1 and 3.1). Formula (7.11) gives therefore an excellent numerical approx-
imation of the number e. • 

r /2 

r /4 

/ 

r /3 

i 

1 

r / i 

\ 

0 

/ 

/ Tfi 

Figure 7.4. Local approximation of /(x) = e"̂  by Tfn = Tfn,o for n = 1, 2,3,4 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Gn 

1.0000000000000 
2.0000000000000 
2.5000000000000 
2.6666666666667 
2.7083333333333 
2.7166666666667 
2.7180555555556 
2.7182539682540 
2.7182787698413 
2.7182815255732 
2.7182818011464 

Table 7.1. Values of the sequence {en} of (7.11) 

The expansion of f{x) = e^ at a generic XQ follows from the fact tha t /^^^ (XQ) = e^ 

eX ^ ê o + e^^ix - XQ) + ê o ( i _ ^ + • . . + e"° ^^ J ° ^ " + o((x - xo)") 
n 

^ , . o ( ^ ^ + , ( ( , _ , „ ) n ) . 

fc=0 

The logarithm 
The derivatives of the function f{x) = logx are 

f{x) = ^=x-\ r{x) = {-l)x~\ f"\x) = {-l){-2)x-\ 

and in general, 

Thus for fc > 1, 

/('=)(x) = ( - l ) ' = -Hfc - l ) !x ' ' ' . 

= - 1 
, f e - l 

fc! ' ' k 

and the Taylor expansion of order n at XQ = 1 is 

logx = (x - 1) - ^ ^ ^ + . . . + ( - l )" - i i^—11^ + o((x - i)") 
n 

=E(-') 
fc=i 

, _ i ( x ^ +o((x-ir). 
(7.12) 
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Tfs Tfi 

Figure 7.5. Local approximation of f{x) = log(l + x) by Tfn = Tfn,o for n = 1,2,3,4 

Let us change the independent variable x — 1 ^ x, to obtain the Maclaurin ex-
pansion of order n of log(l + x) 

(7.13) 

The Maclaurin polynomials of order n = l ,2 ,3 ,4for^ = log(l +x) are represented 
in Fig. 7.5. 

The trigonometric functions 
The function f{x) — sinx is odd, so by Property 7.3 its Maclaurin expansion con-
tains just odd powers of x. We have f\x) — cosx, f"'{x) — — cosx and in general 
/(^^+^)(x) = ( - l )^cosx, whence /̂ ^^"^^ (̂O) = (-1)^- Maclaurin's expansion up 
to order n — 2m -\- 2 reads 

log(l + x) ..+(-1)"-^ n 
•¥o{x^) 

t^ x^ 
smar = x - ^ + ^ - . . . + (-1)'' 

-2m+l 

(2m +1)! 
--¥o{x'^+-') 

fe=0 
(2Jb + l ) ! 

(7.14) 

The typical structure of the expansion of an odd map should be noticed. Maclau-
rin's polynomial T/2m+2,o of even order 2m H- 2 coincides with the polynomial 
Tf2m+i,o of odd degree 2m + 1, for /(2m+2)^Q) ^ Q stopping at order 2m + 1 
would have rendered 
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Figure 7.6. Local approximation of f{x) = sinx by polynomials T/2m+i = Tf2m-\-i,o 
with 0 < m < 6 

smx -E(-i)^ 
^2/c+l 

k=0 
(2fc + l)! 

+ o(x'^+^) 

to which (7.14) is preferable, because it contains more information on the remain-
der's behaviour when x ^ 0. Figure 7.6 represents the Maclaurin polynomials of 
degree 2m + 1, 0 < m < 6, of the sine. 

As far as the even map f{x) = cosx is concerned, only even exponents appear. 
From f"{x) = — cosx, f^^\x) = cosx and f^'^^\x) = ( —l)^cosx, it follows 
y(2/c)(Q) ^ ^_^Y, so Maclaurin's expansion of order n = 2m + 1 is 

co8x = i - —+ — -...+ {-iy 

"^ 2k 

«2ni 

(2m)! 
+ o(x^"'+^) 

fe=0 
(2A;) 

(7.15) 

The considerations made about the sine apply also here. Maclaurin's polynomials 
of order 2m {1 < m < 6) iov y = cosx can be seen in Fig. 7.7. 

Power functions 
Consider the family of maps / (x) = (1 -h x)" for arbitrary a G M. We have 

/'(x) = a ( l + x ) " - i 

fix) = aia - l)(a - 2)(1 + x)"'^. 
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Figure 7.7. Local approximation of f{x) = cosx by Tf2m — Tf2m,o when 1 < ?7i < 6 

From the general relation f^^\x) = a{a — 1 ) . . . (a — A: + 1)(1 + x)^ ^ we get 

/(0) = 1, ^ = " ( - - ^ ) - > - ^ + ^) f o r f c > l . 

At this point it becomes convenient to extend the notion of binomial coefficient 
(1.10), and allow a to be any real number by putting, in analogy to (1.11), 

a - 1 , 
a\ a{a — 1) • • • (a — A; + 1) 

k\ 
for k>l. (7.16) 

Maclaurin's expansion to order n is thus 

il + xr = l + ax+ M^—ila;2 + . . . + h\x" + o(x" 

=|:0.'.<,(x",. 
(7.17) 

Let us see in detail what happens for special values of the parameter. When 
a = -l 

f-l\ ^ ( - l )(-2) / - 1 \ ̂  ( - l)(-2)(-3) ^ _ 
\2 J 2 ' V 3 ; 3 ! ' ••"' 

-l\ ( - l ) ( -2 ) . . . ( -A ; ) 

fc! 
( - 1 ) ' , 
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Figure 7.8. Local approximation of f{x) = \^1 -\- x by Tfn = Tfn,o for n = 1,2, 3,4 

so 

Choosing Q! = | gives 

(7.18) 

i \ i r i 
2 \ _ 2 '>2 

(1-1) i y _ J ( i - i ) ( i - 2 ) _ 1 
3J 3! 16' 

and the expansion of f{x) = i / l + ^ arrested to the third order is 

Vl+x = l + ~x--x'^ + —x^ + o{x^). 
2 o it) 

The polynomials of order n = 1, 2, 3,4 are shown in Fig. 7.8. 

For conveniency, the following table collects the expansions with Peano's re-
mainder obtained so far. A more comprehensive list is found on p. 426. 

/>»* /*»"' /yt'^ 

los{l + x)=x-~ + ... + (-1)"-' — + oix") 
I n 
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X^ X^ »2m4-l 

^^'^" = " - ¥ + 5 ! - - + (-^^'"(2mTi)! 
+ o(a;2'"+=^) 

x^ x'^ MQUI 

e o s . ^ l ^ - + - - - . . . + M r ^ ^ + o(a:2"^+^) 

= 1 ~ a ; + 37^--.. . + ( ~ i r a : ^ + o{a:^) 
14-a? 

x / T T i = 1 -i- ~ar - ga:̂  + —w^ -hoix^) 

7 .3 O p e r a t i o n s o n T a y l o r e x p a n s i o n s 

Consider the situation where a map / has a complicated analytic expression, that 
involves several elementary functions; it might not be that simple to find its Taylor 
expansion using the definition, because computing derivatives at a point up to a 
certain order n is no straighforward task. But with the expansions of the elemen-
tary functions at our avail, a more convenient strategy may be to start from these 
and combine them suitably to arrive at / . The techniques are explained in this 
section. 

This approach is indeed justified by the following result. 

Proposition 7,5 Let f : (a^b) --^R be n times differentiabk at XQ € (a^b). 
If ihere eMsts a polynomial P„, of degree < n, such that 

f{x) = Pn{x) 4- o{(x - xoD for x-^xo, (7.19) 

tiien Pn is the Taylor polynomial Tn = Tfn,xo ^f order n for the map f at x^. 

Proof. Formula (7.19) is equivalent to 

Pn{x) = f{x) + ^{x)j with (f{x) = o((x — xo)^) for x -^ XQ. 

On the other hand, Taylor's formula for / at XQ reads 

Tn{x)=f{x)+4^{X), w i t h ^ ( X ) = o ( ( x - X o ) " ) . 

Therefore 

Pn{x) - Tn{x) = ip{x) - ij{x) = o{{x - X Q ) " ) . (7.20) 

But the diff"erence Pn{x) — T^(x) is a polynomial of degree lesser or equal 
than n, hence it may be written as 
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n 

Pn{x) - Tn{x) = Y^ Ck{x - X^f. 

k=0 

The claim is that all coefficients Ck vanish. Suppose, by contradiction, there 
are some non-zero c/̂ , and let m be the smallest index between 0 and n 
such that Cm ^ 0. Then 

Pn{x) ~ Tn{x) = ^ Ck{x - Xof 
k=m 

n 

+ ^ Ck{x~xoY 
Pn[X) Tn{x) _ ^ ' ^ ^ ^ ^^ ^ ^k-m 

— 670 

by factoring out (x —XQ)^". Taking the limit for x —̂  XQ and recalling 
(7.20), we obtain 

0 = c^, 

in contrast with the assumption. • 

The proposition guarantees that however we arrive at an expression like (7.19) 
(in a mathematically correct way), this must be exactly the Taylor expansion of 
order n for / at XQ. 

Example 7.6 

Suppose the function / (x) satisfies 

/ (x) = 2 - 3(x - 2) + (x - 2f - -{x - 2f + o((x - 2)^) for x ^ 2. 

Then (7.7) implies 

/ ( 2 ) = 2 , / ' (2) = - 3 , ^ = 1, ^ - - j , 

hence 

/ ( 2 ) = 2 , /'(2) = - 3 , /"(2) = 2, /"'(2) = - | a 

For simplicity we shall assume henceforth XQ = 0. This is always possible by a 
change of the variables, x -^ t = x — XQ. 

Let now 

/(x) = ao-\- aix + ... + a^x"" + o{x'^) = pn{x) + o{x'^) 

and 
g{x) = 60 + bix + ... + bnx"" + o(x^) = ^^(x) + o(x^) 

be the Maclaurin expansions of the maps / and g. 
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Sums 
From (5.5) a), it follows 

f{x) ± g{x) = [pn{x) + o{x^)] ± [qn{x) + o(x")] 

= [Pn{x)±qn{x)] + [0{x^)±0{x'')] 

== Pn{x) ± qn{x) -\- Oix""). 

The expansion of a sum is the sum of the expansions involved. 

Example 7.7 

Let us find the expansions at the origin of the hyperbolic sine and cosine, intro-
duced in Sect. 6.10.1. Changing x to —x in 

^2 ^2n+2 

gives 
^2 ^2n+2 

Thus 
1 x^ x^ x^^+^ 

sinhx = - (e^ - e-^) - ^ + ^ + ^ + - + J^^;^^ + o(^^"^^). 

Similarly, 

coshx = i (e^ + e-^) = l + ^ + ^ + ... + | ^ + o ( x 2 " + i ) . 

The analogies of these expansions to sinx and cosx should not go amiss. D 

Note that when the expansions of / and g have the same monomial terms up to 
the exponent n, these all cancel out in the difference f — g. In order to find the first 
non-zero coefficient in the expansion off — g one has to look at an expansions of / 
and g of order n' > n. In general it is not possible to predict what the minimum n' 
will be, so one must proceed case by case. Using expansions 'longer' than necessary 
entails superfluous computations, but is no mistake, in principle. On the contrary, 
terminating an expansion 'too soon' leads to meaningless results or, in the worst 
scenario, to a wrong conclusion. 

Example 7.8 

Determine the order at 0 of 

h{x) =e'' - Vl + 2x 

by means of Maclaurin's expansion (see Sect. 7.4 in this respect). 
Using first order expansions, 

f{x) = e ^ = l + x + o(x), 

g{x) = Vl-\-2x = 1 + X -H o(x), 

leads to the cancellation phenomenon just described. We may only say 

h{x) = o(x). 
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which is clearly not enough for the order of h. Instead, if we expand to second 
order 

then 

g{x) = V'l + 2x = l + x h o(x^), 

h{x) =x^ + o(x^) 

shows h{x) is infinitesimal of order two at the origin. D 

Products 
Using (5.5) d) and then (5.5) a) shows that 

f{x)g{x) = [vn{x) + o{x^)][qr,{x) + o{x^)] 

= Vn[x)qn{x) + Pn{x)o{x'') + ^ ^ ( x ) o ( x ^ ) + o ( x ^ ) o ( x ^ ) 

- Pn(x)(?n(x) + O(X^) + O(X^) + o (x^^ ) 

= Pn(^)gn(3^) +0(x ' ' ) . 

The product Pn{x)qn{x) contains powers of x larger than n; each of them is an 
o(x^), so we can eschew calculating it explicitly. We shall write 

Pn{x)qn{x) = Tnix) + o ( x ' ' ) , 

intending that r^ix) gathers all powers of order < n, and nothing else, so in 
conclusion 

f{x)g{x) = rn (x ) + o(x^). 

Example 7.9 

Expand to second order 

h{x) = vTT^e'^ 
at the origin. Since 

f{x) = vTT^ = 1 + 
X X" 

+ 0(^2), 

it follows 

h{x) = 
X X 

g{x) = e ^ = l + x + — + o(x^) 

1 + X + y ) +0(X^) 

x^ \ [x x^ 
+ 

.T3 

8 + 
x4 
— 
16 

+ o(x2) 
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The boxed terms have order larger than two, and therefore are already accounted 
for by the symbol o(x^). Because of this, they need not have been computed 
explicitly, although no harm was done. • 

Quotients 
Suppose ^(0) 7̂  0 and let 

h{x) = 

for which we search an expansion 

M 

with rn{x) — y^CfcX^. 
k=0 

From h{x)g{x) = f{x) we have 

rn{x)qn{x) + Oix"^) = Pn{x) + o ( x ' ' ) . 

This means that the part of degree < n in the polynomial rn{x)qn{x) (degree 2n) 
must coincide with Pn{x). By this observation we can determine the coefficients Ck 
of rn{x) starting from CQ. The practical computation may be carried out like the 
division algorithm for polynomials, so long as the latter are ordered with respect 
to the increasing powers of x: 

OQ + aix + a2x'^ + ... + anX'^ -\- o{x'^) 
ao + a[x + a2X^ + ... -f a'^x^ + o(x^) 
0 + aix + a2x'^ + ... + dnX^ -f o{x^) 

dix + d2x'^ + ... + d^^x'^ + o{x'^) 

bo + bix + b2x'^ + ... + bnx"" + o(x^) 
Co + CiX + ... + CnX"^ + 0{x'^) 

0 + o{x'^) 

Examples 7.10 

i) Let us compute the second order expansion of h{x) = 

(7.9), (7.13), we have e^ = 1 + x , ^ 
x"^ + o(x^); dividing 

1 + X + ^x^ + o(x^) 

3 + 21og(l + x) 
^X2H-O(X2), a n d 3 + 21og(l+x) = 3 + 2x 

•By 

l + | x 
2 
1^2 x^ + o{x^) 

^x+^x^ + o{x^) 

Ix + §x2 + o{x^) 

^(?) 

3 + 2x - x^ + o(x^ 

0(x2) 3 -r 9 ^ -r 5 4 ^ 

produces /i(x) = | + | x + | | x ^ + o(x^). 
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ii) Expand h{x) = tanx to the fourth order. The function being odd, it suffices 
to find Maclaurin's polynomial of degree three, which is the same as the one of 
order four. Since 

dividing 

yields 

6 
+ o{x^) and cosx 1 + o{x^), 

^ + o{x^) 

^ + o{x^) 

^ -h o{x^) 

l - ^ + o ( x 3 ) 

^+o{x^) 

tana: = ar -h — -f o{x^) = x -f — -f o{x^), 
D 

Composi te maps 
Let 

f{x) = aix + a2X^ + ... + anX^ + o(x^) 

be the Maclaurin expansion of an infinitesimal function for x —> 0 (hence ao = 0). 
Write 

g{y) = bo + hy + ... + 6^?/̂  + o(^^) 

for a second map g{y). Recall 

o{y^) stands for an infinitesimal of bigger order than y^ as ^ -^ 0, 

which can be written 

o{y^) = y^l) with o(l) -^ 0 for ^ ^ 0. 

Now consider the composition h{x) = g(^f{x)) and substitute y = f{x) in the 
expansion of g{y): 

g{f{x)) = bo + hf{x) + b2[fix)]^ + ... + b„[fix)r + [ / ( x r o ( l ) . 

As f{x) is continuous at 0, ?/ = / (^) ^ 0 for x ^ 0, so o(l) -^ 0 for x —> 0 as 
well. Furthermore, expanding 

[f{x)r = a^x" + o(x^) 

yields 
[/(x)]^o(l) = o(x^) per X ^ 0. 

The powers [f{x)]^ (1 < /c < n), expanded with respect to x up to order n, provide 
the expression of ^( / (x) ) . 
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Examples 7.11 

i) Calculate to order two the expansion at 0 of 

Define 

Then 

5 ( y ) = e ^ = l + y + ^ + 0 ( 2 / 2 ) . 

h{x) = 1 + ( I - ^ + 0(^2)) + 1 ( I - i^ + 0(0:^))' + o{x') 

= l + | + o ( x 2 ) . 

ii) Expand to order three in 0 the map 

h{x) ^ 
l + log(l + x)* 

We can view this map as a quotient, but also as the composition of 

x^ x^ 

with 

It follows 

fix) = l0g(l + x ) = X - y + y + 0{X^) 

9{y) = Y ^ = l-y-hy^-y^^ o{y^). 

X - y + y + 0 (x3) i + { a; - y + y + o{x'') \ 

( X^ X^ \ 3 

- U - y + y + o ( a ; 3 ) j +o(x3) 

= l - ( ' x - y + y + o{x^)\ + (^2 - x3 + o(a;3)) - {x^ + o(x3)) + o{x^) 
oX IX . o^ I — I 

Remark 7.12 If f{x) is infinitesimal of order greater that one at the origin, we 
can spare ourselves some computations, in the sense that we might be able to 
infer the expansion of h{x) = g(^f{x)) of degree n from lower-order expansions of 
g{y). For example, let / be infinitesimal of order 2 at the origin (ai = 0 , 02 7̂  0). 
Because [f{x)]^ = a2x'^^ + o(x^^), an expansion for g{y) of order § (if n even) or 
^ ^ (n odd) is sufficient to determine h{x) up to degree n. (Note that f{x) should 
be expanded to order n, in general.) D 
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Example 7.13 

Expand to second order 

h{x) = \/cosx = y 1 + (cosx — 1). 
Set 

f{x) = cosx - 1 = --— + o(x^) (2nd order) 

y 
9{y) = vT+y = 1 + I + ^(^) (1^^ ô d̂ )̂-

Then 
2 

h{x) = l + U-'^+o{x')]+o{x'^ 

^ 2 

= 1 - — + o(a:^) (2nd order). D 

Asymptot ic expansions (not of Taylor type) 
In many situations where f{x) is infinite for x -^ 0 (or x -^ XQ) it is possible 
to find an 'asymptotic' expansion of f{x) in increasing powers of x (x — XQ), by 
allowing negative powers in the expression: 

/ X = -—- + + ... + + ao + aix + ... + anx"" + o(x''). 
rp 11L rp 11L X rp 

This form helps to understand better how / tends to infinity. In fact, if a-m 7̂  0, 
/ will be infinite of order m with respect to the test function x~^. 

To a similar expansion one often arrives by means of the Taylor expansion of 

———, which is infinitesimal for x ^ 0. 

We explain the procedure with an example. 

Example 7.14 

Let us expand 'asymptotically', for x -^ 0, the function 

e^ - 1 
The exponential expansion arrested at order three gives 

e ^ - 1 =x + ^ + ^+o{x^) 

= x(̂ l + - + -+o(x^)j , 
so 

9 

The latter ratio can be treated using Maclaurin's formula 

1+J/ 
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by putting 
2 

2 / = 2 + y + o ( x ^ ) 
in fact, we obtain 

the asymptotic expansion of / at the origin. Looking at such expression, we can 
deduce for instance that / is infinite of order 1 with respect to (p{x) = - , as 
x-^0. 
Ignoring the term x/12 and writing /(a:) = ^ — ^ + o(l) shows / is asymptotic 
to the hyperbola 

7.4 Local behaviour of a map via its Taylor expansion 

Taylor expansions at a given point are practical tools for studying how a function 
locally behaves around that point. We examine in the sequel a few interesting 
applications of Taylor expansions. 

Order and principal pa r t of infinitesimal functions 
Let 

f{x) = ao + ai(x - xo) + ... -f an{x - XQ)"^ + o{{x - XQ)"^) 

be the Taylor expansion of order n at a point XQ , and suppose there is an index m 
with 1 <m < n such that 

ao = ai = ... = Qm-i = 0, but a^ ^ 0. 

In a sufficiently small neighbourhood of XQ, 

f{x)^am{x-xor^o{{x-xor) 

will behave like the polynomial 

p{x) = am{x-xo)'^, 

which is the principal part of / with respect to the infinitesimal y — x — XQ. In 
particular, f{x) has order m with respect to that test function. 

Example 7.15 

Compute the order of the infinitesimal f{x) — sinx — xcosx — \x^ with respect 
to (/?(x) — X a s X -^ 0. Expanding sine and cosine with Maclaurin we have 

f{x) = -^x'' + o{x''l x ^ O . 

Therefore / is infinitesimal of order 5 and has principal part p{x) = — ̂ x ^ . 
The same result descends from de THopital's Theorem, albeit diff'erentiating five 
times is certainly more work than using well-known expansions. • 
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Local behaviour of a function 

The knowledge of the Taylor expansion of / to order two around a point XQ , 

f{x) = ao -^ ai{x - xo) + a2{x - XQ)^ + o{{x - XQ)^) , x -^ XQ , 

allows us to deduce from (7.7) that 

/(xo) = ao, / '(xo) = a i , f\xo) = 2a2. 

Suppose / is differentiable twice with continuity around XQ. By Theorem 4.2 the 
signs of ao, ai, a2 (when ^ 0) coincide with the signs of / (x) , f'{x), f"{x), respec-
tively, in a neighbourhood of XQ. This fact permits, in particular, to detect local 
monotonicity and convexity, because of Theorem 6.26 h2) and Corollary 6.37 h2). 

Example 7.6 (continuation) 

I Return to Example 7.6: we have /(2) > 0, f'{2) < 0 and f\2) > 0. Around 
Xo = 2 then, / is strictly positive, strictly decreasing and strictly convex. D 

We deal with the cases ai = 0 or a2 = 0 below. 

N a t u r e of critical points 
Let XQ be a critical point for / , which is assumed differentiable around XQ. By 
Corollary 6.27, different signs of f at the left and right of XQ mean that the point 
is an extremum; if the sign stays the same instead, XQ is an inflection point with 
horizontal tangent. 

When / possesses higher derivatives at XQ, in alternative to the sign of / ' 
around XQ we can understand what sort of critical point XQ is by looking at the 
first non-zero derivative of / evaluated at the point. In fact. 

Theo rem 7,16 Let f be differentiable n > 2 times at XQ and suppose 

f'{xo) = ... = f^'^''\xo) = 0, f<"'\xo)¥^0 (T.21) 

for some 2 < m < n. 

i) When m is even, x^ is an extremum, namely a maoimum 
a minimum 

ii) When m is odd, XQ is an inflection point with horizontal tangent; more 
precisely the inflection is descending if f^'^\xo) < 0, ascending if 
/ ( ^ ) ( : ro )>0 . 

Proof. Compare f{x) and /(XQ) around XQ. From (7.6)-(7.7) and the assumption 
(7.21), we have 

fix) - /(xo) = ^ V (^ - xo)^ + o((x - xo)^). 
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But o{{x ~ xo)^) = {x- xo)^o(l), so 

/ (x) - / ( : . o ) = (x - x o r ' ^ ^ '^ + /i(x) 

for a suitable h{x), infinitesimal when x ^ XQ. Therefore, in a sufficiently 
small neighbourhood of XQ, the term in square brackets has the same sign 
as 

/('"'(a^o), hence the sign of f{x) — /(xo), in that same neighbourhood, 
is determined by f^^\xo) and {x — XQ)^. Examining all sign possibilities 
proves the claim. • 

Example 7.17 

Assume that around XQ = 1 we have 

/ (x) = 2 - 15(x - 1)"̂  + 20(x - 1)^ + o((x - 1)^). (7.22) 

From this we deduce 

/ ' ( I ) = / " ( ! ) = / ' " ( I ) = 0, but / W ( l ) = - 3 6 0 < 0 . 

Then XQ is a relative maximum (Fig. 7.9, left). 

Suppose now that in a neighbourhood of xi = —2 we can write 

f{x) = 3 + 10(x + 2)^ - 35(x + 2y + o((x + 2)^). (7.23) 

Then 

/ ( - 2 ) = r ( - 2 ) = r ( - 2 ) = /(4)(-2) = 0, and /(^)(-2) = 10 • 5! > 0, 

telling xi is an ascending inflection with horizontal tangent (Fig. 7.9, right). • 

Points of inflection 
Consider a twice differentiable / around XQ. By Taylor's formulas we can decide 
whether XQ is an inflection point for / . 

First though, we need to prove Corollary 6.38 stated in Chap. 6, whose proof 
we had to postpone to the present section. 

Figure 7.9. The map defined in (7.22), around xo = 1 (right), and the one defined in 
(7.23), around xo = - 2 (left) 
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Proof, a) Let XQ be an inflection ])oint for / . Denoting as usual by y = t{x) = 
f(x()) -f f^{x()){x — X()) the tangent line to / at XQ, Taylor's formula (7.6) 
(/? = 2) gives 

fi-r) - t{x) = y"(xo){x - xof + o{ix - xof), 

wfiich we can write 

/ ( , r ) - tix) = {X - xoV ^rixo) + h{x) 

for some infinitesimal h at XQ. By contradiction, if J'^XQ) ^ 0, in an arbi-
trarily small neighbourhood of XQ the right-hand side would have constant 
sign at the left and right of .ro- this cannot be by hypothesis, as / is 
assumed to inflect at XQ. 
b) In this case ŵ e use Taylor's formula (7.8) with n = 2. For any x ^ XQ, 
aromid .x'o there is a point ./'. lying betw^een XQ and ,x, such that 

/ ( . r )^- f ( . r ) = - / " ( i ) ( . - r - a : o ) 2 . 

Analysing the sign of the right-hand side concludes the proof. D 

Suppose, from now on, tha t f"{xo) = 0 and / admits derivatives higher than 
the second. Instead of considering the sign of f around XQ, we may study the 
point XQ by means of the first non-zero derivative of order > 2 evaluated at XQ. 

T h e o r e m 7 ,18 Let f be n times differentiable (n > S) at XQ^ with 

f"{xo) = ... = f^"'-'\xo)=^0, f^"'Hxo)^0 (7.24) 

for some m (S < m < n). 

i) When m is oddy XQ is an inflection point: descending if f^'^\xo) < 0, 
ascending if f^'^\xo) > 0. 

ii) When m is even, XQ is not an inflection for f. 

Proof. Just like in Theorem 7.16. we obtain 

/ ( x ) - t ( x ) = ( x - x o ) ^ 
Km)/ ^^oj h(x, 

where h{x) is a suitable infinitesimal function for x —> XQ. The claim follows 
from a sign argument concerning the right-hand side. • 



246 7 Taylor expansions and applications 

Figure 7.10. Local behaviour of the map (7.25) 

Example 7.19 

Suppose that around XQ — 3 we have 

f{x) = - 2 + 4{x - 3) - 90(x - 3)^ + o((x - 3)^). (7.25) 

Then r ( 3 ) - r ' ( 3 ) - f^^\3) = 0, /(^)(3) = -90 • 5! < 0. This implies that 
xo = 3 is a descending inflection for / (Fig. 7.10). • 

7.5 Exercises 

1. Use the definition to write the Taylor polynomial, of order n and centred at 
XQ, for: 

a) I f{x) = e^ , n = 4, XQ = 2 

b) / ( x ) = s i n x , n = 6j XQ = ^ 

\ ^ f{x) = \ogx, n = 3, xo = 3 

d) f{x) = x/2x + 1, n = 3 , XQ = 4 

[e)] / (x) = 7 + X - 3x2 + 5x^ , ^ = 2, XQ = 1 

f) f{x) = 2 - 8x2 + 4x3 + 9x^ , n = 3, XQ = 0 

2. Determine the Taylor expansion of the indicated functions of the highest-
possible order; the expansion should be centred around XQ and have Peano^s 
remainder: 

a) / (x) = x2|x| + e^^ , xo == 0 

b) / (x) = 2-hx + ( x - l ) y x 2 - l , xo = l 

3. With the aid of the elementary functions, write the Maclaurin expansion of 
the indicated functions of the given order, with Peano's remainder: 

a) / (x) = xcos3x — 3sinx, 
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b) f{x) = log 
l + x 

l + 3 x ' 
n = 4 

c) I f(x) = e^ sin 2x , n = 5 

d) / (x) = e """̂ "̂ ^ H-s inx -cosx , n = 2 

e) / (x) = v^cos(3x - x2), n = 4 

in X , n = 5 f) /w ^^1+^ 

gH /(x) = cosh^ X - \/l + 2a;2 , n = 4 

h) /(a:) 
Vcos 2x 

n = 3 

/w = 
—\/8sinx — 2cosx 

n = 3 

f) / ( x ) = \ /8 + sin 24x2 - 2(1 + x^ cosx^), n = 4 

4. Ascertain order and iind principal part, for x ^ 0, with respect to (p{x) = x 
of the indicated functions: 

a) f{x)=e' COS 2x -~n cos2x + log(l+4a;2) 
bj f{x) = ^^ 1 

c ) l / (x ) 
x^ — sin^ y/x 

g3v^ _ ]̂  d) / ( x ) - 2 x + ( x ^ - l ) l o g -

cosh 2x 

- 1) log :: 
X 

e) / (x) = X — arctan , f) / (x) =. ^ 1 - x2 - W1 - ^x2 + sin ^ 
Vl - 4x2 ^ -̂ ^ ^ ^ V 3 18 

5. Calculate order and principal part, when x -^ -\-oo, with respect to (p{x) = ^ 
of the indicated functions: 

^ ^^^^ " ^ ^ 2 ~ 2(x - 2) - log(x - 1) 

b) / ( x ) = e 4x'̂ +i _ 1 

/ ( x ) = \ / l + 3x2 ^ ^3 _ ^ 2 + 5x4 + ^5 

d) / ( x ) = ^ 2 + s i n h — - ^ 

6. Compute the limits: 

z 
z 
el 

lim(l + a;*')i/(^''^'"'3^) 

J 1 / 1 1 
x^o x \^sin(tana;) x 

hm —-. 

^ x^2 (4 - x2)2 

1/x^ 

c^o v^cos 6x — 1 + 6x2 

d) lim f e^ + sin^ x — sinh^ x 1 

3x4[log(l + sinh x)] cosh^ x 
f) lim 

0̂ 1 — vT + x^ cos Vx^ 
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I 7. I As a varies in R, determine the order of the infinitesimal map 

h{x) = log cos X + logcosh(ax) 

as X -^ 0. 

8. I Compute the sixth derivative of 

^ . , sinh(x^ + 2sin^x) 

'̂ "̂̂  = TT^T^ 

evaluated at x = 0. 

9. Let 
(p{x) = log(l + 4x) - sinh4x + 8x^. 

Determine the sign of y = sm(p{x) on a left and on a right neighbourhood of 
xo = 0. 

10. I Prove that there exists a neighbourhood of 0 where 

2cos(x + x^) < 2-x'^ -2x^, 

11. I Compute the limit 
e^/^ — cosh v/x 

l i ^ — 7 7̂=̂ ; 
x-^0+ {X + 1 ^ ) ^ 

for all values a G R+. 

12. Determine a ^R so that 

f{x) — (arctan2x)^ — ax sin x 

is infinitesimal of the fourth order as x —^ 0. 

7.5.1 Solutions 

1. Taylor ^s polynomials: 

a) All derivatives of / (x) = e^ are identical with the function itself, so f^^\2) = 
e^, V/c > 0. Therefore 

r /4 ,2 (x)=e2 + e 2 ( x - 2 ) + ^ ( x - 2 ) 2 + ^ ( x - 2 f - | - g ( x - 2 ) ^ 
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c) From f'{x) = - , f"{x) = - ^ , f"\x) - ^ it follows /(3) = log3, / ' (3) = \ , 

r ( 3 ) = - ^ , r ( 3 ) = ^ . T h e n 

T/3,3(x) = log3 + ^(x - 3) - ^{x - 3f + ^ ( x - 3)^ 

d) TfsAx) = 3 + ^ ( ^ - 4) - ^ ( : r - 4)2 + ^ ( x - 4)^ 

e) As f (x) = 1 - 6x + 15x2, f'{x) = -6 + 30x, we have /(I) = 10, f (1) = 10, 
r ( l ) - 24 and 

T/2,i(x) = 10 + 10(x - 1) + 12(x - 1)2. 

Alternatively, we may substitute t = x — 1, i.e. x = l + t. The polynomial / (x) , 
written in the variable t, reads 

^(t) = / ( I + t) = 7 + (1 + t) - 3(1 + t)2 + 5(1 + tf = 10 + lot + 12̂ 2 + 5t^ 

Therefore the Taylor polynomial of / (x) centred at XQ = 1 corresponds to the 
Maclaurin polynomial of p(t), whence immediately 

T^2,o(t) = 10 + 10t + 12t2. 

Returning to the variable x, we find the same result. 

f) T/3,o(x) = 2 - 8 x 2 + 4 x ^ 

2. Taylor ^s expansions: 

a) We can write / (x) = ^(x) + h{x) using ^(x) = x2|x| and h{x) = e2^. The sum 
h{x) is differentiable on R ad libitum^ whereas g{x) is continuous on M but 
arbitrarily differentiable only for x 7̂  0. Additionally 

,, , f 3x2 if X > 0 , „, , f 6x if X > 0 , 

I -Sx"^ if X < 0 , L - 6 x if X < 0 , 

so 
lim 5f'(x) = lim g\x) = 0, lim g"{x) = lim ^''(x) = 0. 

By Theorem 6.15 we infer g is differentiable twice at the origin, with vanishing 
derivatives. Since g'\x) = 6|x| is not differentiable at x = 0, ^ is not differen-
tiable three times at 0, which makes / expandable only up to order 2. From 
h\x) = 2e2^ and h'\x) = 4e2^, we have /(O) = 1, f (0) = 2, f\0) = 4, so 
Maclaurin's formula reads: 

/ (x) = l + 2x + 2x2 + o(x2). 

b) The map is differentiable only once at XQ = 1, and the expansion is / (x) = 
3 + ( x - l ) + o ( x - 1 ) . 
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3. Maclaurin^s expansions: 

a) f{x) = -2x-\-o{x^). 

b) Writing f{x) = log(l + x) — log(l + 3x), we can use the expansion of log(l +1) 
with t = X and t = Sx 

x^ x^ x^ ^ (3x)2 (3x)3 (3x)4 ^ . 

= -2x + 4x^ - —x^ + 20a:̂  + o{x^). 

c) Combining the expansions of e* with t = x^, and of sint with t = 2x: 

= 2x + 2x^ + x^ - -x^ - -x^ + -—x^ + o{x^) 
3 3 15 

= 2x + -x^ - —x^ + o(x^). 
o 15 

d) / ( X ) = x 2 + 0 ( x 2 ) . 

e) / (x) - 1 - |x2 + x^ - fix^ + o(x4). 

f) This is solved by expanding (1 +1)^ and changing a = —^ and t = x"^: 

^/TT^ 
- X (1 + X ^ ) - ' / ' = ^ ^ _ 1^2 ^ l" l \ 4 ^ ^(^4A 

= ^ - g ^ ^ + ^ ^ ' + 0 ( ^ ' ) , 

from which 

fix) = X - -x^ + —x^ - X + -x^ - - x ^ + o(x^) = —x^ + o(x^). 

g) Referring to the expansions of coshx and {l-\-t)^^ with a = ^, t = 2x^: 

/ (x) = (1 + ^x^ + ia .^ + oCcc^)) '- (1 + 2x2)^/^ 

= l + x-' + \x^ + ^x' + o{x^) -(l+^-2x^+( ^/^") {2xy + o{x^) 

= l + x'' + \x^-l-x'' + lx^ + oix^) = \x^ + o{x*). 
o ^ O 

h) f{x) = 2x + 2^2 + ^ ^ 3 ^ 0(3.3-) 
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i) Substitute to sinx, cosx the respective Maclaurin expansions, to the effect 
that 

/ W = ^ T • 
- 2 - V^X + X2 + ^ x 3 + o(x3) 

Expansion of the reciprocal eventually gives us 

/) / (x) = -2x^ + o(x4). 

4. Order of infinitesinial cind principal part for x —> 0; 

a) The order is 2 and p{x) — — 2ex^ the principal part. 

b) Write 
. , . cos 2x + log(l + 4x^) — cosh 2x 

^ ^ cosh2x 
and note that the order for x -^ 0 can be deduced from the numerator only, for 
the denominator converges to 1. The expansions of cost, log(l +1) and cosht 
are known, so 

cos 2x + log(l + 4x^) - cosh 2x 

= l - i ( 2 x ) 2 + 1 - ^(2x)^ + \[2xf + (2x)2 - l(2rr)4 - 1 - \{2xf - \{2xf + o(x') 

Thus the order is 4, the principal part p(x) — —%x^. 

c) Expanding sint and e^ then putting t = ^ x , we have 

3('>- e 3 * - l " i + M + o{t)-l ~ 3t + oit) - g + ^ ^ 

for t ^ 0. Hence 

implying that the order is 2 and p(x) = |x^ . 

The map has order 3 with principal part p{x) = |x^ . 

Use the expansion of (1 +1)^ (where a = —^) and arctant: 

(1 - 4x2)-i/2 := 1 + 2x2 + o(x^), , "̂  = X + 2x^ + o{x^) 
Vl - 4x2 

X 1 
arctan ^ = x + 2x^ + o(x^) - - ( x - 2x^ + o(x^))^ + o(x^) 

=: x + -x^ + o(x^). 
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In conclusion, 

f{x) = -^x' + o{x%, 

so that the order is 3 and the principal part p{x) = — |x^ . 

f) Order 6 and principal part p{x) = (—^ + 2:^)^^-

5. Order of infinitesimal and principal part as x -^ +00: 

a) When x ^ +(X) we write 

X — 2 — log(x — 1) m 2 ( x - 2 ) 2 - ( x - 2 ) l o g ( x - l ) 
_ X — 2 — log(x — 1) 

~ 2x2 - 8x + 8 - (x - 2) log(x - 1) 
_ x + o{x) _ 1 / I 
~ 2x2 + o(x2) ~ 2^ "̂  ̂  Vx 

from which one can recognise the order 1 and the principal part p{x) = ^ . 

TheE 

c) Write 

b) The map is infinitesimal of order one, with principal part p{x) — —^ 

/w=,-/.»(i+^^)-f=(i+M 
/ . 3 1 

= x 1 + - + ^ 
X X"̂  

1/3 . 5 2 
- x ( 1 + - + ^ 

X X^ 

1/5 

t = ^ + ^ , we get 
Using the expansion of (1 + Z:)*̂  first with < ^ = ^ 5 ^ = f + ^ 5 then with ô  = | 

^ , weg( 

/ (x) = X 

5 ' 

5 U % V V2 

- + ^ + 0 H 7 + 
X X" 

5 2 V / I - + —I +o( — 
X X'-

, 1 1 
= a; - + 

1 1 2 2 / I 

1 / I 
= X I - 7 7 + 0 

1 (^ 
- + 0 -
X V X 

Therefore the order is 1, and p{x) — K 

d) The order is 2 and p{x) = ^ . 
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6. Limits: 

a) Let us rewrite as 

lim(l + x^)^/^^'^^^'3^^ = lim exp f - - ^ 2 — log(l + x^) ) 
x-^o x^o \x^sin 3x J 

( log(l + x^)^ ^ 
= exp lim — ^ = e . 

V^-o x^sin^Sx / 
To compute L, take the expansions of log(l +1) and sint: 

, ,. x^^o(x^) ,. x^ + o(x^) 1 
L = lim —T- , ^,,^ = lim — —-^ = - . 

x-^() x^{Zx ^ o{x^)Y x^o9x6 + o(x6) 9 

The required hmit is e^'^. 

c) Expanding the sine and tangent, 

X - sinftan x) , x - tan x ^-\ tan^ x + o(x^) 
L = hm —^ . , — = hm x-—— 

c^o x^sin(tanx) x^o x^(tanx + o(x)) 

X - X-\x^ ^\x'^+ o[x'^) ^ -\x^^o{x'^) 1 
= hm = hm — = — . 

x-^O X"̂  + o (x^) a:;-̂ 0 X^ + o{x'^) 6 

d) e-2/3; e) - 1 . 

f) Observe that 

3x^[log(l + sinh^ x)] cosh^ x ~ 3x^ sinh^ x ^ 3x^ . 

for X ^ 0. Moreover, the denominator can be written as 

Den : 1 - (1 + x^)^/^ cosx^/^ 

^ 1 - ( l + ix^ + ( ^ f ) x^ + o(x^)) ( l - ^-^ + ^ - ^ + -(-^) 

= 1 - ( l + ix^ - \x' - \x' - \x' + I x ^ + o(x^)) = ^x^ + o{x% 

The hmit is thus 
3x^ + o(x^) 

lim -p^^ ^ r ^ = 9. 
3^ î -̂ O ^X^ + 0(x6) 

7. Expand log(l +1), cost, cosht, so that 

h{x) = log M - -x^ + - x ^ + o(x^) j + log M + -{axf + - {axf + o(x^; 
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= i(a^ - l)x^ + ( J - 5) («* + I)''* + "("'y 

If a 7̂  ± 1 , h{x) is infinitesimal of order 2 for x ^^ 0. If a = ±1 the first non-zero 
coefficient multiplies x^, making h infinitesimal of order 4 for x ^ 0. 

8. In order to compute h^^\x) at x = 0 we use the fact that the Maclaurin 

coefficient of x^ is UQ = —gp-^. Therefore we need the expansion up to order six. 
Working on sint and sinht, the numerator of h becomes 

N™ :.„h(.= +2 ( . ' - i . = . „,.«))) 

= sinh I x' + 2x^ - U^ + o(ar^) ) = x'^ + 2x^ - U^ + ^x^ + o{x^) 
3! 

= x^ + 2x^-'^x'^ + o{x'^). 

Dividing x^ + 2a;* — ^x^ + o{x^) by 1 + a;̂ ° one finds 

h(x) = x^ + 2x^ - Ix^ + 0(2;*̂ ), 
6 

so h^^\0) =-I • &. =-840. 

9. Use the expansions of log(l +1) and sinhi to write 

1 1 1 32 
fix) =4x- -{4xf + -{4xf -4x- :rA4xf + 8x^ + o{x^) = —x^ + o(x^). 

Z o o . o 

Since the sine has the same sign as its argument around the origin, the function 
y — sin(^(x) is negative for x < 0 and positive for x > 0. 

10. Using cost in Maclaurin's form, 

2cos(x + x 2 ) - 2 f l - ^ ( x + x2)2 + ^ ( x + x2)4 + o((x + x2)^)') 

= 2 - (x" + 2x^ + x^) + - ^ x ^ + o(x^) 

- 2 - x^ - 2x^ - ^ x ^ + o(x^) 

on some neighbourhood I of the origin. Then the given inequality holds on / , 
because the principal part of the difference between right- and left-hand side, 
clearly negative, equals —%x^. 
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11. Expand numerator and denominator separately as 

Then 

Num : 1 + ^x + i ( I ) ' + o(x2) -(^l + ^x + ^x^ + o{x'')\ 

Den : 

'«/^ ( l + x'/'Y = x"/5 ( l + ax^/' + o{x^/')) . 

12 x^ + o(x^ 
x^0+ {X + 1 ^ ) ^ X-.0+ X^/5 (1 + aX^/S + o (x4 /5 ) ) 

1 h '^-l' 
0 i f 2 > ^ , 

5 

+00 if 2 < a 

12 ^ f ' ^ - 1 ' ^ ' 

0 if a < 10, 

+00 if a > 10. 

12. Writing arctani and sini in Maclaurin's form provides 

fix) = (2x - ^(2x)3 + oix^U -ax(x- ^x^ + o{x^) 

4x^ 
32 a x^ + o{x^) - oix^ + ^x^ + o{x^) 

6 

This proves j{x) infinitesimal of the fourth order at the origin if a = 4. For such 
value in fact, 
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Geometry in the plane and in space 

The chapter has two main goals. The first is to discuss the possibilities of repre-
senting objects in the plane and in three-dimensional space; in this sense we can 
think of this as an ideal continuation of Chap. 1. We shall introduce coordinate 
systems other than the Cartesian system, plus vectors and their elementary prop-
erties, and then the set C of complex numbers. Secondly, it is a good occasion for 
introducing concepts that will be dealt with in more depth during other lecture 
courses, for instance functions of several variables, or the theory of curves in space. 

8.1 Polar, cylindrical, and spherical coordinates 

A point P in the Cartesian plane can be described, apart from using the known 
coordinates {x^y), by polar coordinates (r, ^), which are defined as follows. 
Denote by r the distance of P from the origin O. If r > 0 we let ^ be the angle, 
measured in radians up to multiples of 27r, between the positive x-axis and the 
half-line emanating from O and passing through F , as in Fig. 8.1. It is common to 

Figure 8.1. Polar and Cartesian coordinates in the plane 
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choose 6 in (—TT, TT], or in [0,27r). When r = 0, P coincides with the origin, and 6 
may be any number. 

The passage from polar coordinates (r,^) to Cartesian coordinates {x^y) is 
given by 

' ' (8.1) X = r cos 0, y — r s i n^ . 

The inverse transformation, provided 6 is chosen in the interval (—7r,7r], is 

r= \/x2-h2/2, 6 = < 

f y f 

arctan - if x > 0, 
y 

arctan —h TT ii X <0^ y > 0 y \ 
X 

y 
arctan - — TT if X < 0, y < 0, 

X 
1 if x = 0, 2/ > 0, 

- | iix = 0,y<0 . 

(8.2) 

Examples 8.1 

i) Let P have Cartesian coordinates (x^y) = (6\/2,2V^). Its distance from the 

origm IS 

As X > 0, 

r = V72 + 24 = ^96 = 4 ^ 6 . 

^ = a r c t a n ^ = a r c t a n ^ = ^ . 
6V^ 3 6 

The polar coordinates of P are then (r, 6) — (4v^, —). 

ii) Let now P have Cartesian coordinates (x, 2/) = (—5, —5). Then r = 5V2, and 
since x, 2/ < 0, 

- 5 , TT 3 

6̂  = arctan TT = arctan 1 — 7r= — —7r = —-TT 
- 5 4 4 

3 
whence {r,9) = (5\/2, —-TT). 

2 
iii) Take P of polar coordinates (r, ^) = (4, -TT) this time; in the Cartesian 

system 
2 ^ / TTx A ^ ^ 

X = 4 COS - T T = 4 COS TT — — = — 4 COS — = - 2 , 

3 ^ 3 ^ 3 ' 

?/ = 4 sin -TT = 4 sin (TT — —) = 4 sin — = 2 v ^ . D 

Moving on to the representation of a point P G M^ of coordinates {x^y^z), 
we shall introduce two new frame systems: cylindrical coordinates and spherical 
coordinates. 
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The cylindrical system is simply given by replacing the coordinates (x, y) of 
the point P ' , orthogonal projection of P on the xy-pla,ne^ by its polar ones (r', 9), 
and mantaining z as it is. Denoting {r'^d^t) the cylindrical coordinates of P , 
we have 

X = r' cos 6, y r'sin<9, z = t . 

In this case too the angle 6 is defined up to multiples of 27r; if we confine 6 to the 
interval (—7r,7r], as above, cylindrical coordinates are functions of the Cartesian 
ones by defining r' and 6 with (8.2) (Fig. 8.2, left). 

Spherical coordinates {r^if^O) are defined as follows. Let r = ^/x'^ ~[-y'^ -\- z^ 
be the distance of P from the origin, if the angle between the positive z-axis and 
the ray from O through P , 6 the angle between the positive x-axis and the line in 
the x?/-plane passing through the origin and the projection P' of P on the same 
plane. This is probably better understood by looking at Fig. 8.2, right. Borrowing 
terms from geography, one calls 6 the longitude and ip the colatitude of P 
(whereas ^ — if is the latitude, in radians). 

Therefore z — rcos(f, while the expressions x = r' cos 9 and y — r' sm9 derive 
from noting that r' is the distance of P' from O, r' = rsunp. Then the Cartesian 
coordinates of P are, in terms of the spherical triple (r, 99,9)̂  

X = r sin (p cos 9, y = r sin (/? sin 0, z = r cos (/?. 

The inverse transformation is easily found by dimensional reduction. We just re-
mark that it is enough to vary (f in an interval of width TT, e.g. [0,7r]. Instead, 9 
has freedom 27r, for instance 9 G (—7r,7r], as in the 2-dimensional case. 

Figure 8.2. Cylindrical coordinates (left) and spherical coordinates (right) 
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Example 8.2 

Consider the point P of Cartesian coordinates (1,1, \/6). The point P' = (1,1,0) 
is the orthogonal projection of P onto the xy-plsme, so its polar coordinates are 
{r\6) = (v2, —) in that plane. The cylindrical coordinates of P are therefore 

(r^e,i) = (V2,^,^/6). 

Now to spherical coordinates. First, r = Vl + 1 + 6 = 2\/2; moreover, simf — 

YJK — \ implies cp = 7r/6, because (/? varies in [0, TT]. Therefore P has coordinates 

( r , ^ , < ^ ) = ( 2 V 2 , ^ , ^ ) . D 

8.2 Vectors in the plane and in space 

We discuss the basics of Vector Calculus, which focuses on vectors and how they 
add, multiply, and so on. We start with vectors whose initial point is the origin, 
and later generalise this situation to arbitrary initial points in the plane or in 
space. 

8.2.1 Position vectors 

Equip the plane with an orthogonal frame system. A pair {x,y) ^ (0,0) in R^ 
identifies a position vector (or just vector) v in the plane, given by the line 
segment with initial point O = (0,0) and end point P = {x,y), see Fig. 8.3, left. 
(The orientation from O to P is indicated by an arrow with point at P.) 

The coordinates x, y oi P are said components of the vector v (in the chosen 
frame system); one writes v — (x, 7/), identifying the vector v with its end point P. 

Position vectors in space are defined in a similar fashion: a vector v with 
components (x, ?/, z) / (0,0,0) is drawn as the oriented segment going from O = 
(0,0,0) to P = (x, y, z) (Fig. 8.3, right), so one writes v = (x, y, z). 

Figure 8.3. A vector in the plane (left), and in space (right) 
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In space or in the plane, the vector 0 with components all zero is called the 
zero vector; it is identified with the origin and has no arrow. In this way position 
vectors in the plane (or in space) are in bijective correspondence with points of 
R^ (resp. R^). Henceforth we shall not specify every time whether we are talking 
about planar or spatial vectors: the generic v^ of components (t^i, t'2) or (i^i, t;27 '̂ 3)? 
will be described with ( i ; i , . . . , Vd)- The capital letter V will be the set of vectors 
of the plane or of space, with no distinction. 

Having fixed the origin point O, a vector is intrinsically determined (irrespec-
tive of the chosen Cartesian frame) by a direction, the straight line through the 
origin and containing the vector, an orientation, the direction given by the arrow, 
and a length or norm, the actual length of the segment OP. Rather often the 
notion of direction tacitly includes an orientation as well. 

Let us define operations. Take vectors v — {vi,... ^ Vd) and w = {wi^..., Wd)-
The sum of v and w is the vector v -\-w whose components are given by the sum 
of the corresponding (i.e., with the same subscript) components of the two original 
vectors 

(8.3) V + W =^ {Vi + Wi, . . . ,Vd + Wd) . 

In Vector Calculus real numbers A G R are referred to as scalars. The product 
of the vector v by (the scalar) A is the vector At;, whose j th component is the 
product of the j th component of 1; by A 

Xv = (Avi,...,Avrf). .4) 

The product {—l)v is denoted —v and said opposite vector to v. The diff"erence 
V — w is defined as 

V -w = v -^ {-w) = {vi -wi,...,Vd-Wd) • (8.5) 

The operations just introduced enjoy the familiar properties of the sum and the 
product (associative, commutative, distributive, . . . ) , due to their component-wise 
nature. 

These operations have also a neat geometric interpretation. If A > 0, the vector 
At; has the same direction (and orientation) as t?, i.e., it lies on the same (oriented) 
straight line, and its length is A times the length of v (see Fig. 8.4); if A < 0, 
At; = —|A|t; = |A|(—t;) so the same argument applies to — t;. Two vectors v and w 
are parallel, or collinear, if tt; = At; for a A 7̂  0. 

The sum of non-zero position vectors v and w should be understood as follows. 
When the two vectors are collinear, t/; = At;, then t; + ti; = (1 + A)t?, parallel to 
both of them. Otherwise, v and w lie on distinct straight lines, say Ty and r̂ ,̂ that 
meet at the origin. Let U be the plane determined by these lines (if v and w are 
vectors in the plane, clearly 77 is the plane); v and w determine a parallelogram on 
U (Fig. 8.5). Precisely, let P, Q be the end points of v and w. The parallelogram 
in question is then enclosed by the lines r^^ r^^ the parallel to r^ through P and 
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Figure 8.4. The vectors v and Xv 

the parallel to r^ through Q; its vertices are O, P, Q and i?, the vertex 'opposite' 
the origin. The sum v -\- w is then the diagonal OR, oriented from O to R, The 
vertex R can be reached by 'moving' along the sides: for instance, we can start at 
P and draw a segment parallel to OQ, having the same length, and lying on the 
same side with respect to r^. 

Figure8.6 represents the difference v — w: the position vector v — w — v-\-{—w) 
is the diagonal of the parallelogram determined by vectors v, —w. Alternatively, 
we can take the diagonal QP and displace it 'rigidly' to the origin, i.e., keeping it 
parallel to itself, finding v — w. 

The set V of vectors (in the plane or in space), equipped with the operations 
of sum and multiplication by a scalar, is an example of a vector space over 
R. Any vector v = Ai;i + /2V2, with t;i,'i;2 ^ V and A,/i G M is called a linear 
combination of the two vectors vi and t;2- This generalises to linear combinations 
of a finite number of vectors. 

Figure 8.5. Sum of two vectors v -\^ w 
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Figure 8.6. Difference vector v — w 

E x a m p l e s 8.3 

i) Given vectors vi = (2,5, - 4 ) and V2 = (—1,3,0), the sum v — 3^1 - bv2 is 
t; = ( 1 1 , 0 , - 1 2 ) . 

ii) The vectors v — (>/8, —2,1\fh) and w — (2, — \ / 2 , VTO) are parallel, since the 
ratios of the corresponding components is always the same: 

^/8 _ _ - 2 _ _ 2A/5 

"2~~ V 2 ~7lO 
hence v — \f2w. D 

v^; 

8.2.2 N o r m and scalar produc t 

The n o r m of a position vector v with end point P is defined, we recall, as the 
length of OP, i.e., the Euclidean distance of P to the origin. It is denoted by the 
symbol ||t;|| and can be expressed in terms of v 's components like 

lloll 
' \ 

d j ^/vl+V^ iid = 2, 

(Vvl + v^ + vl ifd = 3. 

The norm of a vector is always non-negative, and moreover H-yH = 0 if and only if 
V = 0. The following relations hold, proof of which will be given on p. 267: 

||At;|| = |A|| |t, | | , •w < V + w i.6) 

for any v^w eV and any A G R. 
A vector of norm 1 is called uni t vector , and geometrically, it has end point 

P lying on the unit circle or unit sphere centred at the origin. Each vector v has 
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a corresponding unit vector v = | T ^ , parallel to v. Thus v — \\v\\v^ showing that 
any vector can be represented as the product of a unit vector by its own length. 

Let us introduce the operation known as scalar product, or dot product of 
two vectors. Given v = [vi^... ^ Vd) and w — {wi^..., Wd)-, their dot product is the 
real number 

d (ViWi-\-V2W2 lid = 2^ 

i=i { viWi-{-V2W2-\-vsws ifd = 3 . 

Easy-to-verify properties are: 

V ' w = w ' V ̂  (8.7) 

(At;i + /J'V2) ' w = X{vi • w) + ij,{v2 • w). (8.8) 

for any v,w,Vi,V2 G F, A,/i G M. 

A vector's norm may be defined from the scalar product, as 

\\v\\ = 0 r ^ (8.9) 

for any v GV. Vice versa, for any v^w G F , one has 

vw = -{\\v^wf - \\vf - \\wf) , (8.10) 

which allows to compute scalar products using norms (see p. 267 for the proof). 
Furthermore, a fundamental relation, known as Cauchy-Schwarz inequality, 

holds: for every v^w eV 
\v-w\<\\v\\\\w\\. (8.11) 

Even more precisely. 

V w = \\v\\ \\w\\ cost (8.12) 

where 9 is the angle formed by v and w (whether 9 is the clockwise, anti-clockwise, 
acute or obtuse angle is completely irrelevant, for cos^ = cos(—^) = cos(27r — 9)). 
Formulas (8.11) and (8.12) as well will be proved later. 

The dot product leads to the notion of orthogonality. Two vectors v^ w are 
said orthogonal (or perpendicular) if 

V • w = 0; 

formula (8.12) tells that two vectors are orthogonal when either one is the zero 
vector, or the angle between them is a right angle. By (8.10), the orthogonality of 
V and w is equivalent with 

\\v+wf = \\vf+\\wr, 
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Figure 8.7. Pythagoras's Theorem 

well known to the reader under the name Pythagoras 's Theorem (Fig. 8.7). 
Given a vector v and a unit vector u, the c o m p o n e n t of v a long u is the 

vector 

Vy, = {V 'U)U, 

while the c o m p o n e n t of v o r thogona l t o u is the complement 

v,,± =v -v^ 

Therefore the vector v splits as a sum 

V = Vu^ v„± with Vu-Vu± =0, ^.13) 

a relation called o r thogona l d e c o m p o s i t i o n of v with respect to the unit vector 
u (Fig. 8.8). 

Figure 8.8. Orthogonal decomposition of v with respect to the unit vector u 
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Figure 8.9. The unit vectors i,j,k 

Examples 8.4 

i) V = (1,0, \/3) and w = (1, 2, y/S) have norm 

||i;|| = x / l + 0 + 3 = 2, ||ti;|| = Vl + 4 + 3 = 2\/2; 

their scalar product is t ; - i ( ; = l + 0 + 3 = 4. 

To compute the angle 9 they form, we recover from (8.12) 

V w y/2 

so (9 = f . 

ii) The vectors v = (1 ,2 , -1) , w = (—1,1,1) are orthogonal since v • w 
- 1 + 2 - 1 = 0. 

ill) Take the unit vector u = ( - ^ , - ^ , — ̂  j . Given -y = (3,1,1), we have 

V 'U = V3-\- —= — = \ / 3 , 

so the component of v along u is 

«̂ = ^ ( i^ 'J i ' - ;^ ) = (̂ '̂ '-̂ )̂  x/3'x/3' x/3> 
while the orthogonal component reads 

t ; „ x = ( 3 , l , l ) - ( l , l , - l ) = (2,0,2). 

That (8.13) holds is now easy to check. • 

We introduce the unit vectors i — (1,0,0), j = (0,1,0) and fe = (0,0,1) of 
space, which are parallel to the axes of the Cartesian frame (Fig. 8.9); at times 
these unit vectors are denoted ei , 62, 63. They are clearly pairwise orthogonal 

i.j=j.k = i'k^O. (8.14) 

They form a so-called orthonormal frame for V (by definition, a set of pairwise 
orthogonal unit vectors). 

Let t̂  = (t'i,t'2,'^3) be arbitrary. Since 
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t ; - ( i ; i , 0 , 0 ) + (0,^2,0) + (0,0,i;3) 

= i ; i( l ,0,0)+i;2(0,1,0)+^3(0,0,1) 

we write 
i; = vii + V2J + vsk. 

This explains that any vector in space can be represented as a linear combination 
of the unit vectors i, j , k, whence the latter triple forms an orthonormal basis of 
V. The dot product of v with the orthonormal vectors i,j,k yields the components 
of V 

vi = V • i , V2 = V ' j ^ v^ = V • k . 

Summarising, a generic vector v G V admits the representation 

V ^ {v • i) i -\- {v ' j) j + {v - k) k . (8.15) 

Similarly, planar vectors can be represented by 

V = {v-i)i-^{v'j)j 

with respect to the orthonormal basis made by i = (1, 0) and j = (0,1). 

Proofs of some formulas above 

Proof. We start from (8.6). The equality follows from the definition of norm. The 
inequality descends from the definition in case v and w are collinear; for 
generic v.w instead, it states a known property of triangles, according to 
which any side is shorter tlian the sum of the other two. In the triangle 
OPR of Fig. 8.5 in fact. ^Wv + w\\ = \0R\, \\v\\ = \0P\ and \\w\\ = \PR\. 
Fornmla (8.10) derives from expanding \\v -^ w\\'^ using (8.7)-(8.9) as fol-
lows: 

||t; + w\\- ~ (v + w) ' {v -f w) 

= v-v^w-v^v-w^w-w (8.16) 

= \\vf + 2vw + \\wf. 
The Cauchy-Schwarz inequality (8.11) can be proved by writing the second 
of (8.6) as \\v + wf < {\\v\\ + \\w\\f. For the left-hand side we use (8.16), 
so that V • w < \\v\\\\w\\: but the latter is (8.11) in case v - w > 0. When 
V w < 0. it suffices to fli]) the sign of v. to the eff'ect that 

\v • tv\ ==^ -v • w ^ (-v) - w < W - v\\ \\w\\ = \\v\\ \\w\\ . 

Eventually, let us prove (8.12). Suppose v and w are non-zero vectors 
(for otherwise the relation is trivially satisfied by any 6). W^ithout loss of 
generality we may assunu^ 0 < ^ < TT. Let u — w = j ^ be the unit vector 
corresponding to w. Then the component of v along u is 

v.-j^u. (8.17) 
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Figure 8.10. Projection of v along w (the angle formed by the vectors is acute on the 
left, obtuse on the right) 

Suppose first that 0 < 0 < 7r/2. In the triangle OP'P (Fig. 8.10, left) 
\\vu\\ = \OP'\ = I OP I cos^ = 111; 11 cos 6; as Vu has the same orientation as 
u, we have 

Vu = \\v\\cos9u. (8.18) 

If d is obtuse instead, in Fig. 8.10, right, we have \\vu\\ — \\v\\ cos(7r — 0) = 
— \\v\\cosO; precisely because now Vu has opposite sign to ix, (8.18) still 
holds. In the remaining cases 9 — 0,7r/2,7r it is not hard to reach the 
same conclusion. Comparing (8.17) and (8.18), and noting AT; = iiv means 
A = /i if i; 7̂  0, we finally get to 

^ ' ^ II II a ^ ^ = 11̂ 1̂1 cos^, 

whence (8.12). D 

8.2.3 General vectors 

Many applications involve vectors at points different from the origin, like forces in 
physics acting on a point-particle. The general notion of vector can be defined as 
follows. 

Let i; be a non-zero position vector of components (t'i,t'2), and PQ an arbi-
trary point of the plane, with coordinates (xoi,xo2)- Define P\ by the coordinates 
(xii,xi2) = (xoi + '^1,^02 + '^2), as in Fig.8.11. The line segment PQPI from PQ 

to P\ is parallel to v and has the same orientation. We say that it represents 
the vector v at PQ, and we write (Po,v). Vice versa, given any segment going 
from PQ = (3:01,^02) to P\ — (xii,xi2), we define the vector v of components 
{v\^V2) — {x\\ — xoi,xi2 — 3:02)- The segment identifies the vector v at PQ. 

A general vector in the plane is mathematically speaking a pair (PQ, v), whose 
first component is a point PQ of the plane, and whose second component is a 
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Figure 8.11. The position vector v and the same vector at PQ 

position vector v. Normally though, and from now onwards, the vector (PQ^V) 

shall be denoted simply by v; we will make the initial point PQ explicit only if 
necessary. Analogous considerations are valid for vectors in space. 

The operations on (position) vectors introduced earlier carry over to vectors 
with the same initial point. The vectors {PQ^V) and (PQ^W) add up to (PQ^V) + 
{PQ, W), equal to {PQ, V -\- w)hy definition. Operations between vectors at different 
points are not defined, at least in this context. 

8.3 Complex numbers 

According to conventional wisdom, not every algebraic equation 

p{x) = 0 

(p being a polynomial of degree ninx) admits solutions in the field of real numbers. 
The simplest example is given by p{x) = x^ + 1, i.e., the equation 

x^ = -1. (8.19) 

This would prescribe to take the square root of the negative number —1, and it is 
well known this is not possible in R. The same happens for the generic quadratic 
equation 

ax^ ^bx^c = 0 (8.20) 

when the discriminant Z\ = 6̂  — 4ac is less than zero. The existence of solutions of 
algebraic equations needs to be guaranteed both in pure and applied Mathematics. 
This apparent deficiency of real numbers is overcome by enlarging E to a set, 
called complex numbers, where adding and multiplying preserve the same formal 
properties of the reals. Obviously defining this extension-of-sorts so to contain 
the roots of every possible algebraic equations might seem daunting. The good 
news is that considering equation (8.19) only is sufficient in order to solve any 
algebraic equation, due to a crucial and deep result that goes under the name of 
Fundamental Theorem of Algebra. 
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8.3.1 Algebraic operations 

A complex number z can be defined as an ordered pair z — (x, y) of real numbers 
x^y. As such, the set of complex numbers C can be identified with R^. The reals 
X and y are the real part and the imaginary part of z 

X = Hez and y — Xvfiz 

respectively. The subset of complex numbers of the form (x, 0) is identified with 
E, and with this in mind one is entitled to write R C C. Complex numbers of the 
form (0,2/) are called purely imaginary. 

Two complex numbers z\ — (xi ,^i) , z^ — {x2,y2) are equal if they have 
coinciding real and imaginary parts 

zi = Z2 ^^ xi = X2 and yi = y2 • 

Over C, we define the sum and product of two numbers by 

Notice 

so 

zi-\-z2 = ( ^ i , y i ) +(^2,2/2) = (^1 +^2,2/1 +1/2) 

Z1Z2 = (Xi ,y i ) (x2,y2) = (^1^2 - ^1 2/2, ^11/2+^22/1) • 

(x, 0) + (0, y) = (x, y), (0,1) (y, 0) = (0, y), 

(8.21) 

(8.22) 

(8.23) (x,2/) = (x,0) + (0 , l ) (^ ,0) . 

Moreover, (8.21) and (8.22) are old acquaintances when restricted to the reals: 

(xi,0) + (x2,0) = (xi +X2,0) and (xi,0) (x2,0) = (xiX2,0). 

In this sense complex numbers are a natural extension of real numbers. 
Introduce the symbol i to denote the purely imaginary number (0,1). By iden-

tifying (r, 0) with the real number r, (8.23) reads 

z — x-\-iy, 

called Cartesian form or algebraic form oi z = (x,y). 
Observe that 

i2 = (0,1) (0,1) = (-1,0) = - ! , 

SO the complex number i is a root of equation (8.19). The sum (8.21) and multi-
plication (8.22) of complex numbers in Cartesian form become 

zi -f Z2 = (xi -f iyi) + (X2 + iy2)^xi -h X2 -h i(yi + 2/2), (8.24) 



zi Z2 = {xi -h iyi) ix2 + %2) = xi a;2 - yi 2/2 + z(:ci ^2 + X2 yi). 
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(8.25) 

The recipe is to use the famihar rules of algebra, taking the relation i^ — —\ into 
account. 

The next list of properties is left to the reader to check: 

Zi-]- Z2= Z2^ Zi, Zx Z2 = Z2Z1, 

{Zl H- Z2) + Z3 = Zi-\- {Z2 + Zs) , (Zi Z2) Zs = Zi (Z2 ̂ 3) , 

Zl {Z2 + Zs) = ZiZ2-\- Zl Zs 

for any Zi^Z2,zs G C. The numbers 0 = (0, 0) and 1 = (1,0) are the additive and 
multiplicative units respectively, because 

z-\-0 = 0-^ z = z and zl ^ I z = z , V Z G C . 

The opposite or negative of z = {x^y) is the complex number —z — {—x, —y)^ 
in fact z + {—z) — 0. With this we can define, for any Z\,Z2 G C, the difference: 

Zl - Z2 = ^1 + ( - ^ 2 ) 

or, equivalently, 

x\ + iy\ - {x2 + iy2) = xi - X2 + i{y\ - y2) • 

The inverse or reciprocal of a complex number z 7̂  0, denoted - or z~^, is given 
by the relation zz~^ — 1, and it is easy to see 

1 - 1 ^ , • -y 
z x^ ^y^ x^ -\- y^ 

The formula 
f i _ -I _xiX2^yiy2 .X2yi-xiy2 

Z \ Zry cy rv \ % n r) 

Z2 x\ + y^ x^ + i/| 
defines the ratio or quotient of 2:1, 2:2 G C with Z2 i^ 0. 

At last, let us remark that the ordering of real numbers cannot be extended to 
C to preserve the compatibility properties of Sect. 1.3.1 in any way. 

8.3.2 Car tes ian coordinates 

With the identification of C and E^, it becomes natural to associate the number 
z — {x^y) — X ^ iy \,o the point of coordinates x and y in the Cartesian plane 
(Fig. 8.12). The point z can also be thought of as the position vector having end 
point at z. The horizontal axis of the plane is called real axis and the vertical 
axis imaginary axis. For any Z\,Z2 G C the sum z\ + Z2 corresponds to the 
vector obtained by the parallelogram rule (as in Fig. 8.13, left), while Z\ — Z2 is 
represented by the difference vector (same figure, right). 
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Figure 8.12. Cartesian coordinates of the complex number z = x -\- iy 

The modulus (or absolute value) oi z — x -\- iy^ denoted \z\, is the non-
negative number 

= y/oc 

representing the distance of (x, y) from the origin; non-incidentally, this definition 
is the same as that of norm of the vector v associated to z, \z\ — \\v\\. Moreover, if 
a complex number is real, its modulus is the absolute value as of Sect. 1.3.1. This 
justifies the choice of name, and explains why the absolute value of a real number is 
sometimes called modulus. We point out that, whereas the statement zi < Z2 has 
no meaning, the inequality \zi\ < \z2\ does, indeed the point (corresponding to) zi 
is closer to the origin than the point Z2- The distance of the points corresponding 
to zi and Z2 is \zi — Z2\. 

Given 2: G C, the following are easy: 

1̂1 > 0; 1̂1 = 0 if and only if z = 0; 

\z\^ = {Tlezf^{Xmzf] 

IZez < \TZez\ < \z\, Xmz < \Xmz\ < \z\; 

\\zi\ - \Z2\\ < \Zi -\-Z2\ < \zi\ + \Z2\. 

Figure 8.13. Sum (left) and difference (right) of complex numbers 
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The c o m p l e x conjugate , or just conjugate, of z = x + iy is the complex 
number 

' z = x-iy.\ (8.26) 

On the plane, the conjugate z is the point (x, —y) obtained by reflection of (x, y) 
with respect to the real axis. The following properties hold for any z, z i , 2:2 G C: 

^, 
Zl ^ Z2 = Zi + Z2 , 

Zi Z2 = ^1 Z2 , 

Of immediate proof is also 

Zl - Z2 = Z i - Z 2 , 

Z\ 

z z •• 

Z2 
^2 7̂  0 ) . 

126Z = z + z Xvfiz — z — z 

2% 

for all z G C. 

8.3.3 T r i g o n o m e t r i c a n d e x p o n e n t i a l f o r m 

Let r and d be the polar coordinates of the point {x,y). Since 

X — rcos6 and y — rsinO ^ 

the number z = (x,y) has a polar form, also called t r igonometr i c , 

z = r (cos 0 -\- i sin 0). 

.̂27) 

B.28) 

First of all, r = |z|. The number 0^ denoted by ^ = a rgz , is said a r g u m e n t of 
z (less often, but to some more suggestively, 'ampli tude') . Geometrically a rgz is 
an angle (in radians) delimited by the positive real axis and the direction of the 
position vector z (as in Fig. 8.14). 

Figure 8.14. Polar coordinates of the number z = x -\- iy 
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The argument can assume infinitely many values, all differing by integer mul-
tiples of 27r. One calls principal value of argz, and denotes by the capitalised 
symbol Argz, the unique value 6 of argz such that —TT < 0 < n; the principal 
value is defined analytically by (8.2). 

Two complex numbers Zi = ri(cos^i + zsin^i) and Z2 = r2(cos^2 + i sin 62) 
are equal if and only if ri = r2 and ^1, ^2 diff̂ er by an integer multiple of 27r. 

The representation in polar form is useful to multiply complex numbers, and 
consequently, to compute powers and nth roots. Let in fact 

zi = ri (cos 01 +i sin ^1) and Z2 = r2 (cos O2 -\-i sin 62); 

the addition formulas for trigonometric functions tell us that 

Zi Z2 = ri r2 [(cos Oi cos 62 — sin 9i sin 62) + i(sin 9i cos 62 + sin 62 cos ̂ 1)] . 

= ri r2 [cos(0i + 62) + isin(^i + ^2)] • 

Therefore 
arg {zi Z2) = arg zi + arg Z2 . (8.30) 

Note that this identity is false when using Arg: take for instance zi — —I = 
cos TT + i sin TT and Z2 = i = cos | + i sin | , so 

Z1Z2 = -t = c o s ( - - ) + 2 s m ( - - j , 

i.e., 

Arg2i =7r, Arg2;2 = - , Argz i+Arg^s = -TT 7̂  Arg2^1 ̂ 2 = - - . 

The so-called exponential form is also useful. To define it, let us extend 
the exponential function to the case where the exponent is purely imaginary, by 
putting 

e*̂  = cos0-f isin^ (8.31) 

for any ^ G M. Such a relation is sometimes called Euler formula, and can be 
actually proved within the theory of series over the complex numbers. We shall 
take it as definition without further mention. The expression (8.28) now becomes 

z = re'^ , (8.32) 

the exponential form of z. The complex conjugate of z is 

z = r (cos ^ — z sin ^) = r(cos(—^) + i sin(—^)) = re~^^ 

in exponential form. 
Then (8.29) immediately furnishes the product of zi = ric^^^ and Z2 = r2e^^'^ 

^i>^2=riT2e^(^^+^2>. (8.33) 
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Thus the moduh are multiphed, the arguments added. To divide complex numbers 
(8.29) gives, with ri — r2 = 1, 

In particular, 
e''e-'' = 1 

SO e~^^ is the inverse of e* .̂ The reciprocal oi z = re*^ 7̂  0 is then 

1 1 . . 

.34) 

.̂35) 

Combining this formula with the product one shows that the ratio of zi = rie^^^ 
and Z2 — r2e*^2 ^ 0 is 

£1 ::::: !lp^(^l-^2) 
Z2 r2 

.36) 

8.3.4 Powers and nth roots 

Re-iterating (8.33) and (8.35) we obtain, for any n G Z, 

For r = 1, this is the so-called De Moivre's formula 

(cos ̂  -h z sin 9)'^ — cos nB -h i sin nQ. 

.̂37) 

^.38) 

By (8.37) we can calculate nth roots of a complex number. Fix n > 1 and a 
complex number w = p e*'̂ , and let us determine the numbers z = r e*̂  such that 
z^ — w. Relation (8.37) implies 

^ n ^ ^ n ^ z n ^ ^ ^ ^ z ^ 
w, 

which means 

hence 

r" ^ p, 
n0 ^ip^ 2k7T, k eZ, 

The expression of 6 does not necessarily give the principal values of the roots' ar-
guments. Nevertheless, as sine and cosine are periodic, we have n distinct solutions 

.£±2fc£ / <̂  + 2fc7r . . <p + 2kn\ , ^ -• t 
^k = yP^ '^ ~ \/p 1 cos ;; h %sm '_ J , /t = 0 , 1 , . . . , n — 1 n n 
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Figure 8.15. The point 1 + y/Si and its fifth roots Zj, j = 0,... ,4 

to the problem. These points lie on the circle centred at the origin with radius 
^ ; they are precisely the vertices of a regular polygon of n sides (an 'n-gon', see 
Fig. 8.15). 

Examples 8.5 

i) For n > 1 consider the equation 

z" = l . 
Writing 1 = le*^ we obtain the n distinct roots 

• 2fc7r 

Zk=e - , A: = 0 , 1 , . . . , n - 1, 
called nth roots of unity. When n is odd, only one of these is real, ZQ = 1^ whilst 
for n even there are two real roots of unity ZQ =^ 1 and Zn/2 = — 1 (Fig. 8.16). 
ii) Verify that 

admits, as it should, the solutions z± = ±i. Write — 1 = le*^, from which 

z_^ = ZQ — e^ —I and z- = Zi — e "^ = e '^ — —i. n 

Note finally that (8.31) permits to define the exponential of arbitrary (not only 
imaginary) complex numbers z = x -\- iy^ by letting 

Q^ = e^e*^ = e"̂  (cos y^ismy). (8.39) 
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Figure 8.16. Roots of unity: cubic roots (left) and sixth roots (right) 

Using (8.34) it is now an easy task to verify that the fundamental relation e^^^^^ = 
QZIQZ2 jg ĝ ^̂ i valid in the realm of complex numbers. In addition to that, 

lê l̂ = e ^ ^ > 0, arge"^ =Imz. 

The first tells, amongst other things, that ê  7̂  0 for any z e C. The periodicity 
of the trigonometric functions implies 

e^+^^^^ = e ^ fora l l / cGZ. 

8.3.5 Algebraic equations 

We will show that the quadratic equation with real coefRcients 

az'^ -\-bz -\- c = 0 

admits two complex-conjugate solutions in case the discriminant A is negative. 
We can suppose a > 0. Inspired by the square of a binomial we write 

2 b c f ^ ^b b^ \ c b^ 
a a \ 2a 4.a? a Ao? 

that is 

Therefore 

or 

bV A 
2a / 4a2 

2a ^ 2a ' 

2a 

We write this as z = , in analogy to the case Z\ > 0. 
2a 
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The procedure may be apphed when the coefficients a 7̂  0, 6 and c are complex 
numbers, as well. Thus 

- 6 ± Vfĉ  - 4ac 
z — 

2a 
are the two solutions of the equation az^ + 62; -h G == 0 in the greatest possible 
generality. 

Third- and fourth-degree algebraic equations have three and four solutions 
respectively (counted with multiplicity): these roots can be made explicit via alge-
braic operations, namely square and cubic roots^. There can be instead no analytic 
expression for solving an equation of fifth degree or higher. Despite all though, the 
Fundamental Theorem of Algebra warrants that every algebraic equation p{z) = 0, 
where p is a polynomial of degree n with real or complex coefficients, admits ex-
actly n solutions in C, each counted with its multiplicity. This is how it goes. 

Theorem 8*6 Let p{z) — anZ^ -I-... + aiz + ao, with an 7̂  0, 6e a polynomial 
of degree n with coefficients au € C, 0 < fc < n. There exist m < n distinct 
complex numbers zij,..<,Zmf CL'^^d m non^-zero natural numbers / / i , . . . , / /^ with 
fjLi 4- *.. + Mm ̂  "̂ 7 such that p{z) factorises as 

p{z) = an{z-ZiY\,.,{z-ZmT^^ 

The numbers Zk are the roots of the polynomial p, in other words the solutions of 
p{z) = 0; the exponent fik is the multiplicity of the root Zk- A root is simple if it 
has multiplicity one, double if the muliplicity is 2, and so on. 

It is opportune to remark that if the coefficients of p are real and if ZQ is a 
complex root, then also ZQ is a root of p. In fact, taking conjugates oi p{zo) = 0 
and using known properties (see (8.27)), we obtain 

0 == 0 = p{zo) = anZQ + . . . + aizo + ao = a^^o + • • • + «i^o + ^o = (̂̂ 2̂ 0) • 

The polynomial p{z) is then divisible by {z — zo){z — ZQ), a quadratic polynomial 
with real coefficients. 

A version of the Fundamental Theorem of Algebra for real polynomials, that 
does not involve complex numbers, is stated in Theorem 9.15. 

^ The cubic equation x^-\-ax^-\-bx-\-c = 0 for example, reduces to the form y^-\-py-\-q = 0, 
by changing x = ?/ — | ; p and q are suitable coefficients, which are easy to find. The 
solutions of the reduced equation read 

q jq^ p^ ^ hi , N^ P^ 
3 ' = V - 2 + V T + 2 7 - V 2 + V T + 27 ' 

a formula due to Cardano. Extracting a root yields as many solutions as the order of 
the root (here 2 or 3), yielding a maximum of 12 solutions, at least in principle: it is 
possible to prove that at most 3 of them are distinct. 
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8.4 Curves in the plane and in space 

The second part of the chapter sees the return of functions, and the present section 
devotes itself in particular to the notion of a curve in Euclidean space or on the 
plane. A curve can describe the boundary of a planar region such as a polygon, or 
an ellipse; it is a good model for the trajectory of a point-particle moving in time 
under the effect of a force. In Chap. 10 we shall see how to perform integral calculus 
along curves, which enables to describe mathematically the notion of work, to stay 
with the physical analogy. 

Let / be an arbitrary interval of the real line and 7 : / —̂  M^ a map. Denote 
by 7(t) = {x{t), y{t)^ z{t)) the point of R^ image of t G / under 7. One says 7 is a 
continuous map on / if the components x^y^z : I -^R are continuous functions. 

Definition 8.7 4̂ continuous map 7 : / C E -^ M^ is called a curve {in 
space). The range of the map is called image and will be denoted by the letter 
C7 = 7 ( / ) C M ^ 

If the image lies on a plane, one talks about a plane curve. A special case is that 
where 7(t) = (x(t), ^/(t), O), that is, curves lying in the xy-plane which we indicate 
simply as 7 : / ^ R2^ j{t) = {x{t),y{t)). 

Thus a curve is a function of one real variable, whereas the image is a subset of 
space (or the plane). Curves furnish a way to parametrise their image by associat-
ing to each value of the parameter t G / exactly one point. The set C could be the 
image of many curves, by diflFerent parametrisations. For example, the plane curve 

Figure 8.17. Clockwise from top left: images C — 7([a, 6]) of a simple arc, a non-
simplearc, a closed arc which is not simple, a Jordan arc 
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j(t) = (t,t) with t e [0,1] has the segment with endpoints A = (0 ,0) ,5 = (1,1) 
as image. But this is also the image of 5{t) = (t^,^^), t G [0,1]; the two curves 
7 and S are parametrisations of the segment AB. The middle point of AB is for 
example image of t = ^ under 7 and t = ^ under S. 

A curve 7 is simple if 7 is a one-to-one map, i.e., if different values of the 
parameter determine distinct points on the image. 

Suppose the interval / = [a, 6] is closed and bounded, as in the previous exam-
ples, in which case the curve 7 is called an arc. An arc is closed if 7(a) = 7(6); 
clearly a closed arc is not simple. Nevertheless, one defines simple closed arc (or 
Jordan arc) a closed arc which is simple except for one single point 7(a) =7(6) . 
Fig. 8.17 illustrates various types of situations. 

The reader might encounter the word arc in the literature (as in 'arc of circum-
ference') to denote a subset of M? or R^, endowed with the most natural - hence 
implicitly understood - parametrisation. 

Examples 8.8 

i) The simple plane curve 

7(t) = (at -h &, ct + d), t G R, a 7̂  0, 

r ' 1 1 c ad — be ^ . , . , . 
has tor an image the Ime y = -x -\ . bettmg x = xit) = at -\- b and 

a a 
/ \ 1 • r . X — b 

y = yit) = ct-\- d^ m tact, gives t = , so 
a 

c , ,. , c ad — be 
y = -[X — b) ^ d= -X -\ . 

a a a 
ii) The curve 

7(t) = {x{t),y{t)) = (l + cost,3 + sint) , te [0, 27r], 

has the circle centred at (1,3) with radius 1 as image; in fact {x{t) — l) + 

(y{t) — 3) = cos^ t 4- sin^ t = 1. This is a simple closed curve and provides the 
most natural way to parametrise the circle that starts at (2, 3) and runs in the 
counter-clockwise direction. 

In general, the image of the Jordan curve 

7(t) = {x{t),y{t)) = (xo + rcost,2/o + r s i n t ) , t e [0,27r], 

is the circle with centre (xo,yo) and radius r. 

If t varies in an interval [0, 2fc7r], with A: > 2 a positive integer, the curve has the 
same image seen as a set; but because we wind around the centre k times, the 
curve is not simple. 

Instead, if t varies in [0,7r], the curve is an arc of circumference, simple but not 
closed. 

iii) Given a, 6 > 0, the map 

7(t) = [x{t),y{t)) = (acost ,bsint) , tG [0,27r], 
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Figure 8.18. The spiral and helix of Examples 8.8 iv), vi) 

is a simple closed curve parametrising the ellipse with centre in the origin and 
semi-axes a and b. 

iv) The image of 

7(t) = {x{t),y{t)) = ( tcos t , t s in t ) , t G [0,+oo), 

is drawn in Fig. 8.18 (left); the spiral coils counter-clockwise around the origin. 
The generic point 7(t) has distance ^/x^t)^^^y^t) = t from the origin, so it 
moves always farther as t grows, making the spiral a simple curve. 

v) Let P = {xp^yp^zp) and Q — {xQ.yQ.zq) be distinct points in space. The 
image of the simple curve 

7(t) = P + ( Q - P ) t , t G M , 

is the straight line through P and Q, because 7(0) = P, 7(1) = Q and the vector 
7(t) — P has constant direction, being parallel to Q — P. 

The same line can be parametrised more generally by 

^{t)=P+(Q-P)^:^, ieK, (8.40) 
ti — to 

where to 7̂  ti; in this case 7(^0) = P, 7(^1) = Q. 

vi) Consider the simple curve 

7(t) = {x{t),y(t),z{t)) = (cost ,sint , t) , t G R . 

Its image is the circular helix (Fig. 8.18, right) resting on the infinite cylinder 

along the z-axis with radius one, i.e., the set {(x, ^, z) G R'̂  : x^ -f- "̂̂  = 1}. • 

A curve 7 : / -^ R^ is differentiable if the components x, ^, z : / -^ R are dif-
ferentiable maps on / (recall that differentiable on / means differentiable at every 
interior point, and differentiable on one side at the boundary, if this is included in 
/ ) . Let y : / -> R3 be the derivative function y ( t ) = {x'{t),y'{t),z'{t)). 
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Figure 8.19. Tangent vector and secant at the point Po 

Definition 8.9 The curve 7 : / —> R^ is regular if it is differentiable over 
I with continuous derivative {i.e., the components are of class C^ on I) and 
if^\t) ^ (0,0,0), for every t € / . 

A curve 7 : / —» R^ is said piecewise regular if I is the union of finitely-
many subintervals where 7 is regular. 

When the curve 7 is regular and to e / , the vector 7'(to) is called tangent 
vector to (the image of) the curve at PQ — 7(^0). The name comes from the 
geometric picture (Fig. 8.19). Let to -\- At G I he such that the point P/\t = 
7(^0 + At) is different from PQ, and consider the straight line passing through PQ 
and P^t' By (8.40) such line can be parametrised as 

Sit) ^ Po + ( P . . -Po)'-^= 7 f a ) + ^^^° + ^ j ; " '^^''^it - to) • (8.41) 

As At goes to 0, the point P^t approaches PQ (component-wise). At the same time, 

the regularity assumption forces the vector a = cr{to,At) =^ 

to tend to ^\to). Therefore the limiting position of (8.41) is 

T ( t ) = 7 ( M + y ( ^ o ) ( t - t o ) , t € R , 

the straight line tangent to the curve at PQ- TO be very precise, the tangent vector 
at PQ is the vector (Po,7'(to)), but it is common to write it simply 7X^0) (as 
discussed in Sect. 8.2.3). One can easily verify that the tangent line to a curve 
at a point is an intrinsic notion - independent of the chosen parametrisation, 
whereas the tangent vector does depend on the parametrisation, as far as length 
and orientation are concerned. 
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In kinematics, a curve represents a trajectory, i.e., the position 7(t) a particle 
occupies at time t. If the curve is regular, the tangent vector 7'(t) describes the 
velocity of the particle at time t. 

Examples 8.10 

i) All curves in Examples 8.8 are regular. 

ii) Let / : / -^ E be differentiable with continuity on / . The curve 

f{t)^{t,f{t)), tel, 

is regular, and has image the graph of the function / . In fact, 

7'(i) = ( l , / ' W ) 7 ^ ( 0 , 0 ) , for any i e / . 

iii) The arc 7 : [0,2] -^ K^ 

r ( i , l ) , i f t G [ 0 , l ) , 
^^'>-\{t,t), i f i G [ l , 2 ] , 

parametrises the polygonal chain ABC (Fig. 8.20, left), while 

r {t, 1), if t e [0,1), 
i{t)=l{t,t), i f t e [ i , 2 ) , 

[ ( 4 - i , 2 - i ( t - 2 ) ) , i f ie[2,4] , 

describes ABC A (Fig. 8.20, right). Both are piecewise regular curves. 

iv) The curves 

7(t) = (1 +v/2cost , \ /2sint) , te [0, 27r], 

7(t) = (l + \ /2cos2 t , - \ /2 s in2 t ) , te [0,7r], 

parametrise the same circle C (counter-clockwise and clockwise respectively) 
with centre (1,0) and radius ^/2. 

Figure 8.20. The polygonal chains ABC (left) and ABC A (right) in Example 8.10 iii) 
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They are regular and differentiate to 

y ( t ) = \/2( - sin t, cost) , j{t) = 2 \ / 2 ( - s i n 2 t , - c o s 2 t ) . 
The point PQ = (0,1) G C is the image under 7 of to = |7r, under 7 of the 
value to = ITT, PQ = 7(to) = 7(to)- In the former case the tangent vector is 
7'(to) = (—1, —1) and the tangent to C at PQ 

r(t) = (0,1) - (1,1) (t - J^) = ( - t + j ^ , 1 - t + ^TT) , t G R. 

For the latter parametrisation, 7 (to) = (2,2) and 

f{t) = (0,1) + (2 ,2){ t - ^TT) = ( 2 ( i - ^ ^ ) , 1 + 2 ( t - ^TT)) , tern. 

The tangent vectors at Po have different lengths and orientations, but same di-
rection. Recalling Example 8.8 in fact, in both cases the tangent line has equation 
y= l-\- X. • 

8.5 Functions of several variables 

Object of our investigation in the previous chapters have been functions of one 
real variable, that is, maps defined on a subset of the real line R (like an interval), 
with values in R. 

We would like now to extend some of those notions and introduce new ones, 
relative to real-valued functions of two or three real variables. These are defined 
on subsets of R^ or R^ and valued in R 

/ : d o m / C R^ -^ R (d - 2 or 3), 

X H-> f{x) . 

The symbol x indicates a generic element of R^, hence a pair x = (a;i, X2) if d = 2 
or a triple x = (xi, X2, X3) if rf = 3. For simplicity we might write (xi, X2) = (x, y) 
and (xi,X2,X3) = {x,y,z)^ and the coordinates of x shall be (xi,...,^^^) when 
it is not relevant whether d = 2 or 3. Each x G R^ is uniquely associated to a 
point P of the plane or space, whose coordinates in an orthogonal Cartesian frame 
are the components of cc. In turn, P determines a position vector of components 
X i , . . . , Xd', so the element x G R^ can be thought of as that vector. In this way, 
R^ inherits the operations of sum x + ?/ = (xi -h ^ i , . . . , x̂ ^ + i/̂ )̂, multiplication 
\x = (Axi , . . . , Ax^) and dot product x - y = xiyi + . . . + XdVd- Furthermore, the 
Euclidean norm \\x\\ = \/x\ + . . . + x^ represents the Euclidean distance of P to 
O. Notice llx — y|| = \ / (x i — yip' + . . . + {xd — Vd)^ is the distance between the 
points P and Q of respective coordinates x and y. 

8.5.1 Continuity 

By means of the norm we can define neighbourhoods of a point in R^ and extend 
the concepts of continuity, and limit, to functions of several variables. 
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Definition 8.11 Let XQ G W^ and r > 0 real. The set 

Ir{xo) =^ {x e W^ : \\x - xo\\ < r} 

of points E^ whose distance from XQ is less than r is called neighbourhood 
of XQ of radius r. 

With XQ — (xoi , . . . , x^d)^ the condition ||x — Xo|| < r is equivalent to 

{xx - xoi)^ + (x2 - x^2f <r^ if d = 2 , 

(Xi - Xoi)^ + {X2 - X^2f + (^3 - ^03)^ < ^^ if G? = 3 . 

Therefore /r(^o) is respectively the disc or the ball centred at XQ with radius r, 
without boundary. 

Defining continuity is formally the same as for one real variable. 

Definition 8.12 A function f : d o m / C R^ ^> R is continuous a t XQ G 

dom / if for any £ > 0 there exists S > 0 such that 

Vx e dom/ , \\x -xo\\ <S ^ \f{x) - fixo)\ < e. 

Otherwise said, if 

yxedomf, xelsixo) ^ f{x)eIe{f{xo)). 

Example 8.13 

I The map / : R^ -^ R, f{x) = 2xi + 5x2 is continuous at XQ = (3,1), for 

| / ( x ) - / ( x o ) | - | 2 ( a : i - 3 ) + 5 ( x 2 - l ) | 

< 2|xi - 3| + 5|x2 - 1| < 7\\x - icoll. 
I Here we have used the fact that \yi\ < \\y\\ for any i = 1^... ,d and any y G R^, 
I a direct consequence of the definition of norm. Given s > 0, it is sufficient to 
I choose 6 — e/7. 
I The same argument shows that / is continuous at every CCQ G R^. • 

A map / : dom / C R^ ^ R is continuous on the region i? C dom / if it is 
continuous at each point x e Q. 

The limit for x -^ XQ G R^ is defined in a completely similar way to the one 
given in Chap. 3. 
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8.5.2 Partial derivatives and gradient 

Let / : dom / C R^ ^> R be a function of two variables defined in a neighbourhood 
of xo = (xo, yo)- Now fix the second variable to obtain a map of one real variable 
X defined around XQ G R 

x^ f{x,yo)-

If this is differentiable at XQ, one says that the function / admits partial deriva-
tive with respect to x at XQ, written 

g ( a . o ) = ^ / ( a : , 2 / o ) | • 

Similarly, if y i-̂  /(xo,y) is differentiable at yo^ one says that / admits partial 
derivative with respect to y at XQ 

|(xo)=^/(.o,.)L^^^. 

If both conditions above hold, / admits (first) partial derivatives at XQ, and there-
fore the gradient vector of / at XQ is well defined: this is denoted 

'^f^^^) = {^(^o),^(^o))eR\ 

In the same fashion, let / : dom / C R^ ^- R be a function of three variables 
defined around XQ = (xcyo^^o); the (first) partial derivatives at XQ with respect 
to X, y, z are 

^ ( a . o ) = ^ / ( x , 2/0,^0) , 

-g^i^o) = —f{xo,yo,z)\ 

assuming implicitly that the right-hand-side terms exist. The gradient of / at XQ 
is the vector 

V / ( . o ) = = ( | ( x o ) , g ( x o ) , | ( x o ) ) € M 3 . 
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Examples 8.14 

i) Let f{x^y) — y/x'^ + y'^ be the distance function from the origin. Considering 
XQ = (2, —1) we have 

a/ 
dx x=2 /̂5 

dy V4Tf 
so 

y = - i 

1 

7H' 

ii) For / (x , ^, z) = 2/log(2x — 3z) we have, at XQ = (2,3,1), 

df 
( 2 , 3 , l ) - ( ^ 3 1 o g ( 2 x - 3 ) ) ( 2 ) = 3 ^ = 6, 

x=2 

| ( 2 , 3 , l ) ^ ( ^ . l o g l ) ( 3 ) = 0, 

a / . „ _ . / d 
(2,3,l) = ( ^ 3 1 o g ( 4 - 3 . ) ) ( l ) = 3 ^ = - 9 , 

z=l 

thus 

V/ (2 ,3 , l ) = (6 ,0 , -9 ) . D 

Set X = (xi , . . . ,Xd). The partial derivative of / at XQ with respect to the 
variable x^, i = 1 , . . . , (i, is often indicated also by 

B^.f{xo) or fxiixo)-

The function 
5/ a/ 

dx. 
: a? I—> ^7^^(iE), 

defined on a subset dom ^ C dom / C R^ with values in R, is called partial 
derivative of / with respect to Xi. The gradient function of / , 

Vf:x^ Vf{x), 

is defined on the intersection of the domains of the partial derivatives. The gradient 
is an example of a vector fields i.e., a function defined on a subset of R^ with values 
in R^ (thought of as a vector space). 

Examples 8.15 

I Let us look at the previous examples. 

i) The gradient of / (x , y) = \Jx^ 4- y^ is 
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V/(x) y 

a n d d o m V / = R 2 \ { 0 } . 

ii) For the function / (x ,y ,z ) — y\og{2x — 3z) we have 

X 

V/(a;) 2y 
, log(2x-3^) , 

- 3 y 

2x — 3z 2x — 3z 

s o d o m V / = d o m / = {{x,y,z) eR^ :2x-3z> 0}. D 

Partial derivatives with respect to x^, i = 1 , . . . , rf are special directional deriva-
tives, which we discuss hereby. Let / be a map defined around a point XQ G M^ 
and suppose v G M^ is a given non-zero vector. By definition, / admits (partial) 
derivative at XQ in the direction v if the quantity 

dv ^ ^ t - 0 t 

exists and is finite. Another name is directional derivative along t;, written 
Di;/(xo). 

The condition expresses the differentiability at to = 0 of the map 11-^ f{xo-\-tv) 
defined around to (because if t is small enough, xo + tv is in the neighbourhood of 
XQ where / is well defined). The curve t H-> xo + tv = 7(t) is a parametrisation of 
the straight line passing through XQ with direction v, and ( /o7) ( t ) = /(cco + tt;). 
The directional derivative at XQ along v is therefore 

| (x„)=(i j /o7)(0). 

Let Ci be the unit vector whose ith component is 1 and all others zero (so 
ei = i, 62 = J, 63 = fe). Taking v = Ci gives the partial derivative at XQ with 
respect to Xi 

^ (xo) = ^ (xo), i = 1 , . . . ,d . 

For example, let d = 2 and i = 1: from 

f{xo + tei) = /((xo, yo) + ^(1,0)) = f{xo + t, yo) 

we obtain, substituting x = xo + 1 , 

df . . ,. f{xo^t,yo)- f{xo,yo) 
-— Xo, yo) = Im 
OCi t-^0 t 

.. fjx^yo)- f{xo,yo) df 
= lim = - - ( x o , y o ) . 

a:;^a;o X — Xo a X 
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It can be proved that if / admits partial derivatives with respect to every 
variable Xi in a whole neighbourhood of XQ, and if such maps are in this neigh-
bourhood continuous, then / admits at XQ derivatives along any vector i; 7̂  0; 
these directional derivatives can be written using the gradient as follows 

^ (xo) = V • V/(xo) = v,— (xo) + - + va^^ (^0). 

From this formula we also deduce the useful relations 

df 
— (xo) = e, • V/(xo), 2 = 1 , . . . , G?. 

Under the same assumptions on / , if 7 : / ^ R^ is any differentiable curve 
at to G / such that 7(^0) = XQ, the composite map (/ o 7)(t) = f{l{t)) remains 
differentiable at to and 

( ^ / o 7 ) w = y ( i o ) - V / ( x o ) ; (8.42) 

this should be understood as a generalisation of the chain rule seen for one real 
variable. 

Example 8.16 

Consider the distance function / (x , y) = yjx'^ -f- y^ and let 7 : (0, +00) —> R^ be 
the spiral 7(t) = (tcost, ts int) . Since 

/ (7( t ) ) = \/t2 cos21 + t2 sin^ t = t, 

we see directly that — f{^{t)) — 1 for any t > 0. Let us double-check the same 

result using (8.42). Define x — 7(t) and the unit vector x — j r ^ = (cost,sint). 

Then 7'(t) = (cost, sint) + t(— sint, cost) — x ^tx ; the notation for the unit 
vector X — (—sint, cost) is due to x • x = 0. We already know though 
(Example 8.15) that V/ (x ) = x for any x i^^. Therefore 

7'(t) • V/ (x ) = {x-^ tx^) -x = x-x-\-tx^-x= \\xf = 1, 

as expected. • 

8.6 Exercises 

1. Determine the polar coordinates of the following points in the plane: 

A = (5\/6,5^2) , B = (5^6, - 5 \ / 2 ) , 

C = (-5\/6, 5V2), D = (-5\/6, -5V2). 
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2. Write the following points of the plane in polar coordinates: 

a) ^ = (-5,0) b) ^ = (0,4) c) C = (0,-3) 

3. Determine the polar coordinates of the following points (without computing 
explicitly the angle): 

a) A = {2V3-3V2,1) b) B - (3^2 - 2 ̂ 3 , 3A/2 + 2\/3) 

Determine the polar coordinates of the following points in the plane (leaving 
the argument written in terms of a trigonometric function): 

A = (cos—,sm—), i) = (—cos —,sin—), C = (sm —.cos —). 
V 9 ' 9^ ^ 9 9^ ^ 9 9^ 

5. Change to polar coordinates: 

, ,V2 TT V2 , TT V2 TT y/2 . 7T, 
A = (^7- COS — — sm —, —— cos — + -—- sm —) 

^ 2 9 2 9 ' 2 9 2 9^ 
IX ^ / . 28 ^ . 28 , 
b) B — (2 cos —TT, 2 sin —TT) 

6. I Given Vi = (1,0, —2) and V2 = (0,1,1), find a real number A so that Vi + Xv2 
is orthogonal to Vs = (—1,1,1). 

I 7. I Describe the set of planar vectors orthogonal to v — (2 , -5) . 

I 8. I Determine the set of vectors in space orthogonal to Vi = (1,0, 2) and V2 = 
(2,-1,3) simultaneously. 

9. I Find the norm of the vectors: 

vi = ( 0 , A / 3 , 7 ) , V2 = ( 1 ,5 , -2 ) , vs = ( c o s - , s i n - c o s - , - s i n - s i n - ) . 

10. Determine the cosine of the angle formed by the following pairs: 

a) t. = (0,1,0), w = (0,^,2) b) t; = (1 ,2 , -1 ) , «; = (-1,1,1) 

11.1 Determine the unit vector u corresponding to w = (5, — 3, — V^). Tiien find 

the component ofv = (2,-1,2\ /2) along u and the orthogonal one. 

12. Write the following complex numbers in Cartesian form: 

Kb ' 10 a) ( 2 - 3 i ) ( - 2 + i) b) {3 + i){3-i){l + ^i) 

l + 2i 2 - i 5 
""' 3 - 4 i 5i ' ( l - i ) ( 2 - z ) ( 3 - i ) 
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13. Determine the trigonometric and exponential forms of: 

di) z — I 

c) z — 1 -\-i 

e) z 
1 + i 
1 - i 

14. Compute the modulus of: 

1 2i 
a z 

15. Prove that 

1-i i~l 

3z — i 

b) z = -l 

d) z = i{l-\-i) 

f) z = sin a + i cos a 

b) z == 1 + i -
l - 2 i 

= 1 if\z\ = 1. 
3 + 22; I 

16. Solve the following equations: 

a) z^ - 2z + 2 = 0 

z|z| — 2z -h i = 0 

e) z^ + iz = 1 

c) 

^ 

d) 

[f[ 

z^ + 3iz + l^ 

\zfz^ = i 

z' = \zf 

-0 

17. I Verify 1 + i is a root of the polynomial z^ ~ 5z^ + 10z^ — 10̂ ^ + 4 and then 
determine all remaining roots. 

18. Compute 2;̂ , z^, z^^ wiien; 

1 - i 
a) 2 = b) Z = 

^ / 3 • 

19. Write explicitly the following numbers in one of the known forms and draw 
their position in the plane: 

a z : b) ^ c z V2^^i 

20. Determine the domains of the functions: 

X -3y-\-7 
f{x,y) = 

X — y^ 

b) f{x,y) = A/1 - ?>xy 

c) f{x,y) = ,j3x^y^l 
1 

V2^^x 

d ) | / ( x , ^ , z ) = l o g ( x 2 + 2/2 + ^ 2 - 9 ) 
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2 1 . Calculate all partial derivatives of: 

a) f{x,y) = ^/SxTy^ at (xo.yo) = (1,2) 

b) fix, y , z) = 2/e^+^^ at (XQ, yo, ZQ) = ( 0 , 1 , - 1 ) 

22. Find the gradient for: 

X ~\~ y 
a) / (x ,^ ) = arctan b) f {x, y) = (x + y) \og{2x - y) 

x-y 

c) f{x,y, z) = sm{x + y) cos{y - z) d) f{x,y,z) = {x-\-yy 

23. Compute the directional derivatives of the following maps along the vector v 
and evaluate them at the point indicated: 

a) f{x,y)=xy/^^ ^ = (-1,6) XQ = (2,12) 

b) /(x,2/,^) = - ^ ^ i - ^ t; = (12 , -9 , -4 ) 0̂ 0 = (1 ,1 , -1) 

8.6.1 Solutions 

1. All four points have modulus r — \/25 •6 + 25-2 = 5\/8. Formula (8.2) yields, 
for A, 

^V2 1 TT 
OA = a r c t a n —— = a r c t a n —pz = — 

5\/6 V3 6 

since x > 0. Similarly for B 

/ I N 1 TT 
OB = arctan ( ^ j = — arctan —^ — ~ 7" • 

v 3 v 3 6 
For the point C, since x < 0 and ?/ > 0, 

/ 1 \ ^ 5 
61̂  = arctan I - ) - h 7 r = - - + 7 r = - 7 r , 

V 3 6 6 

while a: < 0, ^ < 0 for D , so 

1 TT 5 
t/2:> = a r c t a n —= — TT — — — TT = — T T . 

V 3 6 6 
2. Poiar coordinates in the plane: 
a ) r = 5 , 6> = 7r; b ) r = 4 , 6 > = f ; c ) r = 3 , 6> = - f . 
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3. Pohir coordhmtes: 

a) The modulus is r = \ /31 - 12v/6. From 2\/3 < 3\/2 we have 

1 ^ 2v/3 + 3V2 
6̂  = arctan — ^ ^ + TT = arctan 

2 ^ 3 - 3 ^ 2 - 6 
/ \ /3 v ^ , 

= - arctan (—- + —- j + TT . 

I)) r = 5\/6, 6̂  = arctan(5 + 2^6) . 

4. All points have unit modulus r = 1. For A 

OA = arctan tan — = — . 
9 9 

For B, X <{) and y > 0, so 

/ TT X TT 8 

t/B = arctan y— tan — j + 7 r = ——+7r= -TT. 

As for C, 
cos ^ 

^c = arctan 
smg 

by (2.17), and since the tangent function has period TT, it follows 

cosf sin(f + f ) 11 / 7 , 7 
tan —TT = - tan ( - — T T ) = tan—TT, sinf cos ( f+ f) 18 ^ 18 ^ 18 

hence Oc — ^TT . 

5. Pohw coordhmtes: 

a) Just note ^ = sin | = cos ^ and apply the addition formulas for sine/cosine: 

Because ||7r < |^, we immediately have r = 1 and 6 = ^TT . 

b) r - 2 , 0 = - | 7 r . 

G. The vectors Vi + At?2 and -̂ 3 are orthogonal if {vi + \v2) • '̂ 3 = 0. But 

(vi + \V2) •v:^ = Vi'V^^ \V2 • 1̂ 3 = - 3 + 2A , 

whence A = | follows. 

7. A vector (x, 1/) is orthogonal to v if (j;, y) • (2, —5) = 2x — 5^ = 0. The required 
set is then made by the vectors lying on the straight line 2a; — 5y = 0. One way to 
describe this set is {A(5, 2) : A G M} . 
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8. Imposing w = (x, y, z) orthogonal to vi and V2 yields w • vi = x -\-2z = 0 plus 
w ' V2 = 2x — y + 3z = 0, hence x — —2z and y = —z. Put z = A, and the set 
becomes {A(-2, -1 ,1) : A G R} . 

9. ||vi|| = ^/52, ||t;2|| = V30, | | i ; 3 | | - l . 

10. Angles between vectors: 

a) cos0 = ^; b) cos9 = 1. 

— (k _ i -:^\ _ 3 11. From ||it;|| = 6 it follows u = ( | , —^, — ^ ) . Since i; • w 

'^^ ~ M ' ~ 4 ' 4 ^ ' 

12. Cartesian form of complex numbers: 

a) - l + 8i; b) 2 + i; c) 

13. Exponential and trigonometric form: 

i-
e'2 ; 

2 . 
5 ' 

d) i i . 

a) z = cos — + z sm — b) z = cos TT + i sin TT = ê ^ ; 

c) z = \/2(cos j + i s i n - ) = \/2e'^ ; d) z = \ /2(cos-7r+isin-TT) = \/2e'4^ ; 

f) cos (^ - a j + i s i n (^-aj= e'(5~'') . 
4 4 

X TT . . TT -TT 
e) cos—+zsm — = e 2 ; 

^ 2 2 ' 

14. Modulus of complex numbers: 

b) 

15. We proceed indirectly and multiply first the denominator by \z\ (= 1) to get 

3z-i 

3 + iz 
= 

3z — i 

3z -\-i 
= 

3z — i 

3z-i 

\3z-i\ 

\3z — i\ 
= 1. 

16. Solving equations: 

a) z = l±i. 

b) The formula for a quadratic equation gives 

- 3 i ± x / - 9 - 4 -3i ± v ^ i 
'= 2 = 2 

-3ib^/l3 
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c) Write z = x -\- iy^ so that the equation reads 

{x + iy) \Jx^ -\- y'^ — 2x — 2iy + z = 0, 

or equivalently, 

X V x ^ T ^ - 2x + i (y^/x^Vy^ - 2?/ + l] = 0. 

The real and imaginary parts at the two sides of the equality must be the 
same, so 

f X (y/x'^ + y'^ -2) =0 

\yy^x^^y^-2y^l = 0. 

The first equation in the system implies either x = 0 or y/x^^-y^ = 2. Substi-
tuting 2 to the square root in the second equation gives 1 = 0 , which cannot 
be. Therefore the only solutions are 

(x^O 

\y\y\-2y^l=0. 

Distinguishing the cases y > 0 and y < 0, we have 

{l^-2y + l = 0, - d { 
x = 0 
-y^-2y + 1^0 

(x = 0 , (x = 0 

In conclusion, the solutions are z =^ i, z = z(—1 —\/2) (because y = — l + V ^ > 0 
must be discarded). 

n ^ ^ n ^ • ^ ^ v ^ .1 v ^ .1 
2 ^ ^ 2 2 2 2 

f) Using Izp = zz, the new equation is 

3 2 - 2 z ^ 2 / - 2 \ n 
z =z z <=^ z [z - z ) — 0 . 

One solution is certainly z = 0, and the others satisfy z — z'^ — 0. Write 
z = X -\- iy^ so to obtain 

( x'^ - y'^ — X = 0 
{2xy^y = 0. 

The bottom relation factorises into y{2x + 1) = 0, hence we have two subsys-
tems 

y = o i^ = ~l 
x{x-i) = o, \y' = -4-

Putting real and imaginary parts back together, the solutions read 

n 1 1 , V 3 . 
z = 0: 2 = 1: z = — ± 1. 

2 2 
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17. The fact that the polynomial has real coefficients implies the existence of the 
complex-conjugate z = l — itoz = l-\-idiS root. This means {z — l — i){z — l-{-i) — 
z^ — 2z -\- 2 divides the polynomial, indeed 

z^-5z^^l0z^-10z^4 = (z^-2z + 2)(z^-3z-h2) = {z^-2z-h2){z-l){z-2). 

Thus the roots are 

z = l-\-i^ z — l — ij z = lj 2 = 2. 

18. Powers of complex numbers: 

a) z^ = 2i, ^ 9 ^ - 1 6 ( 1 + ^), z2o = - 2 i o . 

b) Rationalising the denominators yields 

z^2 ^ + ̂ -z = i(V3-z) 
4 2 

Now write the number in exponential form 

from which 

2 -^i ^ . . TT 1. . /-.. 
z^ = e 3 ^ = cos - - 2 sm - = - (1 - v Sz); 
^9 . 3 ^ , - TT- TT . . . TT 

2:̂  = e 2" ^ = e 2 ^ = cos - + z sm - = z, 

on —^u- = e§"^ = ^ ( - l + V^i). 

19. Computing and drawing complex numbers: 

a) 2:0 = i , 2:1 = - | ( v ^ + «) , 2̂ = ^(V3 - i) 

They are drawn in Fig. 8.21, left. 

b) Write the number 1 as 1 = e°^\ Then because ê "̂ ^̂  = e^, we have 

zo = l, ^ 1 = 6 5 - , Z2=e-^^\ z3 = e-5-% ^4 = e-5-% 

see Fig. 8.21, middle. 

c) zo = v^es^^, zi — v/8e~8^^ are represented in Fig. 8.21, right. 

20. Domain of functions: 

a) The domain is {{x^y) G M^ : x ^ ?/^}, the set of all plane points off the 
parabola x = y"^. 
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Figure 8.21. From left: cubic roots of —i, fifth roots of unity, square roots of 2 — 2i 

b) The map is well defined where the radicand is non-negative, so the domain is 

{(x, 7/) G M^ : y < —- if X > 0, ^ > — if X < 0, y G R if X = 0}, 
6X 6X 

the set of points lying between the branches of the hyperbola y — ^' 

c) Only for 3x + y + 1 > 0 and 2^ — x > 0 the function is defined, which makes 

{(x, y) G M' : 2/ > - 3 x - 1} n {(x, y) G M^ : ?/ > | } 

the domain of the function, represented in Fig. 8.22 . 

d) The map is well defined where the logarithm's argument is positive, hence the 
domain is the subset of space 

{(x, y, z) G M^ : x^ + 7/2 + x^ > 9} . 

These are the points outside the sphere centred at the origin and with radius 
three. 

Figure 8.22. The domain of the map / (x , y) = v^3^T^~-fT J L _ 
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21. Partial derivatives: 

b) g ( 0 , l , - l ) = e - ^ | ( 0 , 1 , - 1 ) = 0 , | { ( 0 , l , - l ) = e - ^ 

22. Gradients: 

a) V / ( x , , ) = ( - ^ , ^ ) . 

b) V/(a;, y) = flog(2x -y) + % ± ^ , log(2a: - y) - ^ ^ ) . 
2x — y 2x — y ̂  

c) V/(x , ^, z) = (cos(a: + y) cos{y - z ) , cos(x + 2y - z) , sin(x + y) sm{y - z)) . 

d) V/(x , 2/, z) = {z{x + 2/)"-^, z(x + yy-^, (x + yY log(x + ^)) . 

23. Directional derivatives: 
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Integral calculus I 

Integral calculus tackles two rather different issues: 

i) Find all functions that differentiate to a given map over an interval of the real 
line. This operation is essentially an anti-derivation of sorts, and goes by the 
name of indefinite integration. 

ii) Define precisely and compute the area of a region in the plane bounded by 
graphs of maps defined on closed bounded intervals, known as definite inte-
gration. 

The two problems seem to have little in common, at first sight. The outcome of 
indefinite integration is, as we shall soon see, an infinite set of functions. Definite 
integration produces instead a number, the surface area of a certain planar region. 
A cornerstone result, not casually called the Fundamental Theorem of integral 
calculus lest its importance goes amiss, states that the two problems are actually 
equivalent: if one can reconstruct a map knowing its derivative, then it is not hard 
to find the area of the region bounded by the derivative's graph and the lines 
parallel to the coordinate axes, and vice versa. 

The beginning of the chapter is devoted to the former problem. Then, we 
explain two constructions of definite integrals, due to Cauchy and Riemann; albeit 
strongly related, these are presented as separate items for the didactic purpose of 
keeping the treatise as versatile as possible. Only in later sections we discuss the 
properties of integrals in a uniform manner. Eventually, we prove the Fundamental 
Theorem of integral calculus and show how it is employed to determine areas. 
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9.1 Primitive functions and indefinite integrals 

Let / be a function defined on some interval / . 

Definition 9.1 Each function F, differentiable on I, such that 

F'{x) - fix), Va: G / , 

is called a primitive (function) or an antiderivative of f on I. 

Not any map defined on a real interval admits primitives: not necessarily, in 
other words, will any function be the derivative of some map. Finding all maps that 
admit primitives on a real interval, which we call integrable on that interval, is 
too-far-reaching a problem for this book's aims. We limit ourselves to point out an 
important class of integrable maps, that of continuous maps on a real interval; 
the fact that continuity implies integrability will follow from the Fundamental 
Theorem of integral calculus. 

Examples 9.2 

i) Given the map f{x) = x on M, a primitive function is F{x) = ^x^. The latter 
is not the only primitive of / : each map G{x) = ^x'^ -\- c, where c is an arbitrary 
constant, is a primitive of / , because differentiating a constant gives nought. 

ii) Consider f{x) = ^ over the interval / = (—00,0). The collection of maps 
F{x) = log |x| + c (c G M) consists of primitives of f on L • 

The previous examples should explain that if F(x) is a primitive of f{x) on 
the interval / , then also maps of type F{x) + c, with c constant, are primitives. 
It becomes therefore natural to ask whether there are other primitives at all. The 
answer is no, as shown in the next crucial result. 

Proposition 9.3 IfF and G are both primitive maps of f on the interval I, 
there exists a constant c such that 

G{x) - F{x) -f c, Var e / . 

Proof. Take the function H{x) = G{x) — F[x) and diff"erentiate it 

E\x) = G\x) - F\x) = fix) - f{x) = 0, Vx G /. 

Thus H has zero derivative at every point of / , and as such it must be 
constant b}̂  Property 6.25. • 

Summarising, the following characterisation of the set of primitives of / holds. 
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Theorem 9.4 Let f be an integrable map on I and F a primitive. Then any 
primitive of f is of the form F{x) + c, with the constant c varying in E. 

That in turn motivates the fohowing name. 

Definition 9.5 The set of all primitives of f on a real interval is indicated 
by 

f{x)dx 
/ • 

(cabled indefinite integral of f, and spoken 'integral of f{x) dx^). 

If F is a primitive then, 

/ / ( x ) d x = W . ) + C : C . 

It has to be clear that the indefinite integral of / is not a number; it stands rather 
for a set of infinitely many maps. It is just quicker to omit the curly brackets and 
write 

/ 
f{x)dx = F{x)-\-c, 

which might be sloppy but is certainly eff'ective. 

Examples 9.6 

i) The map f{x) = x^ resembles the derivative 5x^ = Dx^, so a primitive of / 
is given by F{x) = |^^ and 

x^ dx — -x^ + c. 
5 

ii) Let f{x) = e^^. Recalling that De^^ = 2e^^, the map F{x) = ^e'^^ is one 
primitive, hence 

1 

/ 
e^^ dx = -e^^ + c. 

ill) As Dcos5x = —5sin5x, f{x) = sin5x has primitive F{x) = — ;^cos5x, and 

1 

/ 
sin 5xdx — — cos 5x + c. 

5 

iv) Let 

f{x) = sin \x 
( — sill 

[ sinx 

sin X if X < 0 , 

if X > 0 . 
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I We adopt the following strategy to determine all primitive maps of f{x) on R. 
I We split the real line in two intervals / i = (—00,0), I2 = (0,-KCXD) and discuss 

the cases separately. On 7i, primitives of f{x) are of the form 

Fi (x) = cos X + Ci with ci G M arbitrary; 

similarly, on /2, a primitive will look like 

F2{x) = — cosx + C2 C2 G M arbitrary. 

The general primitive F{x) on R will be written as 

^ ^ \F2{X) i f x > 0 . 

Moreover F will have to be continuous at x = 0, because a primitive is by mere 
definition differentiable - hence continuous a fortiori - at every point in R. We 
should thus make sure that the two primitives agree^ by imposing 

lim F{x) = lim F{x). 
x-^O- x^0+ 

As Fi and F2 are continuous at x = 0, the condition reads Fi(0) = i^2(0), that 
is 

1 + ci = - I + C2. 
The relation between ci, C2 allows to determine one constant in terms of the 
other (coherently with the fact that each primitive depends on one, and only 
one, arbitrary real number). For example, putting ci = c gives C2 = 2 + c. The 
expression for the general primitive of f{x) on R is then 

. . f cos X -\- c if X < 0, 
F{x) = < 

t — cos x + 2 + c i f x > 0 . D 

Theorem 9.4 states that the graph of a primitive of an integrable map is the 
vertical translate of any other (see Fig. 9.1). 

How to select a particular map among all primitives of a given / then? One 
way is to assign a value yo at a given point XQ on / . The knowledge of any one 
primitive F{x) determines the primitive G{x) — F{x) + CQ of f{x) whose value at 

Figure 9.1. Primitives of a given map differ by an additive constant 
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xo is precisely yo. In fact, 

G{xo) = F{xo) + Co = ?/o 

yields CQ = yo — F{xo) and so 

G{x)^F{x)-F{xo) + yo-

The table of derivatives of the main elementary maps can be at this point read 
backwards, as a list of primitives. For instance, 

c) 

d) 

f) 

a) / X ax = ——-- -h c 
J a-f 1 

b) I -Ax — log \x\ -h c 

/ sinrcda: = —cosx + c 

/ cos a; drc = sin X -h c 

e) e'^dx = e^ + c 

/
- 7: dx = arctan x -^ c 
1+x^ 

'̂ Iw= : dx = arcsin x -}- c 

(for x>0 OT x <0) 

(9.1) 

Examples 9.7 

i) Determine the primitive of f{x) = cos a: with value 5 at XQ = f. The map 
F{x) = sinx is one primitive. We are then searching for a G{x) = sinx + CQ. 
Imposing G ( | ) = 5 we see CQ = 4, and the required primitive is 

G{x) = sinx -f 4. 

ii) Find the value at Xi = 3 of the primitive of f{x) — 6x^ + 5x that vanishes at 
the point XQ = 1. One primitive map of f{x) is 

F{x) = 2x^ + ^x\ 

If G{x) = F{x) + Co has to satisfy G(l) = 0, then co = — | , whence 

G{x) = 2x^ + 1x^-1. 
The image of a;i = 3 is G(3) = 72. 
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iii) Consider the piece wise-defined map 

i f x < 1, 

^^^^ l ( x - 2 ) 2 i f x > l . 

Mimicking Example 9.6 iv) we obtain 

{ |x^ + ci if X < 1, 

2 

| ( x - 2 ) 3 + C2 i f x > 1. 
Continuity at x = 1 forces ^ + ci = -^ + C2. From this relation, writing ci = c 
gives 

{\x^ + c i f x < l , 
^ ^ ' ' ^ ^ | i ( x - 2 ) ^ + | + c i f x > l . 

Let us find the primitive of f{x) with zero XQ = 3. Since XQ > 1, the second 
expression of F{x) 

F(3) = i ( 3 - 2 f + ^ + c = 0 

tells c = — I . It follows 

if X < 1, 

-\ i f x > l . 

Beware that it would have been wrong to make ^x^ + c vanish at XQ = 3, for 
this expression is a primitive only when x < 1 and not on the entire line. 

Determining the primitive of / (x) that is zero at XQ = 1 does not depend on the 
choice of expression for F(x), because of continuity. The solution is 

W^'^ - \ if X < 1, 

\\{x-2f + \ i f x > l . D 

9.2 Rules of indefinite integration 

The integrals of the elementary functions are important for the determination of 
other indefinite integrals. The rules below provide basic tools for handling integrals. 

Theorem 9.8 (Linearity of the integral) Suppose f{x)^g{x) are inte-
grable functions on the interval I. For any a,/3 eR the map af{x) -f Pg{x) 
is still integrable on I, and 

f ( a / ( x ) + ^p(x)) dx = a / fix) dx + /? / g{x) dx. (9.2) 
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Proof. Suppose F{.r) is a primitive of /(.r) and G{.v) a primitive of (j{x). By 
liiK^arity of tli(̂  derivative 

[(^F(.r) i- .i(:{.v)\ = nF\.r) + ,/C/(.r) = n/(..r) + .i(j{x). V.r G / . 

This means (\F(.r) + .iG'(,/'! is a primitive of (\f(x) + ^^(j{x) on / . whicli is 
the sanu^ as (9.2). n 

The above property says that one can integrate a sum one summand at a time, 
and pull multiplicative constants out of the integral sign. 

Examples 9.9 

i) Integrate the polynomial 4x^ + 3x — 5. By (9.1) a) 

(4x^ + 3x - 5) dx = 4 / x^ dx + 3 xdx-5 dx 

= 4 Q x 3 + c i j + 3 Q x 2 + c2J - 5 ( x + C3) 

4 3 3 2 . 
= -X -\- -x — 5x + c. 

The numbers ci, C2, C3 arising from the single integrals have been 'gathered' into 
one arbitrary constant c. 

Integrate f{x)= cos^ x. From 

cos^ X = - (1 + cos 2x) 

and Dsin2x = 2cos2x, it follows 

/
cos^ xdx = - dx -\— / cos 2x dx = - x + - sin 2x + c. 

2j 2j 2 4 

Similarly 

/ ' • 
sm X dx = -X sm 2x + c. 

2 4 

Theorem 9.10 (Integration by parts) Let f{x),g{x) be differentiable 
over I. If the map f{x)g{x) is integrable on I, then so is f{x)g'{x), and 

J f{x)g'{x) dx = f{x)g{x) - j f'{x)g{x) dx. (9.3) 
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Proof. Let H{x) be any primitive of f\x)g{x) on / . By formula (6.4) 

[f{x)g{x) - H{x)]' = {f{x)g{x))' - H'{x) 

= r{x)g{x) + f{x)g'{x) - f'{x)g{x) 

= f{x)g'{x). 

Therefore the map f{x)g{x) — H{x) is a primitive of f{x)g'{x), exactly 
what (9.3) claims. • 

In practice, one integrates a product of functions by identifying first one factor 
with f{x) and the other with g'{x)] then one determines a primitive g{x) of g'{x) 
and, at last, one finds the primitive of f'{x)g{x) and uses (9.3). 

Examples 9.11 

i) Compute 

xe^ dx. I-
Call f{x) = X and g^{x) = e^. Then / ' (x) = 1, and we conveniently choose e^ as 
primitive of itself. Formula (9.3) yields 

Since the constant of integration is completely arbitrary, in the last step the sign 
of c was flipped with no harm done. 

Had we chosen f{x) = e^ and g'{x) — x {f'{x) = e^ and g{x) = \x^)^ we would 
have ended up with 

/ xe^ dx = -x^e"^ ~ o ^^^^ ̂ ^' 

which is not particularly helpful (rather the opposite). 

ii) Determine 

logxdx. 
/ ' 

Let us put f{x) = logx and g^{x) = 1, so that f\x) = ^, g{x) = x. Thus 

/ log xdx = X log X — / — xdx = x log x — dx 

= X log X — {x -\- c) = x(log X — 1) + c, 

given that c is arbitrary. 

iii) Find 

S = e^ sin xdx. 

We start by defining /(x) = e^ and g\x) = sinx. Then f\x) — e^, ^(x) = 
— cosx, and 

S = -e^cosx-h / e"" ( 'cos xdx. 
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Let us integrate by parts once again, by putting f{x) = e^ and g^{x) = cosx 
this time. Since f'{x) — e^, g{x) = sinx, 

S = - e ^ cos X + e^ sin X - / e^ sin x dx = e^ (sin x — cos x) — S. 

A primitive F{x) of e^ sinx may be written as 

F{x) = e^(sinx — cosx) — G{x), 

G{x) being another primitive of e^ sinx. By the characterisation of Theorem 9.4 
then, 

2S = e^(sinx — cosx) + c 
hence 

S =-e^{sinx — cosx) + c. ^ 

Theorem 9.12 (Integration by substitution) Let f{y) be integrable on 
the interval J and F{y) a primitive. Suppose (p{x) is a differentiable function 
from I to J. Then the map f{'^{x))^^{x) is integrable on I and 

j f{<f>{x))ip'{x) dx = F{^{x)) + c, (9.4) 

which is usually stated in the less formal yet simpler way 

j f{ip{x))ip'{x) dx^ j f{y) dy. (9.5) 

Proof. Formula (6.7) for differentiating a composite map gives 

(!./' (I// (l.r ^ 

Tlius F{^{X)) integrates f(^(.v))^\x). i.e., (9.4) is proven. • 

We insist on the fact that the correct meaning of (9.5) is expressed by (9.4): 
the integral on the left is found by integrating / with respect to y and then 
substituting to y the function (p{x), so that the right-hand side too depends on the 
variable x. Formula (9.5) is easy to remember with a trick: differentiate y — ^{x)^ 
so that ^ = ^\^)' Viewing the right-hand side as a formal quotient (in Leibniz's 
notation), multiply it by dx; substituting dy — kp'{x)dx in one integral yields the 
other. 

Examples 9.13 

i) Determine 

/ 
XQ^ dx. 
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I Let y = (p{x) = x^, so (p'{x) = 2x. Then 

/ xe^^dx = - / e'^^2xdx = - e^dy = -e^ + c. 

Going back to x, 

/ xe^ dx = -e^ + c. 

ii) Compute 

/ t anxdx. 

First, recall tanx = and (cosx)' = — sinx. Put y — if{x) = cosx: 
cosx 

/
t anxdx = — / (cosx)'dx = — - dy 

J cosx J y 
= — log |y| -f c = — log I cos x| + c. 

iii) Find 
r 1 

dx. J yiT + x̂  
By (6.17) it follows directly 

J \/n + x̂  
: dx = sinh ^ x + c. 

Alternatively, we may substitute y — ip{x) = v T + x ^ — x: 

dv = I , — 1 I dx = , — dx , 

hence . dx = — dy. This gives 
V1 + a;2 y 

/ , dx = - / -dy = -\og\y\-\-c=- log(A/l + x2 - x) + c, 

where the absolute value was removed, as \ / l -f x^ — x > 0 for any x. 
The two expressions are indeed the same, for 

— log( V 1 + x^ — x) = log( v 1 + x^ + x) = sinh""^ x . 

iv) The integral 

/
, dx 

can be determined by the previous technique. The substitution y — (p{x) 
\/x^ — 1 — X gives 

/
—==^^ dx — log IV x^ — 1 + x| + c. 
VX^ — 1 
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v) The integral 

S= f y^n^dx 

is found as in example iii). Integrate by par ts with f{x) — VT+~x^ and g'{pu) — 1, 

so j'{x) = , g{x) = X and 

= X 

Therefore 

= x \ / l + x^— / V 1 + x^ dx + / . dx 

J J viTx2 
Vl + x2 - 5 + [ —=l=dx. 

J v T T ^ 

2 5 = X A / T T ^ + / - 7 = ^ dx = x V l + ^ ^ + l o g ( \ / l + x2 + x) + c, 
J V1 + x^ 

and eventually 

5 = - X \ / l + x 2 + - l o g ( V l + x 2 + x ) + C . 

Similar story for / v x^ — 1 dx. 

vi) Determine 

5= /vT^x^dx. 

As above, we may integrate by par ts remembering / —== dx = arcsinx + c. 

Namely, with / ( x ) = y l ^ ^ z ? , g'{x) = 1, we have f'{x) = , 5f(x) = x, 
V1 - ^2 

whence 

J V1 - ^2 J V1 - 3̂ 2 
So we have 

/ r 1 
: dx , 2S = xVl-x^^ [ ^=L 

J VT^ I.e., 
vT- x̂  

S — - X V 1 — x^ + - arcsinx + c . 

Let us do this in a different way. Pu t y = arcsin x, so dx = cos y dy and V l — 3:̂ ^ = 
cos?/. These give 

5 = / cos^^dy = - / ( c o s 2 ^ + l ) d y = - s i n 2 ^ + 2 ^ ~̂  "̂  

1 
- s m i / c o s ? / , ^ 

1 1 A 0 1 
+ - ^ + c = - x y l — ^ + - a rcsmx + c . 
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vii) Finally, let us determine 
r 1 

Ax, J e^ -\- e~ '̂ 

Change y = e^, so dy — e^dx, or dx = -dy. Then 

dx = -.— dy 

2 dy = arctan y + c = arctan e^ + c. D 
J 1 + 2 y 

Example ii) is a special case of the following useful relation 

/ (p{x) 
(9.6) 

that descends from (9.5) by f{y) = - : 

Hitherto all instances had one common feature: the maps / were built from a 
finite number of elementary functions by algebraic operations and compositions, 
and so were the primitives F. In such a case, one says that / is integrable by 
elementary methods. Unfortunately though, not all functions arising this way 
are integrable by elementary methods. Consider f{x) — e~^ , whose relevance in 
Probability Theory is paramount. It can be shown its primitives (which exist, for / 
is continuous on R) cannot be expressed by elementary functions. The same holds 
. ./ X sinx 
for f[x) = . 

The problem of finding an explicit primitive for a given function is highly non-
trivial. A large class of maps which are integrable by elementary methods is that 
of rational functions. 

9.2.1 Integrating rational maps 

Consider maps of the general form 

P{x) m = Q{xy 

where P{x) and Q{x) denote polynomials of degrees n,m {m > 1) respectively. 
We want to prove they admit primitives in terms of rational functions, logarithms 
and inverse tangent functions. 

First of all note that if n > m, we may divide P{x) by Q{x) 

P{x) = Q{x)D{x)^R{x), 

with D{x) a polynomial of degree n — m and R{x) of degree < m — 1. Therefore 
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/«../..,a../|| dx. 

R{x) 
The problem boils down to integrating a rational map g{x) — in which the 

numerator's degree is less than the denominator's. 

We discuss a few simple situations of this type, which will turn out to be 
fundamental for treating the generic integrand. 

i) Let gix) = , with a G M; by (9.1) b) 
X — a 

J x-a 
dx = log |a: — a| 4- c. (9.7) 

ii) Take g{x) = —, where r > 1; using (9.1) a) yields 
[x — ay 

J •dx = 
{x — ay 1 — r {x — ay~^ + c. (9.8) 

iii) Let g{x) 
1 

x^ + 2px + q 
, with p^ — q < 0, so that the denominator has no real 

roots and is positive. Putting 

s = \fq-^ > 0, 

a little algebra shows 

x'^ -\-2px-\-q = x'^ ̂  2px -{-p'^ -\-{q- p^) = (x + pf + 5̂  = s^ 

x^-p 

1 

1 + 
x^p 

Now substitute y = (p{x) = 

J x'^ -\- 2px -\- q 5̂  y 1 2px -\- q s^ J 1 -\- y"^ 

Recalling (9.1) f) we may conclude 

sdy. 

I x'^ -f 2px -\- q s 

1 x -fp 
dx — - arctan 1- c. (9.9) 

i\) Consider g{x) 
ax -hb 

x^ + 2px + q 
, with p^ — q still negative. Due to the identity 

ax -\-b = ax -\- ap-\-b — ap — - {2x + 2p) + {b — ap) 
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we write 

dj; ^ — / (^x -\- (h — CLV) I d x 
x2 + 2px + g 2 J x'^ + 2px-\-q ^ ^ J x"^ + 2px-^q 

Now use (9.6) with ip{x) = x^ + 2px + q, and (9.9): 

/ 
ax + b , CL. , 9 ^ . b — ap x + p 

2 , o^^ I ^ <î  = o log(a;^ + 2px -\-q)-\ j ^ arctan ——^ + c. (9.10) x^ + 2px + g 2 5 

)re general 

grating by parts 

dx ~\~ b 
v) More generally, let g(x) — --^ —, with p^ — q < ^ and r > 1. Inte-

(x^ + 2px -]- qy 

I dx 
(x2 + 2px +9)^-1 

and substituting ip{x) = x^ + 2px + g, we end up writing the integral of g as sum 
of known terms, plus the integral of a map akin to g, but where the exponent is 
r — 1. Thus the integrand to consider simplifies to one whose denominator is raised 
to a smaller power. From r = 1, solved above, we find r = 2, then r = 3 et cetera 
up to the given r, one step at a time. The argument's details are left to the wilhng 
reader. 

Examples 9.14 

As direct application we compute 

I n In , 1̂ 
- dx = - log |x — 2| + c. 2x - 4 2 

1 ^ 1 
d x = —7777; TT + C, 

/ 

J (3a;+ 5)2^""^ 3(3a; + 5) 
f 4a; - 5 _ f 2x - 2 _ f 1 

J x^-2x + 10 J x^-2x + 10 J {x - 1 ) 2 + 9 
1 X — 1 

= 2 log(x^ - 2x + 10) - - arctan — he. D 
o o 

i?(x) 
Reducing the integration of the general rational function ^(x) = to the 

y(xj 
previous special cases requires a factorisation of the denominator involving only 
terms like 

(x - ay or (x^ + 2;px + qY 

with p^ — q <0. The existence of such a decomposition descends from a version of 
the Fundamental Theorem of Algebra. 

Theorem 9.15 A polynomial Q{x) of degree m with real coefficients decom-
poses uniquely as a product 

Q{x) = d{x-aiY' ' . • {x-ahy''{x^-\-2pix+qiy' - • • {x'^+2pkX+qky\ (9.11) 
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where d, a^, pj^ QJ are real and ri, Sj integers such that 

ri H h r/i + 2si H \-2sk — m. 

The ai, all distinct^ are the real roots of Q counted with multiplicity r^. The 
factors x^+2pjX+qj are pairwise distinct and irreducible overR^ i e . , p^—Qj < 
Of and have two complex{-conjugate) roots Pj^± of multiplicity Sj. 

Using the factorisation (9.11) of Q(x) we can now write g{x) as sum of partial 
fractions 

^ = ^ [Fi(a-) + • • • + FH{X) + F,{x) + • • • + h{x)] , (9.12) 

where each Fi{x) takes the form 

X — ai {x — ai^ {x — aiY'^' 

while Fj{x) are like 

Fix) = 5^1^ + ^J^ + ^ Bj2X + Cj2 ^ _^^^^^ Bjr,X + Cj 
x'^ + 2pjX + Qj (x^ + 2pjX + Qj)'^ (x^ + 2pjX + Qj)^^ ' 

for suitable constants Au^Bj/^^Cji^. Note the total number of constants is ri + 
• • -r/, + 25i H [-2sk = m. 

To recover the undetermined coefficients we can transform the right-hand side 
of (9.12) into one fraction, whose denominator is clearly Q{x). The numerator 
TZ{x) is a polynomial of degree < m — I that must coincide with i?(x), and its 
coefficients are linear combinations of the unknown constants we are after. To find 
these numbers, the following principle on identity of polynomials is at our disposal. 

Theorem 9.16 Two polynomials of degree m—l coincide if and only if either 
of the next conditions holds 

a) the coefficients of corresponding monomials coincide; 
b) the polynomials assume the same values at m distinct points. 

The first equivalence is easily derived from Proposition 7.5. 

Going back to the m unknowns Au^Bjij^^Cj^^ we could impose that the coef-
ficients of each monomial in lZ{x) and R{x) be the same, or else choose m values 
of X where the polynomials must agree. In the latter case the best choice falls on 
the real zeroes of Q(x); should these be less than m in number, we could also take 
x = 0. 

Once these coefficients have been determined, we can start integrating the 
right-hand side of (9.12) and rely on the fundamental cases i)-v) above. 

file:///-2sk
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As usual, the technique is best illustrated with a few examples. 

Examples 9.17 

i) Let us integrate 

^ ( " ) = X 2 + X - 2 • 
The numerator has greater degree than the denominator, so we divide the poly-
nomials 

f{x) = 2x-l+ / ^ ^ . 
•̂ ^ ^ x 2 + x - 2 

The denominator factorises as Q{x) = (x — l)(x + 2). Therefore the coefficients 
to be found, Ai = An and A2 — A215 should satisfy 

x + 5 Ai A2 
x'^^x-2 x-1 x + 2' 

that is to say 

X + 5 = Ai{x + 2) + A2{x - 1), (9.13) 

hence 

X + 5 = (Ai -h A2)x + {2Ai - A2). 

Comparing coefficients yields the linear system 

r A i + A 2 = l, 

I 2Ai - ^ 2 = 5, 

solved by Ai = 2, ^2 = — 1- Another possibility is to compute (9.13) at the 
zeroes x = 1, x = —2 of Q(x), obtaining 6 = 3Ai and 3 = —3^2, whence again 
Ai = 2,^2 = - 1 . Therefore, 

j f{x)dx = j{2 X -l)dx-\-2 J ^^"Y ^^ ~ J ^"^ ̂ ^ 

= x^ - x - h 2 1 o g | x - 1| - l o g | x + 2| + c . 

ii) Determine a primitive of the function 

x^ - 3x + 3 m x^ — 2x^ + X' 
^2 The denominator splits as Q{x) = x(x — 1) , so we must search for Ai = An, 

A21 and ^22 such that 
x^ - 3x -h 3 _ Ai A21 A22 

x^ - 2x2 + X X ' X - 1 ' (x - 1)^' 

or 
.2 Q ^ I Q _ /I / ^ 1 \ 2 x^ - 3x + 3 = Ai{x - ly + ^21^(2: - 1) + ^22^. 

Putting X = 0 yields Ai = 3, with x = 1 we find A22 = 1- The remaining 
A21 is determined by picking a third value x 7̂  0,1. For instance x = — 1 gives 
7 = 12 -h 2^21 - 1, so A21 = - 2 . 
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In conclusion, 

/ / ( . ) d . = 3 / i d . - 2 / ^ d . + / ^ d x 

= 3 log \x\ — 2 log b — 11 + c. 

X — 1 

iii) Integrate 

., , 3x^+x-A 
x^ + 5^2 + 9x + 5 * 

The point x = —1 annihilates the denominator (the sum of the odd-degree 
coefficients equals those of even degree), so the denominator splits Q{x) = 
{x + l)(x^ + 4x + 5) by Ruffini's rule. The unknown coefl^icients are A = An, 
B = Bin C = Cn so that 

3^2 + X - 4 A Bx^C 

x3 + 5x2 + 9x + 5 ^ _̂  1 x2 + 4x + 5' 
hence 

3x^ + X - 4 = A(x^ + 4x + 5) + {Bx + C){x + 1). 

Choosing x = - 1 , and then x = 0, produces A = -1 and C = 1. The last 
coefl[icient 5 = 4 is found by taking x = — 1. Thus 

/(x) dx == - / dx + / -1^ ^ dx 
-^^ ^ J x + 1 yx2+4x + 5 

r i ^ ^ r 2 x + 4 ^ ^ f 1 
= - / dx + 2 / -7: dx - 7 / —TT dx y x + 1 y x2 + 4x + 5 y i + (x + 2)2 
= - l o g |x + 1| + 21og(x^ + 4x + 5) - 7arctan(x + 2) + c. D 

Note that many functions / (x) that are not rational in the variable x can be 
transformed - by an appropriate change t = (p{x) - into a rational map in the new 
variable t. Special cases thereof include: 

i) / is a rational function of ^x — a for some integer p and a real. Then one lets 

t — ̂ x — a, whence x = a-\-t^ and dx = pt^~^dt. 

ii) / i s rational in e"^ for some real a / 0. The substitution 

t = e^^ gives x = - logt and dx = — dt. 
a at 

iii) / is rational in sinx and/or cosx. In this case 

X 
t = tan - , 

2 

together with the identities 

2^ 1 - ^ ^ / ^ . . N 
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does the job, because then x = 2arctant, hence 

iv) If / is rational in sin x, cos^x, tanx, it is more convenient to set t = tanx 
and use 

from X = arctan t, it follows 

d^ = rT^d*- (9.17) 

In the concluding examples we only indicate how to arrive at a rational expres-
sion in t, leaving it to the reader to integrate and return to the original variable x. 

Examples 9.18 

i) Consider 
X 

IT : dx. 
+ v ^ x - 1 

We let t = y/x — 1, so X = 1 +1^ and dx = 2tdt. The substitution gives 

ii) The integral 

5 = 2/^i±^d. 
+ t 

/ : e2^ - 2e^ + 2 

becomes, by t = e^, dx = | dt, 

dx 

J t^{f-'. 
iii) Reduce the integrand in 

s=l "̂̂  d. 
J 1 + sin X 

to a rational map. 
Referring to (9.14) and (9.15), 

+ t2) 

S = / ^;^ dt. 
2t + 2) 

'-'Id^tm -'*• 
iv) At last, consider 

S = / ^ - y - d x . 
J 1 + sin X 

Here we use (9.16) and (9.17): 
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Figure 9.2. Trapezoidal region of / over [a, b] 

9.3 Definite integrals 

Let us consider a bounded map / defined on a bounded and closed interval / = 
[a, 6] C M. One suggestively calls t rapezo ida l reg ion of / over t h e interval 
[a, &], denoted by T ( / ; a, 6), the part of plane enclosed within the interval [a, 6], the 
vertical lines passing through the end-points a, b and the graph of / (see Fig. 9.2) 

T ( / ; a , 6 ) - {{x,y) G R ' : a<x<b, 0<y< f{x) or f{x) < y < 0} 

(which constraint on y clearly depending on the sign of f{x)). 

Under suitable assumptions on / one can associate to the trapezoidal region of 
/ over [a^b] a number, the 'definite integral of / over [a,b]\ In case / is positive, 
this number is indeed the area of the region. In particular, when the region is 
particularly simple (a rectangle, a triangle, a trapezium and the like), the definite 
integral returns one of the classical formulas of elementary geometry. 

The many notions of definite integral depend on what is demanded of the 
integrand. We shall present two types. The first one, normally hnked to the name 
of Cauchy, deals with continuous or piecewise-continuous maps on [a, 6]. 

Def in i t ion 9 .19 A map / : [a,fe] ^ R is p i ecewi se - cont inuous when it 
is continuous everywhere except at a finite number of points, at which the 
discontinuity is either removable or a jump. 

The second construction goes back to Riemann, and leads to a wider class of 
integrable functions^. 

^ A further type, known as Lebesgue integral, defines yet another set of integrable func-
tions, which turns out to be the most natural in modern applications. This theory 
though goes beyond the purposes of the present textbook. 
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9.4 The Cauchy integral 

To start with, we assume / continuous on [a, 6], and generalise slighty at a succes-
sive step. The idea is to construct a sequence that approximates the trapezoidal 
region of / , and then take a limit-of-sorts. Let us see how. 

Take n any positive integer. Divide [a, b] in n equal parts of length Ax = —f" 
and denote hy Xk — a -\- kAx^ k — 0 , 1 , . . . , n, the subdivision points; note that 
they are ordered increasingly by the index, as a = XQ < Xi < . . . < x^-i < Xn = b. 
For fc = 1 , . . . , n, we denote by Ik the interval [xjfe_i, x^]. The map / is continuous 
on [a, 6], hence by restriction on each 7^; Weierstrass's theorem 4.31 implies / 
assumes minimum and maximum on Ik, say 

rrik = min/ (x) , Mk = max/(x) . 
xeik xeik 

Define now the quantities 

Sn = 22 '^k^x and Sn = 22 ^k^x, 

called respectively lower sum and upper sum of / for the above partition of [a, b]. 
By definition rrik < Mk and Ax > 0, so Sn < Sn-

When / is positive on [a, 6], the meaning is immediate (Fig. 9.3): rrik Ax repre-
sents the area of the rectangle rk — Ik^ [0, ̂ i t] , contained in the trapezoidal region 
of / over Ik. Thus, Sn is the total area of the rectangles r^ and approximates from 
below the area of T ( / ; a, b). For the same reasons, Sn is the area of the union of 
of rectangles Rk — Ik x [0, M^], and it approximates T ( / ; a, b) from above. 

Using properties of continuous maps defined on closed and bounded intervals, 
we can prove {-^ Cauchy integral) the following. 

Theorem 9.20 The sequences n »-> 5n^ ^ -̂* Sn are convergent^ and their 
limits coincide. 

Figure 9.3. Lower sum (left) and upper sum (right) of / on [a, b] 
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Based on this fact, we can introduce the definite integral. 

Definition 9.21 One calls definite integral of / over [a, b] the number 

I f{x) dx = lim Sn = lim Sn 
J a 

{which we read integral from a to b of f{x)dx or just integral from a to 6 
o f / ) . 

Examples 9.22 

i) Take a constant / on [a, b]. If c is its value, then rrik ~ Mk — c for any fc, so 
n 

Sn = Sn = C 2_^ ^X = C(6 — o) 
k=l 

whichever n. Therefore / f{x) dx = c{b — a). 
J a 

ii) Consider f{x) = x over [0,1]. The region T(x;0,1) is the isosceles right 
triangle of vertices A = (0,0), B = (1,0), C = (1,1) that has area | . We want 
to check the definite integral of / over [0,1] gives the same result. Fix n > 1. 
Then Ax — ^ and, for A: = 0 , . . . ,n, x/e = ^. Since / is increasing, rrik = Xk-i 
and Mk = Xk, so 

n 1 ^ ^ 1 ^ 

Sn = ^ Xk-lAx = -^ ^ ( / C - 1), Sn = ' ^ XkAx = —^^^k. 

/c=l /c = l fc=l k=l 
n 

Now 2 . ^ is the sum of the first n natural numbers, hence ^̂ ^̂  ,̂ by (3.2). For 
/ e = l 

analogous reasons /[^(A: — 1) is the sum of natural numbers from 0 (or 1) to 

n — 1, and equals ^̂  ^ '^, whence 2 ' 

_ n ( n - 1) _ n ( n + l) 

2n2 ' ^" 2n2 ' 
Taking the limit for n -^ co of these sequences, we find | for both. D 

This example shows that even for a function as harmless as f{x) = x, computing 
the definite integral using the definition is rather demanding. Obviously one would 
hope to have more efficient tools to calculate integrals of continuous maps. For that 
we shall have to wait until Sect. 9.8. 



320 9 Integral calculus I 

We discuss now the extension of the notion of definite integral. If / is continuous 
on [a, b] and x* denotes an interior point of the interval, it is possible to prove 

/ / ( x ) d x = / f{x)dx+ f f{x)dx. 
Ja J a J X* 

This formula's meaning is evident, and it suggests how to define integrals of 
piecewise-continuous maps. Let XQ = a < xi < . . . < Xm-i < Xm = b be the 
points where / is not continuous, lying between a and b (assuming the latter 
might be discontinuity points too). Let fi be the restriction of / to the interior of 
[x^_i,x^] that extends / continuously at the boundary 

M^) = { 

lim / (x) , forx = x^_i, 

/ (x) , for Xi-i <x <Xi, 

lim / (x) , for x = x^. 

We define 

/ f{x)dx = f^ f Mx)dx 

If / is genuinely continuous on [a, 6], the above box coincides with Definition 9.21, 
because m = 1 and the map / i is / . 

Moreover, it follows immediately that modifying a (piecewise-)continuous map 
at a finite number of points will not alter its definite integral. 

The study of Cauchy's integral will be resumed with Sect. 9.6. 

9.5 The Riemann integral 

Throughout the section / will indicate a bounded map on [a, b]. Let us start from 
integrating some elementary functions (called step functions), and slowly proceed 
to more general maps, whose integral builds upon the former type by means of 
upper and lower bounds. 

Choose n + 1 points of [a, b] (not necessarily uniformly spread) 

a = xo < xi < . . . < x^_i < Xn = b. 

They induce a partition of [a, 6] into sub-intervals Ik = [xk-i^Xk]^ k = 1 , . . . ,n. 
Dividing further one of the Ik we obtain a so-called finer partition^ also known as 
refinement of the initial partition. Step functions are constant on each subinterval 
of a partition of [a, 6], see Fig. 9.4. More precisely. 
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Figure 9.4. Graph of a step function on [a, b] 

Definition 9.23 A map f : 
partition of [a, b] by {XQ, xi,. 
such that 

fix) = Ck, 

[a,b] -^ R is a step function if there exist a 
.. jXn} together with constants ci ,C2,. . . , Cn € M 

\fx e{xk-i,Xk), A: = l , . . . , n . 

We say that the partition is adapted to / if / is constant on each interval 
(xk-i^Xk)' Refinements of adapted partitions are still adapted. In particular if 
/ and g are step functions on [a, 6], it is always possible to manifacture a parti-
tion that is adapted to both maps just by taking the union of the points of two 
partitions adapted to / and g^ respectively. 

From now on 5([a, b]) will denote the set of step functions on [a, b]. 

Definition 9.24 Let f G 5([a,6]) and {xo,Xi,. . . ^Xn} be an adapted parti-
tion. Call Ck the constant value of f on (xk-i^Xk)- Then the number 

/ = X^Cfc(Xfc -Xk-l) 

is called definite integral of f on I = [a, 6]. 

A few remarks are necessary. 

i) The definition is independent of the chosen partition. In particular, if f{x) = c 

is constant on [a, 6], f = c{b — a). 

ii) Redefining / at a finite number of places leaves the integral unchanged; in 
particular, the definite integral does not depend upon the values of / at points 
of discontinuity. 

In case / is positive on / , the number fj f represents precisely the area of the 
trapezoidal region of / over / : the latter is in fact the sum of rectangles with base 
Xk — Xk-i and height Ck (Fig. 9.5). 

The next result will play an important role. 
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Figure 9.5. Region under a positive step function on the interval [a, b] 

Property 9.25 Ifg^h G <S([a, 6]) are such that g{x) < h{x), \/x G [a, 6], then 

Proof. Let {XQ-XI, . . . . X ^ } define a partition adapted to both maps (this exists 
by what said earlier). Cah Ck and dk the values assumed on {xk-i,Xk) by 
g and h. respectively. By hypothesis 6> < (̂A , ^ = 1...., n, so 

h. D 

.. n n „ 

g = y]c/,-(^/c -Xk-i) < y^dkixk -xk-i) = / 
Now let / : [a, 6] ^̂  R be a generic bounded map, and put 

Sf = sup f{x) G M and if = inf f{x) G M. 
xe[a,b] xe[aM 

We introduce the sets of step functions bounding / from above or from below, 
•namoK;-

contains all those smaller than / . These are not empty, for they contain at least 
the constant maps 

h{x) = Sf and g{x) = if . 

It then makes sense to look at the sets of definite integrals. 

Isf = \^he 5([a,6]) :f{x) < h{x), \/x G [a,6]} 

contains all step functions bigger than / , while 

57 = {g eS{[a,b]) : g{x) < f{x), Vx G [a,i>]} 
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Definition 9.26 The number 

is called the upper integral of f on I = [a^b], and 

the lower integral of f on I = [a,b]. 

As St ^ 0, clearly f^f < +oo, and similarly Jjf > — oo. The fact that such 
quantities are finite relies on the following. 

Property 9.27 Each bounded map f defined on [a, 6] satisfies 

P r o o f . U (j G S'J cUid // G S^J. 1)\' *l(^fiiiiti()ii 

(l{,v] <: /( . /•) < //(./') . v./- G [d.b] 

so I^-()i)(^i-t\' 9.2-^) i]upli(^s 

(J < / h. 

l\(H^])ing (J Wxvd a n d var>-iii<i, // \v(^ hav(^ 

fj < / /'. 
.// .// 

Now \'ar>'iii,ii, // in this in(\pudit>' pi'oves the cdaini. • 

At this stage one could ask whether equality in (9.27) holds by any chance for 
all bounded maps. The answer is no, as the example tells. 

Example 9.28 

The Dirichlet function is defined as follows 

(I i f x G Q , 

lO i f i : G M \ Q . 
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Each interval {xk-i^Xk) of a partition of [0,1] contains rational and non-rational 
points. Step functions in Sf are all larger than one, whereas the maps in 5 7 
will be non-positive (except at a finite number of places). In conclusion 

jf = l and / / = 0-

Our observation motivates introducing the next term. 

D 

Definition 9.29 A bounded map f on I = [a, b] is said integrable {pre-
cisely: Riemann integrable) on I if 

IH/ 
The common value is called definite integral of f on [a, 6], and denoted 

with Jjf or J^f{x)dx. 

When / is a positive map on [a, b] the geometric meaning of the definite integral 
is quite clear: T{f;a^b) is a subset of T{h;a^b) for any function h G St, and 
contains T{g; a, b) relative to any g E Sj. The upper integral gives thus an estimate 
from above (i.e., larger) of the area of the trapezoidal region of / over / , and 
similarly, the lower integral represents an approximation from below. Essentially, 
/ is integrable when these two coincide, hence when the integral 'is' the area of 
the trapezoidal region of / . 

Step functions / are evidently integrable: denoting by jj f the quantity of 

Definition 9.24, the fact that f £ Sj implies Jj f < Jjf^ and Jjf < J^ / is 

consequence of / G St. Therefore 

L'^l/^lr-l' 
and the upper integral must be equal to the lower. 

Beyond step functions, the world of integrable maps is vast. 

Example 9.30 

Consider f{x) = x on [0,1]. We verify by Riemann integration that the trape-
zoidal region of / measures indeed 1/2. Divide [0,1] into n > 1 equal parts, a 
partition corresponding to the points {O, ^, | , . . . , ^ ^ , l } = {^:fc = 0, . . . , n } . 
Now take the step functions 

J - if < x < - , A: = l , . . . , n , 
hn\x) — i n n n 

I 0 if X = 0, 
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and 
(k-1 , k - l k , ^ 

n(T)-} 1̂  <x<-, fc = l , . . . , n , 
yny-J^) — \ n n n 

I 0 if X = 0. 
Since gn{x) < f{x) < hn{x), Vx G [0,1], it follows hn G 5 t , g^ G 5 7 . Moreover 
by (3.2), 

" 1 n(n +1 ) 1 1 
- H 
2 2n 

-^^ / c = l ^ ^ fc=l / c = l 

and similarly 
_ 1 1 

„ / " ~ 2 ~ 2 n -
These imply 

h 
f <mf hn = - and f > sup Qn = - , 

Jl "^ Jl ^ Jl n Jl ^ 
hence 

Recalling 9.27 we conclude Jj f = \-

Studying the integrability of a map by means of the definition is rather non-trivial, 
even when one deals with maps having simple expression. So it would be good on 
the one hand to know in advance a large class of integrable maps, on the other 
to have powerful methods for computing integrals. While the second point will be 
addressed in Sect. 9.8, the result we state next is a relatively broad answer to the 
former problem. 

Theorem 9.31 Among the class of integrable maps on [a, b] are 

a) continuous maps on [a, b]; 
b) piecewise-continuous maps on [a, 6]; 
c) continuous maps on (a^b) which are bounded on [a, 6]; 
d) monotone functions on [a, b]. 

I^oot ---Riemann in t eg ra l . 

As an application of the theorem, 

I 1 + s i n - if 0 < x < 1, 
fix) = ( X 

[ 0 if X = 0, 

is integrable, for continuous on (0,1] and bounded (by 0 and 2) on [0,1]. 



326 9 Integral calculus I 

Figure 9.6. Integrable maps on [0,1] 

The same for 

J - if—— < a : < - , n = 1,2,..., 
j[x) = < n n + 1 n 

[ 0 if X = 0, 

which is increasing (not strictly) on [0,1], see Fig. 9.6. 
A couple more properties will be useful later. 

Proposition 9.32 / / / is integrable on [a,b], then 

i) f is integrable on any subinterval [c, d] C [a, 6]; 
a) I/I is integrable on [a, 6]. 

Proof. -^ Riemann in t eg ra l . • 

9.6 Properties of definite integrals 

A (piecewise-)continuous map is Cauchy integrable (Theorem 9.20) and at the 
same time integrable following Riemann (Theorem 9.31). The two types of definite 
integral always agree for such maps, as seen explicitly for f{x) = x in Examples 
9.22 ii), 9.30. We shall not prove this fact rigorously. Anyhow, that reason is 
good enough to use a unique symbol for both Riemann's and Cauchy's integrals. 
Henceforth Tl{[a, b]) shah be the set of integrable maps on [a, b]. 

Recall /^ f{x)dx is a number, depending only on / and the interval [a, 6]; it 
certainly depends upon no variable. The letter x, present in the symbol for histor-
ical reasons essentially, is a 'virtual variable', and as such may be substituted by 
one's own preferred letter; writing J^ f{x) dx, rather than J^ f{s) ds or J^ f{y) dy 
is a matter of taste, for all three symbols represent the same number. 
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Figure 9.7. The area of the trapezoidal region of / on [a, b] is / 
J a 

\f{x)\dx 

If / G 7^([a, b]) is positive we have shown the definite integral expresses the area 
of the trapezoidal region of / over [a,b]. For negative / the same holds provided 
one changes sign to the value. When / has no fixed sign, the integral measures 
the diflPerence of the positive regions (above the x-axis) and the negative regions 
(below it), so the area between / and the horizontal axis is also the integral of the 
map I/I 

This is due to the symmetrising eflFect of the absolute value, which reflects the 
regions lying below the axis in a rigid way (as in Fig. 9.7). 

Finally, let us slightly generalise the definite integral. Take / G 7^([a,6]). For 
a < c < d < b, set 

pC nd nC 

j f{x) dx = — f{x) dx and / f{x) dx = 0. 
Jd Jc Jc 

(9.18) 

The symbol J f{x) dx is now defined whichever limits c and d we consider in the 
integrability domain [a, 6]. 

The following five properties descend immediately from the definition. 

Theorem 9.33 Let f and g be integrable on a bounded interval I of the real 
line. 

i) (Additivity with respect to the domain of integration) For any 
a^b^ce I, 

f f{x)dx= rf{x)dx+ f f{x)dx. 
Ja Ja «/c 

Area of T( / ;a ,6 ) = / \f{x)\dx. 
J a 
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ii) (Linearity) For any a^b E I and a,/3 G M, 

/ (af{x) + Pg{x)\dx = a f f{x)dx-h(3 f g{x)dx. 
Ja J a Ja 

in) (Positivity) Let a^b E I, with a <b. If f >0 on [a,b] then 

I f{x)dx>0. 
J a 

If f is additionally continuous, equality holds if and only if f is the zero 
map. 

iv) (Monotonicity) Let a^b E I, a < b. If f < g in [a,6], then 

rb /»0 no 

/ f{x) dx < g{x) dx. 
J a J a 

v) (Upper and lower bounds) Let a,b E I, a <b. Then 

f f{x)dx\< f \f{x)\dx. 
J a J a 

Proof. -^ Riemann in t eg ra l . • 

9 .7 I n t e g r a l m e a n v a l u e 

The definite integral of an integrable map / over the usual real interval [a, h] 
furnishes a way of approximating the function's behaviour by a constant. 

Definition 9.34 By {integral) mean value {sometimes integral average) 
of / over the interval [a, b] one understands the number 

m(/ ; a, b) = / f{x) dx. 

The geometric meaning is clear when / is positive on [a, 6], for an equivalent version 
of the mean value reads 

/ f{x)dx = {b-a)m{f]a,b). 
J a 
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Figure 9.8. Integral average of / over [a, b] 

In this case T ( / ; a, b) equals the area of the rectangle with base [a, b] and having 
the integral average as height (Fig. 9.8). 

The next statement formalises the relation between the integral mean value of 
a function and its range. 

T h e o r e m 9.35 ( M e a n Value T h e o r e m ) Let f be integrable over [a, 6]. 
The integral mean of f over [a, b] satisfies 

inf f{x)<m{f;a,b)< sup f{x), (9.19) 
x^[aM xe[a,b] 

If moreover f is continuous on [a^b], there is at least one 2: G [a,6] such that 

m(/;a,6) = /(z). (9.20) 

Pi'oof. ('nil // -^ iiit /i.rl and N. - sui) f{J'). so for anv x G \a.b] 

if < / ( . / • ) < .Sf. 

By ])r()pert>' i\') of TiieorcMii ^).'SA 

[b - (I) If = / / / (!./• < / /(./') d.r < -^f dx = (6 - a) sj. 
•1(1 •'(I J a 

where wv luwi' iiscxl the (\\i)ression for the integral of a constant. Now 
divide by /; (/ to at tain (9.19). 
Sui)p()sing / eoutinuous. \\'<\i(n-strass"s Theorem 4.31 yields 

/r = uiin /"(/') and -'''/•= max fix). 
.veUiM' ' ' .re[a.b]' 

lienec^ (9.19) tells that m ( / : a . 6 ) lies between the maximum and minimum 
of / on [a. b]. Tlu^ c^xistencc^ of a ])oint .: for which (9.20) holds then follows 
from 14.16). D 
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Figure 9.9. The Mean Value Theorem of integral calculus 

Example 9.36 

The integral mean of the continuous map 
2x i f O < x < l , 

^ ^ t 2 if 1 < X < 2, 
over [0,2] is 

m(/ ;0,2) = ^ f{x)dx=\(^j^ 2xdx + J^ 2da;) = ^(1 + 2) = ^. 

In conformity with the statement, the mean value is indeed a value the function 
takes, in fact m(/;0,2) = / ( | ) (Fig. 9.9, left). 

Consider now the piecewise-continuous map 

^. , r2x i f O < x < l , 
t 5 it X > 1. 

The mean value over [0, 5/4] is m( / ; 0,5/4) = /(9/10) and belongs to the map's 
range; this is not so when we consider [0,2], because m(/;0,2) = 3 (Fig. 9.9, 
right). This example shows that the continuity of / is just a sufficient condition 
for (9.20) to hold. • 

A closing remark for the sequel. Taking (9.18) into account, we observe that 
the mean value formula stays valid if the limits of integration are interchanged, 
hence the theorem is correct also when a > b: 

m(/; a, b) = - ^ f f{x) dx = - \ [ f{x) dx = m(/; 6, a). (9.21) 
b-a J^ a-b J^ 
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9.8 The Fundamental Theorem of integral calculus 

Let / be defined on the real interval / , which we do not assume bounded necessarily, 
but suppose / is integrable on every closed and bounded subinterval of / . This is 
the case if / is continuous. We call integral funct ion of / o n / any map of the 
form 

F{x)^F,„{x)= rf{s)ds, 
JXQ 

(9.22) 

where XQ G / is a fixed point and x varies in / . An integral function is thus obtained 
by integrating / on an interval in which one end-point is fixed while the other is 
variable. By (9.18) any integral function is defined on the whole / , and F^Q has a 
zero at XQ. 

The Fundamental Theorem of integral calculus establishes the basic inverse 
character of the operations of differentiation and integration, namely that any 
integral function of a given continuous map / over / is a primitive of / on that 
interval. 

Theorem 9.37 Let f 
XQ £ I, let 

be defined and continuous over a real interval I. 

Fix) 

\ denote an integral function of f 
over I and 

F'ix) ^ 

-f 
on I. 

f{xl 

f{s)ds 

Then F is 

\fxeL 

Given 

differentiable everywhere 

F^roof, L(M ii> s ta r t !)\ fixini; an r nis idc / find calliii,^, _\,r an increnu^iit ( pos i t i ve 
o] ii('ii?uiA-(') s i i rh tha t -/• + A.I- l)(̂ l()ii<>,s t o / . C'oiisicku' t h e difference q u o t i e n t 

Fi.r -f- J . r ) - F{.r) 1 v-A.r 
f(s)ds-- I f{s)ds 

\i\ | ) fopor t \ i) m Ih(H)r(^in ^J.'Ml. 

I f{sn.\s=- / f(s)ds+ / / ( , s ) d / 

F(.r - A.r) - F{,r) 1 

" " ' AT '̂  AJ 

A.r 

f{s)ds = m{f:j\x + A,v). 

I'hii^. th(^ (liiiV'Knicc^ (jiiot irnt of tlic integral huiction F between .r and 
.r A.I- (Mjua]- I lie in(vin \ahi(^ of / b e t w e e n .r a n d .r + A.r. S ince / is 

file:///fxeL
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Figure 9.10. The Fundamental Theorem of integral calculus 

continuous, the Mean Value Theorem 9.35 guarantees the existence in that 
interval of a z = z{Ax) for which m{f:x,x + Ax) — /(z(Z\x)), in other 
words 

F(x + Ax) - F(x) 
-^ -r^ — = fiz{Ax)). (9.23) 

Ax 

Take the limit for Ax -^ 0. For simplicity we can assume Ax > 0. From 

X < z{Ax) <x + Ax 

and Theorem 4.5 we deduce that 

lim z(Ax) = X. 

By similar arguments lim z{Ax) = x. so lim z(Ax) = x. But / is 

continuous at x, hence (4.11) implies 

Jim^/(z(zia:)) = f{\xm^z{Ax)) = j{x). 

Passing to the limit in (9.23), we find the thesis 

wx X . Fix ^ Ax) -Fix) ,, , 
F'(x) = lim J ^ == fix). 

In case x is a boundary point of / it suffices to take one-sided limits instead, 
and the same conclusion follows. • 
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Corollary 9.38 

for any primitive 

Let FxQ be an integral function 

F.M = 

map G of f 

G{x)-

on J. 

-G(cco), 

of a continuous f 

\/xeI 

on I. Then 

Pr(3of. Tlicix^ (^xists a iiuDihcn- r wuli I-]r,A-f') "̂ Gi-i') — ('- V./* G / by Theorem 9.4. 
Tli(^ eoiislaiit is !ix(Hl hy tli*' '•ondition f^,.,,(;r()) = (), • 

The next corollary has great importance, for it provides the definite integral 
by means of an arbitrary primitive of the integrand. 

Corollary 9.39 Let f 
that interval. Then 

be continuous 

f f{x)dx = 
J a 

on [a, 

G{b) 

b] and G 

-G{a). 

any primitive of f on 

(9.24) ^ 

Proof. Dciiolin^ h], tli*' !]itc\i>,ral map vaiiishiiig at a. our has 

/ /(.r)(l.r = F„(6). 

Tli(^ |)r{^vi()i]s corollary ])]"()\(̂ s \\\v claiiii once w(̂  put X{) — a.x ~ b. • 

Very often the difference G{b) — G[a) is written as 

[G{-)t or G{x)t 

E x a m p l e s 9.40 

The three integrals below are computed using (9.24). 

i: 
i: 

x^ dx 

sin X dx 

0 3 ' 

COSXJQ = 2. 

1 6 
- dx = [ log x]^ = log 6 — log 2 = log 3. D 



334 9 Integral calculus I 

Remark 9.41 There is a generalisation of the Fundamental Theorem of inte-
gral calculus to piecewise-continuous maps, which goes like this. If / is piecewise-
continuous on all closed and bounded subintervals of / , then any integral function 
F on / is continuous on J, it is differentiable at all points where / is continuous, 
and F^{x) — f{x). Jump discontinuities for / inside / correspond to corner points 
fo rF . 

The integral F is called then a generalised primitive of / on / . • 

Now we present an integral representation of a differentiable map, which turns 
out to be useful in many circumstances. 

Corollary 9,42 Given f differentiable on I with continuous first derivative, 
and any XQ € / , 

fix) = f{xo) + r f\s) ds, \/x e I. (9.25) 
Jxo 

Proof. Obviously / is a primitive of its own derivative, so (9.24) gives 

r{s)ds = f{x)-f{xo). 
fxo 

whence the result follows. • 

As an application we can justify the Maclaurin expansions of f{x) = arcsinx 
and f{x) = arctanx. First though, a technical lemma. 

Lemma 9.43 Ifcpisa continuous map around 0 such that ip{x) = o{x^) for 
X -^ 0, and a > 0, then the primitive ijj{x) — J^ (p{s) ds satisfies ip{x) = 
o(x""^^) as X -^ 0. This can be written as 

f o(5^)d5 = o(x"+^) forx^O. (9.26) 
^0 

Proof. From de rHopital's Theorem 6.40 

hm ——r = hm , ^ ..... 
x-̂ O X" + 1 x-^0 [a + l ) x " Q' + 1 ^^0 X^ 

'ijj(x) , ip'(x) 1 ,. <^(x) 
lim ^ ^ = lim . .̂  = lim -^^^^ = 0. D 

So now take f{x) — arctanx. As its derivative reads f'{x) = ^̂  (9.25) 

allows us to write 
r 1 

IX = / 
Jo 1 + ' 

arctanx = / z ^ ds. 
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The Maclaurin expansion of f'{s), obtained from (7.18) changing x = s^, reads 

^ m 
— i - ^ = 1 _ s2 ^ s4 _ _ ^ ^ ^ ( - l ) ' " s 2 ' " + 0(s2'"+l) = ^ ( - l ) f c s 2 ' = + o{s^"'+^). 

fc=0 

Term-by-term integration together with (9.26) yields Maclaurin's expansion for 

x^ x^ y,2m-\-l 

arctan. = x - - + - - . . . + ( - i r ^ ^ ^ ^ + o(x^™+^) 

r2k+l 

EM)'i^+»( ,2m+2\ 

k=0 

As for the inverse sine, write 

r 1 
/ (x) = arcsinx = / . 

Jo V1 — 

ds. 

Now use (7.17) with a = —^ and change x = — 5 

yr^^ 2 
^2m^^(^2m+l^ 

k=0 
k 

,2k^^^^2m^ly 

Integrating the latter term-by-term and using (9.26) yields the expansion 

x^ 3x^ 
arcsm x = x -\- -— -\- —— + . . . + 

6 40 

„2m+l 

2m + 
-+o(x^-+^) 

fc=:0 

^2fc4-l 

2/c + l 
+ o(x^"^+^). 

9.9 R u l e s of d e f i n i t e i n t e g r a t i o n 

The Fundamental Theorem of integral calculus and the rules that apply to indef-
inite integrals, presented in Sect. 9.2, furnish similar results for definite integrals. 

Theorem 9.44 (Integration by parts) Let f and g be differentiable with 
continuity on [a, b]. Then 

f f{x)9'{x) dx = [f{x)gix)t - f f'ix)gix) dx. (9 27) 
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Proof. If H{x) denotes any primitive of f\x)g{x) on [a. 6], the known result 
on integration by parts prescribes that f{x)g{x) — H{x) is a primitive 
of f{x)g'{x). Thus (9.24) implies 

' f{x)g\x:)dx = [fix^x)]'^- [H{x)]\ 

It then suffices to use (9.24) on the map f'{x)g{x). • 

Theorem 9.45 (Integration by substitution) Let f{y) be continuous on 
[a,b]. Take a map (p{x) from [a,/?] to [a^b], differentiable with continuity. 
Then 

/ f{^{x))^\x)dx= / f{y)dy. (9.28) 

If if bijects [a,/?] onto [a, 6], this formula may be written as 

/ m<iy= / f{ipix))<p'{x)dx. (9.29) 
Ja J(p~^{a) 

Proof. Let F{y) be a primitive of f{y) on [a, b]. Formula (9.28) follows from (9.4) 
and Corollary 9.39. When (̂  is bijective. the two formulas are equivalent 
for a — ̂ {a), b = (p{0) if ^p is strictly increasing, and a = (f{i3), b — ^{a) 
if strictly decreasing. • 

Both formulas are used in concrete applications. 

Examples 9.46 

i) Compute 
p — 

/ sin^xcosxdx. 
Jo 

Set y = (p{x) = sinx, so that (p\x) = cosx, (p{0) = 0, (p{^) = - ^ . From (9.28) 
we obtain 

37r 1 r n - i -

- — ^^ ^ v ^ 1 1 4 
4 ^ 16' 

/ sin x cos xdx = y dy — 
Jo Jo 

Note (p is not injective on [0, ^ ] . 

ii) To determine 

5 = / arcsin ^/l — y'^ dy, 
Jo 

we change y = (p{x) = cosx, with x varying in [0, | ] . On this interval (f is strictly 
decreasing, hence one-to-one; moreover (p{0) = 1 and (/p(|) = 0, i.e., ip~^{0) = |^, 
(^-1(1) = 0. Note also 
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arcsin v 1 — cos^ x — arcsin V sin^ x = arcsin(sinx) = x. 

Formula (9.29) gives 
/•O rTc/2 

S= (arcsin y l — cos^ x) (—sin x) dx = / xsinxdx, 
J7r/2 Jo 

and eventually we may use (9.27) 
^7r/2 

S=[ — xcosx]^ + / cosxdx = [sinx]^ = 1. 
Jo 

n 

Corollary 9.47 Let f be integrable on the interval [—a^a], a > 0. If f is an 
even map, 

if f is odd, 

r fix)dx = 2 rf{x)dx; 
J-a Jo 

f f{x)dx = 0. 
J —a 

Prooi; HictHviii !),. 

d-r-r / / ( . 

S!ii)>!]tut(' ' , !h( iii!(l<ii(MnteKral 

! hr i'luiit-iuo^i i!itr<i:('a] ci idc- wii ^ / _/'(//'(i//if _/'i^ (>\'(ni. with its op~ 
. ' I I 

s)n-ii*' wlicM / i- M<ld. \\]( iiih !<?i|i'-^ l>(M'nus( I li(̂  vai'ial)!('c^'integration 

9.9.1 Application: coiiiputatiou of areas 

This first chapter on integrals ends with a few examples of the use of the Funda-
mental Theorem to determine the area of planar regions. 

! Suppose we are asked to find the area A of the region enclosed by the graphs 
of the maps y = / (x) = x^ and y = g{x) — A/X, given in Fig. 9.11. The curves 
meet at points corresponding to x = 0 and x = 1, and the region in question can 
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Figure 9.11. Region bounded by the graphs of f{x) — x^ and g{x) — s/x 

be seen as difference between the trapezoidal region of g and the trapezoidal 
region of / , both over the interval [0,1]. Therefore 

A= g{x) dx — f{x) dx = [y/x — x^]dx = -
Jo Jo Jo L^ 

:x3/2 - ^x' 

ii) In the second example we check the known relation A{r) = 7rr^ for the area 
of a disc in function of its radius r . The disc centred at the origin with radius 
r is the set of points (x^y) such tha t x^ + ?/̂  < r^. The quarter is then the 
trapezoidal region oi y = \JT^ — x^ relative to [0, r] (Fig. 9.12), so 

A{r) = 4 / \/r^ - x'^ dx. 
Jo 

Let us change variables by x = (/?(t) = r t , so tha t dx = rdt and 0 = (/::'(0), r = 
(/^(l). Because of (9.29), we have 

A{T) = Ar I ̂  
Jo 

1 - 2̂ dt. (9.30) 

Figure 9.12. Area under y = \/^2 _ ^2 [^ ĵ̂ g £j,g^ quadrant 
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Figure 9.13. The area bounded by the graphs of f{x) and g{x) is translation-invariant 

From Example 9.13 vi), we already know a primitive of f{t) = y l — t'^ is 

F(t) = - ^ y r ^ - f - a r c s i n t . 
^ ^ 2 ^ 2 

Therefore 

A{r) = 4r^ 
1 / ^ 1 
-tyl — t^ + - arcsint 

n l 

4r — = nr . 
4 

ill) We compute the area A of the part of plane bounded by the parabola y — 
f{x) = x{l — x) and the line y — g{x) = —| (Fig. 9.13, left). The curves 
intersect at the origin and at ( | , — | ) , plus on the interval [0, | ] we have f{x) > 
g{x). Albeit part of the region overlaps the negative half-plane (where y < 0), 
the total area can still be calculated by 

A: 
3/2 

{f{x) - g{x)) dx 

for the following reason. The number A is also the area of the region bounded 
by the graphs of the translated maps f{x) + | and g{x) + | ; shifting the x-axis 
vertically so that the origin goes to (0, — | ) , does not alter the surface area 
(Fig. 9.13, right). So, 

A 
^3/2 

Jo 
-X — X 

2 
dx = r r 

3/2 
9 

16 
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9.10 Exercises 

1. Determine the general primitive of: 

a) / (x) = (a; + l)27 

x + l 
c) fix) = 

x^ + 1 

b) f{x)=e 

d) f{x) = 

~ OX f~\ ox 

2 — sin X 

2x + cos X 

2. Find the primitive map taking the value yo at XQ of the functions: 
^2 

a) f{x) = xe^^ 

b) fix) 

c) fix) 

l + x^ 

logx 

d) / (x) = cosxe^ 

xo = ^ 2 2/0 = 1 

^0 = 0 2/0 = 1 

^0 = e 2/0 = 0 

TT 

Xo 

3. Compute the indefinite integrals: 

a) / -^—-dx 
y x2 + 7 

—1 /*e^/^' 
c) / — r - dx 
—^ J "̂̂  

4. Compute the indefinite integrals: 

a) / . ' s i n x d x 

3/ log xdx 

e) e ^ cos X dx 

5. Compute the indefinite integrals: 

2x 
dx ^̂  J x2 - 4x + 3 

/ "3 2 ^ ^ 
J X'=̂  — X^ 

e) 

yo = e 

/ 
b) /(6a; + 3rda; 

J a; log .g^x 
dx 

dx 

^ i (1+X2)2 

/'x^-5x^ + 8x^-9x + ll 
' J x2 - 5x + 6 

2 - 16x + 60 

x^ log 2x dx 

X arctan x dx 

dx 

dx 

d) 

f) 

f llx' -

f2x^ 
J {x 

dx 
4 - 1 6 

^ - 2x2 + 7x + 3 
2 - h 4 ) ( x - l ) 2 

dx 
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6. Compute the indeGnite integrals: 
J2x 

a dx 

l\ 
e^ + 1 

+ cosx 

dx 

dx 

e) / ^ 
J cosx 

cosx 

- dx 

d) j -—\—dx 
J 1 + sm X 

/
cos^x 

1 - 2 sin^ X 
f) dx 

7. Compute the indehnite integrals: 

I V2T^ 
dx b) J (1+a 2 \2 

dx 

c) 
1 

X — 3 + \/3 — X 

e) / cosh^ X dx 

1 

dx d) 
sinh: 

dx 

f) 

1 + tan X 

i) I / sin^ X dx 

dx h) 

/ log yl + x' 

J e^^ + l 

0/ COS x d x 

8. I Write the primitive of f{x) = \x\ log(2 — x) that has a zero at x = 1. 

9. Find the primitive F{x) of f{x) = xe '̂ 1 with lim F{x) = —5. 
x^+oo 

10. I What is the primitive, on the interval (—3, +cx)), of 

x + 2 
/ (^) | x | + 3 ) ( x - 3 ) 

that vanishes at x = 0? 

11. Determine the generalised primitive of 

/ 2 x 3 - 5 x + 3 i f x > l , 
/ (^) = \ 4 x - 7 ifx < 1 

vanishing at the origin. 

127] Verify that 
1 TT w . 

arctan — = arctan x , Vx > 0 . 
X 2 

file:///4x-7
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13. I Write the Maclaurin expansion of order 9 for the generic primitive of the map 
f{x) = cos2x^. 

14.1 Write the Maclaurin expansion of order 4 for the generic primitive of the map 

15. Determine the following definite integrals: 

rl/2 
a) I X cos xdx b) / , ^ ^ dx i) / xcosa:d:r b) / 

Jo Jo V1 — 

X log a:: dx ^) / c) I X log X dx d) / —^ dx 
4 sm X + 3 cos x 

(Recall [x] is the integer part of x and M(x) denotes the mantissa.) 

16.1 Compute the area of the trapezoidal region of f{x) = |logx| restricted 
to [e~-^,e]. 

17. Find the area of the region enclosed by y — / (x) and y = g{x), where: 

[a) I / (x) = |x| , g{x) = Vl-x'^ 

b) / (x) = x^ - 2x , ^(x) = - x ^ + X 

18. Determine 

nx)=/; ( | t - l | + 2)dt . 

9.10.1 Solutions 

1. Primitive functions: 

a) F(x) = ^ ( x + l)28 + c; b) F(x) = ^e"^" - ^ e ' ^ - + c. 

c) Since we can write 
x + 1 1 2x 1 

x2 -h 1 2 x2 + 1 x2 + r 

it follows 
F{x) = - log(x^ + 1) + arctanx + c. 

d) F{x) = log |2x + cosx| + c. 
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2. Priniitives: 

a) The general primitive f{x) reads F{x) = |e^^ + c. Imposing F(\/2) = 1, we 
get 

1 = -e^ + c whence c = 1 —-e^, 
4 4 

so the required map is 

Fix) = \e^^' + 1 - Jê  . 

b) F{x) = i arctana:3_^l; c) F(x) = | log^o^-i ; d) F{x) = e^'"^ , 

3. Indefinite integrals: 

a) 5 = i l o g ( x 2 + 7) + c; h) S ^ ^{6x+ 3)^ + c. 

c) Changing y = ^ gives dy = - ^ dx, hence 

5 = - l / e ' d , = - ! , ' + . = -!,. ' .•+, 

<lis = -n^ + ĉ  
e) Set y = 1 -\- e^, so that d?/ = e^ dx and 

5 = JVtdt^?^^/2 + c3=^V^ 

f) 5 = v^^2TF7 + c. 

4. Indefinite integrals: 

a) 5 = (2 - x^)cosx-f 2 x s i n x + c; b) S* = ^x^(log2x - | ) + c. 

c) We integrate by parts choosing f{x) = log^ x and g'{x) = 1. Then / ' (x) = 
f logx, g{x) =x, giving 

X log^ X — 2 log X dx. 

The integral on the right requires another integration by parts (as in Example 
9.11 ii)) and eventually leads to 

S = X log^ X - 2x(log X — 1) + c = x(log^ X — 2 log X + 2) + c. 

(I) We take / (x) = arctanx,^'(x) = x and integrate by parts. Since / ' (x) = j ^ 

and ^(x) = |x^, 

»b = -X arctanx — - / ^ dx = - x arctanx — - / 1 - :̂  ^ dx 
2 2 7 l + x2 2 2j \ 1 + x^J 
1 2 1 1 = -X arctan x x H— arctan x + c. 



344 9 Integral calculus I 

e) S = ^e'^^{smx-\-2cosx)-{-c. 

f) The remarks made on p. 312 v) suggest to integrate Si = J j ~ ^ dx by parts 

with f{x) = jf^ and g'{x) = 1. Then f{x) = - - p i ^ y s , 9{x) = x, and 

1-f X2 

The solution is then 

^ = ^ ^ i + r f ^ ) = ^ ( - ^ t a n x + 3 - ^ ) + c . 

5. Indefinite integrals: 

a) S'= 31og|a; — 3| — log|x — 1 | + c . 

b) 5 = ^x^ + 2x + 2 1 o g | x - 3 | - l o g | j r - 2 | + c . 

c) Splitting into partial fractions 

X X A Bx + C 
x^ — 1 {x ~ l){x'^-^ X-\-1) x — 1 x ^ + x - h l ' 

yields A{x'^ -f x + 1) + (Bx + C){x — 1) = x. From x = 1 and a: == 0 we 
find the constants A = C = | , while a: = - 1 determines B = —^. Therefore 

X 1 / 1 x-1 

v^-1 3 V ^ - 1 x2 -hx -h l 
1 / 1 1 2a: + 1 - 3 

3 V a : - l 2x2 + x + l 
1 / 1 1 2a; + 1 3 
3 V ^ - 1 2a;2+a: + l 2 (x 4- | )2-f | 

In conclusion, 

S= - n o g | a : - l | - - l o g ( a : 2 + a ; + l) + \ / 3 a r c t a n - p : ( a ; + - ) j +< 

d) S = log(a:2 + 4) -f 3 log |x - 2| - 5 log |x + 2| + ^ arctan f + c. 

e) We search for the undetermined coefficients in 

x^ + 1 x^ + l , A B C 
=:X-hl - f -^ r =X + l-f 7 + - + ^ -x^ — x'^ x^ — x^ x — 1 x x^ 

Choosing x == 1 and x == 0 for 

Ax^ + {Bx + C)(x - 1) = x^ + 1 

file://-/-2cosx
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produces A = 2, C = — 1, while x = —1 tells B = —1: 

-J x + 1 
1 1 1 

X — I X x'^ 

f) The integrand splits as 

2x^ - 2x2 + 7x + 3 A 

] dx = -X + x + 2 1 o g b - l | - l o g | x | H he. 

+ 
B 

+ 
Cx^D 

( X 2 + 4 ) ( X - 1 ) 2 x - 1 ( X - 1 ) 2 x 2 + 4 ' 

Imposing 

A{x - l){x^ + 4) + B{x^ + 4) + {Cx + D)(x - 1)2 = 2x^ - 2^^ + 7x + 3 , 

leads to A = 1, 5 = 2, C = 1, D = - 1 , hence 

2 x - l 
5 = 

/ ( ^ ( X - 1)2 x 2 + 4 
dx 

= log X — 1 + - log(x + 4) — - arctan - + c. 
X — 1 2 2 2 

6. Indefinite integrfils: 

a) Put y — e^^ then d^ = e^ dx, and 

= e'̂  - log(e^ + l) + c. 

b) 5 = | x - ^ log |e- - 2 1 1 
+ c. 

c) Changing t = tan | we can write cosx = ^^^ and dx = j+P" ^ -̂ Then 

S = 2 [ ^, ^ ,̂ dt = 2 [ (\ ^ I dt 
J t2(i + t2) 7 v^' 1 + ^v 
2 . 2 

= 2 arctan t + c = — x + c. 
t t an^ 

d) S-
1 + tan I 

+ c; e) 5 = log 1 + tan I 
1 - tan I 

+ c. 

f) Set t = tanx, so sin x 
1+^2 

cos^ t = TT72 and dx = TT72 dt. From that 
i+t l+t2 

5 = 
1 

dt 
(l + t 2 ) ( l - t 2 ) 

Now evaluate a t t = —1, t = l, t = 0 and t = 2 the condition 

A(l - t){l + t2) + B{1 + t)(l + t2) + {Ct + D)(l - ^2) = 1 , 

dt . 
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to obtain A - | , 5 = | , C = 0,Z) = | . Then 

1 1 1 1 1 1 

4 lT7 "^41^^21 + 2̂ 
dt 

= - log |1 + t| — - log |1 — t| + - arctant + c 

= 4 log 
1+t 
1-t 

1 1 
+ - arctan t-\- c— - log 

sin X + cos X 

sm X — cos X 
+ -X + C. 

7. Indefinite integrals: 

a) S' - I V'(2 + x)3 - 4^/21^ + c; b) ^ = = - 2 ( T T ^ + ^ -
c) With t^ = 3 — X we have x = 3 — t^ and 2^ dt = —dx, so 

-^—-dt = 2 / — Y dt = 21og |t - 1| + c = 21og |V3 - X - 1| + c. 

d) By definition sinhx = 
_,x „ —a; 

-, so y == e^ yields 

^ = / ^ ' ^ = / ( ^ - ^ ) 
dt/ 

le^ - 11 
= log \y-l\- log 12/ + 1| + c = log + c. 

e^ + 1 

e) 5 = ^ (|e2^ - ^e-2^ + 2x) + c = ^ sinh2x + ^x + c. 

f) Observe log v^l + x^ = | log(l + x^). We integrate by parts putting / (x) 
log(l + x'^),g'{x) = 1, so f (x) = j ^ and ^(x) = x. Then 

S = l ( x l o g ( l + x = ) - 2 / j ^ d x ) 

= i ( . l o g ( l + x ^ ) - 2 / ( l - ^ ) d . ) 

== - (x log(l + x^) — 2x + 2 arctan x) -\- c. 
o 

g) S = ^ (log |1 + tanx| - I log(l + tan^ x) + x) + c. 

h) Setting y — e^^ implies dy — 4e^^ dx, dx = j - dy. Thus 

^ 4 7^(^ + 1)'̂ ^ 47 U 2/+lj dy 

= - (log \y\ - log ly + 1|) + c = - (4x - log(e4^ + 1)) + c 

= a ; - -log(e'*^ + l ) + c . 

file:///y-l/-
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i) Because 
sin^ X = sinx sin^ x = sinx(l — cos^ x)^ , 

choosing y — cos x has the effect that d?/ = — sin x dx and 

y sin^xdx = - / ( ! - y'f^y = / ( - I + V - 2/')dy 

= - ? / + - | / ^ — -^^H-c=— cos X + - cos^ X — - cos^ X -h c. 
3 5 3 5 

i) Given that cos^x = cosxcos^x, let us integrate by parts with / (x) = cos^x 
and g^{x) — cosx, implying f'{x) = —3sinxcos^x and g{x) — sinx. Thus 

5 ^ / c o s ^ . d . = s i n . c o s 3 . + 3 / c o s ^ . s i n ^ x d . 

= sin X cos^ X + 3 / cos^ x(l - cos^ x) dx 

= s inxcos3 . + 3 / c o s ^ . d . - 3 5 . 

Now recalling Example 9.9 ii), 

45 = sin X cos^ x + 3 ( - x + - sin 2x j -\- c. \2 4 J 

Finally, 
Z' 4 1 1 . s 3 3 ^ 
/ cos X dx = - sm X cos x + - x + -— sm 2x + c. 

J 4 8 16 

8. Note that / (x) is defined on (—oo, 2), where 

x l o g ( 2 - x ) if 0 < x < 2, 
f{x) = [' -xlog(2 — x) if X < 0. 

In order to find a primitive, compute the integral J x log(2 — x) dx by parts. Put 
^(x) = log(2 - x) and h'{x) — x, implying ^'(x) = -^^, h{x) — \x^, and 

n2 

- d x 
/

I 1 f x^ 

X log(2 - x) dx = -x^ log(2 - ^) - 2 / ^ 

Thus 

-x^ log(2 - x) - -x^ - X - 2 log(2 - x) + c. 

^x^ log(2 -x)-\x^-x-2 log(2 - x) + ci if 0 < x < 2 , 

I - | x M o g ( 2 - x ) + | x 2 + x + 21og(2-x) + C2 if x < 0 



348 9 Integral calculus I 

The constraint F{1) = 0 forces ci = | , and since F must be continuous at x = 0 
it follows 

F(0+) = - 2 1 o g 2 + - = F ( 0 - ) = 21og2 + C2. 

This gives C2 = —4 log 2 + | , and the primitive is 

F{x) 
\x^ log(2 -x)-\x^ -x~2 log(2 - x) + f if 0 < X < 2, 

-\x^ log(2 -x)^\x^ -Vx + 21og(2 - x) - 41og2 + I if x < 0. 2 ^ "^&V^ -^y I 4 

9. We write, equivalently, 

I xe"̂  II 

With Example 9.11 i) in mind, 

F[x) 

X > 0 , 

x < 0 . 

- ( x + l )e-^ + ci if x > 0 , 

( x - l ) e ^ + C2 i f x < 0 . 

Continuity at x = 0 implies F(0) == F(0"^) = Ci = i^(0~) = C2, so the generic 
primitive of / is 

^^ , r - ( x + l )e-^ + c i f x > 0 , 
Fix) — { 

^ ^ l ( x - l ) e ^ + c i f x < 0 , 

i.e., F{x) = -(\x\ + l)e-l^l + c. Additionally, 

lim F{x) = lim ( - (x + l)e~^ + c) = c, 

meaning that the condition lim F{x) — —5 holds when c = — 5, The required 

map is 
F(x) = - ( | x | + l ) e - l ^ l - 5 . 

10. Integrate the two cases 

X 4 - 2 

(x + 3 ) (x -3 ) 
x + 2 

( x - 3 ) 

if X > 0, 

if - 3 < X < 0. 

separately, that is, determine 

x + 2 
5i 

/ (x + 3 ) (x -3 ) 
dx and 

\ {x {x - 3)-
dx. 

These are rational integrands, so we ought to find the partial fractions first. Rather 
easily one sees 
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5 
(x + 3 ) ( x - 3 ) x + 3 x - 3 6 V ^ + 3 x - 3 

x + 2 A B 1 5 
+ ( x - 3 ) 2 x - 3 (.T-3)2 x - 3 ( x - 3 ) 

whence 

1 5 
^i = - (log \x + 3| + 51og \x - 3|) + c i , ^2 = log |x - 3| + C2 . 

6 X — 6 

A primitive of / has then the form 

{Si if :r > 0 -

^ ^ 1-52 i f - 3 < X < 0 

= < 

1 
(log |x + 3| + 5 log |x - 3|) + ci if X > 0, 

• l o g | x - 3 | 
X — 3 

+ C2 if - 3 < X < 0. 

Continuity and the vanishing at x = 0 tell 

0 = F(0) = F(0+) = log3 + ci = F(O-) = - log3 - - + C2 . 
o 

Thus ci = — log3, C2 = log3 + | , and 

F{x) = I 6 
(log(x + 3) + 51og |x -3 | ) - l o g 3 if X > 0 , 

l og (3 -x ) + — ^ + l o g 3 + - if - 3 < X < 0. 

11. The generalised primitive F{x) of f{x) should be continuous and satisfy 
F'{x) — f{x) at all points where f{x) is continuous, in our case every x ^ 1. 
Therefore 

F{x) = { 
I {2x^ - 5 x + 3)dx ifx> 1, 

\^J{4x-7)dx i f x < l [2x^-7x + C2 

the relation of Ci, C2 derives from imposing continuity at x = 1: 

F ( l ) = F( l+) = 1 + ci = F ( l - ) = - 5 + C2 . 

Thus C2 = 6 + ci and 

1 5 
-x^ x^ -\- 3x -\- Ci if X > 1, 

if X < 1; 

Fix)=i l ^ ' - l ^ ' + Sx^c i f x > l , 

2x̂  - 7x + 6 + c if X < 1. 
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Let us demand F{0) = 6 -h c = 0, i.e., c = —6. That implies 

l 2^2 - 7a: if a; < 1. 

Alternatively, notice the required map (cf. Remark 9.41) equals 

F{x)= r f{t)dt, 
Jo 

from which we may then integrate f{t). 

12. Consider F{x) = arctan ^ and G{x) = — arctanx. As 

F{x) and G{x) are primitives of the same f{x) — —jr^- As such, Proposition 9.3 

ensures they differ by a constant c G M 

F{x) = G{x)-\-c. 

The value c = | is a consequence of F ( l ) = | , G(l) = — f • 

13. The generic primitive for / is like 

F{x) = c+ cos2t^ dt. 
Jo 

By Lemma 9.43, if 

cos 2̂ 2 = 1 - 2t^ + ^t^ + o(t^), t ^ 0, 

F expands, for x ^> 0, as 

F{x) = c-V r (l-2t^ + ?^^ + o{t^)\ dt = c + X - ?x^ + ^ : r ^ + o(x^^). 

14. As in Exercise 13, write first Maclaurin's polynomial up to degree 3: 

/W = l(2 + e - ) ( l 4 ) " ' 

= ^ 3 - a; + ix2 - ia;3 + o{x^)\ U - ^x^ + o{x^) 

= ^ ( 3 - X + ix^ - ^x^ - x^ + o(x3) 

= 1 - 3a; + gX^ - —x^ + o(x3), x ^ O . 
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Then 

F{x) = c-^ [ fit) dt - c + ^ ' (̂ 1 - it + ^t' - ~t' + o{t')^ dt 

1 1 7 
= c-\- X — -x^ + —-x^ - —^^ + o(x^), X -^ 0. 

6 18 72 

15. Definite integrals: 

a) - 2 ; b ) f ; 

e) Since 

we have 

c) i e 2 ( 3 e 2 - l ) ; d) i l o g 6 . 

1 if 1 < X < 2 , 

2 if 2 < X < 3 , 

3 if X = 3 , 

5 ' = / d x + / - d x = - . 

f) The parabola y = x^ — 1^ on 0 < x < \ / 3 , has the following range set: 

- l < x 2 - l < 0 for X G [ 0 , 1 ) 

0 < x 2 - l < l for x e [ l , V 2 ) 

l < x 2 - l < 2 for xe[V2,V3). 

Therefore 

and 

M{x^ - 1) = < 

rV2 

f x^ - 1 + 1 if X G [0,1), 

x ^ - l i f x G [ l , \ / 2 ) , 

x^ - 1 - 1 if X G [\/2, \ /3) , 

^ 0 if X = \/3 , 

5 = / x^ dx + / (x^ - 1) dx + / (x^ - 2) dx - \/2 - \/3 + 1, 

16. As (see Fig. 9.14) 

|logx| = I 

from Example 9.11 ii) we infer 

— log X i f e ^ < x < l . 

log X if 1 < X < e , 

A I logx| dx / log X dx + / log X dx + / log X dx 

x(logx - 1) + x(logx — 1) 
J 1 
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Figure 9.14. Trapezoidal region of the function f{x) = \ logx| 

17. Computing areas: 

a) The region is symmetric with respect to the y-a,xis (Fig. 9.15). Comparing to 
the example of Sect. 9.9.1, we can say that the area will be 

A = 2 
I rV2/2 

1 — x'^ — x)dx 

ŷr̂  x^ + arcsm x 
V2/2 

— 0 

' J^' 
X 
. 

\/2/2 ^ 

0 ^ 4 

The result agrees with the fact that the region is actually one quarter of a disc. 

b) | . 

18. From 

I t - 1 1 = 
( l - t if t < 1 , 

\ t - l if t > 1 , 

Figure 9.15. Region of Exercise 17 a) 
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we write 

F{x) = <̂  

(1 - t + 2) dt ii X <1. 

f ( l - t + 2)dt+ / (1 - t + 2) dt + / (t - 1 + 2) dt if X > 1 

-X +3x • if X < 1, 

-X +X+- if X > 1. 



10 

Integral calculus II 

This second chapter on integral calculus consists roughly of two parts. In the 
first part we give a meaning to the term 'improper' integral, and thus extend the 
notion of area to include unbounded regions. The investigation relies on the tools 
developed when discussing limits. 

The remaining part is devoted to the integration of functions of several variables 
along curves, which generalises the results on real intervals of Chap. 9. 

10.1 Improper integrals 

Hitherto integrals have been defined for bounded maps over closed bounded in-
tervals of the real line. However, several apphcations induce one to consider un-
bounded intervals quite often, or functions tending to infinity. To cover such cases 
the notion of integral, be it Cauchy's or Riemann's, must be extended by means 
of limits. 

We begin with improper integrals with unbounded domain of integration, and 
then treat infinite integrands. 

10.1.1 Unbounded domains of integrat ion 

Let 7?.ioc([«,+oo)) be the set of maps defined on the ray [a,+oo) and integrable 
on every closed and bounded subinterval [a, c] of the domain. 

Taking / G 1Z\oc{[cij +00)) we can introduce the integral function 

Fic)^ f f{x)dx 
J a 

on [a, -|-oo). The natural question to answer concerns its behaviour when c -^ +CXD. 
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Definition 10.1 Let f E 7?,ioc([tt,+oc)). We {formally) set 

/» + 00 PC 

/ f(x) dx = lim / f(x) dx. 
J a ^ ^ + ^ J a 

The symbol on the left is said improper integral of f on [a, +oo). 

i) If the limit exists and is finite, we say that the map f is integrable over 
[a, -hoo); or equivalently, that its improper integral converges. 

ii) If the limit exists hut is infinite, we say that the improper integral of f 
diverges. 

Hi) If the limit does not exist, we say that the improper integral is indeter-
minate. 

The class of integrable maps over [a, +oo) will be indicated 7?.([a, +oo)). 
Visualising the improper integral of a positive function is easy. Note first that 

the following holds. 

Proposition 10.2 Let f G Tt\Qc{[a^-{-oo)) he such that f{x) > 0, for all 
X £ [a,-hoo). Then the integral map F{c) is increasing on [a,+oo). 

Proof. Take ci,C2 G [a,+oo) with ci < C2. By the property of additivity of the 
domain of integration (Theorem 9.33, i)), 

rC2 rCi nC2 

F{C2)= f{x)dx= f{x)dx+ f{x)dx 
Ja Ja J c\ 

^F{c,)+ f" f{x)dx. 
Jci 

The last integral is > 0 by Theorem 9.33, iii). Therefore F[c2) > ^(c i ) . • 

Corollary 10.3 The improper integral of a positive map belonging to 
'^ioc([tt?+oo)) is either convergent or divergent to -f-oc. 

Proof. This descends from the proposition by applying Theorem 3.27 to F . • 

Going back to the geometric picture, we can say that the improper integral of 
a positive function represents the area of the trapezoidal region of / over [a, +oo) 
(Fig. 10.1). This region is unbounded and may be viewed as the limit, for c ^^ oo, of 
the regions defined over the subintervals [a,c]. The area of the trapezoidal region 
over the entire domain of integration [a, +oo) is finite if the improper integral 
converges, and one says that the area is infinite when the integral is divergent. 
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F igure 10.1 . Trapezoidal region of / over the unbounded interval [a, +oo) 

E x a m p l e s 10.4 

i) We consider the integral over [ l ,+oo) of the family of functions f{x) = — 

for various a > 0. Since 

i f ^ ^ l ' _ J -^ if a 7^1, 
1 — \ 1 - a 

log c if a = 1, 
Ji x^ 

dx = < 1 — a\ 

[ logx|^ if a = 1 

when Q; 7̂  1, one has 

• + 00 
1 

[ 1. dx = lim 
if Q̂  > 1, 

c->+oo 1 — a 

If Of = 1 instead, 

a-1 

+00 if Q̂  < 1. 

Jl X 
dx — lim logc = +(X). 

c—^ + cx) 

The integral behaves in the same manner whichever the lower limit of integration 
a > 0. Therefore 

/ 

+ ^ 1 r converges if a > 1, 
— dx { 

i diverges if a < 1. 

ii) Let f{x) = cosx. The integral 

F{c)— / c o s x d x = s ine 

does not admit limit for c -^ +oo, hence J^ c o s x d x is indeterminate. • 

Improper integrals inherit some features of definite integrals. To be precise, if 
/ , g belong to 7^([a, +oo)) : 
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i) for any c > a 

/ f{x)dx= / / (x)dx+ / f{x)dx; 
J a J a J c 

ii) for any a, /? G R 

n-\-oo /•+00 /'+00 

/ (af{x)-\-pg{x)]dx = a f{x)dx-\-p 9{x)dx; 
Ja ^ ^ Ja Ja 

iii) supposing / > 0 on [a, +(X)) then 

/ 
J a 

f{x)dx>0. 

All are consequence of properties i)-iii) in Theorem 9.33 and the properties of 
limits. 

Convergence cri teria 
The integrability of / G 7?.ioc([tt, +^^)) cannot always be established using just the 
definition. Indeed, we may not be able to find an integral function F(c) explicitly. 
Thus, it becomes all the more important to have other ways to decide about con-
vergence. When the integral is convergent, computing it might require techniques 
that are too sophisticated for this textbook, and which will not be discussed. 

The first convergence test we present concerns positive functions. 

Theorem 10.5 (Comparison test) Let f^g E 7^ioc([<^?+oo)) be such that 
0 < f{x) < g{x) for all x G [a, +oo). Then 

0 < / f{x)dx< / g{x)dx, (10.1) 
J a J a 

In particular^ 

i) if the integral of g convergesj so does the integral of f; 
ii) if the integral of f diverges^ then the integral of g diverges, too. 

Proof. The definite integral is monotone, and using 0 < f{x) < g{x) over [a, +oc), 
we have 

F(c)= r f{x)dx< rg{x)Ax = G{c). 

By Corollary 10.3 the maps F{c) and G{c) admit limit for c -^ +oo; 
comparing the limits, with the help of Corollary 4.4, we obtain 

0 < lim F(c) < lim G{c), 
c—> + oo c—>-\-(yD 

which is (10.1). The statements i) and ii) are straightforward consequences 
of (10.1). • 
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E x a m p l e 10.6 

Discuss the convergence of the integrals 

f^^ arctanx 

Ji x^ 
For ah X e [l,+oo) 

so 
arctan x 

x"^ 
Therefore 

/ + ^ arctanx ^^ ^ f^^ 

< 

TT 

f^"^ arctanx . 
ax and / ax. 

Jl X 

7T TT 

- < arctan x < —, 

TT A ^ arctanx 
2x^ 4x ~ X 

r + OO ^ n ^ ^ a r c t anx . 
dx. 

X 

From Example 10.4 we know / —-^ dx converges, whereas / " p dx di-

Ji 2x J l 4x 

verges. Because of Theorem 10.5, the implication of i) ensures tha t the integral 

^ a r c t anx ^ ^ ^ \ ^ f~^^ a r c t a n x . .. 
— dx converges, while ii) makes / dx diverge. • 

x^ Jl X 

When the integrand has no fixed sign, we can rely on this criterion. 

T h e o r e m 10.7 ( A b s o l u t e c o n v e r g e n c e t e s t ) Suppose f G TZioc{[a^-\-oo)) 

is such that \f\ G Tl{[a^ +oo) ) . Then f € 7l{[a, +oo)) , and moreover 

/ f{x)dx\< \f{x)\dx. 
J a I J a 

Pi'oof. \\V introduce' ,/ - <̂ ii<l ./-• i'cs|)(H'tiv(^]y called p o s i t i v e and n e g a t i v e p a r t 
of /'. as Follows: 

./:(./•) = oiax(/( ,r) . l l) = <̂  

i n if f{.r) < 0. 

[-fix) if/(.r)<0. 

[^oth ai'c ii()ii-ii('f;a1iv('. find allow to (l(>conipos(^ / . | / | : 

/(.'•) = / . ( . ' •) - / (.D. | /{.r) | = /+(.r) + ,/L(,r) (10.2) 
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Figure 10.2. Graphs of a map / (left), its positive part (centre) and negative part (right) 

(see Fig. 10.2). Adding and subtracting these relations leads to 

/+(^0 
l/WI + /G )̂ f-i^) 1/0^)1-/W 

2 ' ' ' 2 ' 
which, together with Theorem 9.33 ii), imply f^,f- G 7^ioc([<^,+oo)). 
Since 0 < fj^{x), f-{x) < \f{x)\ for any x > a, the Comparison test 10.5 
yields that /+ and /_ are integrable over [a, +oo). The first of (10.2) tells 
that also / satisfies the same. 
Eventually, property v) of Theorem 9.33 implies, for all c > a. 

f{x)dx < \f{x)\dx; 

Passing to the limit c -^ +(X) proves the claim. D 

Example 10.8 

Let us consider the integral 

Since cosx 

Jl 

COSX 
dx. 

< —, the function \f{x)\ = is integrable on [l,+oo) by 

Theorem 10.5 and Example 10.4. The above test guarantees integrability, and 

/ ^ COSX I / ^ C O S X ^ / ^ 1 , 
/ —5-dx < / — ^ dx < / — dx = l. 

Jl x^ \ J l I "̂̂  I J l x^ 
D 

Remark 10.9 The Absolute convergence test is a sufficient condition for integra-
bility, not a necessary one. This is clarified by 

r smx dx (convergent) vs. r smx dx (divergent). 

(For a proof -^ Improper integrals . ) 

A map / whose absolute value | / | belongs to lZ{[a,-\-oo)) is said absolutely 
integrable on [a,+oo). D 
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Another useful result is based on the study of the order of infinitesimal of the 
integrand as x -^ +00. 

Theorem 10.10 (Asymptotic comparison 
/ ^ '??'ioc([̂ 5+C5c)) is infinitesimal of order a, 
to (p{x) = -. Then 

i) ifa>l, fen{[a,+oo)); 

a) if OL<ly / / (x )dx diverges, 
J a 

test) Suppose 
for X -^ +00; 

the function • 
with respect 

Proof. --> Improper i n t eg ra l s . • 

Examples 10.11 

i) Consider 
+00 

(TT — 2arctanx) dx. 
1 

The map f{x) = TT — 2 arctanx is infinitesimal of first order for x -^ +00: by de 
THopital's Theorem namely, 

.̂ TT —2arctanx .. 2x'^ 
lim = lim = 2. 

x-^-hoo l/x cc-> + oo \ -\- X^ 

The integral therefore diverges. 

ii) Discuss the integral 

/ ^ X + cos X -
/ -^ : dx. 

JI x'^ + smx 

As cosx = o(x), sinx = o{x^) for x -^ +00, it follows 
X + cos X 1 

3 , . ^ ^ X -^ + 0 0 , 
x'^ + smx x^ 

and the integral converges. • 

Let us now consider a family of improper integrals generalising Example 10.4 i). 

Example 10.12 

We show how the convergence of 

J 2 x^{\ogxY 

depends on the values of a, /3 > 0. 

i) The case a — 1 can be tackled by direct integration. Changing variables to 
t — logx, one has 
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+00 1 /•+00 /»-t-oo 1 /• i -oo 1 

so the integral converges if /? > 1, diverges if Ŝ < 1. 

ii) If a > 1, we observe preliminarily that x >2 implies logx > log 2 and hence 

< —T. :7T^ , Vx > 2. 
x^(logx)/^ ~ x^(log2)^ ' 

This is sufficient to conclude that the integral converges irrespective of P^ by the 
Comparison test. 

ill) When a < 1, let us write 

1 1 x^-^ 

x^ (log x)f^ X (log x)^' 

(logxy 
x^-^ 

The function — r-r tends to H-CXD, for any f3. There is thus an M > 0 such 
(logx)^ 

that 
1 M 

> — , Vx > 2. x^(logx)^ X 
By comparison the integral diverges. • 

If / is defined on [ko, +00), it could turn out useful, sometimes, to think of its 
value at X = fc as the general term a^ of a series. Under appropriate assumptions 
then, we can relate the behaviour of the series with that of the integral of / over 
[fco, +00), as shown hereby (for a proof ' ^ Improper integrals) . 

Theorem 10.13 (Integral test) Let f be continuous^ positive and decreas-
ing on [fco, +00), for ko G N. Then 

therefore 

/»-|-O0 

a) / 

b) / 

00 

k=ko + l 

the integral and the 

f(x)dx converges 

f{x)dx diverges 

p+00 

< / / ( x ) d x < 
Jko 

series 

<^==^ 

<^=^ 

00 

E/(^)' 
k=ko 

share the same behaviour. 

0 0 

E/w 
k=ko 

converges; 

00 

2^ f{k) diverges. 
k~ko 

(10.3) 

Precisely: 

Examples 10.14 

I i) The previous criterion tells for which values of the parameter a the gener-
alised harmonic series 



10.1 Improper integrals 363 

oo ^ 

k=l 

converges. Note in fact that ^ , a > 0, satisfies the theorem's hypotheses, and 

has convergent integral over [1, +00) if and only if a > 1. Therefore 

^ 1 f converges for a > 1, 

^ fc^ \ diverges for 0 < a < 1. 

ii) In order to study 

k=2 ^ 

we take the map f{x) = ; its integral over [2, +00) diverges, by case i) of 
j ; log X 

00 ^ 

Example 10.12. Then the series 7 — — - is divergent. • 
k=2 ^ 

A last remark to say that an integral can be defined over (~oo, 6] by putting 

/

b i*h 

f{x) dx = lim / f{x) dx. 
00 «/ c 

All properties and convergence results easily adapt. 

10.1.2 Unbounded integrands 

Consider the set 7^ioc([tt, b)) of functions defined on the bounded interval [a, b) and 
integrable over each closed subinterval [a,c\, a < c < b. 

If / G 7^ioc([^, b)) the integral function 

J a 
F{c)^ / /(x)drc 

J a 

is thus defined over [a, 6). We wish to study the limiting behaviour of such, for 
c-^b-. 

Definition 10.15 Let f € Tlioc{[0',b)) and define, formally, 

f f{x)dx= lim / f{x)dx; (10.4) 

as before, the left-hand side is called improper integral of f over [a, b). 
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i) If the limit exists and is finite, one says f is (improperly) integrable on 
[a, 6), or that its improper integral converges. 

a) If the limit exists but infinite^ one says that the improper integral of f 
is divergent. 

Hi) If the limit does not exist, one says that the improper integral is inde-
terminate. 

As usual, integrable functions over [a,b) shall be denoted by 7l{[a,b)). 

If a map is bounded and integrable on [a, b] (according to Cauchy or Riemann), 
it is also integrable on [a, b) in the above sense. Its improper integral coincides with 
the definite integral. Indeed, letting M = sup | /(x) | , we have 

xE[a,b] 

f f{x)dx- rf{x)dx\ = \f f{x)dx\< f \f{x)\dx<Mib 
Ja Ja Mc Jc 

c). 

In the limit for c ^- 6~ we obtain (10.4). This is why the symbol is the same 
for definite and improper integrals. At the same time, (10.4) explains that the 
concept of improper integral over a bounded domain is especially relevant when 
the integrand is infinite in the neighbourhood of the point b. 

Example 10.16 

Take f{x) = — — with a > 0 (Fig. 10.3 shows one choice of the parameter), 
[p — X) 

and study its integral over [a, 6): 

/ 
J a 

{b-x ,1 —Q; 

a {b-xY 
dx = a - 1 

iia^l, 

-log(6 — x)\ if a = 1 

f ( 6 - c ) i - " - ( 6 - a ) i - " 

= <. 
a-l 

log 
b — a 

b-c 

i f a ^ l , 

if a = 1. 

Wher 

J a 

For a 

L a 

(b 

= 

^h 
1 

-x)" 

1, 

,. (b-cV-^-lb-aV-'' 
dx = lim -̂  

c-^b- a — 1 

{b-a) 1 - Q 

1-a 
-\-oo 

if a < 1, 

if a > 1. 

/ 
J a 

1 1 T 1 ^ ~ ^ 

dx = lim log = +0C. 
b — X c-^b- b — c 
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Figure 10.3. Trapezoidal region of the unbounded map f{x) = J - ^ over [|,2) 

Therefore 

/ 
^ 1 ( converges if a < 1, 

T, 7-dx < 
a [b- x ) ^ [ diverges if a > 1. n 

In analogy to what seen previously, the integral of a positive / over [a, b) can 
be proven to be either convergent or divergent to +cxo. 

Convergence tests similar to those already mentioned hold in the present situ-
ation, so we just s tate a couple of results, without proofs. 

T h e o r e m 10 .17 ( C o m p a r i s o n t e s t ) Let f,g E TZ\oc{[(^,b)) be such that 
0 < f{x) < g{x) for any x € [a, h). Then 

ph rb pO pO 

0< / f{x)dx< / g{x)dx. (10.5) 
J a J a 

In particular, 

i) if the integral of g converges, the integral of f converges; 
a) if the integral of f diverges, the integral of g diverges. 

T h e o r e m 10 .18 ( A s y m p t o t i c c o m p a r i s o n t e s t ) / / / G 7?^ioc([^?^)) «̂5 in-
finite of order a for x ^ b~ with respect to ip{x) = -^^, then 

i) ifa<l,fen{[a,b)); 

a) if a>l, j f{x)dx diverges. 
J a 
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Integrals over (a, 6] are defined similarly: 

pb ph 

j f{x) dx = lim / f{x) dx. 

With the obvious modifications all properties carry over. 

Examples 10.19 

i) Consider the integral 

/V 7-x 

3 — X 
dx. 

The function f{x) — y luf is defined and continuous on [1,3), but has a dis-

continuity for X ^ 3~. As 7 — X < 4 on [1,3), by the Comparison test we have 

[m-<-^[ 1 
dx < +00, 

V 3 ^ ^ 

(recall Example 10.16). The integral therefore converges. 

ii) Consider 

WhenxG (1,2], 

( X - 1 ) 2 ^ ( X - 1 ) 2 ' 

SO by comparison the integral diverges to +oo. 

iii) Determine the behaviour of 
•/2 ^/Z 

/•2 ê  

e + 1 

- 1 ) 2 

< —-

dx. 

' + 1 

F o r x ^ O + , / ( x ) 

totic comparison 

iv) The integral 

\/x 
/ 
Jo 

smx 
dx. 

1 
sinx y/x 

totic comparison test . 

, therefore the integral converges by the Asymp-

J -K 

log(x - 3) 
dx 

x^ — 8x^ + 16x 

has integrand / defined on [TT, 4); / tends to +oo for x —̂  4~ and 
log(l + ( x - 4 ) ) ^ 1 

^^ '~ x ( x - 4 ) 2 4 ( x - 4 ) ' • 

Thus Theorem 10.18 imphes divergence to —oo (/(a;) = l/(a; — 4) is negative at 
the left of x = 4). • 
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10.2 More improper integrals 

Suppose we want to integrate a map with finitely many discontinuities in an inter-
val / , bounded or not. Subdivide I into a finite number of intervals / j , j = 1 , . . . , n, 
so tha t the restricted map falls into one of the cases examined so far (see Fig. 10.4). 
Then formally define 

[f{x)dx = J2f /Wdx. 

One says tha t the i m p r o p e r integral of / on / converges if the integrals on the 
right all converge. It is not so hard to verify tha t the improper integral's behaviour 
and its value, if convergent, are independent of the chosen parti t ion of / . 

E x a m p l e s 10.20 

) Suppose we want to study 

5 = 
+ CXD 

1 + X 2 
d x . 

If we split the real line at the origin we can write 

S •dx + 
1 + ^2 

/ _ 1 d x : 

the two integrals converge, both to 7r/2, so 5 = TT. 

ii) The integrand of 

Si f 
Jo 

smx dx 

Figure 10.4. Trapezoidal region of an infinite map, over an unbounded interval 
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is infinite at the origin, so we divide the domain into (0,1] U [1, +CXD), obtaining 

^ f^ sinx ^ f^"^ sinx ^ 

but 
' sm X 

tor a; ^ U^ and | 
X 

1 
x^ 

so Theorem 10.18 forces the first integral to diverge, whereas the second con-
verges by Theorem 10.5. In conclusion ^i tends to H-oc. 
For similar reasons 

Jo 
/ smx 

converges. 

iii) Let S denote 

/ 
: dx. 

^ (x + l ) ^ x 2 - 6 x + 8 
The integrand diverges at — 1 (which lies outside the domain of integration), at 
2 and also at 4. Hence we write 

S^(f\f\f\f°) d.. 
\Ji J2 Js J4 J {x + 1) ^ ( x - 2 ) ( x - 4 ) 

The function is infinite of order 1/3 for x ^ 2=̂  and also for x —> 4^, so the 
integral converges. • 

10.3 Integrals along curves 

The present and next sections deal with the problem of integrating over a curve, 
rather than just an interval (see Sect. 8.4). The concept of integral along a curve -
or path integral as it is also known - has its origin in concrete applications, and is 
the first instance we encounter of an integral of a function of several real variables. 

Let 7 : [a, 6] ^ R^ (d = 2,3) be a regular arc and C = 7([a, 6]) its image, 
called a path. Take / : d o m / C R^ ^^ M a function defined at least on C, hence 
such that C C dom/ . Suppose moreover that the composite map / 0 7 : [a, b] —> R, 
defined by ( / o 7)(t) = f{j{t)), is continuous on [a, b]. 

Definition 10.21 The line integral of / along 7 is the number 

j f = l /(7W)||VWI|dt, (10.6) 

where \\j'{t)\\ = y/\x'{t)\^+ \y'{t)\'^-\-\z'{t)\'^ is the modulus {i.e., the Eu-
clidean norm) of the vector y'{t). Alternative expression are 'path integral of 
f along 7 ^, or simply, 'integral of f along 7 \ 
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The right-hand-side integral in (10.6) is well defined, for the map / ( 7 ( t ) ) ||7^ 
is continuous on [a, 6]. In fact 7 is regular by hypothesis, its components ' first 
derivatives are likewise continuous, and so is the norm | |7 ' ( t ) | | , by composition. 
And recall f{j{t)) is continuous from the very beginning. 

Integrals along curves have the following interpretation. Let 7 be a simple arc 
in the plane with image C and / a non-negative function on C with graph 

r ( / ) = {{x,y,z) G R^ : {x,y) G d o m / , z = /(x^y)}. 

By 
U = {{x,y,z) G M' : {x,y) e C, 0 < z < f{x,y)} 

we indicate the upright-standing surface bounded by C and by its image f{C) lying 

on the graph of / , as in Fig. 10.5. One can prove tha t the value of the integral of 

/ along 7 equals the area of E. For example if / is constant on C, say equal to ft, 

the area of L is the product of the height h times the base C. Accepting tha t the 

base measures i{C) = J^ ||7^(0II ^^ (which we shall see in Sect. 10.3.1), we have 

A r e a ( r ) = / i ^ ( C ) = / f{'f{t))\h'{t)\\dt^ f f. 
Ja J7 

E x a m p l e s 10.22 

i) Let 7 : [0,1] -^ M? be the regular arc ^{t) = (t, t^) parametrising the parabola 

y = x'^ between O - (0,0) and A = (1,1). Then 7 ' ( t ) = ( l , 2 t ) has length 

| | y ( t ) | | = v T T 4 t 2 . I f / : M x [0,+oo) -> R is defined b y / ( x , ? / ) = 3J: + y ^ , the 

composition / o 7 reads f{'y{t)) = 3t + V ^ = 4t and therefore 

[ f = [ 4t\/l-h4t2dt. 
Jj Jo 

Figure 10.5. Geometric interpretation of the integral along a curve 
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Substituting s = 1 + At^ we obtain 

j f = 2J'vsds = 2 [?s3/2] ^ = 4 ̂ 5^5 - 1). 

ii) The curve 7 : [0,27r] -^ R^ parametrises the circle centred at (2,1) with 
radius 2, 7(t) = (2 + cost, 1 + sint), so | |y(t) | | = \/4sin^ t + 4cos^ t = 2 for 
all t. With the function / : R^ ^ R, f[x,y) = (x - 2)[y - 1) + 1, we have 
f{'y{t)) = 4sintcost + 1, and 

/ / = 2 / (4sintcost + l )d t=:2[2s in2t + t]Q''= 47r. 
^7 Jo 

If we represent the circle by some 7 having the same components as 7 but t 
varying in [0, 2A:7r] (i.e., winding k times), then 

If ^2 (4sintcost + l )d t = 4fc7r. D 
^7 Jo 

Example ii) shows that integrals along curves depend not only on the image of the 
curve along which one integrates, but upon the chosen parametric representation 
as well. That said, certain parametrisations give rise to the same integral. 

Definition 10.23 Two regular curves 
equivalent if there is a bijection (f : 

\ positive derivative, such that 

i.e., 6{T) = nf{(p{T)) for 

5 = 7 

all T E J. 

7 • 
J -

0 if 

/ -^ R^, 5 : J -> K^ are called 
•^ I, with continuous and strictly 

Definition 10.24 Let 'j : I —> R^ be a regular curve. If —I is the interval 
{t eR : -t e I}, the curve - 7 : - / -> R^ defined by {-j){t) = j{-t) is 
termed opposite to 7 . 

Flipping the parameter means we can write (—7) = 7 0 ^ , where (p : —I -^ I is the 
bijection cp{t) = —t that reverts the orientation of the real line. If 7 : [a, b] -^ R^ 
is a regular arc, so is —7 over [—6, —a]. 

It is convenient to call congruent two curves 7 e <5 that either are equivalent 
or one is equivalent to the opposite of the other. In other words, 8 = ^ o ip where 
(y9 is a strictly monotone bijection of class C^. Since the values of the parameter 
play the role of 'tags' for the points on the image C of 7, all curves congruent to 7 
still have C as image. Furthermore, a curve congruent to a simple curve obviously 
remains simple. 
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Let / be a function defined on the image of a regular arc 7 : [a, b] -^ R^ with 
/ o 7 continuous, so tha t the integral of / along 7 exists. The map f o S (where 
S is an arc congruent to 7) is continuous as well, for it arises by composing a 
continuous map between intervals with / o 7 . 

P r o p o s i t i o n 10 .25 Let 7 : [a, 6] -^ R^ be a regular arc with image C^ f 
defined on C such that / o 7 zs continuous. Then 

l,''L'' 
for any arc 8 congruent to 7 . 

Proof. Suppose^ (-~7)^{/) -̂- —7 (̂ M. so norms are i)r(^serv(^d. i.e.. ||(—7)^(^)| 

:a'[ - n i l . mid 

/ / = / ' /((-7)(^))ll("7)70l|cl^ 

= / / ( 7 ( - 0 ) ! l 7 ' ( - 0 | | < l / . 

With th(^ chauKi" of \'aria])l(>s .s = —i. d.s = —d/. we obt am 

/ / = /'/(7(-))ll7'(-)il<l-'.-

- / / (7( - ) ) i|7'(-^-)lia.s-= / / . 
7 

Similarly if 5 -• 7 :• -f. where ^ : [c-d] — [d.b]. is an ('(luivalcnt arc to 7 . 
then 6'{T) --- •y'{^'lT])^-'{T' with ^-'(7) > 0. Thus 

1^1= I f{d{T)]\\S'(T)\\dT 

/ ( 7 ( . : f r ) ) ) | | 7 ' ( y ( T ) ) ^ ^ ' ( T ) | | d r 

fh{-r'{T)))\h'i/^{T])\\~f'{T)dT. 

B\' / = ^ ( r ) . lieiicc^ df = ^'{r)i\T. w(̂  see that 

fh(f))\h'if)\\df = I 1 = I f(f(f))\h'(f]\\dt= I f . 
.16 .'.I J'J 

D 
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The proposition immediately implies the following result. 

Corollary 10.26 The integral of a function along a curve does not change 
if the curve is replaced by another one, congruent to it. 

Next, let us note that naming c an arbitrary point in (a, b) and setting 7 i == 

7|[a,c]^ 72 =7|[c,6]. we have 

[ f= [ f+ [ f. (10.7) 

because integrals are additive with respect to their domain of integration. 
Integrating along a curve extends automatically to piecewise-regular arcs. More 

precisely, we let 7 : [a, 6] -^ R^ be a piecewise-regular arc and take points a = 
ao < ai < . . . < a^ = 6 so that the arcs 7^ — 7j[o^_- ,̂a.], i = 1 , . . . , n, are regular. 
Suppose, as before, that / is a map with domain containing the image C of 7 and 
such that / o 7 is piecewise-continuous on [a, 6]. Then we define 

^^ 2=1 '^7z n 
coherently with (10.7). 

Remark 10.27 Finding an integral along a piecewise-regular arc might be easier 
if one uses Corollary 10.26. According to this. 

(10.8) 

where Si are suitable arcs congruent to 7^, i = 1 , . . . ,n, chosen to simplify com-
putations. • 

Example 10.28 

We want to calculate L̂  x^, where 7 : [0,4] -^ M^ is the following parametrisation 

of the boundary of the unit square [0,1] x [0,1]: 

r-f^{t) = (t,0) if 0 < t < 1, 

, , 72W = ( 1 , ^ - 1 ) i f l < ^ < 2 , 
7(0 = \ 

7 3 ( ^ ) 3 3 . ( 3 - ^ , 1 ) i f 2 < t < 3 . 
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Figure 10.6. Parametrisation of the unit square, Example 10.28 

(see Fig. 10.6, left). Let us represent the four sides by 

5 i ( t ) = 7 i ( ^ ) 0 < t < l , 5 i = 7 i , 

62{t) = {l,t) 0 < t < l , 5 2 - 7 2 , 

(53(t) = ( t , l ) 0 < t < l , 5 3 - - 7 3 , 

d^{t) = {0,t) 0 < t < l , 5 4 - - 7 4 

(see Fig. 10.6, right). Then 

;^ = / t^dt+ I 1 dt + / t ^d t + / Odt = -
7 Jo ^0 Jo Jo 3 

D 

10.3 .1 L e n g t h of a curve and a r c l eng th 

The l e n g t h of a piecewise-regular curve 7 : [a, b] is, by definition. 

In case of a regular arc, (10.9) reads 

% ) - AiyWI|dt= f^{x'{t))' + {y'it)f + {z'it)fdt. 
J a J a 

(10.9) 

(10.10) 

The origin of the term is once again geometric. A fixed parti t ion a = to < ti < 
. . . , tn-i < tn =" b of [a, b] determines points Pi = 7(t^) E C, i = 0 , . . . , n. These 
in tu rn give rise to a (possibly degenerate) polygonal pa th in M"̂  whose length is 
clearly 

n 

£ ( t o , ^ i , . . . , t „ ) = ^ d i s t ( P i _ i , P i ) > 
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dist{Pi-i,Pi) — \\Pi — Pi-i\\ being the Euclidean distance of two consecutive 
points. If we let AU =ti — ti-i, and 

Ax 

~Ai 
x{ti) - x{ti-i) 

(and similarly for the coordinates y and z), then 

\\Pi - Fi_i| | = \/{x{ti) - x{U-i)f + {y{ti) - y{ti^i)y {z{ti) - z{U.i)Y 

n<mM--
Therefore 

'<—"'=|:/(iHiHi AU 

which ought to be considered an approximation of the integral appearing in (10.10). 
Provided the curve is sufficiently regular (piecewise-regular is enough), one can in-
deed prove that the supremum of £(to, t i , . . . , t^), taken over all possible partitions 
of [a, 6], is finite and equals ^(7). 

The length, as of (10.9), depends on the image C of the curve but also on the 
parametrisation. The circle x^ -f y^ = r^, parametrised by 7i(t) = ( rcos t , rs in t ) , 
t e [0,27r], has length 

^(7 1 ) = / ^ rdt = 27rr, 

a well-known result in elementary geometry. But if we represent it using the curve 
j2{t) = (rcos2t,rsin2t) , t G [0,27r], we obtain 

^(72) 

p27T 

2r dt = 47rr, 

because now the circle winds around twice. Proposition 10.25 says that congruent 
curves keep lengths fixed, and it is a fact that the length of a simple curve depends 
but on its image C (and not the parametrisation); it is called the length i{C) of 
C. In the example, 7^ is simple, in contrast to 72; as we have seen, i{C) — ^(7i). 

Let now 7 be a regular curve on the interval / . We fix a point to ^ I and define 
the map s : 7 ^ R 

(10.11) 
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Recalling (10.10), we have 

p(7|[to,t]) i f t > t o , 
s{t) = <0 if t - to , 

i -%| [Mo] ) i f ^ < ^ o . 

In practice the function s furnishes a reparametrisation of the image of 7. As a 
matter of fact, 

s'it) = \h'm>o, ^tei 
by the Fundamental Theorem of integral calculus and by regularity. Therefore s is 
strictly increasing, hence invertible, on / . Letting J = s{I) be the image interval 
under 5, we denote by t : J —> / C R the inverse map to s. Otherwise said, we write 
t = t{s) in terms of the new parameter s. The curve 7 : J ^^ R^, 7(5) = 7(^(5)), 
is equivalent to 7 (and as such it has the same image C). If Pi — 7(^1) is a point 
on C and ti corresponds to 5i under the change of variable, then we also have 
Pi = 7{si)' The number si is called arc length of Pi. 

Differentiating the inverse map, 

whence 
||7'(s)|| = i , v . e J . 

This expresses the fact that the arc length parametrises the motion along a curve 
with constant 'speed' 1. 

in (10.11), with to = a; then s{a) = 0 and s{b) = J^ \\j'{r)\\ dr = ^(7). Using this 

r^(7) r^il) 

Remark 10.29 Take 7 : [a, 6] -^ R a regular curve and let s be the arc length as 
in (10.11), with to = a; ther 
special parameter, we have 

f = f = f{7{s))ds^ / f{^{t{s)))ds. D 
^7 J 7 Jo Jo 

The notion of arc length can be defined to cover in the obvious way piecewise-
regular curves. 

Example 10.30 

The curve 7 : R -^ R^, 7(t) = (cost,sint, t) describes the circular helix (see 

Example 8.8 vi)). Since | |y(t) | | = | | ( -s int ,cost , 1)|| = (sin^ t + cos^ t + 1)^/^ = 

v^, choosing to = 0 we have 

s{t)= [ | |y(r) | |dT = v ^ / dr = V2t. 
Jo Jo 

It follows that t = t{s) = ^ 5 , 5 G R, and the helix can be reparametrised by 
arc length 

7(5) = I cos — 5 , sm — s , —s I . D 
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10.4 Integral vector calculus 

The last section deals with vector fields and their integration, and provides the 
correct mathematical framework for basic dynamical concepts such as force fields 
and the work done by a force. 

Definition 10.31 Let Q indicate a non-empty subset ofR^, d ~ 2,3. A 
function F : Q —^M.^ is called a vector field on Q. 

Conventionally /^ : i? ^> R, i = 1 , . . . , d, are the components of F , written 
^ = (/i5 • • •, fd)- Using the unit vectors i, j , fc introduced in Sect. 8.2.2, we can 
also write F = fii-\- /2 j if d = 2 and F = fii-\- f2J + fsk if d = 3. 

Vector fields may be integrated along curves, leading to a slightly more general 
notion of path integral. Take a regular arc 7 : [a, b] -^ R^ whose image C = 7([a, b]) 
is contained in i?. In this fashion the composition F oj : t \-^ F{y{t)) maps [a, b] 
to R^. We shall assume this composite is continuous, i.e., every /{{^yit)) from [a, b] 
to R is a continuous map. For any t G [a, 6] we denote by 

Il7'(f)ll 

the unit tangent vector to C at P{t) =^{t). The scalar function F^ — F • r, 

FAt) = {F-T){t) = F{'r{t))-r{t) 

is the component of the field F along the unit tangent to 7 at the point P = j{t). 

Definition 10.32 The line integral or path integral of F along 7 is 
the integral along the curve 7 of the map Fr: 

[ F- dP= f Fr. 
J7 J 7 

As the integral on the right equals 

rb 
f Fr= f F.T= f F{j{t)) • r{t) \W{t)\\ dt= f F{j{t)) • y (t) dt, 

J 7 J 7 Ja Ja n ^1 
the line integral of F on 7 reads 

j FdP^j F(7(<))-yWd<. (10.12) 
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Here the physical interpretation is paramount, and throws new light on the consid-
erations made so far. If F describes a field of forces applied to C, the line integral 
becomes the work done by F during motion along the curve. The counterpart to 
Proposition 10.25 is 

Propc^ition 10.33 Let 7 : [a, b] —> 
F a vector field over C such that F 

f F'dP: 

over any curve S equivalent 

•dP 

to 7. 

W^he 
0 7 is 

and 

a regidar curve with image C, 
continuous. Then 

I"- AP- -IF. 
Js 

dp, 

and 

In mechanics this result would tell that the work is done by (resp. against) the 
force if the directions of force and motion are the same (opposite); once a direction 
of motion has been fixed, the work depends only on the path and not on how we 
move along it. 

Examples 10.34 

i) Consider the planar vector field F : R^ ^ R^ given by F{x^y) = {y-,x). Take 
2 2 

the ellipse ^ + ^ = 1, parametrised by 7 : [0, 27r] -^ R^, 7(t) = (3cost, 2sint). 

Then F{-i{t)) = (2sint, 3cost) and -f'{t) = ( -3sint , 2cost). Therefore 

/'27r 

F - d P = / (2sint,3cost) • ( -3s in t ,2cos t )d t 
7 -̂ o 

/>27r /»27r 

= 6 / ( - sin^ t + cos^ t)dt = 6 (2 cos^ t - 1) dt 
Jo Jo 

= 12 / c o s ^ t d t - 127r = 0, 
Jo 

because 
>27r 

cos^ t dt 

(see Example 9.9 u)). 

ii) Let F : R^ ^ R^ be given by F(x, ?/, z) = (e^,x + y,y-f z), and 7 : [0,1] ^ R^ 
by 7 (0 = {tit'^^t^)' The vector field along the path reads 

F(7( t ) ) = (e^t + t ^ t ^ + t 3 ) and -f\t) = {l,2t,3t^). 

Thus 

f F' dP= [ {e\t + t^,t^ + t^)' (1,2t, 3t^) dt 
J'j Jo 

[e' + 2{t^ + t^) + 3{t^ + t^)] dt = e + ^ . n 

f 
Jo 

1 1 
-t+~sm2t = TT 

0 

/ 
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10.5 Exercises 

1. Check the convergence of the following integrals and compute them explicitly: 

c) I 
x2 + 3x + 2 

dx 

2 Xy/x — 2 
dx d)1 / —==^ dx 

— \ J-i A / | X | ( X - 4 ) 

2. Discuss the convergence of the improper integrals: 

r*+oo 
smx dx 

Jo Xy/X 

' / 

e) / 
JQ sm TTX 

^ X - 7r/2 

1 

c) / xe'^ 'dx 
/o 

0 log'(2 + e-) 

+°^logx 

vx^ 
dx 

^̂  Vx — x̂  
dx 

[g)l / 
0 COSX vsinx 

dx 

/.7r/2 , 

f) / -y^=dx 
Jo v s m x 

—1 r (7r-x) logx 

dx 

VTMT" 
: dx 

smx) 

3.1 Study the convergence of 

J2 
: dx 

for yarying n G N. What is tiie smallest value of n for which Ofi converges: 

4. Determine a G M such tiiat the integrals below converge: 

a) 
arctan x r+°° arct; 

J-OO P 
dx 

- 0 0 

I—I r^^ ^ 
i ^y_^ ix3+5xM 

^Wo x«(4H-9x)2 

5.1 For whicii o; G M does 

dx 

- 0 0 

c+00 

+ 8x + 4|̂  
dx 

I 1 / ^ 
( x - 2 ) ^ ^ ^ ^ 

dx 

x(sin(x - 2))' 

I2 Vx"^ - 4 
converge? What is its value when a = 0? 

X dx 



10.5 Exercises 379 

6. Tell when the following integrals converge: 
/»4-00 T 1 
I ^ p-^ — I — s i n 0̂  

dx 
(log(x + 1) — logx) dx b) / 

/ o/ lc)g dx d) / . / ox 1 / \ 
J2 v ^ - 2 x + 1 I 1 JQ smx - (x + x^)log(e + x) 

dx 

I 7.1 Compute the integral of 

f{x,y,z) = 
x^{l + Sy) 

y/l + y + 4x2^ 

along the curve j{t) = (t, t^, logt), t G [1,2]. 

8. Integrate the function f{x^y)=xon the Jordan curve 7 whose image consists 
of the parabolic arc of equation y — 4—x^ going from A = (—2,0) to C = (2,0), 
and the circle x^ + T/̂  = 4 between C and A. 

9. I Let 7 be the curve in the first quadrant with image the union of the segment 
from O = (0,0) to A = (1,0), the arc of the ellipse Ax'^ + /̂̂  == 4 between 
A and B = ( ^ , \ / 2 ) , and the segment joining B to the origin. Integrate 
f{x,y) = X ^y along the simple closed curve 7. 

10. Integrate 
1 

x^ + y^ + 1 

along the simple closed curve 7 which is piecewise-dehned by the segment 
from O to A = (>/2,0), the arc of equation x'^ -\- y'^ — 2 lying between A and 
B = (1,1), and the segment joining B to the origin. 

Integrate the vector field F{x,y) = {x'^^xy) along the curve ^{t) — (t'^^t), 
tG[0 , l ] . 

12. Compute the line integral of the field F{x^y,z) = (z,?/,2x) along ^{t) = 
{t,t^,t^),te [0,1]. 

13. Integrate F{x^y,z) = {2^/z,x,y) along ^^{1) = ( - s in t , cost, t^), te [0, | ] . 

11. 

14. Integrate F{x, y) — (xy^, x^y) along the simple path 7 consisting of the quadri-
lateral of vertices A = (0,1), B = (1,1), C = (0,2) and D = (1,2). 

15. Integrate F{x, y) = (0, y) along the closed simple curve consisting of the seg-
ment from O to A = {1,0), the arc of circumference x'^ + y"^ = 1 between A 
and B = {^,^), the segment from B back to O. 
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10.5 .1 So lut ions 

1. Convergence and computation of integrals: 

a) l o g 2 ; b) ^ . 

c) The function f{x) = ^ ^^-^ is unbounded at x = 0 and x = 2. The point x = 0 

lies outside the domain of integration, hence can be ignored. We then split the 

integral as 

/ — , dx= — ; dx-\- — dx = 5 i + ^2 . 
J2 Xy/X - 2 J2 X\/X - 2 J3 Xy/X - 2 

For X -^ 2+, f{x) ^ 2(x-2)i/2 7 so / is infinite of order ^ < 1. By Asymptotic 

comparison test, i.e., Theorem 10.18, 5 i converges. As for ^2, let us consider 

/ when X —^ -\-oo. Because 

fix) • .T1/2 X • X ^3/2 
X -^ + 0 0 , 

Theorem 10.10 guarantees S2 converges as well. 
To compute the integral, let t^ = x — 2, hence 2tdt = dx and x = t^ + 2, by 
which 

-I + ^ 2 , 2 t 
-7^—- dt = —j=z arctan —= 
t^ + 2 y/2 V2 

+00 ^ 
- T T . 

d) The integrand is infinite at x = 0, x = 4. The latter point is irrelevant, for it 
does not belong to the domain of integration. At x = 0 

fix) 
4 ^ 

for X —> 0 , 

so the integral converges by applying Theorem 10.18 to 

5 i - r 1 
x-4) 

dx and 
Jo V^i^- 4) 

dx 

separately. For ^ i , let us change t'^ = —x, so 2tdt = —dx and x — 4 = —t̂  — 4. 
Then 

Jo 

2 , t 
^ ^ - ^ dt = - a r c t a n -

1 1 
= — arctan -

0 2 

Pu t t ing t^ = X in S2 

^ 2 = / r d i 

Therefore 5' = 5 i + ^2 = - (arctan ^ + ^ log 3). 

log 
t-2 
t + 2 

nl 

=5^°4 
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2. Convergence of improper integrals: 

a) Converges. 

b) The map f{x) — ^^ 2/2+e )̂ ^^^ ^ ^^ domain since 2 + e^ > 2, Vx G M. It is 
then sufficient to consider x -^ +00. As 

log(2 + e^) = loge^(l + 2e-^) = x + log(l + 2e-^) , 

it foUows 

/ ( ^ ) ^ s^ , 1^^,-, , o^-.NN9 ^ Z^^ X - > + 0 0 . 
1 1 

[x + log(l + 2e-^))2 ^ ~x 

The integral converges by Theorem 10.10. 
c) Converges. 

d) Over the integration domain the map is bounded. Moreover, 

log X 1 
^ > Vr > e 

By the Comparison test (Theorem 10.5), the integral diverges. 

e) Converges; f) converges. 

g) The integrand is not defined at x = 0, | , nor at TT. For x = | though, the 
function admits a continuous prolongation mapping | to —1, because if we 
put t = X — I , then 

cos X — cos(t H—) = — sm t = — sm(x ) 

and so 

/ (^) = 7 = -- - 1 , ^ -^ o • 
cosxvsmx ^ 

Therefore the integral is 'proper' at x = | . From 

f{x)^--^, x-^0+, fix) 
X 2v7r - X 

we have convergence by asymptotic comparison (Theorem 10.18). 

h) The map to be integrated is not defined for x = 0, X ry , X TT. In the limit 
x ^ 0 + , 

J,. . Trlogx Tilogx 
^^^^ ^ | l 0g ( l -x ) |V2 ^ " 7 ^ • 

The map has no well-defined order of infinite with respect to the test function 
^; nevertheless, it is clearly infinite of smaller order than any power -^ with 

^ < a < 1, since the logarithm grows less than ^ for any q > 0 when 
X ̂  0+. The Asymptotic comparison test (Theorem 10.18) forces the integral 
to converge around 0. 
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About the other points, for x -^ ^, the function tends to 0, so the integral in 
not improper at | ; when x ^> 7r~, we have 

fM ( l o g ^ ) ( ^ - ^ ) (log7r)(7r-x) _ ,/, 
^^' |log(l + sin(:r-7r))|i/2 |sin(^ - 7r)|i/2 ^̂ oĝ ATT x) , 

SO the integral in x = TT is proper because / goes to 0. Eventually then, the 
integral always converges. 

3. The map is defined over all R with 

fix) ~ = r , X -^ +00 . 

Thus S converges if n — 1 > 1, i.e., the lowest n for which convergence occurs must 
be n = 3. Let us find 

/ 
dx 

then. Define t — x'^ -\-'^^ so dt — 2xdx, and 

2 / 7 

+00 1 

A/7 

4. Interval of convergence of improper integrals: 

a) ae (1,2). 

b) Having factorised x^ + 5x^ + 8a; -f 4 = (x + 2)^ (x +1), we can study the function 
for X —> ±00, X -^ —2 and x ^^ — 1: 

/ W ' ^ ^ ' x-^±oc; 

fM ^ 1 ^ T T ^ 5 a ; ^ > — 2 ; 

•̂ ^ ^ |x + l|^ ' 

In order to ensure convergence, we should impose 3a > 1, 2a < 1 plus a < 1. 
Therefore a G ( | , | ) . 

c) a G ( - l , l ) . 

d) The integrand is infinite at x = 2 and x = 3. But 

/ W ^ ^ , x->2, 
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so everything is fine when x - ^ + o o o r x - ^ S . The point x = 2 is problematic 
only if included in the domain of integration, whence we should have a > 2 to 
guarantee convergence. 

5. a > — ̂  and S = \ /5 . 

6. Convergence of improper integrals: 

a) Diverges; b) converges. 

c) Over (2, +CXD) the map is not bounded in a neighbourhood of x = 2. Since 

X — 2 1 
log——- - l o g - ( x - 2 ) 

X -\- 1 6 

is infinite of lower order than any positive power of -^^ when x —> 2" ,̂ it 

follows / is infinite of lesser order than , (any a > 0). This order, 
(x — 2) / 

for a suitable choice of a (e.g., a = | ) is smaller than 1 . Therefore the integral 
converges at x = 2. 
For X -^ +00, 

x - 2 / 3 \ 3 3 
log ~ log 1 ~ ~ — , 

^ x + 1 ^V x^lj x + 1 x ' 

whence 

-̂  ̂  173 = 4 7 3 ' X - ^ + O O . 

Altogether, the integral converges. 

d) Let us examine / at x = 0. As 

sin X — (x + x^) log(e + x) = x + o(x^) — (x + x^) (1 + log (l-\— j ] 

= -x^ + o(x^) - (x -f x^) (- + o{x)\ 

1 + - ) x^ -h o{x^), X ̂  0, 

we have 

f(-)--jrTW^^ ^-0. 
The integral then must diverge at x = 0. 
Studying the behaviour for x -^ +oc is unnecessary to conclude that the 
integral diverges (albeit a direct computation would establish the same). 

7. When tG [1,2], 

/ (7( t ) ) = ^^(^ + ^t^) /(^) _ /I 2t, - ) , 
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whence 

• St^) 1 

J J JI ViTWT^ t Ji ' 
63 

T 
8. 0. 

9. First of all we find the coordinates of B, intersection in the first quadrant of the 

straight line y = 2x and the ellipse 4x^+7/^ = 4, i.e., B — {^^ \ /2 ) . The piecewise-

regular curve 7 can be divided into three regular arcs 7^, 72, 73 , whose images 

are the segment OA^ the elliptical pa th AB and the segment BO respectively. Let 

us reparametrise these arcs by calling them: 

(5i(t) = (t ,0) 

82{t) = (cos t, 2 sin t) 0 < t < 

Ss{t)^{t,2t) 

0<t<l, 

TT 

4 ' 

0 < t < — , ^3 - - 7 3 . 

^1 = 7 i , 

($2 ~ 7 2 5 

Then 

Since 

^ 7 Joi J02 Joz 

ii5;(t)ii = i , 

f{S2{t)) = c o s t + 2 s i n t , 

^2(0 — ( — s i n t , 2 c o s t ) , 53(0 = (1 ,2 ) , 

l^sWII = \ / s in^^ + 4 c o s 2 t , \\Ssit)\\ = x /5 , 

we have 

r /•! /•^/4 ^ rV2/2 
f= tdt-\- / ( cos t + 2 s i n f ) V s i n ^ t + 4 c o s 2 t d t + / 3^5^ 

J'j Jo Jo Jo 
3 r^ /^ ^ /'7r/4 

+ - \ / 5 + / c o s t V 4 - 3 s i n 2 t d t + 2 / s i n t V l + Scos^t 
4 Jo Jo 

1 3 

2 

- + - y 5 + / i + / 2 . 

dt 

dt 

To compute / i , put u = \ / 3 s i n t , so du — \ / 3 c o s t d t , and 

r\/6/2 X rVD/z 
Ii = —- V 4 - 1̂2 d?i. 

V 3 Jo 

Wi th the substi tution '̂  = f, and recalling Example 9.13 vi), 

h = ^ x/3L2 
- iX\/4 - ^2 _̂  2 

u 
arcsm — 

\/6/2 
A/5 2 . X/6 

= —— H—;= arcsm —— . 
4 ^ / 3 4 
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For I2 the story goes analogously: let u — V^cost, hence du — — v ^ s i n t d t and 

2 /'\/6/2 

V3 Jo 
1 + -û  dw. 

By Example 9.13 v), we have 

li = 
Vs J«vTT^ log \/rT W- —U 

V6/2 v/5 , 1 x / l 0 - \ / 6 

Overall, 
r ^ 1 1 /r 2 . \/6 1 , ^ / l 0 - ^ / 6 
/ / = o + 0^5 H—;;= arcsm —p H—— log • V3 v^' 

10. 2arctany2+ ^(v /2- l )7r . 

11. Since F(7(^)) = (<^t^) and i(i) = (2t, 1), 

/ F dP= f {t\t^)-{2t,l)dt= f {2t^+f)dt^^. 
J-f Jo Jo 12 

12. 1 3 . - . 

14. The arc 7 is piecewise-regular, so we take the regular bits 7^, 72, 73 whose 
images are the segments AB^ BC^ CD. Define (5̂ , reparametrisation of 7^, Vi = 
1,2,3, by 

<5iW = (*,l) 0 < i < l , < 5 i ~ 7 i , 

<52W = ( i , 2 - i ) 0 < t < l , <52 ' - -72 , 

^3(0 = (^,2) 0 < « < 1 , 5 3 - 7 3 -

Since 

F ( 5 i ( i ) ) - ( t , i 2 ) , F{6^(t)) = {t{2-tf,t\2-t)), F{8^(t)) = {At,2t^) 

<5;(i) = ( l ,0 ) , 5'2W = ( 1 , - 1 ) , 5^(^) = (1,0), 

one has 

F- dP= F- dP 
7 JSi 

= / ( i , i2 ) . ( l ,0 )d i 
JO 

F- dP+ F- dP 
So JSs 

- [ {t{2-t)\t\2-t))-{l,-l)dt 
Jo 

+ / (4t ,2t2)-(l ,0)dt = 2. 
Jo 

15. 0. 
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Ordinary differential equations 

A large part of the natural phenomena occurring in physics, engineering and other 
applied sciences can be described by a mathematical model, a collection of relations 
involving a function and its derivatives. The example of uniformly accelerated 
motion is typical, the relation being 

where s = s{t) is the motion in function of time t, and g is the acceleration. 
Another example is radioactive decay. The rate of disintegration of a radioactive 
substance in time is proportional to the quantity of matter: 

in which y = y{t) is the mass of the element and k > 0 the decay constant. The 
above relations are instances of differential equations. 

The present chapter aims at introducing the reader to some types of differential 
equations. Although we cannot afford to go into the general theory, we will present 
the basic notions and explain a few techniques for solving certain classes of differ-
ential equations (of first and second order) that we judge particularly significant. 

11.1 General definitions 

By an ordinary differential equation, abbreviated ODE, one understands a 
relation among an independent real variable, say x, an unknown function y = y{x) 
and its derivatives ^̂ ^̂  up to a specified order n. It is indicated by 

JP-(x,i / ,j / ' , . . . , j /("))-0, (11.3) 

where JF is a real map depending on n + 2 real variables. The differential equation 
has order n, if n is the highest order of differentiation in (11.3). A solution (in 
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the classical sense) of the ODE over a real interval / is a function y : / 
differentiable n times on / , such that 

J'{x,y{x),y\x),...,y^''\x)) = 0 for all xel. 

It happens many times that the highest derivative ŷ ^̂  in (11.3) can be ex-
pressed in terms of x and the remaining derivatives explicitly, 

y ( - )=/ (x,2/ , . . . ,2 / ( - -^)) , (11.4) 

with / a real function of n + 1 variables (in several concrete cases this is precisely 
the form in which the equation crops up). If so, the differential equation is written 
in normal form. It should also be clear what the term 'solution of an ordinary 
differential equation in normal form' means. 

A differential equation is said autonomous if T (or / ) does not depend on 
the variable x. Equations (11.1), (11-2) are autonomous differential equations in 
normal form, of order two and one respectively. 

The rest of the chapter is committed to first order differential equations in 
normal form, together with a particularly important class of equations of the 
second order. 

11.2 First order differential equations 

Let / be a real-valued map defined on a subset of R^. A solution to the equation 

(11.5) y' = f{x,y) 

over an interval / of R is a differentiable map y = y{x) such that y'{x) = / (x, y{x)) 
for any x e I. The graph of a solution to (11.5) is called integral curve of the 
differential equation. 

Relation (11.5) admits a significant geometric interpretation. For each point 
(x, y) in the domain of / , / (x , y) is the slope of the tangent to the integral curve 
containing {x^y) - assuming the curve exists in the first place - so equation (11.5) 
is fittingly represented by a field of directions in the plane (see Fig. 11.1). 

Remark 11.1 If we start to move from {x,y) = (xo,2/o) along the straight line 
with slope /(xo,yo) (the tangent), we reach a point (xi^yi) in the proximity of 
the integral curve passing through (XQ, yo)- From there we can advance a little bit 
farther along the next tangent, reach (x2, ̂ 2) nearby the curve and so on, progres-
sively building a polygonal path close to the integral curve issuing from (xo,^o)-
This is the so-called explicit Euler method which is the simplest numerical proce-
dure for approximating the solution of a differential equation when no analytical 
tools are available. This and other techniques are the content of the lecture course 
on Numerical Analysis. • 
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Figure 11.1. Field of directions representing y' = (1 + x)y + x^ 

Solving (11.5) generalises the problem of finding the primitives of a given map. 
If / depends on x and not on y, (11.5) reads 

y' = f{x); (11.6) 

assuming / continuous on / , the solutions are precisely the primitives y[x) — 
F{x) -\- C of f over / , with F a particular primitive and C an arbitrary constant. 
This shows that, at least in the case where / does not depend upon y, (11.5) admits 
infinitely many distinct solutions, which depend on one constant. Note that any 
chosen integral curve is the vertical translate of another. 

Actually, equation (11.6) plays a fundamental role, because in several circum-
stances, suitable manipulations show that solving (11.5) boils down to the quest for 
primitives of known functions. Furthermore, under fairly general hypotheses one 
can prove that (11.5) always admits a one-parameter family of distinct solutions, 
depending on an arbitrary constant of integration C. We shall write solutions in 
the form 

y = yix;C) (11.7) 

with C varying in (an interval of) R. An expression like (11.7) is the general 
integral of equation (11.5), while any solution corresponding to a particular choice 
of C shall be a particular integral. 

Example 11.2 

Solving the differential equation 

y'^y (11-8) 

amounts to locating the maps that coincide with their first derivative. We have 
already remarked that the exponential y{x) = e^ enjoys this important property. 
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Figure 11.2. Integral curves oi y' = y 

Since differentiating is a linear operation, any function y{x) — Ce^, (7 G M 
possesses this feature. Further on we will prove there are no other maps doing 
the same, so we can conclude that the solutions to (11.8) belong to the family 

y(:r;C) = Ce^, C eR. 

The integral curves are drawn in Fig. 11.2. • 

In order to get hold of a particular integral of (11.5), one should tell how to 
select one value of the constant of integration. A customary way to do so is to 
ask that the solution assume a specific value at a point x fixed in advance. More 
explicitly, we impose y{xo;C) = yo, where XQ and yo are given, corresponding to 
the geometric constraint that the integral curve passes through (xQ^yo). Essen-
tially, we have solved a so-called initial value problem. More precisely, an initial 
value problem, or a Cauchy problem, for (11.5) on the interval / consists in 
determining a differentiable function y = y{x) such that 

y'= f{x,y) o n / , 

y{xo) = yo 
(11.9) 

with given points XQ G / , ^O ^ ^- The understated reference to time in the words 
'initial value' is due to the fact that many instances of (11.9) model the evolution 
of a physical system, which is in the state yo at the time XQ in which simulation 
starts. 
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Example 11.3 

The initial value problem 

(y' = y, on / = [0, +oo), 

1^(0) = 2, 
is solved by the function y{x) = 2e^. • 

Remark 11.4 The prescription of an initial condition, albeit rather common, is 
not the sole possibility to pin down a particular solution of a differential equation. 
Take the following problem as example: Rnd the solution of y' = y having mean 
value 1 on the interval I — [0, 2]. The general solution y — Ce^ has to satisfy the 
constraint 

1 ^' 
y{x) da: = 1, 

^ Jo 

which easily yields C = -^^zj • ^ 

Remark 11.5 Let us return to equations of order n for the moment. With the 
proper assumptions, the general integral of such an equation depends upon n real, 
arbitrary constants of integration C/e (fc = 1, 2,..., n) 

y = y{x;Ci,C2,--.,Cn). 

The initial value problem supplies the values of y and its n — 1 derivatives at a 
given XQ e I 

^ H = / ( x , i / , . . . , y ( - i ) ) o n / , 

y{xo) = yoo: 
y'{xo) = yoi, 

where yoo^yoi, ...,?/o,n-i are n fixed real numbers. For instance, the trajectory of 
the particle described by equation (11.1) is uniquely determined by the initial 
position 5(0) and initial velocity s\0). 

Besides initial value problems, a particular solution to a higher order equation 
can be found by assigning values to the solution (and/or some derivatives) at the 
end-points of the interval. In this case one speaks of a boundary value problem. 
For instance, the problem of the second order 

y^' = ksiny on the interval (a,6), 

y{a) = 0, y{b) = 0, 

models the sag from the rest position of a thin elastic beam subject to a small 
load acting in the direction of the x-axis. • 

We focus now on three special kinds of first order differential equations, which 
can be solved by finding few primitive functions. 
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11.2.1 Equations with separable variables 

The variables are said "separable" in differential equations of type 

V' = 9{x)h{y), (11.10) 

where the f{x^y) of (11.5) is the product of a continuous g depending only on x, 
and a continuous function h oi y alone. 

If ^ G M annihilates /i, i.e., h{y) = 0, the constant map y{x) = y is a particular 
integral of (11.10), for the equation becomes 0 = 0. Therefore an equation with 
separable variables has, to start with, as many particular solutions y{x) = constant 
as the number of distinct zeroes of h. These are called singular integrals of the 
differential equation. 

On each interval J where h{y) does not vanish we can write (11.10) as 

1 dy 
9{x). 

Let H{y) be a primitive of 

6.7) 
Kv) 

h{y) dx 

(with respect to y). By the Chain rule (Theorem 

dH dy 1 dy 
-— H(y(x)) = ^ ^ ^ = - ^ - ^ = q(x), 
dx ^^^ ^^ dy dx h{y) dx ^^ ^' 

so H{\j{x)) is a primitive function oi g{x). Therefore, given an arbitrary primitive 
G{x) of ^(x), we have 

H{y{x))=G{x)+C, Ce (11.11) 

But we assumed -—— = —— had no zeroes on J, hence it must have constant 
h{y) dy 

sign (being continuous). This implies that H{y) is strictly monotone on J, i.e., 
invertible by Theorem 2.8. We are then allowed to make y{x) explicit in (11.11): 

y{x) = H-\G{x) + C), (11.12) 

where H~^ is the inverse of H. This expression is the general integral of equation 
(11.10) over every interval where h{y{x)) is never zero. But, should we not be 
able to attain the analytic expression of H~^{x), formula (11.12) would have a 
paltry theoretical meaning. In such an event one is entitled to stop at the implicit 
form (11.11). 

If equation (11.10) has singular solutions, these might admit the form (11.12) 
for special values of C. Sometimes, taking the limit for C -^ =b(X) in (11.12) fur-
nishes singular integrals. 
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dy 
Formula (11.11) is best remembered by interpreting the derivative —- as a 

ax 
formal ratio, following Leibniz. Namely, dividing (11.10) by h{y) and 'multiplying' 
by dx gives 

= g{x)dx, 
h{y) 

which can be then integrated 

Iwrh^'^^^-
This corresponds exactly to (11.11). The reader must not forget though that the 
correct proof of the formula is the one showed earlier! 

Examples 11.6 

i) Solve the differential equation y' = y{\ — y). Let us put g{x) = 1 and 
h{y) — y{l — y). The zeroes of h produce two singular integrals yi{x) — 0 and 
y2{x) = 1. 
Suppose now h{y) is not 0. We write the equation as 

dy 

J y{i-y) J 
dx, 

vi'^-y) 
then integrate with respect to y on the left, and on the right with respect to x 

y log 
i-y 

= x + C. 

Exponentiating, we obtain 

1-2/ 
= e^+^ = /ce^, 

where k = e is an arbitrary positive constant. Therefore 
y 

i-y 
±ke' ^Ke", 

K being any non-zero constant. Writing y in function of x, we get 
Xe^ 

Note the singular solution yi{x) = 0 belongs to the above family for K = 0, a 
value K was originally prevented to take. The other singular integral, y2{x) — 1, 
formally arises by letting K go to infinity. 

ii) Consider the equation 

y' = yfy-
At first glance we spot the singular solution y\[x) — 0. That apart, by separating 
variables we have 

J Vv J 
dx hence 2y/y = x -\- C , 
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and so 

y ( x ) = ( | + c ) ' , CeR 

(where C/2 has become C). 

iii) Solve 
, ^ e^ + 1 

^ ~ e?/ + 1 * 

Let g{x) = e^ + 1 and h{y) — > 0 for any y\ there are no singular integrals. 

The separation of x and y yields 

f{ey + l)dy= / (e^ + l ) d x , 

so 

e^ + 2/ = e^ + a; + C, C G M. 

But now we are stuck, for it is not possible to explicitly write y as function of 
the variable x. • 

11.2.2 Linear equations 

A differential equation akin to 

y' + a{x)y = b{x), (11.13) 

where a and b are continuous on / , is called linear, because the function / (x , y) = 
—a{x)y + b{x) is a linear polynomial in y with coefficients in the variable x. 
This equation is said homogeneous if the source term vanishes, b{x) = 0, non-
homogeneous otherwise. 

We begin by solving the homogeneous case 

y' = -a{x)y. (11.14) 

This is a particular example of equation with separable variables. So referring to 
(11.10) we have g{x) = —a{x) and h{y) = y. The constant y{x) = 0 is a solution. 
Excluding this possibility, we can write 

/
- dy = - / a(x) dx. 
y J 

If A{x) denotes a primitive of a(x), i.e., if 

f a{x) dx = A{x) + C, C G R, (11.15) 

then 

log\y\ = -A{x)-C, 
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or, equivalently, 

|^(x) I = e-^e-^^^^, hence y{x) = iKe '^^^^ , 

where K = e~^ > 0. The particular integral y{x) = 0 is included if we allow K to 
become 0. The solutions of the homogeneous linear equation (11.14) are 

y{x) = Ke-^^''\ K G M , 

with A{x) defined by (11.15). 
Now let us assess the case b ^ 0. We make use of the method of variation of 

parameters, which consists in searching for solutions of the form 

y{x) = K{x)e -A{x) 

where K{x), a function of x, is unknown. Such a representation for y{x) always 
exists, since e~^^^^ > 0. Substituting in (11.13), we obtain 

K\x)e-^^''^ + K(x)e-^("^ ( - a{x)) + a{x)K{x)e -Aix) _ b{x), 

or 
K\x)=e^^''^b{x). 

Calling B{x) a primitive of e'^^^^6(x). 

/ • 
6-̂ (̂ ^6(2;) da; = B ( x ) + C , Ce (11.16) 

we have 
K{x) = B{x) + C, 

so the general solution to (11.13) reads 

y{x) = e-^^-\B{x)+C), (11.17) 

where A{x) and B{x) are defined by (11.15) and (11.16). The integral is more 
often than not found in the form 

y{x) = e- J" "(̂ > '^ I e^ »(̂ > "^ b{x)dx. (11.18) 

The expression highlights the various steps involved in the solution of a non-
homogeneous linear equation: one has to integrate twice, in succession. 

If we are asked to solve the initial value problem 

y^ + a{x)y — b{x) on the interval / , 

y{xo) = 2/0, with XQ e I and ^o ^ 
(11.19) 
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we might want to choose, as primitive for a(x), the one vanishing at XQ, which we 

write A{x) — I a{s) ds by the Fundamental Theorem of integral calculus; the 
Jxo 

same we do for 
Bix)= re-''4"(^)^^6(i)di 

Jxo 

(recall the variables in the definite integral are arbitrary symbols). Substituting 
these expressions in (11.17) we obtain y{xo) = C, hence the solution to (11.19) 
will satisfy C = ?/o, namely 

y{x) = e-^^0«^^)^' fyo + re-^4^^ '^^ 'b{t )dt \ . (11.20) 

Examples 11.7 

i) Determine the general integral of the linear equation 

y' -\-ay = h, 

where a 7̂  0 and h are real numbers. By choosing Aix) = ax, B{x) — - e"^ we 
a 

find the general solution 

2/(x) = Ce-^^ + - . 

I fa = —1, 6 = 0, the formula provides the announced result that every solution 
oiy' — y has the form y{x) — Ce^. 

For the initial value problem 

{ y'-^ay — h on[ l ,+oo) , 

it is convenient to have A{x) = a[x — 1), B{x) = - le^^^~^^ — 1 j , so that 

\ aj a 

Note that if a > 0 the solution converges to - for x ^ +00 (independent of the 

initial datum yo). 

ii) Determine the integral curves of 

xy' -^y = x^ 

that lie in the first quadrant of the (x, ?/)-plane. Written as (11.13), the equation is 

, 1 
y + -y = x, 

X 

so a(x) = ^, b{x) = X. With A{x) = logx we have e^^^^ = x and e""̂ ^̂ ^ — K 
Consequently, 

/ e^(^)&(x) dx = / x^ dx = ^x^ + C. 
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Therefore, when x > 0 the general integral is 

X \3 / 3 X 

For C > 0, y{x) > 0 for any x > 0, whereas C < 0 implies y{x) > 0 for 

x> ^/3\C\. • 

11.2.3 Homogeneous equations 

Homogeneity refers to the form 

» - - ( ! ) • 
(11.21) 

in which Lp — (/̂ (z) is continuous in the variable z. Thus, f{x,y) depends on x, y 
y 

only in terms of their ratio —; we can equivalently say that /(Ax, A^) = / (x , y) for 
X 

any A > 0. 
A homogeneous equation can be solved by separation of variables, in that one 

puts 2: = - , to be understood as z{x) — 
X X 

y'{x) = z[x) + xz'[x). Substituting in (11.21) yields 

In this manner y(x) = xz(x) and 

X 

an equation in z where the variables are separated. We can apply the strategy of 
Sect. 11.2.1. Every solution z of ^p{z) = z gives rise to a singular integral z{x) — z, 
i.e., y{x) — zx. Supposing instead (^(z) different from z, we have 

/

dz _ / dx 
ip{z) -z J X ' 

givmg 

where H{z) is a primitive of 

have 

i J ( z ) = l o g | x | + C, 

1 
Indicating by i7 ^ the inverse map, we 

(p{z) - z 

z{x) = H-\log\x\ + C), 

so the general integral of (11.21) reads (returning to y) 

y{x) = xH~^{log\x\^C), 



398 11 Ordinary differential equations 

Example 11.8 

Solve 

x^y' = y^ + xy -\- x"^. (11.22) 

We can put the equation in normal form 

\XJ X 

which is homogeneous for Lp{z) — z^ -\- z-\-l. Substituting y = xz, we arrive at 

, z^ + 1 
z = , 

X 

whose variables are separated. 

As z^ H- 1 is positive, there are no singular solutions. Integrating we obtain 

arctan z = log |x| + C 

and the general solution to (11.22) is 

y{x) = xtan(log \x\ + C). 
We remark that C can be chosen either in (—oc, 0) or in (0, +(X)), because of the 
singularity at x = 0. Moreover, the domain of existence of each solution depends 
on the value of C D 

11.2.4 Second order equations reducible to first order 

Suppose an equation of second order does not contain the variable y explicitly, 
that is, 

/ - / ( y ^ ^ ) . (11.23) 

Then the substitution z — y' transforms it into a first order equation 

z' = f{z,x) 

in the unknown z — z{x). If the latter has general solution z{x] Ci), we can recover 
the integrals of (11.23) by solving 

y' = ^, 

hence by finding the primitives oi z{x]Ci). This will generate a new constant of 
integration C2. The general solution to (11.23) will have the form 

y{x;Ci,C2) = jz{x',Ci)dx = Z{x;Ci) + C2, 

where Z{x\C\) is a particular primitive oi z{x\C\). 
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Example 11.9 

Solve 

v" - {y'f = 1. 
Put z = y' SO that the equation becomes 

z' = z^ + 1, 

The variables are separated and the integral is arctan2; = x + Ci, i.e., 

z(x, Ci) = tan(x + Ci). 

Integrating once again, 

y{x;Ci,C2) = / tan(x + Ci)da: 

sin(x + C i ) ^ ^ 

cos(x 4- Ci) 

log (cos(x + Ci)) + C2 , Ci,C2 G M. D 
/ 

11.3 Initial value problems for equations of the first order 

Hitherto we have surveyed families of differential equations of the first order, and 
shown ways to express the general solution in terms of indefinite integrals of known 
functions. These examples do not exhaust the class of equations which can be 
solved analytically, and various other devices have been developed to furnish ex-
act solutions to equations with particularly interesting applications. That said, 
analytical tools are not available for any conceivable equation, and even when so, 
they might be unpractical. In these cases it is necessary to adopt approximations, 
often numerical ones. Most of the times one can really only hope to approximate 
an integral stemming, for instance, from an initial value problem. The use of such 
techniques must in any case follow a qualitative investigation of the ODE, to make 
sure at least that a solution exists. A qualitative study of this kind has its own 
interest, regardless of subsequent approximations, for it allows to understand in 
which way the solution of an initial value problem depends upon the initial datum, 
among other things. 

Let us analyse the problem (11.9) and talk about a simple constraint on / that 
has a series of consequences: in the first place it guarantees that the problem admits 
a solution in a neighbourhood of XQ; secondly, that such solution is unique, and 
thirdly, that the latter depends on yo with continuity. Should all this happen, we 
say that the initial value problem (11.9) is well posed (in the sense of Hadamard). 

11.3.1 Lipschitz functions 

Before getting going, we present a remarkable way in which functions can depend 
on their variables. 
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Definition 11.10 A 
interval, is 
such that 

real-valued map 
said Lipschitz continuous 

\fiyi) - /(2/2)| < L|?/i -

ofc 
on 

- 2 / 2 I 

^ne real variable f 
J if there 

, Vj/i, 

: J -^ R, J 
exists a constant L > 0 

y2^J' (11.24) 

Another way to write the same is 

\f{yi)- f{y2)\ ^ r w ^ 7 / n i oc;̂  
^ ^ < L , Vi/i,y2 e ^ , 2/1 7^y2, (11.25) 
I2/I -2/21 

which means the difference quotient of / is bounded as yi ^ 2/2 vary in J. 
If (11.24) holds for a certain constant L, it is valid for bigger numbers too. 

The smallest constant fulfilling (11.24) is called Lipschitz constant of / on J. 
The Lipschitz constant is nothing else but the supremum of the left-hand side 
of (11.25), when the variables vary in J. This number is far from being easy to 
determine, but normally one makes do with an approximation from above. 

A Lipschitz-continuous map on J is necessarily continuous everywhere on J 
(actually, it is uniformly continuous on J -̂ ^ Continuous funct ions) , for Defi-
nition 3.14 works with 5 — e/L. Continuous maps that fail (11.25) do exist never-
theless, like f{y) — ̂ Jy over J = [0, +oc); choosing 1/2 = 0 we have 

1 / ( 2 / 1 ) - / ( y 2 ) l _ V ^ _ 1 ^ ^ ^ ^ 0 ^ 

\v\-v2\ y\ ^/yl 

and in the limit for yi -^ 0 the ratio on the left exceeds any constant. Note that 
the function has infinite (backward) derivative at y = 0. 

The forthcoming result is the quickest to adopt, among those testing Lipschitz 
continuity. 

Proposition 11.11 Let f : J -^ R be differentiable on J with bounded 
derivative^ and L = sup|/ ' ( t /) | < +00. Then f is Lipschitz continuous on 

yeJ 
J with Lipschitz constant L. 

Proof. For (11.24) it is enough to employ the second formula of the finite incre-
ment (6.12) to / between 1/1,7/2, so that 

f{yi)-f{y2) = f'iy){yi-y2) 

for some y between yi and 1/2. Therefore 

1/(2/1) - /(j/2)l = |/'(^)l \yi - y2\ < L\y, - y2\. 

This proves the Lipschitz constant L* of / is < L. 

file:///fiyi
file:///v/-v2/
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Vice versa, take any /yo G J. By (11.25) 

< L*. 

\f'{m)\ = 

and tlicni L < L*. 

Inn 
fiij) - fivo) 

II - /yo 
lim 

y-yo 
< L* 

D 

Let us see some examples of Lipschitz-continuous maps. 

E x a m p l e s 11 .12 

i) The function f{y) — ^/y is Lipschitz continuous on every interval [a, +oo) with 
a > 0, because 

on said intervals; the Lipschitz constant is L = - i = . 
\/2a 

ii) The trigonometric maps f{y) = siny, f{y) = cosy are Lipschitz continuous 
on the whole M with L = 1, since | / ' ( y ) | < 1, V^ G R and there exist y G M at 
which \f'{y)\ = l. 
ii) The exponential f{y) = e^ is Lipschitz continuous on all intervals (—(X),6], 
6 G R, with constant L = e^; it is not globally Lipschitz continuous, for 
s u p / ( y ) = +00. n 
yeR 

Proposition 11.11 gives a sufficient condition for Lipschitz continuity. A func-
tion can in fact be Lipschitz continuous on an interval without being differentiable: 
f{y) — \y\ is not differentiable at the origin, yet has Lipschitz constant 1 every-
where on R, because 

12/11 I2/2I < I2/I - 2 / 2 1 , V ^ 1 , I / 2 G R . 

^ is Lipschitz cont inuous Now to several variables. A function / : i? C R^ -
on i? if there is a constant L > 0 such tha t 

1/(2/1) - /(2/2)l < L\\yi - 2/2II, V2/i,y2 ^ ^ • 

We say a map / : / x J C R^ ^ R, with / , J real intervals, is Lipschitz 
cont inuous o n i? = / x J in ^, uni formly in x, if there is a constant L > 0 
such tha t 

1/(^,2/1)-/(^,2/2)1 <L\yi -y2\ Vyi,2/2e J, V x G / . (11.26) 

This condition holds if / has bounded partial y-derivative on i7, i.e., L = 
df , A 

" " < +00, because Proposition 11.11 can be applied for every x e I. sup 
{x,y)ef2 

0^("'^) 
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Example 11.13 

Consider 

f{x,y) - ^sm{x + y) 

on i? = [-8,8] X R. Since 

—-(x,2/) = ^cos{x-\-y), 

for any {x^y) G i7 

^{x,y)\ = \^\\cos{x^y)\<^-l = 2. 

Thus (11.26) holds with L = 2. D 

11.3.2 A criterion for solving initial value problems 

After the intermezzo on Lipschitz-continuous functions, we are ready to state the 
main result concerning the initial value problem (11.9). 

Theorem 11.14 Let / , J be non-empty real intervals^ J additionally open. 
Suppose / : f? = J x J C R2 —̂  Mi5 continuous on Q andLipschitz continuous 
on Q in y, uniformly in x. 
For any (xo^yo) € i?, the initial value problem (11.9) admits one, and only 
one, solution y = y{x), defined and differentiable with continuity on an in-
terval r C I containing XQ and bigger than a singletj such that (re, y{x)) € i? 
for any x e f, 
^/ y = yi^) denotes the solution on an interval J" C / to the problem with 
initial value (a?o,yo)^ i^f then 

\yix) ~ y{x)\ < e^l^-^«l|t/o - yo\, Vx € / ' H / " , (11,27) 

where L is the constant of (11.26). 

The theorem ensures existence and uniqueness of a "local" solution, a solution 
defined in a neighbourhood of XQ. The point is, the solution might be defined not 
everywhere on / , because the integral curve (x,^(x)), also known as trajectory, 
could leave the region i? before x has run over the entire / . For example, f{y) = y^ 
is Lipschitz continuous on every bounded interval Ja = {—a, a), a > 0, because 

sup \f{y)\ = sup \2y\ = 2a, 
y^Ja \y\<0' 

but is not Lipschitz continuous on R. The initial value problem 

(11.28) 
y'^ 

2/(0) 

y\ 
1 

^ 2 ' 
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i 

a 

Ja 

1/2 

—a 

L 

2 I 

Oa 

Figure 11.3. The solution of (11.28) is not defined on / = [0, +(X)) 

has no solution over all of / = [0, +oo): separating variables we discover 

1 

showing that the trajectory [x,y{x)) leaves every strip i?^ = / x J^, a > 1, before 
X can reach 2 (see Fig. 11.3). 

When the theorem is true with J = R, we can prove the solution exists over 
all of / . 

The uniqueness of the solution to (11.9) follows immediately from (11.27): if 
y{x) and y{x) are solutions corresponding to the same initial datum y^ = yo at 
XQ, then y{x) = y{x) for any x. 

Observe that if / is not Lipschitz continuous in the second variable around 
(xo.yo), the initial value problem may have many solutions. The problem 

I y(0) = 0 

is solvable by separation of variables, and admits the constant y{x) — 0 (the 
singular integral), as well as y{x) — jx'^ as solutions. As a matter of fact there are 
infinitely many solutions 

0 if 0 < X < c, 

| ( x - c ) ^ i f x > c , 

obtained by 'gluing' in the right way the aforementioned integrals. 

Finally, (11.27) expresses the continuous dependency of the solution to (11.9) 
upon yo: an ^-deviation of the initial datum aflPects at most by eL\x~xo\^ ^^le so-
lution at X ^ XQ. Otherwise said, when two solutions evolve the distance of the 

y{x) c > 0 . 
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corresponding trajectories can grow at most by the factor e^\^-^o\ [^ going from XQ 
to x. In any case the factor e^\^-^o\^ [^ ̂ ^ exponential in x, so its impact depends 
on the distance |x — Xo| and on the Lipschitz constant. 

11.4 Linear second order equations with constant 
coefficients 

A linear equation of order two with constant coefficients has the form 

(11.29) "̂ + ay' -\-by==g, 

where a, b are real constants and g — g{x) is a continuous map. We shall prove 
that the general integral can be computed without too big an effort in case ^ = 0, 
hence when the equation is homogeneous. We will show, moreover, how to find 
the explicit solutions when ^ is a product of exponentials, algebraic polynomials, 
sine- and cosine-type functions or, in general, a sum of these. 

To study equation (11.29) we let the map y = y{x) be complex-valued, for 
convenience. The function 7/ : / C R ^ C is (n times) differentiable if yr — 
IZey : I -^ R and yi — Xmy : / ^ R are (n times) differentiable, in which case 
y(»)(x) = y(")(x)+iyl")(x). 

A special case of this situation goes as follows. Let A = Â  + iA^ G C be an 
arbitrary complex number. With (8.39) in mind, we consider the complex-valued 
map of one real variable x i-̂  e'̂ ^ = e '̂̂ ^(cos A x̂ + i sin Xix). Then 

^ e ^ ^ = Ae^^, (11.30) 
ax 

precisely as if A were real. In fact, 

—-e^^ = ^—(e^^^cosA^x)+ Z-—(e^^^sinAix) 
ax ax ax 

= Xre^'''' cos XiX - A ê'̂ '̂ ^ sin A x̂ + i(A^e '̂̂ '̂  sin A x̂ + Â ê "̂̂  cos A^x) 

— A ê'̂ "''̂  (cos A x̂ + i sin A^x) -h iA ê'̂ ""̂  (cos A x̂ + iXi sin A^x) 

= (A^ + iAi)e^^ = Ae^^ . 

Let us indicate by Cy = y"-\-ay'-\-hy the left-hand side of (11.29). Differentiating 
is a linear operation, so 

C{ay + pz) = aCy + l5Cz (11.31) 

for any a,/3 G R and any twice-differentiable real functions y = ^(x), z — z{x). 
Furthermore, the result holds also for a,/? G C and y = y{x)^ z — z{x) complex-
valued. This sort of linearity of the differential equation will be crucial in the 
study. 



11.4 Linear second order equations with constant coefficients 405 

We are ready to tackle (11.29). Let us begin with the homogeneous case 

Cy = y"^ay'^hy = {), (11.32) 

and denote by 
X(A) - Â  + aA + 6 

the characteristic polynomial of the differential equation, obtained by replacing 
/cth derivatives by the power A ,̂ for every A: > 0. Equation (11.30) suggests to look 
for a solution of the form y{x) = e^^ for a suitable A. If we do so, 

£(e^^) = A^e^^ + aAe^^ + 6e^^ = x(A)e^^, 

and the equation holds if and only if A is a root of the characteristic equation 

Â  + aA + 6 = 0 . 

When the discriminant Z\ = a^ — 46 is non-zero, there are two distinct roots Ai, A2, 
to whom correspond distinct solutions yi{x) = e'̂ ^̂  and y2{x) = e^'^^; roots and 
relative solutions are real if Z\ > 0, complex-conjugate if Z\ < 0. When Z\ = 0, 
there is a double root A, hence one solution yi{x) = e'̂ ^. Multiplicity two implies 
x'(A) = 0; letting 2/2 (^) = xe^^, we have 

^^(x) = (14- Ax) e^^ and y'^{x) = (2A + X^x) e^^ . 

Substituting back into the equation we obtain 

Ay2) = x(A)xe^- + x'(A)e^- = 0 

after a few algebraic steps. Therefore the function i/2 solves the equation, and is 
other than yi. In all cases, we have found two distinct solutions yi, y2 of (11.32). 

Since (11.31) is linear, if ^i , 1/2 solve (11.32) and Ci, C2 are constants, then 

C{Cm + ^22/2) = Ci£(yi) + C2Ciy2) = CiO + C2O = 0, 

hence the linear combination Ciyi -\- 6*2̂ 2 is yet another solution of the homoge-
neous equation. Moreover, if y denotes a solution, one can prove that there exist 
two constants Ci, C2 such that y = Ciyi + C22/2, where ?/i, y2 are the solutions 
found earlier. 

In conclusion, the general integral of the homogeneous equation (11.32) takes 
the form 

y{x] Ci, C2) = Civi {x) + C2 y2{x), 

with Ci, C2 constants and yi(x), y2{x) defined by the recipe: 

if A y^ 0, yi{x) = e^i^ and y2{x) = ê â̂  ^j^h Ai, A2 distinct roots of the charac-
teristic equation x(A) — 0; 

if A — ^, yi{x) = e^^ and y2{x) — xe^^, where A is the double root of x(A) = 0. 
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When Z\ < 0, the solution can be written using real functions, instead of 
complex-conjugate ones as above. It is enough to substitute to yi{x), y2{x) the 
real part e^^^cosA^x and the imaginary part e'^^^sinA^x of yi{x) respectively, 
where Ai == A2 = Â^ + iXi. In fact, if y is a solution of the homogeneous equation, 

C{lZey) -=-1Ze{Cy) =neO = 0, Cilmy) =Im{Cy) =ImO = 0 

since the coefficients are real, so TZey and Xmy are solutions too. 
Summarising, the general integral of the homogeneous equation (11.32) can be 

expressed in terms of real functions as follows. 

The case A> 0, The characteristic equation has two distinct real roots 

-a±VA 
Al,2 

and the general integral reads 

y(a;;Cl,C2) = Cle^»^ + C2e^=^ 

with Ci, C2 arbitrary constants. 

The case A = 0, The characteristic equation has a double root 

A 

and the general integral reads 

a 
2 ' 

(x;Cl,C2) = (C l+C2a : )e^^ Cu C2em. 

The case Z\ < 0. The characteristic equation has no real roots. Defining 

- \ - ^ - \ - VPl 
(7 — Ar — — - , U — Ai — — - — , 

the general integral reads 

y{x', Ci,C2) = e^^{Ci cosujx + C2 sina;a:), Ci, (72 G M . 

Now we are ready for the non-homogeneous equation (11.29). The general 
integral can be written like 

y{x] Ci,C2) = yo{x]Ci,C2) -f yp{x), (11.33) 
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where yo{x] Ci, C2) is the general solution of the associated homogeneous equation 
(11.32), while yp{x) denotes an arbitrary particular integral of (11.29). Based on 
linearity in fact, 

^yo + Vp) = ^(2/0) + C{yp) = 0 + ^ = ^ , 

so the right-hand side of (11.33) solves (11.29). Vice versa, if y{x) is a generic 
solution of (11.29), the function y{x) - yp{x) satisfies 

^y - yp) = ^[y) - ^{yv) = 9-9 = ^^ 

so it will be of the form yo{x; Ci, C2) for some Ci and C2. 

Should the source term ^ be a mixture of products of algebraic polynomials, 
trigonometric and exponentials functions, we can find a particular integral of the 
same sort. To understand better, we start with g{x) = Pn{x) e^^, where a E C and 
Pn{x) is a polynomial of degree n > 0. We look for a particular solution of the form 
yp{x) = g'iv(x)e^^, with QN unknown polynomial of degree N > n. Substituting 
the latter and its derivatives in the equation, we obtain 

C{qNix) e"-) = {x{a)qN{x) + x'{a)q'N{x) + QN{X)) e"^ = Pn{x) e"^ , 

whence 

If a is not a characteristic root, it suffices to choose N = n and determine 
the unknown coefficients of qn by comparing the polynomials on either side of the 
equation; it is better to begin from the leading term and proceed to the lower-
degree monomials. 

If a is a simple root, X(Q;) = 0 and x'(a) ^ 0; we choose N = n-\-1 and hunt 
for a polynomial solution of x'{(^)QNi^) + 9iv(^) ~ Pn{x). Since the coefficient of 
qn-\-i of degree 0 is not involved in the expression, we limit ourselves to ĝ î+i of 
the form qn-\-i{x) = xqn{x), with qn an arbitrary polynomial of degree n. 

Eventually, if a is a multiple root, we put N = n-^2 and solve ^^'+2(^) = Pn{x)^ 
seeking qn-\-2 in the form g^+2(:r) — x'^qn{x), where qn is arbitrary and of degree 
n. In the second and third cases one speaks of resonance. 

When a is complex, x(a) and x'{^) ^^^ complex expressions, so qN{x) has to be 
found among polynomials over C, generally speaking. But as in the homogeneous 
case, we can eschew complex variables by inspecting the real and imaginary parts 
of Pn{x) e^^; with a — fi-\- ii9, they are Pn{x) e^^ cos'^x and Pn{x) e^^ sini^x. 

Our analysis has shown that if the source term g is real and of the form 

g{x) = Pn{x) e^^ cosi?x or g{x) = Pn{x) e^^ sini?a;, (11.34) 

we can attempt to find a particular solution 

yp{x) = x'^e^''{qi^n{x)cosi^x^q2,n{x)sm'&x), \ (11.35) 
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where qi^n{x) are algebraic polynomials of degree n, and m is generically 0 except 
in case of resonance: 

i) for zi > 0: set m = 1 if 1? = 0 and if /i coincides with either root Ai, A2 of the 
characteristic polynomial; 

ii) for Zi = 0: set m = 2 if i9 = 0 and /i coincides with the (double) root A of the 
characteristic polynomial; 

iii) for Z\ < 0: set m = 1 if /i = cr and d — uo. 

Substituting the particular integral (11.35) in (11.29), and comparing the terms 
rj.k^nx ^{Yidx and x^e^^ cost?x for all A: = 0 , . . . , n, we can determine yp. 

At last, if ^ is a sum of pieces of the form (11.34), y^ will be the sum of 
the particular solutions corresponding to the single source terms: suppose that 
9 = 9i + 92 + • •' ^ 9K and y^k solves C{y) = Qk for all k ^ 1 , . . . , if. Then 
2/p = ypi + • • • + VpK satisfies 

C{yp) = C{ypi) + . . . + C{ypK) = 9i + - • • + 9K = 9 ^ 

and as such it solves C{y) — g as well. This is the so-called principle of superposi-
tion. 

With the help of a few examples the procedure will result much clearer. 

Examples 11.15 

i) Consider 

y^^^y^-6y = g. (11.36) 

First of all, we find the general integral of the associated homogeneous equation 

/ + ^ ' - 6 y = 0. (11.37) 

The characteristic equation 

Â  + A - 6 = 0 

has distinct roots Ai = —3, A2 = 2, so the general integral of (11.37) is 

2/o(:r;Ci,C2) = Cie-3^ + C2e2^ 

Now we determine a particular solution to (11.36), assuming that g{x) — 3x^ — 

X + 2. By (11.34), P2{x) = 3x^ — x + 2 and /i = -̂  = 0. Since // is neither Ai nor 

A2, yp will have the form yp{x) = ax'^ + /3x + 7. Substituting y'p, y'^ in (11.36) 

yields 

-6ax2 + (2a - 6/3)x + (2a + /? - 67) = 3 x 2 - ^ + 2. 

The comparison of coefficients implies 

Therefore, the general integral of (11.36) reads 

y(x;Ci,C2) = (7ie-3- + Cse^^ - ]^{x^ + 1). 



11.4 Linear second order equations with constant coefficients 409 

Assume instead that g{x) = e^^. In (11.34) we have po{x) = 1^ /i = X2 = 2, 

f? = 0. We need a i/p written as yp{x) = axe^^. Substituting in (11.36) gives 

5ae2^ = e'^ , 
hence a = ^. The general solution is then 

y{x;CuC2) = Cie-^^ + (c2 + ^x^ e^\ 

ii) Examine the equation 

y^'-2y'^y = g. (11.38) 

The characteristic polynomial Â  — 2A + 1 has a root A = 1 of multiphcity two. 
The general integral of the homogeneous equation is thus 

yo{x;CuC2) = iCi+C2x)e\ 

Suppose g{x) — x^^. As /i = 3 is not A = 1, we search for a particular solution 

^p(x) = (oLX + /3)e^^. As before, the substitution of the latter back into the 

equation yields 

4(ax + a +/?) e^^ =xe^^ , 

giving 

yp[x)^-^{x-\)e'\ 

We conclude that the general integral is 

7/(x;Ci,C2) = (Ci+C2x)e^ + J ( x - l ) e ^ ^ 

Taking g{x) = —4e ,̂ instead, calls for a yp of type yp{x) = ax'^e^. Then 

2ae^ = -4e^ 

implies a = — 2, and the general solution reads 

y{x; Ci, C2) = (Ci + C2X - 2x^) e^ . 

iii) The last example is 

y''^2y' + 5y = g. (11.39) 

This ODE has characteristic equation Â  + 2A + 5 = 0 with negative discrimi-
nant A — —16. From cr = — 1, a; = 2, the general integral of the homogeneous 
equation is 

?/o(x;Ci,C2) = e~'^(Cicos2x + C2sin2x). 

Take g[x) = sinx. Referring to the left term in (11.34), we have ^^{x) = 1, 

/i = 0, I? = 1. We want a particular integral yp{x) = acosx + /3sinx. Rewrite 

(11.39) using the derivatives y'^^ y'^ and ?/p, so that 

(4a + 2/J) cos X + (4/3 — 2a) sin x = sin x. 

Compare the coefficients of sinx and cosx, so a = — ̂  and /̂  = | , i.e., 

yp[x) = --—COSX+ - s m x . 
lU 5 
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The general solution is 

y{x) — e~^ (Ci cos 2x + C2 sin 2x) — — cos x + - sin x . 
10 5 

Another variant is to suppose g{x) = e~^sin2x. Using the first of (11.34), 

fi = a = —1 and 1? = a; = 2, so we look for the particular integral 

yp{x) = xe~^(acos2x + /?sin2x). The substitution yields 

e~^ (4/? cos 2x - 4a sin 2x) = e""̂  sin 2x, 

hence a = — | , /? = 0, and the general solution reads 

y{x) = e""̂  ( (Ci - -xj cos 2x + C2 sin 2x J . 

11.5 Exercises 

1. Determine the general integral of these ODEs with separable variables: 

{x + 2)y 
a) y' = xlog(l + x^) 

2 1 

b) y 

c) y' = 
y 

x(x + l) 

d) y' = 15/27+3tan^x 
X log X X log X 

2. Find the general solution of the homogeneous ODEs: 

fayi 4x^7/' = y^ + Qxy - 3x2 1̂^ ^2^/ = x'^ -\- Ay'^ + yx 

c) xyy' =: x^ + 2/̂  

3. Soive in full generality the linear ODEs: 

a) y' + 3xy = x^ 

2 x - 2 / 

d) x^y' — y'^e^/y = xy 

b) 
, 1 3x + 2 

y = - y -
X 

c) 2/ = d) xy' = y-\-
x - 1 

47] Write tiie particular solution of the equation 

, _i-e-y 

^ ~ 2x + l 

such that y{0) = 1. 

57] Establish whether the differential equation 

y' = -2y + e" 

iias solutions with vanishing derivative at the origin. 

x^ 
2x2 

l + x 2 

-2a; 
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6. Solve, over the ray [ ^ , ^oo), the initial value problem 

11?\ Find the solutions of 

y' = J^4^y\ 
y(0) = - 1 

that are defined on the interval (—2, 2). 

I 8. I Determine the general integral of 

y' sin 2x — 2{y + cos x) = 0, ^ ^ (0? 77 ) ^ 

and indicate the solution that stays bounded when x TT — 

2 • 

9J For a G R, solve the ODE 

y' = (2^a)y-2e^'^ 

n-\-oo 

SO that ^(0) = 3. Tell which values of a make the improper integral / y{x) dx 
Jo converge. 

I 10.1 Let a, b be real numbers. Solve the initial value problem 

(y' = a^+ 3x^ 

U(2)-'l 
restricted to the half-line [2, +oc). 

11.1 Consider the parametric differential equation 

y'{x) = —3xy{x) -f kx 

depending on A; G R. 
a) Find the solution with a zero at the origin. 
b) For such solution y determine k so that y{x) ~ x^ as x ^^ 0. 

12. Given the ODE 
,^y^-2y-3 

^ 2(1+ 4x) ' 

determine: 
a) the general integral; 
b) the particular integral yo{x) satisfying yo{0) = 1; 
c) Maclaurin's expansion ofyo{x) up to second order. 
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13. Work out the general solution to the following second order ODEs by reducing 
them to the first order: 

a) y'' = 2e^ b) Z + y'-x^ 0 

14. Compute the general integral of the linear ODEs of the second order: 

a) y'' + 3y' + 2y = x^ + l 

c) I y" + y = ^ cos X 

y"-9y = e-^^ 

15. Solve the initial value problems: 

y" + 2y' + 5y - 0 

a) { y(0) = 0 

2/'(0) = 2 

b) 2/" - 4y '+ 4y = e' 2x 

b) 

d) y"-iy' + 2y = e-

f) y" — 2y' — 3y = sin x 

y" - 52/' + 4y = 2a; + 1 

y(o) = I 
t/'(0) = 0 

11.5.1 Solutions 

1. ODEs with separable variables: 

a) 2 ; = i ( l + :r2)log(l + x 2 ) - i x 2 + C . 

b) The map h{y) — y has a zero at 2/ = 0, which is consequently a singular integral. 
Suppose then y j^ 0 and separate the variables: 

x-\-2 

7 2/ J 
dx. 

x{x-\-l) 

We compute the integral on the right by partial fractions: 

A B 

x{x + 1) X x + 1 X x + 1 

implies 

y x(x-hi) J V^ ^ + 1 

= log 
Cx^ 

dx = 21og|:i:| — log|x + 1| + logC 

C > 0 . 

Thus 

log \y\ = log 

M = ^ 
X 

Cx'' 

a; + l | 
2 

a; + l 

( 7 > 0 , 

C > 0 , 
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y = C 
x + 1 

C T ^ O . 

The singular integral ?/ = 0 belongs to this family if we allow the value C = 0. 

c) The problem requires x > 0 due to the presence of the logarithm. Rearranging 
the equation as 

/ y 
y = 

2 1 

xlogx 

yields h{y) = y'^ — 1. Thus the constant maps y = 1^ y = —I are singular 
solutions. Let now y ^ ±1 ; separating the variables returns 

/?^^-/ a:logx 
dx. 

The method of partial fractions in the left integral and the substitution t = log x 
on the right give 

1 
log 

equivalent to 

or 

y - i 
y+l 

log I log x| + log C = log C\ log x| C > 0 , 

log y - i 
7/ + 1 

y - i 

logClog^x, C > 0 , 

y + 1 

Altogether, the general integral is 

Clog^x, C T ^ O ; 

y 
1-f Clog^x 

1-Clog^x 2 _ ' Ce 

which includes the singular solution ^ = 1 for C = 0. 

d) ^ = ~ | i I [ | (tanx — X -\- C)] plus the constant solution y 

2. Homogeneous differential equations: 

a) Supposing x ^ 0 and dividing by 4x^ gives 

^ 4x^ 2x 4 ' 

By renaming z — - we have ^' = z + xz^ hence 

z -\- xz 
1 2 3 
r̂ ;"' + -z 4" • 2̂ ^ 4 ' 

Axz' = ( z - l ) ( 2 4-3). 
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Because ^(z) — {z — l){z -\- 3) has zeroes z = l^ z = —3, the maps y = x 
y = —3x are singular integrals. For the general solution let us separate the 
variables 

dz — I — dx . j {z-l){z + 3)'^'-~J x' 
Decomposing 

A B 

+ ( z - l ) ( z + 3) z - l z + 3 z - l ^ + 3 ' 

the right-hand-side integral is 

/ {z-l){z + 2,) - / ( i ^ - r i i ) - log 
z - l 

z + 3 + c. 

Therefore 

log 
z - l 

z + 3 

z - l 

z + 3 
l + 3Cx 

= logC|x|, C > 0 , 

z — C G R ; 
l-Cx' 

this incorporates the singular solution z = 1 as well. Returning to the variable 
y, the general integral reads 

X + 3Cx2 
1 - C x 

C G 

b) y = |xtan(21ogC|x |) , C > 0 ; 

d) If X ^ 0 we divide by x^ 

c) y = ±x>/21ogC|x|, C > 0 . 

x^ X 

Changing z = ^ gives y' = z •\- xz\ so 

whence 

2; + xz' = z^e /̂'̂  + z , 

xz' = z^^i/ . ^ 

The function z = 0, corresponding to y = 0, is a singular integral of he ODE. 
By separation of the variables 

-l/z 

/V^^=/^^' 
integrating which, 
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I.e. 

- - = loglogC|x | , C > 0 , 

^ = -1—]—T^ri' c>o, 
ioglogC|x| 

loglogCixl 

in terms of y. 

3. Linetir ODEs: 

a) y=l{x^-l)+Ce-i^\ 

b) Using (11.18) with a{x) = - j and b{x) = - ^ f r ^ produces 

y = e / i < i - | e - / i < i - ( - ^ ) d x = e ' ° ^ N | e ' ° ^ M ( - ^ ) d x 

J Ixlx-^ J xx-^ 

c) By writing 
1 2a: 

?/ + TV 
X — I X —1 

we recognise formula (11.18) where a{x) — ^ ^ j , b[x) — ^^. Then 

7 x - i y x - i 

= 7 - ^ / b - l | - ^ d x = - ^ - / 2 a : d x - ^ — ( x ^ + C) , C G M . 
| x - l | j x - 1 X -1 J x - I 

d) y = 2x arctan x + Cx , C G E . 

4. The equation has separable variables, but the constant solution y = 0 is not 
admissible, for it does not meet the condition y{0) = 1. So we write 

Renaming t = e~^ (hence dt = —e'^dy, —jdt = dy) implies 
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1 

/T^* = / ^ ^ ' = /(f^-i)"" 
log 

t - l 
c = log • c — log 11 — e^ I + c. 

Then 

log |1 - e l̂ = - log \2x + 1| + log C , C > 0, 

log |1 - e l̂ = logCx/|2x + l | , C > 0, 

| l _ e ^ | = CV|2x + l | , C > 0 , 

l _ e ^ = CV|2x + l | , C ^ O . 

In conclusion, the general integral 

y = log ( l - CV|2x + l | ) , C e 

also takes into account y = 0, corresponding to C = 0. 
Now to the condition y{0) = 1: from C = 1 — e the required solution is 

i/ = log( l + ( e - l ) V | 2 x + l | ) . 

5. The general integral of the linear equation reads 

The constraint is ^'(0) = 0. Putting x = 0 in y'{x) = —2i/(x) +e~^^, that becomes 
^(0) = ^, and implies C = ^. The final solution is thus 

y = e 
-2x X + 

6. 2/ = log(2e^ ' (^°g^-^) - lV 

7. When a: G (—2, 2), x^ — 4 < 0. The initial condition /̂(O) = —1 allows moreover 
to restrict to y{x) < 0 in a neighbourhood of x = 0. That said, we separate 
variables: 

3x 
dx, Ty^'^h^ 

• log \y\ = - \og{-y) = - log \x^ - 4| + (7, Ce 
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Since ^(0) = —1, C must be —8 and the solution reads 

8 
y (4 _ ^2)3/2-

Notice that the constant function y = 0 was disregarded because it fails to meet 
y(0) = - 1 . 

8. The duplication formula sin2x = 2 sin x cos x bestows 

y' sin X cos x = y -\- cos x. 

For X G (O, ^) we have sinx cosx ^ 0, and so 

y = y^-—. 

sm X cos X sm x 

This is a linear equation, with integral 
r 1 dx f - f ^ dx 1 J 

'^ i ^ g J sin cc cos cc / C sin a; cos x • Q X . 

y sinx 
Let us compute 

S = / ^- dx 
J sm X cos X 

by setting t — sinx (dt = cosxdx, cos-̂  x = 1 — t"̂ ) and integrating the rational 
function thus obtained: 

dt 

Then 

^ \ t ( l - t2) ^^ j [t~^ 2{l-t) 2{l + t)) 

= l o g | t | - i | l - t | - i l o g | l + t |+c 

Itl , sinx / 7r\ 
y / | l - t 2 | cosx V 2 / 

sinx f cosx , sinx / 1 \ ^ ^ 
1/ = / — ^ dx = —: + C , C G R 

cos X J sin X cos x V sm x / 

and the solution to the ODE is 

C sin X - 1 ^ 
y = , Ce 

cosx 
We need to find a bounded solution around | " 

Csmx — 1 _ 
lim G M. 

c ^ ^ - c o s x 
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But 

C s i n x - 1 ,. 1-Ccost ,. 1 - C(l + o(t'^)) ^ 
lim = lim : = lim ^ , ^; ^̂  = 0 

x-^^- cosx t-^0- suit t-^0- t + o(t^) 

if and only if C = 1, so the desired solution is 

sin X — 1 
cosx 

9. The equation is linear, so at once 

y = e^(2+«)^^ /e -^(2+")^"( -2e"")dx 

= e(2+«)^(e-2^ + C) = e^^(l + Ce^^), C G R. 

Prom y{0) = 3 it follows 3 = 1 + C, so C = 2. The solution we want is thus 

i; = e^^(l + 2e2" )̂. 

The improper integral 
/»+oo 

/ (e"^ + 2e(^+2)^)dx 

converges precisely when the exponential of bigger magnitude has negative expo-
nent. Therefore the integral converges if a < — 2. 

10. Directly from the formula for linear equations, 

^ -^—— x^-"+i +c] if 6 - a ^ - 1 , 
0̂ — a + 1 / 

x"(31ogx + C) if 6 - a = - l , 

—-x^+^ + Cx^ if 6 - a ^ - 1 , 
6 - a + l 
3x^logx + Cx" if b - a = - l . 

Imposing y{2) = 1, 

2^+^ + C 2^ = 1 if 6 - a ŷ  - 1 , 
b — a+1 
3-2"log2 + C2'^ = 1 if 6 - a = - l , 

whence the constant is respectively 

C = 2"" (1 - — - 2^+M if 6 - a / - 1 , 
V b-a+1 J 

C = 2 - " - 3 1 o g 2 if 6 - a = - 1 . 
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In conclusion, 

y=\ 
^^+1 + 2-M 1 -

6 - a + l V 6 - a + l 

[ 3 x ^ l o g x + ( 2 - ^ - 3 1 o g 2 ) x ^ 

2 ^ + 1 \ rr.a if & - a ^ - l , 

if 6 - a = - l . 

11. The ODE y'{x) = -?>xy{x) + fcx: 

a) The equation is linear, with integral 

y ^^-3fxdx I^^S^^^kxdx 

_3^2 /k 3^2 \ k _. _ 3 „ 2 

e 2^ ( e2^ + C j = - + C e 2^ , Ce 

The condition |/(0) = 0 forces 0 = | + C , s o C = — | , and the solution is 

b) The solution must now fulfill 

3 
e - 2 - = 1 _ 

implies 

^ X as X —> 0. 

But 
e 2- = I ^ :ix'^-\. Q(^X'^^ for X-^ 0 

y{x) == - ( 1 - 1 + -x^ + o(x^) ) = -x^ + o{x^) for x -^ 0. 

Therefore y is fixed by | = 1, i.e., fc = 2. 

\2. Solution oiy'=^^^^: 

a) y{x) = -^ ^ ^̂__ = : with C € M, and the constant y{x) = —1. 

h) I/O (a;) 
_ 3 - V | l + 4 x | 

1 +V| l + 4x| 

13. Second older linear ODEs reducible to first order. 

a) y = 2e^ + Ci:c + C2, Ci,C72GlR. 

c) T2{x) = 1 - 2a; + 4a;2 + o(a;2). 
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b) We define z = y' so that to obtain the hnear equation of the first order 

z' -\- z = x'^ ^ 

solved by 

z = e-^^^ /e^^^x2dx = e-^ / x V d x . 

By integration by parts (twice), 

;̂  = e -^(x2e^-2xe^-h2e^ + Ci) = x^ - 2x + 2 + Cie-^ \ Ci G M . 

Integrating once more to go back to y gives 

y = Ix^ - x^ + 2a: + d e " " + C2 , Ci,C2 G R. 

14. Linear ODEs of the second order: 

a) y = Cie-^ + C2e-2-+ ix2 - | x + I , C I , C 2 G R . 

b) Let us solve first the homogeneous equation. The characteristic polynomial 
Â  — 4A + 4A = 0 admits a unique root A = 2 with multiplicity two; the integral 
is then 

yo(^;Cl,C2) = (C l+C2x)e2^ CuC^eR. 

As ^ = A = 2, we require the particular integral to resemble yp{x) = ax^e^^. 
Differentiating and substituting, 

2ae2^ = e^^ 

forces Q̂  = ^. Thus yp{x) = ^x^e^^, and the general solution to the ODE is 

y{x; Ci, C2) = {Ci + C2x)e2" + ^x^e^^ , Ci, C2 G R. 

c) The characteristic equation Â  + 1 = 0 has discriminant Z\ = — 4, hence a = 0, 
cj = 1, making 

yo{x;Ci,C2) = Ci cosx + (72sinx, Ci,(72 G R, 

the general solution of the homogeneous case. Since /i = cr = 0 we want a 
particular integral yp{x) = a:(Q;cosx + /?sinx). This gives 

—2a sin x + 2/? cos a; = 3 cos x, 

hence a = 0 and /? = | , and in turn yp{x) — | xcosx . Thus 

3 
y{x; Ci, C2) = Ci cos x + C2smx -{- -x cos x ^ Ci, C2 G R. 
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(I) y = Cie^ + Cse^^ - xe^ , C i , C2 G R . 

e) A == ± 3 solve the characteristic equation A^ — 9 = 0, so 

yo{x;Ci,C2) = C i e - ^ " + Cse^^ , C i ,C2 G M, 

is how the integral of the homogeneous equation looks like. We are seeking a 
particular integral yp{x) = axe~^^. In the usual way 

from which a = — | follows. The particular solution yp{x) = —^xe~^^ is as-
similated into the general integral 

y{x;Ci,C2) - C ie -^^ + C2e^^ - ^xe'^^ , ^ 1 , ^ 2 G R . 

f) ^ = C'ie-^ + C2e3^ + 3 ^ c o s x - | s i n x , C I , C 2 G R . 

15. Initial VHIUC problems: 

a) ^ = e~^s in2x . 

b) We start from the homogeneous ODE, and solve the characteristic equation 
A^ — 5A + 4 = 0, which has roots A = 1, A = 4. In this way 

yo{x;Ci,C2) = Cie^ + C2e^^ , C i ,C2 G R , 

is the general expression for the integral. A particular solution yp{x) = ax -\- P 
furnishes 

-5a + Aax + 4/? = 2x + 1, 

hence a — ^, P = ^. In this way we subsume yp{x) = ^x -\- ^ into the general 
integral 

y{x; C i , C2) = Cie=^ + Cae^^ + 1^+1, C i , C2 G R . 
Z o 

The initial conditions lead to the system 

r Ci + C2 = 0 

| c i + 4 C 2 + i = 0 . 

Its solutions Ci — I, C2 — —h now give 

y = - e e + -x + -
^ 6 6 2 8 



Tables and Formulas 

Recurrent formulas 

cos^ X + sin^ X = 1, Vx G M 

sin X == 0 se X = /cTT, Vfc G Z, 

TT 

smx = l se x=—h 2fc7r, 

TT 

sinx = — 1 se x = h 2/e7r, 

sin(a ±/3) = sin a cos/? ± cos a sin/3 

cos(a i /3 ) = cos a cos/? =F sin a sin/^ 

sin 2x = 2 sin x cos x , 

x — y X -\- y 
sm X — sm y = 2 sm cos 

^ 2 2 
^ , X — y . X -\~ y 

cos X — cos y — —2 sm sm 
^ 2 2 

sin(x + TT) = — sinx , 

sm(x + —) = cosx , 

ay 

loga(^^) = log„ X + log^ y, Vx, 7/ > 0 

1 X 
log^ - = log^ X - log^ y, Vx, 1/ > 0 

log^(x^) = 2/log^ X, Vx > 0 , V^ G M 

^ 7 

COS x = 0 s e x = — +/t7r 

cos X = 1 se X = 2fc7r 

cosx = —1 se X = TT + 2fc7r 

cos 2x = 2 cos^ X — 1 

cos(x + TT) = — cos X 

cos(x + | ) = — sinx 

(a^)^ - a^^ 
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Fundamenta l limits 

lim x^ = +00, lim x" = 0, a > 0 

lim x^ = 0, lim x^ = +(X), a < 0 

^.^ a^x" + . . . + a i X + ao ^ a , ^.^ ^ , _ ^ 
x ^ ± o o bmX^ + . . . + biX + 6o ^m a:->±oo 

lim a^ = +CX), lim a^ = 0, a > 1 
a;—)-+oo X—)• —oo 

lim a^ = 0, lim a^ = +oc, a < 1 
rr—>+oo x—> —oo 

lim log^ X — +00 , lim log^ x = —oo , a > I 
X—>-+oo X—>-0+ 

lim log^ X = —oo , lim log^ x = +oo , a < 1 
X—>-+oo X—>-0+ 

lim sin x , lim cos x , lim tan x do not exist 
X—>-zbcx) X—^±00 x ^ i b o o 

TT 

lim tanx = +oo , VA: G Z , lim arctanx = ± — 
x - . ( f + / c 7 r ) ^ ^ - ± o o 2 

TT 
lim arcsina: = ±— = arcsin(±l) 

x-.±i 2 ^ ^ 

lim arccosx = 0 = arccos 1, lim arccosx = TT = arccos(—1) 
X—>- + l X—> — 1 

, sinx ^ ,. 1 — cos a; 1 
lim = 1, lim ^ = -
x->0 X x-^0 X"^ 2 

lim fl + - ) ^e"" , a G R , lim(l + x ) - = e 

lim — , a > 0; m particular, lim = 1 
x->o X log a x-^^ X 

c^ — 1 e*̂  — 1 
lim = log a, a > 0; in particular, lim = 1 
x-^O X x -^0 X 
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Derivatives of e lementary functions 

/(^) 

x^ 

sinx 

cosx 

tanx 

a r f c i r i T 

arrrrm T 

arctan x 

a^ 

loga 1̂1 

sinh X 

cosh X 

n^) 

ax"^-^ , ^aeM. 

cosx 

— sin X 

9 1 
± 1 Laii X — „ 

COS^ X 
1 

v^r=^ 
1 

v^n^^ 
1 

l + x2 

(log a) a^ 

1 

(log a) X 

cosh X 

sinh X 

Differentiation rules 

(a/(x)+/35(x)) ' -a / ' (x)+/35 '(x) 

(/(^)5(x))' 

/^/(^)V 

(gifix)))-

= f'{x)g{x) + f{x)g'{x) 

r{x)9{x) - f{x)g'{x) 

(fl(^))' 

= g'{f{x))nx) 
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Maclaur in 's expansions 

rp^ /V./C rpTT' 

e ^ - l + x + — + . . . + — + . . . + - 7 + o(x^) 
2 k\ n! 

log(l + x)=x-^ + ... + ( - ! ) " - ! — + o(x") 
2 n 

x^ x^ 
s,nx = x - - + - • + (-1) 

^2m+l 

(2m + 1) 
- + o ( x ^ - + ^ ) 

v,2m 

+ {-irj7rT,+'>('') (2m)! 

X^ X^ 
+ o(x'"^+^) 

x̂  x^ r.2m 

coshx = 1 + -— + —- + . . . + 
2 4! (2m)' 

+ o(x'"^+0 

x^ 3x^ 
arcsm x — x H 1 h . . . 

6 40 
X 2m+l 

2 m + 1 

2m+l 

+ o(x 2m+2\ 

arctanx = a ; - ^ + ^ - . . . + (-1)™;^^ + o(a;^'"+^) 
6 5 2m + 1 

il + x)^ = l + ax+ ^ i ^ - l i l a ; 2 + . . . + ( ^ V " + o(a;") 

1 - a; + x^ - . . . + ( - l ) " x " + o(x") 
1+a; 

V T T ^ = 1 + -a; - -x^ + —x^ + o{x^) 
2 o io 
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Integrals of e lementary functions 

/ (^ ) 

x^ 

1 
X 

sinx 

cosx 

e^ 

sinh X 

cosh X 

1 
1 + ^2 

1 

1 

1 

x/^2Tri 

J/(x)dx 

— — - + c , ay^-1 
a + 1 

log|x| + c 

— cos X -\- c 

sin x + c 

e^ + c 

cosh X -{- c 

sinh X + c 

arctan x -h c 

arcsin x + c 

log(x + V x^ + 1) + c = sett sinh x + c 

log(x -h v x^ — 1) + c = sett cosh x + c 

In tegra t ion rules 

j(af{x) + 

j f{x)9\x) 

J ^{x) 

(3g{x) j dx = a / / (x) dx + /3 / ^(x) dx 

dx = f{x)g{x) - / /(x)5f(x)dx 

= log|(^(x)|+c 

j f{(p{x))Lp\x) dx = / f{y) dy where y = : (P(X) 



Index 

Absolute value, 13 
Antiderivative, 300 
Arc, 280 

closed, 280 
Jordan, 280 
length, 375 
simple, 280 

Arccosine, 56, 114 
Archimedean property, 16 
Arcsine, 56, 114, 174, 334 
Arctangent, 114, 174, 334 
Argument, 273 
Asymptote, 135 

horizontal, 135 
oblique, 135 
vertical, 136 

Binomial 
coefficient, 19, 232 
expansion, 20 

Bisection method. 111 

Cardinality, 2 
Colatitude, 259 
Combination, 20 
Conjunction, 5 
Connective, 5 
Coordinates 

cylindrical, 259 
polar, 257 
spherical, 259 

Corner, 176 

Cosine, 52, 101, 171, 174, 231 
hyperbolic, 195, 236 

Cotangent, 54 
Curve, 279 

congruent, 370 
equivalent, 370 
integral, 388 
opposite, 370 
piecewise regular, 282 
plane, 279 
regular, 282 
simple, 280 

De Morgan laws, 4 
Degree, 50, 52 
Derivative, 168, 187 

backward, 176 
forward, 176 
left, 176 
logarithmic, 174 
partial, 286, 288 
right, 176 

Difference, 4 
quotient, 167 
symmetric, 4 

Differential equation 
autonomous, 388 
homogeneous, 394, 397, 404 
linear, 394, 404 
ordinary, 387 
solution, 387 
with separable variables, 392 
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Discontinuity 
of first kind, 84 
of second kind, 84 
removable, 78 

Disjunction, 5 
Domain, 31 

Equation 
characteristic, 405 

Equivalence 
logic, 6 

Expansion 
asymptotic, 241 
Maclaurin, 227, 233 
Taylor, 226 

Exponential, 50, 171, 227 

Factorial, 18 
Form 

algebraic, 270 
Cartesian, 270 
exponential, 274 
indeterminate, 99, 107 
normal, 388 
polar, 273 
trigonometric, 273 

Formula, 5 
addition, 54 
contrapositive, 6 
De Moivre, 275 
duplication, 54 
Euler, 274 
finite increment, 183 
Stirling, 141 
subtraction, 54 
Taylor, 226 

Function, 31 
absolute value, 33, 34 
absolutely integrable, 360 
arccosine, 56, 114 
arcsine, 56, 114, 174, 334 
arctangent, 114, 174, 334 
asymptotic, 136 
big o, 123 
bijective, 40 
bounded, 37, 95 
bounded from above, 37 
composite, 103, 173, 239 
composition, 43 

concave, 189 
continuous, 76, 80, 285 
continuous on the right, 83 
convex, 189 
cosine, 52, 101, 171, 174, 231 
cotangent, 54 
decreasing, 42 
differentiable, 168, 187 
equivalent, 124 
even, 47, 175, 227 
exponential, 50, 171, 227 
hyperbolic, 195 
hyperbolic cosine, 195, 236 
hyperbolic sine, 195, 236 
hyperbolic tangent, 196 
increasing, 41 
infinite, 130 

infinite of bigger order, 131 
infinite of same order, 131 
infinite of smaller order, 131 
infinitesimal, 130, 242 
injective, 38 
integer part, 33, 34 
integrable, 324 
integral, 331 
inverse, 38, 114, 173 

cosine, 56 
hyperbolic tangent, 197 
hyperbolic cosine, 197 
hyperbolic sine, 197 
sine, 55 
tangent, 56 

invertible, 39 
little o, 124 
logarithm, 51, 114, 174, 229 
mantissa, 34 
monotone, 41, 85, 114, 185 
negative part, 359 
negligible, 124 
odd, 47, 175, 227 
of class C^ , 189 
of class C^ 189 
of real variable, 32 
of same order of magnitude, 124 
of several variables, 284 
one-to-one, 38, 114 
onto, 38 
periodic, 47 
piecewise, 32 
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piece wise-continuous, 317 
polynomial, 50, 98, 100, 172, 313 
positive part, 359 
power, 48, 231 
primitive, 300 
rational, 50, 98, 100, 101, 310 
real, 32 
real-valued, 32 
Sign, 33, 34 
sine, 52, 79, 93, 106, 171, 230 
step, 321 
surjective, 38 
tangent, 54, 173, 239 
trigonometric, 51 

Gap, 84 
Gradient, 286 
Graph, 31 

Image, 31, 36 
of a curve, 279 

Implication, 5 
Inequality 

Cauchy-Schwarz, 264 
of Bernoulli, 139 
triangle, 13 

Infimum 
of a function, 37 
of a set, 17 

Infinite, 200 
of bigger order, 131 
of same order, 131 
of smaller order, 131 
test function, 131 

Infinitesimal, 130, 200 
of bigger order, 130 
of same order, 130 
of smaller order, 130 
test function, 131 

Inflection, 190, 244 
ascending, 190 
descending, 190 

Integral 
Cauchy, 318 
definite, 317, 319, 321, 324 
general, 389 
improper, 356, 363, 367 
indefinite, 300, 301 
line, 368, 376 

lower, 323 
mean value, 328 
particular, 389 
Riemann, 320 
singular, 392 
upper, 323 

Integration 
by parts, 305, 335 
by substitution, 307, 315, 336 

Intersection, 3, 7 
Interval, 14 

of monotonicity, 42, 185 
Inverse 

cosine, 56, 114 
sine, 55, 114 
tangent, 56, 114 

Landau symbols, 123 
Latitude, 259 
Length 

of a curve, 373, 374 
of a vector, 261 

Limit, 68, 70, 72, 73, 76, 81 
left, 82 
right, 82 

Logarithm, 51, 106, 114, 174, 229 
natural, 72 

Longitude, 259 
Lower bound, 15 

greatest, 17, 113 

Map, 31 
identity, 45 

Maximum, 16, 37 
absolute, 178 
relative, 178 

Minimum, 16, 37 
Modulus, 272 

Negation, 5 
Neighbourhood, 65, 285 

left, 82 
right, 82 

Norm 
of a vector, 261 

Number 
complex, 270 
integer, 9 
Napier, 72, 106, 171 
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natural, 8 
rational, 9 
real, 10 

Order, 242 
of a differential equation, 387 
of an infinite function, 132 
of an infinitesimal function, 132 
of magnitude, 200 

Pair 
ordered, 21 

Part 
imaginary, 270 
negative, 359 
positive, 359 
principal, 133, 242 
real, 270 

Partition, 320 
adapted, 321 

Period, 10, 47 
minimum, 48 

Permutation, 19 
Point 

corner, 176 
critical, 179, 243 
cusp, 177 
extremum, 178 
inflection, 190, 244 
interior, 15 
jump, 84 
Lagrange, 182 
maximum, 178 
minimum, 178 
of discontinuity, 84 
with vertical tangent, 177 

Polynomial, 50, 98, 100, 172, 313 
characteristic, 405 
Taylor, 226 

Pre-image, 36 
Predicate, 2, 6 
Primitive, 300 
Problem 

boundary value, 391 
Cauchy, 390 
initial value, 390 

Product 
Cartesian, 21 
dot, 264 
scalar, 264 

Prolongation, 78 
Proof by contradiction, 6 

Quantifier 
existential, 7 
universal, 7 

Radian, 52 
Radius, 65 
Range, 31, 36 
Refinement, 320 
Region 

under the curve, 317 
Relation, 23 
Remainder 

Lagrange, 225, 227 
of a series, 145 
Peano, 225, 226 

Restriction, 40 

Sequence, 32, 66, 104, 137 
convergent, 68 
divergent, 70 
geometric, 138 
indeterminate, 71 
monotone, 71 
of partial sums, 141 

Series, 141 
absolutely convergent, 150 
alternating, 149 
conditionally converging, 150 
converging, 142 
diverging, 142 
general term, 142 
geometric, 146 
harmonic, 147, 149, 362 
indeterminate, 142 
MengoU, 144 
positive-term, 146 
telescopic, 145 

Set, 1 
ambient, 1 
bounded, 15 
bounded from above, 15 
bounded from below, 15 
complement, 3, 7 
empty, 2 
power, 2 

Sine, 52, 79, 93, 106, 171, 230 
hyperbolic, 195, 236 
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Subset, 1, 7 
Sum of a series, 142 
Supremum 

of a function, 37 
of a set, 17 

Tangent, 54, 169, 173, 239 
Test 

absolute convergence, 150, 359 
asymptotic comparison, 148, 361, 365 
comparison, 147, 358, 365 
integral, 362 
Leibniz, 149 
ratio, 139, 148 
root, 148 

Theorem 
comparison, 92, 95, 137 
de I'Hopital, 197 
existence of zeroes, 109 
Fermat, 179 
Fundamental of integral calculus, 331 
intermediate value, 112 
Lagrange, 182 
Mean Value, 182 
Mean Value of integral calculus, 329 
Rolle, 181 
substitution, 102, 138 
uniqueness of the limit, 89 
Weierstrass, 114 

Translation, 45 

Union, 3, 7 
Unit circle, 51 
Upper bound, 15 

least, 17, 113 

Value 
maximum, 37 
principal, 274 

Variable 
dependent, 36, 167 
independent, 36, 167 

Vector, 260 
at a point, 268 
direction, 261 
field, 376 
lenght, 261 
orientation, 261 
orthogonal, 264 
perpendicular, 264 
position, 260 
space, 262 
tangent, 282 
unit, 263 

Venn diagrams, 2 

Zero, 108 
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