

OpenGL®

SUPERBIBLE
Fourth Edition

This page intentionally left blank

OpenGL®

SUPERBIBLE
Fourth Edition

Richard S. Wright, Jr.
Benjamin Lipchak
Nicholas Haemel

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Comprehensive Tutorial and Reference

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:

Wright, Richard S., 1965-
OpenGL superbible : comprehensive tutorial and reference / Richard S. Wright, Jr.,

Benjamin Lipchak, Nicholas Haemel. — 4th ed.
p. cm.

Includes bibliographical references.
ISBN 0-321-49882-8 (pbk. : alk. paper) 1. Computer graphics. 2. OpenGL. I. Lipchak,

Benjamin. II. Haemel, Nicholas. III. Title.
T385.W728 2007
006.6'6—dc22

2007012602

http://www.awprofessional.com/safarienabled
www.awprofessional.com

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.
This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

Portions of the reference pages in Appendix C are Copyright
© 2003-2004 Silicon Graphics, Inc. and licensed under the
SGI Free Software B License. For details, see
http://oss.sgi.com/projects/FreeB/.

Portions of the reference pages in Appendix C are Copyright
© 2003-2005 3Dlabs Inc. Ltd. and may be distributed
subject to the terms and conditions set forth in the Open
Publication License, v 1.0, 8 June 1999. For details, see
http://opencontent.org/openpub/.

Portions of the reference pages in Appendix C are Copyright
© 2007 The Khronos Group Inc. and licensed under the
Khronos Free Use License. For details, see
http://www.khronos.org/help/legal/KFUL/.

Portions of the reference pages in Appendix C are Copyright
© 2005 Addison-Wesley and may be distributed subject to
the terms and conditions set forth in the Open
Publication License, v 1.0, 8 June 1999. For details, see
http://opencontent.org/openpub/.

ISBN-13: 978-0-321-49882-3
ISBN-10: 0-321-49882-8

Text printed in the United States on recycled paper at
Edwards Brothers, Ann Arbor, Michigan
First printing June 2007

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams-Cauley

Development Editor
Songlin Qiu

Technical Reviewers
Paul Martz
Brian Collins

Managing Editor
Gina Kanouse

Senior Project Editor
Lori Lyons

Copy Editor
Cheri Clark

Indexer
Erika Millen

Proofreader
Williams Woods
Publishing

Publishing
Coordinator
Kim Boedigheimer

Interior Designer
Gary Adair

Cover Designer
Alan Clements

Composition
Gloria Schurick

http://www.khronos.org/help/legal/KFUL/
http://opencontent.org/openpub/
http://oss.sgi.com/projects/FreeB/
http://opencontent.org/openpub/

This page intentionally left blank

For my wife LeeAnne. A work at home mom, on whose mighty
shoulders my career stands.

To the memory of Richard S. Wright, Sr.
1 Thessalonians 4:16

Thanks, Dad, for just letting me be a nerd.

—Richard S. Wright Jr.

To my daughter, Felicity. Finally, a labor of love that doesn’t
involve pixels. I can’t wait to meet you!

—Benjamin Lipchak

To my wife, Anna, for her enduring patience and support.
And to my parents for providing me with more LEGOs

than I could get my arms around.

—Nicholas Haemel

This page intentionally left blank

Contents at a Glance

Preface .. xxvii

About the Authors ... xxxv

Introduction... 1

Part I The Old Testament

1 Introduction to 3D Graphics and OpenGL... 9

2 Using OpenGL ... 33

3 Drawing in Space: Geometric Primitives and Buffers 73

4 Geometric Transformations: The Pipeline .. 127

5 Color, Materials, and Lighting: The Basics.. 173

6 More on Colors and Materials .. 229

7 Imaging with OpenGL... 251

8 Texture Mapping: The Basics ... 303

9 Texture Mapping: Beyond the Basics .. 341

10 Curves and Surfaces ... 377

11 It’s All About the Pipeline: Faster Geometry Throughput 421

12 Interactive Graphics... 457

13 Occlusion Queries: Why Do More Work Than You Need To?.................. 481

14 Depth Textures and Shadows .. 495

Part II The New Testament

15 Programmable Pipeline: This Isn’t Your Father’s OpenGL........................ 515

16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen............ 547

17 Fragment Shading: Empower Your Pixel Processing 567

18 Advanced Buffers ... 601

Part III The Apocrypha

19 Wiggle: OpenGL on Windows... 641

20 OpenGL on MacOS X .. 685

21 OpenGL on Linux.. 713

22 OpenGL ES – OpenGL on the Small .. 735

A Appendix A: Further Reading/References.. 773

B Appendix B: Glossary... 777

C Appendix C: API Reference.. 783

Index ...1141

OpenGL SuperBible, Fourth Editionx

Table of Contents

Preface ...xxvii

About the Authors...xxxv

Introduction ..1

What’s New in This Edition..1
How This Book Is Organized ..2

Part I: The Old Testament ...2
Part II: The New Testament ...4
Part III: The Apocrypha ...4

Conventions Used in This Book...5
About the Companion Web Site ..5

Part I The Old Testament ...7

1 Introduction to 3D Graphics and OpenGL...9

A Brief History of Computer Graphics ...9
Going Electric ..10
Going 3D ...11

A Survey of 3D Effects ..14
Perspective ...14
Color and Shading...15
Light and Shadows ..15
Texture Mapping..16
Fog..17
Blending and Transparency...18
Antialiasing ..18

Common Uses for 3D Graphics..19
Real-Time 3D ...19
Non–Real-Time 3D...22
Shaders ...22

Basic 3D Programming Principles ..23
Immediate Mode and Retained Mode...23
Coordinate Systems ...24
Projections: Getting 3D to 2D...28

Summary ...30

Contents xi

2 Using OpenGL...33

What Is OpenGL? ...33
Evolution of a Standard...34
The API Wars ...36
The Future of OpenGL ..37

How Does OpenGL Work?..38
Generic Implementations..38
Hardware Implementations...39
The Pipeline ...40

OpenGL: An API, Not a Language..41
Standard Libraries and Headers...41
Some Header Customizations ...42

API Specifics ..43
Data Types..44
Function-Naming Conventions ..45

Platform Independence ..46
Using GLUT ...47
Your First Program ...48
Drawing Shapes with OpenGL..53

Animation with OpenGL and GLUT..61
Double Buffering ...64

The OpenGL State Machine ...65
Saving and Restoring States...66

OpenGL Errors ..67
When Bad Things Happen to Good Code ..67

Identifying the Version...68
Getting a Clue with glHint...69
Using Extensions...69

Checking for an Extension..69
Whose Extension Is This?..71

Summary ...71

3 Drawing in Space: Geometric Primitives and Buffers..................................73

Drawing Points in 3D ...74
Setting Up a 3D Canvas..74
A 3D Point: The Vertex...76
Draw Something! ..77

Drawing Points ..78
Our First Example ..78

OpenGL SuperBible, Fourth Editionxii

Setting the Point Size..81
Drawing Lines in 3D...85

Line Strips and Loops ..87
Approximating Curves with Straight Lines ..88
Setting the Line Width ..89
Line Stippling...91

Drawing Triangles in 3D...94
Triangles: Your First Polygon...94
Winding ...95
Triangle Strips ..96
Triangle Fans..97

Building Solid Objects...98
Setting Polygon Colors ..101
Hidden Surface Removal ...102
Culling: Hiding Surfaces for Performance...104
Polygon Modes ..107

Other Primitives..107
Four-Sided Polygons: Quads ..108
Quad Strips ..108
General Polygons...108
Filling Polygons, or Stippling Revisited ..109
Polygon Construction Rules..113
Subdivision and Edges ...114

Other Buffer Tricks..117
Using Buffer Targets...117
Manipulating the Depth Buffer...119
Cutting It Out with Scissors ..119
Using the Stencil Buffer...121
Creating the Stencil Pattern ..122

Summary ...126

4 Geometric Transformations: The Pipeline ...127

Is This the Dreaded Math Chapter? ...127
Understanding Transformations...128

Eye Coordinates...129
Viewing Transformations ..130
Modeling Transformations ..130
The Modelview Duality ...132
Projection Transformations ...132
Viewport Transformations...134

Contents xiii

The Matrix: Mathematical Currency for 3D Graphics...............................134
What Is a Matrix? ..134
The Transformation Pipeline...135
The Modelview Matrix ..136
The Identity Matrix ...140
The Matrix Stacks ..142
A Nuclear Example ..143

Using Projections ..146
Orthographic Projections ..147
Perspective Projections ..148
A Far-Out Example ..151

Advanced Matrix Manipulation ...154
Loading a Matrix ...156
Performing Your Own Transformations..157
Adding Transformations Together...160

Moving Around in OpenGL Using Cameras and Actors161
An Actor Frame..161
Euler Angles: “Use the Frame, Luke!” ...163
Camera Management ..164

Bringing It All Together ..165
Summary ...171

5 Color, Materials, and Lighting: The Basics...173

What Is Color? ..174
Light as a Wave..174
Light as a Particle...175
Your Personal Photon Detector ...176
The Computer as a Photon Generator..176

PC Color Hardware ...177
PC Display Modes ...179

Screen Resolution ..179
Color Depth ...179

Using Color in OpenGL..180
The Color Cube ...180
Setting the Drawing Color ..182
Shading ..183
Setting the Shading Model ..185

OpenGL SuperBible, Fourth Editionxiv

Color in the Real World..186
Ambient Light..187
Diffuse Light ..188
Specular Light ..188
Putting It All Together...189

Materials in the Real World ..190
Material Properties...190
Adding Light to Materials..190
Calculating Ambient Light Effects ..190
Diffuse and Specular Effects ..191

Adding Light to a Scene..192
Enabling the Lighting..192
Setting Up Cosmic Background Radiation..192
Setting Material Properties ..193

Using a Light Source ...196
Which Way Is Up?...197
Surface Normals ...197
Specifying a Normal ..198
Unit Normals ...201
Finding a Normal...202
Setting Up a Source..203
Setting the Material Properties ..205
Specifying the Polygons ..205

Lighting Effects ...207
Specular Highlights..207
Specular Light ..208
Specular Reflectance ..208
Specular Exponent...209
Normal Averaging..211

Putting It All Together ..213
Creating a Spotlight...214
Drawing a Spotlight...216

Shadows...221
What Is a Shadow? ..222
Squish Code ...223
A Shadow Example ..223
Sphere World Revisited..227

Summary ...227

Contents xv

6 More on Colors and Materials..229

Blending ..229
Combining Colors ...230
Changing the Blending Equation ...234
Antialiasing ..234
Multisample ...238

Applying Fog ...240
Fog Equations ..242
Fog Coordinates...244

Accumulation Buffer ...244
Other Color Operations ..248

Color Masking ...248
Color Logical Operations...248
Alpha Testing ...249
Dithering..250

Summary ...250

7 Imaging with OpenGL ..251

Bitmaps..252
Bitmapped Data ...253
The Raster Position ..256

Pixel Packing ...257
Pixmaps ...258

Packed Pixel Formats ...260
A More Colorful Example..261
Moving Pixels Around...265
Saving Pixels ..266

More Fun with Pixels ..268
Pixel Zoom...275
Pixel Transfer ...277
Pixel Mapping..281

The Imaging “Subset” and Pipeline..283
Color Matrix ..288
Color Lookup...289
Proxies..290
Other Operations...291
Convolutions ...292
Histogram ..297
Minmax Operations...301

Summary ...301

OpenGL SuperBible, Fourth Editionxvi

8 Texture Mapping: The Basics ...303

Loading Textures...304
Using the Color Buffer ..307
Updating Textures..307
Mapping Textures to Geometry ..308
Texture Matrix ...311

A Simple 2D Example ...311
Texture Environment..316
Texture Parameters..318

Basic Filtering...318
Texture Wrap ...320
Cartoons with Texture...321
Mipmapping ..325

Texture Objects ...330
Managing Multiple Textures ...331

Summary ...339

9 Texture Mapping: Beyond the Basics...341

Secondary Color..341
Anisotropic Filtering ...344
Texture Compression ..347

Compressing Textures..348
Loading Compressed Textures...349

Texture Coordinate Generation..350
Object Linear Mapping..354
Eye Linear Mapping...355
Sphere Mapping...356
Cube Mapping ...357

Multitexture ..362
Multiple Texture Coordinates ...363
A Multitextured Example ..364

Texture Combiners..369
Point Sprites ..371

Using Points...372
Texture Application ...374
Point Parameters..374

Summary ...375

Contents xvii

10 Curves and Surfaces..377

Built-in Surfaces ..378
Setting Quadric States..379
Drawing Quadrics ..381
Modeling with Quadrics..385

Bézier Curves and Surfaces ...388
Parametric Representation...388
Evaluators...391

NURBS ...401
From Bézier to B-Splines..402
Knots ..402
Creating a NURBS Surface ...403
NURBS Properties...404
Defining the Surface ..404
Trimming ...406
NURBS Curves..409

Tessellation..409
The Tessellator ...411
Tessellator Callbacks ..412
Specifying Vertex Data ..413
Putting It All Together...414

Summary ...419

11 It’s All About the Pipeline: Faster Geometry Throughput.........................421

Display Lists ..422
Batch Processing ..423
Preprocessed Batches ...424
Display List Caveats...426
Converting to Display Lists ...426

Vertex Arrays ...428
Loading the Geometry ..432
Enabling Arrays..432
Where’s the Data?..433
Pull the Data and Draw ...434
Indexed Vertex Arrays ...435

Vertex Buffer Objects ..450
Managing and Using Buffer Objects ...450
Back to the Thunderbird! ..452

Summary ...455

OpenGL SuperBible, Fourth Editionxviii

12 Interactive Graphics..457

Selection ..458
Naming Your Primitives ..458
Working with Selection Mode...460
The Selection Buffer...461
Picking ...464
Hierarchical Picking...466
Feedback...471
The Feedback Buffer ..471
Feedback Data..472
Passthrough Markers ...473

A Feedback Example ...473
Label the Objects for Feedback..473
Step 1: Select the Object..476
Step 2: Get Feedback on the Object ..478

Summary ...480

13 Occlusion Queries: Why Do More Work Than You Need To?481

The World Before Occlusion Queries ...482
Bounding Boxes ..485
Querying the Query Object ..490
Best Practices ...492
Summary ...493

14 Depth Textures and Shadows...495

Be That Light...496
Fit the Scene to the Window...496
No Bells or Whistles, Please...497

A New Kind of Texture ...498
Size Matters ..499

Draw the Shadows First?!..500
And Then There Was Light...501

Projecting Your Shadow Map: The “Why”501
Projecting Your Shadow Map: The “How”..503
The Shadow Comparison ..505

Two Out of Three Ain’t Bad..509
A Few Words About Polygon Offset ...510
Summary ...511

Contents xix

Part II The New Testament..513

15 Programmable Pipeline: This Isn’t Your Father’s OpenGL515

Out with the Old ..516
Fixed Vertex Processing ...518
Fixed Fragment Processing ..520

In with the New..521
Programmable Vertex Shaders...523
Fixed Functionality Glue ...524
Programmable Fragment Shaders..525

OpenGL Shading Language: A First Glimpse ...526
Managing GLSL Shaders ...528

Shader Objects ...528
Program Objects ..530

Variables ..532
Basic Types ...532
Structures ...534
Arrays ...534
Qualifiers..535
Built-In Variables ...536

Expressions..537
Operators ...537
Array Access ...538
Constructors ..538
Component Selectors ..540

Control Flow ...541
Loops..541
if/else..542
discard..542
Functions ...542

Summary ...545

16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen547

Getting Your Feet Wet...548
Diffuse Lighting ..549
Specular Lighting ..551
Improved Specular Lighting ...553
Per-Vertex Fog ...557
Per-Vertex Point Size ...560

OpenGL SuperBible, Fourth Editionxx

Customized Vertex Transformation..561
Vertex Blending...563
Summary ...566

17 Fragment Shading: Empower Your Pixel Processing.................................567

Color Conversion..568
Grayscale..568
Sepia Tone..569
Inversion ..570
Heat Signature ...571
Per-Fragment Fog...572

Image Processing...574
Blur...575
Sharpen ..577
Dilation and Erosion ...578
Edge Detection...580

Lighting...582
Diffuse Lighting ...582
Multiple Specular Lights..585

Procedural Texture Mapping...587
Checkerboard Texture..588
Beach Ball Texture ...592
Toy Ball Texture ...595

Summary ...600

18 Advanced Buffers ..601

Pixel Buffer Objects...601
How to Use PBOs...602
The Benefits of PBOs ...603
PBOs in Action...604
Oh, Where Is the Home Where the PBOs Roam?608

Framebuffer Objects..608
How to Use FBOs ...609
Offscreen Rendering ..613
Rendering to Textures..615
Multiple Render Targets...619

Floating-Point Textures ...622
High Dynamic Range ..622
OpenEXR File Format ..623
Tone Mapping..626

Contents xxi

Making Your Whites Whiter and Your Brights Brighter630
Drawing the Scene...630
Bright Pass..633
Gaussian Blur with a Little Help ...634
The Sum Is Greater Than Its Parts...636
PBOs Make a Comeback ..638

Summary ...638

Part III The Apocrypha..639

19 Wiggle: OpenGL on Windows ..641

OpenGL Implementations on Windows ..642
Generic OpenGL..642
Installable Client Driver ..642
Mini-Client Driver ...643
Mini-Driver ..643
OpenGL on Vista ...644
Extended OpenGL ...644

Basic Windows Rendering ..645
GDI Device Contexts ...646
Pixel Formats ...647
The OpenGL Rendering Context ..654

Putting It All Together ..655
Creating the Window ..655
Using the OpenGL Rendering Context...660
Other Windows Messages..664

OpenGL and Windows Fonts ...666
3D Fonts and Text ...666
2D Fonts and Text ...669

Full-Screen Rendering ...671
Creating a Frameless Window...672
Creating a Full-Screen Window...672

Multithreaded Rendering..675
OpenGL and WGL Extensions ...676

Simple Extensions..677
Using New Entrypoints ...678
Auto-Magic Extensions..679
WGL Extensions ..680

Summary ...684

OpenGL SuperBible, Fourth Editionxxii

20 OpenGL on Mac OS X...685

GLUT ...686
Setting Up a GLUT Project ..686
Application Frameworks..687
Ditching Cocoa..688

OpenGL with Carbon ...689
Setting Up for OpenGL..689
Bitmap Fonts..697

OpenGL with Cocoa ...699
Creating a Cocoa Program ..699
Wiring It All Together..703
Hang on a Second There! ..705

Full-Screen Rendering ...706
Managing the Display ...706
AGL Full-Screen Support ...708

Summary ...711

21 OpenGL on Linux ..713

The Basics ..713
Setup..714

Setting Up Mesa...715
Setting Up Hardware Drivers...715
More Setup Details...715
Setting Up GLUT ...716
Building OpenGL Apps..716

GLUT ...717
GLX—Dealing with the X Windows Interface...718

Displays and X...718
Config Management and Visuals ..719
Windows and Render Surfaces ..723
Context Management..724
Synchronization ..726
GLX Strings..727
The Rest of GLX...727

Putting It All Together ..729
Summary ...734

Contents xxiii

22 OpenGL ES: OpenGL on the Small ...735

OpenGL on a Diet...735
What’s the ES For? ...735
A Brief History ...736

Which Version Is Right for You? ..738
ES 1.0..739
ES 1.1..742
ES 2.0..746
ES SC ..752

The ES Environment ...754
Application Design Considerations...754
Dealing with a Limited Environment ...755
Fixed-Point Math ...756

EGL: A New Windowing Environment ..757
EGL Displays ..758
Creating a Window..759
Context Management..763
Presenting Buffers and Rendering Synchronization764
More EGL Stuff ..765

Negotiating Embedded Environments ...766
Popular Operating Systems..766
Embedded Hardware..766
Vendor-Specific Extensions ...767
For the Home Gamer...767

Putting OpenGL ES into Action ...767
Setting Up the Environment ...768
Setting Up OpenGL ES State..769
Rendering ..770
Cleaning Up...771

Summary ...772

A Further Reading/References...773

Other Good OpenGL Books..773
3D Graphics Books..773
Web Sites ...774

OpenGL SuperBible, Fourth Editionxxiv

B Glossary...777

C API Reference..783

Overview of Appendix C ..783

Index..1141

Contents xxv

This page intentionally left blank

Preface

My career has been built on a long history of making “stupid” choices and accidentally
being right. First, I went to Microsoft’s DOS, instead of the wildly popular CP/M. Later,
I recall, friends counseled me that Windows was dead, and too hard to program for, and
that OS/2 was the future (you couldn’t lose by sticking with IBM, they’d say).

Just got lucky, I guess.

There were a few other minor wrong turns that just happened to fortunately have me
pointed away from some other collapsing industry segment, but my next really big stupid
decision was writing the first edition of this book. I had already built a nice comfortable
career out of fixing SQL database problems, and was making the transition to large-scale
enterprise IT solutions in the healthcare industry. A book on OpenGL? I had no idea what
I was doing. The first time I read the official OpenGL specification, I had to all but breathe
in a paper bag, my first co-author quit in disgust, and the whole project was very nearly
canceled before the book was half-finished.

As soon as the book came out, I had some meager credibility outside my normal field of
expertise. I was offered a job at Lockheed-Martin/Real3D doing “real” OpenGL work. My
then-current boss (God bless you, David, wherever you are!) tried really hard to talk me
out of throwing my career away. Everybody knows, he insisted, that whatever Microsoft
does is going to be the way the industry goes, and Microsoft’s Talisman graphics platform
was going to bury OpenGL into obscurity. Besides, there was only one other book on
OpenGL in existence; how big a thing could it possibly be?

Eleven years have passed, and as I finish yet the fourth edition of this book (and looking
at a shelf full of OpenGL books), the number of people reading this who remember the
short-lived hype of Talisman would probably fit in the back of my minivan. An OpenGL
engineer I used to know at IBM had in her e-mail signature: “OpenGL. It’s everywhere.
Do the math.” This has never been truer than it is today.

OpenGL today is the industry-leading standard graphics API on nearly every conceivable
platform. This includes not only desktop Windows PCs and Macs, but UNIX workstations,
location-based entertainment systems, major game consoles (all but one), hand-held
gaming devices, cellphones, and a myriad of other embedded systems such as avionic and
vehicle instrumentation.

Across platforms, OpenGL is the undisputed champion of 3D content creation applica-
tions, 3D games, visualization, simulation, scientific modeling, and even 2D image and
video editing. OpenGL’s widespread success can be attributed to its elegance and ease of
use, its power and flexibility, and the overwhelming support it has received from the

developer and IHV communities. OpenGL can be extended as well, providing all the bene-
fits of an open standard, as well as giving vendors the ability to add their own proprietary
added value to implementations.

You have probably heard that programmable hardware is the future of 3D graphics
programming, and of graphics APIs. This is no longer true. Programmable hardware is no
longer in the future; it is here now, today, even on the lowest cost motherboard embedded
3D chipsets. It is not a fluke that this edition follows the last at the closest interval of the
series. The pace of evolving graphics technology is simply staggering, and this edition
brings you up-to-date on the now-latest OpenGL version 2.1.

We have reinforced the chapters on fixed-pipeline programming, which is not going away
anytime soon, and have affectionately deemed them “The Old Testament;” still relevant,
illustrative, and the foundation on which the “New Testament” of programmable hard-
ware is based. I find the analogy quite appropriate, and I would refute anyone who thinks
the fixed pipeline is completely dead and irrelevant. The rank and file of application devel-
opers (not necessarily cutting-edge game developers) would, I’m sure, agree.

That said, we have still trimmed some dead weight. Color Index mode is ignored as much
as possible, some old paletted rendering material from the Windows chapter has been
pruned, and we have eliminated all the old low-level assembly-style shader material to
make room for updated and expanded coverage of the high-level shading language (GLSL).
You’ll also find a whole new chapter on OpenGL on hand-held systems, totally rewritten
Mac OS X and Linux chapters, and a really great new chapter on advanced buffer tech-
niques such as offscreen rendering, and floating-point textures.

Another big change some readers will notice is that the OpenGL SuperBible has been
acquired and adopted into the Addison-Wesley Professional OpenGL series. I can’t begin to
express how grateful I am and humbled I feel by this honor. I myself have worn out the
covers on at least one edition of every volume in this series.

One of the reasons, I think, for the longevity of this book has been the unique approach it
takes among OpenGL books. As much as possible, we look at things through the eyes of
someone who is excited by 3D graphics but knows very little about the topic. The purpose
of a tutorial is to get you started, not teach you everything you will ever need to know.
Every professional knows that you never reach this place. I do occasionally get some criti-
cism for glossing over things too much, or not explaining things according to the strictest
engineering accuracy. These almost never come from those for whom this book was
intended. We hope for a great many of you that this will be your first book on OpenGL
and 3D graphics. We hope for none of you that it will be your last.

Well, I did make one really “smart” decision about my career once. Once upon a time in
the early 1980s, I was a student looking at a computer in an electronics store. The sales-
man approached and began making his pitch. I told him I was just learning to program
and was considering an Amiga over his model. I was briskly informed that I needed to get

OpenGL SuperBible, Fourth Editionxxviii

serious with a computer that the rest of the world was using. An Amiga, he told me, was
not good for anything but “making pretty pictures.” No one, he assured me, could make a
living making pretty pictures on his computer. Unfortunately, I listened to this “smart”
advice and regretted it for over ten years. Thank God I finally got stupid.

As for making a living “making pretty pictures?” Do the math.

Oh, and my latest stupid decision? I’ve left Windows and switched to the Mac. Time will
tell if my luck holds out.

—Richard S. Wright Jr.

Preface xxix

Preface to the Previous,
Third Edition

I have a confession to make. The first time I ever heard of OpenGL was at the 1992 Win32
Developers Conference in San Francisco. Windows NT 3.1 was in early beta (or late alpha),
and many vendors were present, pledging their future support for this exciting new graph-
ics technology. Among them was a company called Silicon Graphics, Inc. (SGI). The SGI
representatives were showing off their graphics workstations and playing video demos of
special effects from some popular movies. Their primary purpose in this booth, however,
was to promote a new 3D graphics standard called OpenGL. It was based on SGI’s propri-
etary IRIS GL and was fresh out of the box as a graphics standard. Significantly, Microsoft
was pledging future support for OpenGL in Windows NT.

I had to wait until the beta release of NT 3.5 before I got my first personal taste of
OpenGL. Those first OpenGL-based screensavers only scratched the surface of what was
possible with this graphics API. Like many other people, I struggled through the Microsoft
help files and bought a copy of the OpenGL Programming Guide (now called simply “The
Red Book” by most). The Red Book was not a primer, however, and it assumed a lot of
knowledge that I just didn’t have.

Now for that confession I promised. How did I learn OpenGL? I learned it by writing a
book about it. That’s right, the first edition of the OpenGL SuperBible was me learning how
to do 3D graphics myself…with a deadline! Somehow I pulled it off, and in 1996 the first
edition of the book you are holding was born. Teaching myself OpenGL from scratch
enabled me somehow to better explain the API to others in a manner that a lot of people
seemed to like. The whole project was nearly canceled when Waite Group Press was
acquired by another publisher halfway through the publishing process. Mitchell Waite
stuck to his guns and insisted that OpenGL was going to be “the next big thing” in
computer graphics. Vindication arrived when an emergency reprint was required because
the first run of the book sold out before ever making it to the warehouse.

That was a long time ago, and in what seems like a galaxy far, far away…

Only three years later 3D accelerated graphics were a staple for even the most stripped-
down PCs. The “API Wars,” a political battle between Microsoft and SGI, had come and
gone; OpenGL was firmly established in the PC world; and 3D hardware acceleration was
as common as CD-ROMs and sound cards. I had even managed to turn my career more
toward an OpenGL orientation and had the privilege of contributing in some small ways
to the OpenGL specification for version 1.2 while working at Lockheed-Martin/Real3D.
The second edition of this book, released at the end of 1999, was significantly expanded

and corrected. We even made some modest initial attempts to ensure that all the sample
programs were more friendly in non-Windows platforms by using the GLUT framework.

Now, nearly five years later (eight since the first edition!), we bring you yet again another
edition, the third, of this book. OpenGL is now without question the premier cross-plat-
form real-time 3D graphics API. Excellent OpenGL stability and performance are available
on even the most stripped-down bargain PC today. OpenGL is also the standard for UNIX
and Linux operating systems, and Apple has made OpenGL a core fundamental technol-
ogy for the new Mac OS X operating system. OpenGL is even making inroads via a new
specification, OpenGL ES, into embedded and mobile spaces. Who would have thought
five years ago that we would see Quake running on a cellphone?

It is exciting that, today, even laptops have 3D acceleration, and OpenGL is truly every-
where and on every mainstream computing platform. Even more exciting, however, is the
continuing evolution of computer graphics hardware. Today, most graphics hardware is
programmable, and OpenGL even has its own shading language, which can produce stun-
ningly realistic graphics that were undreamed of on commodity hardware back in the last
century (I just had to squeeze that in someplace!).

With this third edition, I am pleased that we have added Benjamin Lipchak as a co-author.
Benj is primarily responsible for the chapters that deal with OpenGL shader programs; and
coming from the ARB groups responsible for this aspect of OpenGL, he is one of the most
qualified authors on this topic in the world.

We have also fully left behind the “Microsoft Specific” characteristics of the first edition
and have embraced a more multiplatform approach. All the programming examples in
this book have been tested on Windows, Mac OS X, and at least one version of Linux.
There is even one chapter apiece on these operating systems, with information about
using OpenGL with native applications.

—Richard S. Wright Jr.

Preface xxxi

Acknowledgments

First, I have to thank God for somehow turning an innumerable amount of seemingly bad
decisions into gold. Including against all “good advice” to get into computer graphics and
OpenGL in particular. Second, I have to thank my wife LeeAnne. There was no way I could
take on the fourth edition of this book, and I initially decided not to take this project on.
She pretty much made me do it—and without complaining or whimpering shouldered all
Boy Scout meetings, Girl Scout meetings, music lessons, school meetings, parent orienta-
tions, bake sales, fund raisers, soccer practices (NO I did not miss any games!), trips to the
doctor, shopping trips, grocery runs, friends birthday parties, social engagements of every
size and shape, and pretty much all of Christmas. Many late nighters were also made
possible by a thermos of “Mamma’s Magic Mojo”; Starbuck’s, eat your heart out! All three
of my brilliant children, Sara, Stephen, and Alex, thanks so much for letting Daddy hide
out every night after dinner—and not giving me too much grief over missed movies and
camping trips.

Thank you Benjamin Lipchak and Nick Haemel for being first-class coauthors. Your contri-
butions to the book have had a lot to do with its recent longevity. Special thanks because
you were both crazy enough to do this twice! Thanks to AMD/ATI for letting these guys
out of the box, and for the use of some really cool sample shaders. The editors and staff at
Addison Wesley have also been fantastic. Debra Williams-Cauley was especially patient
and somewhat creative when it came to getting this project off the ground. Working with
Songlin Qiu has been a great pleasure, and I especially appreciated her frequent encourage-
ment just when I felt like this project would never end. Cheri Clark, thanks for making me
look like I didn’t sleep through high school English! Thank you, Lori Lyons, for being
persistent about those pesky deadlines. I am also honored to have had Dave Shreiner, Paul
Martz, and Brian Collins involved in this edition. Paul and Brian’s review of the chapters
has without a doubt increased the caliber of this edition substantially over my past efforts.

Many thanks also go out to Apple—in particular Kent Miller for some help on the Mac
chapter—but also to everyone on the Apple OpenGL mailing list for many questions
answered, and tips just picked up by trolling! NVIDIA also chipped in, with thanks in
particular to Brian Harvey and Cass Everitt for being responsive to questions, and espe-
cially thanks to Michael Gold and Barthold Lichtenbelt for a conference call getting me up
to speed on the OpenGL situation in Windows Vista. Thanks, too, to Robert Kennett at
AMD/ATI for updating some code for me in the Windows chapter.

Many thanks to Full Sail for their support over the past few years by allowing me the privi-
lege of teaching OpenGL on a part-time basis. I come in for a few hours, I get to talk about
what I really love to talk about, and the audience has to act as though they enjoy it and
pay attention. I even get paid. How on earth I keep getting away with this is beyond me!

Thank you, Rob Catto, for covering for me and looking the other way from time to time.
Ed Womack, you are a scholar and a gentleman, and your F-16 model rocks. I’m sorry I
defaced it with an OpenGL logo[el] but I couldn’t help myself. Thanks also to my lab
specialist Chris Baptiste, for a great attitude and for teaching my class from time to time
so that I could get some other work done. Finally, I’d like to thank Software Bisque for this
contractors dream “day job” of making great astronomy software, and getting paid to use
OpenGL on a daily basis. Steve, Tom, Daniel, and Matt, you are all a class act. Working
with you guys is an honor and privilege, not to mention a total blast!

—Richard S. Wright Jr.

I’d like to begin by acknowledging my colleagues at AMD who have unselfishly given
their valuable time and advice reviewing my chapters, and leaving me to take all the
credit. These folks are the masters of the OpenGL universe, and I am fortunate to work
side by side with (or sometimes hundreds of miles away from) this caliber of individual on
a daily basis. In particular, I’d like to thank Dan Ginsburg, Rick Hammerstone, Evan Hart
(now at NVIDIA), Bill Licea-Kane, Glenn Ortner, and Jeremy Sandmel (now at Apple).
Thanks to technical editors Paul Martz and Brian Collins for their depth and breadth of
knowledge and for unleashing it mercilessly. And most of all, thanks to Richard Wright for
the opportunity to work with you again on this project.

Thanks to the team of editors and other support staff at Addison-Wesley for transforming
my lowly text into something I’m proud of. Your eagle eyes spared me from sweating the
details, making writing hundreds of pages much less strenuous.

Thanks to WPI professors Mike Gennert, Karen Lemone, John Trimbur, Susan Vick, Matt
Ward, Norm Wittels, and others for the solid foundation I lean on every day. A shout out
to all my friends at GweepNet for distracting me with PC game LAN parties when I was
burnt out from too much writing. To my entire extended family, including Beth, Tim,
Alicia, Matt, Jen, and Corey, thanks for tolerating my surgically attached laptop during the
winter months. To Mom and Dad, for providing me with top-quality genetic material and
for letting me bang away on the TRS-80 when I should have been outside banging sticks
against trees, I am forever grateful. To brother Paul, your success in everything you do
provides me with nonstop healthy competition. To sister Maggie, you redefine success in
my eyes every time I see you. You both make me proud to have you as siblings. Last, but
not least, I’d like to thank my wife, Jessica, for the science project she’s been assembling
in her belly while I funnel all my attention into a laptop computer. It’s time for our
project now.

—Benjamin Lipchak

Acknowledgments xxxiii

First, I would like to thank Richard and Benj for allowing me the opportunity to collabo-
rate on this project. You guys have been great and very supportive for a new author.
Thanks for putting up with all my silly questions. Also, thanks to ATI. What a great stomp-
ing ground for someone to get started in graphics! A special thanks to all of my friends
and mentors at ATI—you all have been a great help and resource, and the best in the field!

I would also like to acknowledge the editors and staff at Addison Wesley. You have been
incredibly helpful throughout the entire process. Thanks for all your hard work in polish-
ing our text and keeping us on track.

Last, and certainly not least, I would like to thank my wife Anna, and all of my family for
putting up with my distraction through this whole process. You graciously have been
patient, even through the holidays, as I struggled with my deadlines. Anna, your dedica-
tion to medicine and your own publications has given me the strength to finish this
project. Thank you for all your support and encouraging words, despite being even busier
than I.

—Nicholas Haemel

OpenGL SuperBible, Fourth Editionxxxiv

About the Authors

Richard S. Wright, Jr. has been using OpenGL for more than 12 years, since it first
became available on the Windows platform, and teaches OpenGL programming in the
game design degree program at Full Sail in Orlando, Florida. Currently, Richard is the pres-
ident of Starstone Software Systems, Inc., where he develops third-party multimedia simu-
lation software for the PC and Macintosh platforms using OpenGL.

Previously with Real 3D/Lockheed Martin, Richard was a regular OpenGL ARB attendee
and contributed to the OpenGL 1.2 specification and conformance tests. Since then,
Richard has worked in multidimensional database visualization, game development,
medical diagnostic visualization, and astronomical space simulation.

Richard first learned to program in the eighth grade in 1978 on a paper terminal. At age
16, his parents let him buy a computer with his grass-cutting money instead of a car, and
he sold his first computer program less than a year later (and it was a graphics program!).
When he graduated from high school, his first job was teaching programming and
computer literacy for a local consumer education company. He studied electrical engineer-
ing and computer science at the University of Louisville’s Speed Scientific School and
made it half way through his senior year before his career got the best of him and took
him to Florida. A native of Louisville, Kentucky, he now lives with his wife and three chil-
dren in Lake Mary, Florida. When not programming or dodging hurricanes, Richard is an
avid amateur astronomer and an Adult Sunday School teacher.

Benjamin Lipchak graduated from Worcester Polytechnic Institute with a double major
in technical writing and computer science. “Why would anyone with a CS degree want to
become a writer?” That was the question asked of him one fateful morning when Benj was
interviewing for a tech writing job at Digital Equipment Corporation. Benj’s interview
took longer than scheduled, and he left that day with job offer in hand to work on the
software team responsible for DEC’s AlphaStation OpenGL drivers.

Benj’s participation in the OpenGL Architecture Review Board began when he chaired the
working group that generated the GL_ARB_fragment_program extension spec. While
chairing the Khronos OpenGL Ecosystem Technical SubGroup, he established the OpenGL
SDK and created the OpenGL Pipeline newsletter, of which he remains editor.

Benj will now participate in the Khronos OpenGL ES Working Group. After 12 years of
OpenGL driver development and driver team management at DEC, Compaq, and ATI, he
is headed for smaller pastures. Benj recently became manager of AMD’s handheld software
team. Although the API is familiar, the new challenges of size and power consumption

make for a great change of scenery. In his fleeting spare time, Benj tries to get outdoors for
some hiking or kayaking. He also operates an independent record label, Wachusett
Records, specializing in solo piano music.

Nicholas Haemel, developer at AMD in the Graphics Products Group, was technical
reviewer for OpenGL SuperBible, Third Edition, and contributed the chapters on GLX and
OpenGL ES.

OpenGL SuperBible, Fourth Editionxxxvi

Introduction

Welcome to the fourth edition of the OpenGL SuperBible. For more than ten years, we have
striven to provide the world’s best introduction to not only OpenGL, but 3D graphics
programming in general. This book is both a comprehensive reference of the entire
OpenGL API and a tutorial that will teach you how to use this powerful API to create stun-
ning 3D visualizations, games, and other graphics of all kinds. Starting with basic 3D
terminology and concepts, we take you through basic primitive assembly, transformations,
lighting, texturing, and eventually bring you into the full power of the programmable
graphics pipeline with the OpenGL Shading Language.

Regardless of whether you are programming on Windows, Mac OS X, Linux, or a hand-
held gaming device, this book is a great place to start learning OpenGL, and how to make
the most of it on your specific platform. The majority of the book is highly portable C++
code hosted by the GLUT or FreeGLUT toolkit. You will also find OS-specific chapters that
show how to wire OpenGL into your native window systems. Throughout the book, we
try to make few assumptions about how much previous knowledge the reader has of 3D
graphics programming topics. This yields a tutorial that is accessible by both the begin-
ning programmer and the experienced programmer beginning OpenGL.

What’s New in This Edition
Readers of the previous editions will notice right away that the reference material has
been reorganized. Instead of attempting to place individual functions with chapters that
use them, we now have Appendix C, which contains the complete OpenGL API reference
for the GL function. This is a much more appropriate and useful organizational structure
for this material. These reference pages are also now based on the “official” OpenGL man
pages, which means there will be no more incomplete or missing function calls. Detailed
function entries will also be more concise and complete.

The Mac OS X and Linux chapters in this edition have been totally rewritten from the
ground up. Sometimes a revision is not sufficient, and the best thing to do is just start
over. We think readers will like these two newly rewritten chapters, which will be useful to
anyone needing an introduction to the specifics of getting OpenGL up and running on
their particular platform. Also, on the platform topic, the Windows chapter has been
updated and pruned of some older and obsolete topics. Of note is the fact that OpenGL’s
widely rumored demise on Vista has, in fact, NOT occurred.

We have also added two completely new chapters. In this edition, we bring you full cover-
age of the latest OpenGL ES specification. We also provide a very exciting chapter on
advanced OpenGL buffer usage, including off screen rendering, floating point buffers and

textures, and pixel buffer objects. Throughout all the chapters, coverage has been touched
up to include OpenGL 2.1 functionality, and to focus more on current OpenGL program-
ming techniques. (Chapter 11, for example, deals with geometry submission and was
modified heavily for this purpose.)

Finally, you’ll find a Color insert with a gallery of images for which black and white just
does not do adequate justice. A book on graphics programming is certainly more useful
with color images. Some techniques, for example, are impossible to demonstrate on the
printed page without the use of color. Other images are provided because the black-and-
white versions simply do not convey the same information about how a particular image
should look.

How This Book Is Organized
The OpenGL SuperBible is divided into three parts: The Old Testament, The New Testament,
and the Apocrypha. Each section covers a particular personality of OpenGL—namely, the
fixed pipeline, programmable hardware, and finally some platform-specific bindings. We
certainly would not equate our humble work with anyone’s sacred texts. However, the
informed reader will certainly see how strong and irresistible this metaphor actually is.

Part I: The Old Testament
You’ll learn how to construct a program that uses OpenGL, how to set up your 3D-render-
ing environment, and how to create basic objects and light and shade them. Then we’ll
delve deeper into using OpenGL and some of its advanced features and different special
effects. These chapters are a good way to introduce yourself to 3D graphics programming
with OpenGL and provide the conceptual foundation on which the more advanced capa-
bilities later in the book are based.

Chapter 1—Introduction to 3D Graphics and OpenGL. This introductory chapter is
for newcomers to 3D graphics. It introduces fundamental concepts and some common
vocabulary.

Chapter 2—Using OpenGL. In this chapter, we provide you with a working knowledge of
what OpenGL is, where it came from, and where it is going. You will write your first
program using OpenGL, find out what headers and libraries you need to use, learn how to
set up your environment, and discover how some common conventions can help you
remember OpenGL function calls. We also introduce the OpenGL state machine and error-
handling mechanism.

Chapter 3—Drawing in Space: Geometric Primitives and Buffers. Here, we present
the building blocks of 3D graphics programming. You’ll basically find out how to tell a
computer to create a three-dimensional object with OpenGL. You’ll also learn the basics
of hidden surface removal and ways to use the stencil buffer.

OpenGL SuperBible2

Chapter 4—Geometric Transformations: The Pipeline. Now that you’re creating three-
dimensional shapes in a virtual world, how do you move them around? How do you
move yourself around? These are the things you’ll learn here.

Chapter 5—Color, Materials, and Lighting: The Basics. In this chapter, you’ll take your
three-dimensional “outlines” and give them color. You’ll learn how to apply material
effects and lights to your graphics to make them look real.

Chapter 6—More on Colors and Materials. Now it’s time to learn about blending objects
with the background to make transparent (see-through) objects. You’ll also learn some
special effects with fog and the accumulation buffer.

Chapter 7—Imaging with OpenGL. This chapter is all about manipulating image data
within OpenGL. This information includes reading a TGA file and displaying it in an
OpenGL window. You’ll also learn some powerful OpenGL image-processing capabilities.

Chapter 8—Texture Mapping: The Basics. Texture mapping is one of the most useful
features of any 3D graphics toolkit. You’ll learn how to wrap images onto polygons and
how to load and manage multiple textures at once.

Chapter 9—Texture Mapping: Beyond the Basics. In this chapter, you’ll learn how to
generate texture coordinates automatically, use advanced filtering modes, and use built-in
hardware support for texture compression. You’ll also learn about OpenGL’s support for
point sprites.

Chapter 10—Curves and Surfaces. The simple triangle is a powerful building block. This
chapter gives you some tools for manipulating the mighty triangle. You’ll learn about
some of OpenGL’s built-in quadric surface generation functions and ways to use automatic
tessellation to break complex shapes into smaller, more digestible pieces. You’ll also
explore the utility functions that evaluate Bézier and NURBS curves and surfaces. You can
use these functions to create complex shapes with an amazingly small amount of code.

Chapter 11—It’s All About the Pipeline: Faster Geometry Throughput. For this chapter,
we introduce OpenGL display lists, vertex arrays, and vertex buffer objects for improving
performance and organizing your models. You’ll also learn how to create a detailed analy-
sis showing how to best represent large, complex models.

Chapter 12—Interactive Graphics. This chapter explains two OpenGL features: selection
and feedback. These groups of functions make it possible for the user to interact with
objects in the scene. You can also get rendering details about any single object in the
scene.

Chapter 13—Occlusion Queries: Why Do More Work Than You Need To? Here, you’ll
learn about the OpenGL occlusion query mechanism. This feature effectively lets you
perform an inexpensive test-render of objects in your scene to find out whether they will
be hidden behind other objects, in which case you can save time by not drawing the
actual full-detail version.

Introduction 3

Chapter 14—Depth Textures and Shadows. This chapter covers OpenGL’s depth textures
and shadow comparisons. You’ll learn how to introduce real-time shadow effects to your
scene, regardless of the geometry’s complexity.

Part II: The New Testament
In the second part of the book, you’ll find chapters on the new features in OpenGL
supporting programmable hardware, in particular the OpenGL Shading Language (GLSL).
These chapters don’t represent just the newest OpenGL features, they cover the fundamen-
tal shift that has occurred in graphics programming—a shift that is fundamentally differ-
ent, yet complementary, and descended from the old fixed-pipeline-based hardware.

Chapter 15—Programmable Pipeline: This Isn’t Your Father’s OpenGL. Out with the
old, in with the new. This chapter revisits the conventional fixed-functionality pipeline
before introducing the new programmable vertex and fragment pipeline stages.
Programmability via the OpenGL Shading Language allows you to customize your render-
ing in ways never before possible.

Chapter 16—Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen. This
chapter illustrates the usage of vertex shaders by surveying a handful of examples, includ-
ing lighting, fog, squash and stretch, and skinning.

Chapter 17—Fragment Shading: Empower Your Pixel Processing. You learn by
example—with a variety of fragment shaders. Examples include per-pixel lighting, color
conversion, image processing, bump mapping, and procedural texturing. Some of these
examples also use vertex shaders; these examples are representative of real-world usage,
where you often find vertex and fragment shaders paired together.

Chapter 18—Advanced Buffers. Here, we discuss some of the latest and most exciting
features in OpenGL, including offscreen accelerated rendering, faster ways to copy pixel
data asynchronously, and floating-point color data for textures and color buffers.

Part III: The Apocrypha
Where do we put material that does not belong in the OpenGL canon? The Apocrypha!
The third and last part of the book is less about OpenGL than about how different operat-
ing systems interface with and make use of OpenGL. Here we wander outside the “official”
OpenGL specification to see how OpenGL is supported and interfaced with on Windows,
Mac OS X, Linux, and hand-held devices.

Chapter 19—Wiggle: OpenGL on Windows. Here, you’ll learn how to write real
Windows (message-based) programs that use OpenGL. You’ll learn about Microsoft’s
“wiggle” functions that glue OpenGL rendering code to Windows device contexts.
You’ll also learn how to respond to Windows messages for clean, well-behaved OpenGL
applications. Yes, we also talk about OpenGL on Vista.

OpenGL SuperBible4

Chapter 20—OpenGL on Mac OS X. In this chapter, you’ll learn how to use OpenGL in
native Mac OS X applications. Sample programs show you how to start working with
GLUT, Carbon, or Cocoa using the Xcode development environment.

Chapter 21—GLX: OpenGL on Linux. This chapter discusses GLX, the OpenGL exten-
sion used to support OpenGL applications through the X Window System on UNIX and
Linux. You’ll learn how to create and manage OpenGL contexts as well as how to create
OpenGL drawing areas.

Chapter 22—OpenGL ES: OpenGL on the Small. This chapter is all about how OpenGL
is pared down to fit on hand-held and embedded devices. We cover what’s gone, what’s
new, and how to get going even with an emulated environment.

Conventions Used in This Book
The following typographic conventions are used in this book:

• Code lines, commands, statements, variables, and any text you type or see onscreen
appear in a computer typeface.

• Placeholders in syntax descriptions appear in an italic computer typeface. You
should replace the placeholder with the actual filename, parameter, or whatever
element it represents.

• Italics highlight technical terms when they first appear in the text and are being
defined.

About the Companion Web Site
This is the first time this book has shipped without a CD-ROM. Welcome to the age of the
Internet! Instead, all our source code is available online at our support Web site:

www.opengl.org/superbible

Here you’ll find the source code to all the sample programs in the book, as well as prebuilt
projects for Developers Studio (Windows), and Xcode (Mac OS X). For Linux users we’ll
have make files for command-line building of the projects as well. We even plan to post a
few tutorials, so check back from time to time, even after you’ve downloaded all the
source code.

Introduction 5

www.opengl.org/superbible

This page intentionally left blank

PART I

The Old Testament

The first 14 chapters of this “Super Book” (Bible is from the
Greek word for book) are about the beginnings of hardware-
accelerated 3D graphics. Today, we refer to this body of func-
tionality as fixed-pipeline rendering. Although it is certainly
true that most of the recent press and excitement in the 3D
graphics world revolves around the New Testament of
computer graphics, shaders, the historical fixed-pipeline
functionality of OpenGL is still quite pertinent, and useful.

For many, the fixed pipeline is completely adequate for their
rendering needs, and they will find this part of the book
instructive, and helpful for learning to use OpenGL. The
true promise of hardware rendering for many, however, will
be held in the second part of this book. Still, for those, the
fixed pipeline is the foundation on which shaders are built.
An understanding of the fixed pipeline is arguably even
necessary before one can appreciate the power, flexibility,
and freedom afforded by programmable hardware.

This page intentionally left blank

CHAPTER 1

Introduction to 3D Graphics
and OpenGL

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• A brief overview of the history of computer graphics

• How we make 3D graphics on a 2D screen

• About the basic 3D effects and terminology

• How a 3D coordinate system and the viewport works

• What vertices are, and how we use them

• About the different kinds of 3D projections

This book is about OpenGL, a programming interface for creating real-time 3D graphics.
Before we begin talking about what OpenGL is and how it works, you should have at least
a high-level understanding of real-time 3D graphics in general. Perhaps you picked up this
book because you want to learn to use OpenGL, but you already have a good grasp of real-
time 3D principles. If so, great: Skip directly to Chapter 2, “Using OpenGL.” If you bought
this book because the pictures look cool and you want to learn how to do this on your
PC…you should probably start here.

A Brief History of Computer Graphics
The first computers consisted of rows and rows of switches and lights. Technicians and
engineers worked for hours, days, or even weeks to program these machines and read the
results of their calculations. Patterns of illuminated bulbs conveyed useful information to
the computer users, or some crude printout was provided. You might say that the first

10 CHAPTER 1 Introduction to 3D Graphics and OpenGL

form of computer graphics was a panel of blinking lights. (This idea is supported by stories
of early programmers writing programs that served no useful purpose other than creating
patterns of blinking and chasing lights!)

Times have changed. From those first “thinking machines,” as some called them, sprang
fully programmable devices that printed on rolls of paper using a mechanism similar to a
teletype machine. Data could be stored efficiently on magnetic tape, on disk, or even on
rows of hole-punched paper or stacks of paper-punch cards. The “hobby” of computer
graphics was born the day computers first started printing. Because each character in the
alphabet had a fixed size and shape, creative programmers in the 1970s took delight in
creating artistic patterns and images made up of nothing more than asterisks (*).

Going Electric
Paper as an output medium for computers is useful and persists today. Laser printers and
color inkjet printers have replaced crude ASCII art with crisp presentation quality and
photographic reproductions of artwork. Paper and ink, however, can be expensive to
replace on a regular basis, and using them consistently is wasteful of our natural resources,
especially because most of the time we don’t really need hard-copy output of calculations
or database queries.

The cathode ray tube (CRT) was a tremendously useful addition to the computer. The orig-
inal computer monitors, CRTs were initially just video terminals that displayed ASCII text
just like the first paper terminals—but CRTs were perfectly capable of drawing points and
lines as well as alphabetic characters. Soon, other symbols and graphics began to supple-
ment the character terminal. Programmers used computers and their monitors to create
graphics that supplemented textual or tabular output. The first algorithms for creating
lines and curves were developed and published; computer graphics became a science
rather than a pastime.

The first computer graphics displayed on these terminals were two-dimensional, or 2D.
These flat lines, circles, and polygons were used to create graphics for a variety of
purposes. Graphs and plots could display scientific or statistical data in a way that tables
and figures could not. More adventurous programmers even created simple arcade games
such as Lunar Lander and Pong using simple graphics consisting of little more than line
drawings that were refreshed (redrawn) several times a second.

The term real-time was first applied to computer graphics that were animated. A broader
use of the word in computer science simply means that the computer can process input as
fast as or faster than the input is being supplied. For example, talking on the phone is a
real-time activity in which humans participate. You speak and the listener hears your
communication immediately and responds, allowing you to hear immediately and
respond again, and so on. In reality, there is some delay involved due to the electronics,
but the delay is usually imperceptible to those having the conversation. In contrast,
writing a letter is not a real-time activity.

Applying the term real-time to computer graphics means that the computer is producing
an animation or a sequence of images directly in response to some input, such as joystick
movement or keyboard strokes. Real-time computer graphics can display a wave form
being measured by electronic equipment, numerical readouts, or interactive games and
visual simulations.

Going 3D
The term three-dimensional, or 3D, means that an object being described or displayed has
three dimensions of measurement: width, height, and depth. An example of a two-dimen-
sional object is a piece of paper on your desk with a drawing or writing on it, having no
perceptible depth. A three-dimensional object is the can of soda next to it. The soft drink
can is round (width and depth) and tall (height). Depending on your perspective, you can
alter which side of the can is the width or height, but the fact remains that the can has
three dimensions. Figure 1.1 shows how we might measure the dimensions of the can and
piece of paper.

A Brief History of Computer Graphics 11

1

He
igh

t

Width

He
igh

t

Width

Dept
h

FIGURE 1.1 Measuring two- and three-dimensional objects.

For centuries, artists have known how to make a painting appear to have real depth. A
painting is inherently a two-dimensional object because it is nothing more than canvas
with paint applied. Similarly, 3D computer graphics are actually two-dimensional images
on a flat computer screen that provide an illusion of depth, or a third dimension.

2D + Perspective = 3D
The first computer graphics no doubt appeared similar to what’s shown in Figure 1.2,
where you can see a simple three-dimensional cube drawn with 12 line segments. What
makes the cube look three-dimensional is perspective, or the angles between the lines that
lend the illusion of depth.

FIGURE 1.2 A simple wireframe 3D cube.

To truly see in 3D, you need to actually view an object with both eyes or supply each eye
with separate and unique images of the object. Look at Figure 1.3. Each eye receives a two-
dimensional image that is much like a temporary photograph displayed on each retina (the
back part of your eye). These two images are slightly different because they are received at
two different angles. (Your eyes are spaced apart on purpose.) The brain then combines
these slightly different images to produce a single, composite 3D picture in your head.

CHAPTER 1 Introduction to 3D Graphics and OpenGL12

FIGURE 1.3 How you see three dimensions.

In Figure 1.3, the angle between the images becomes smaller as the object goes farther
away. You can amplify this 3D effect by increasing the angle between the two images.
View-Master (those hand-held stereoscopic viewers you probably had as a kid) and 3D
movies capitalize on this effect by placing each of your eyes on a separate lens or by

providing color-filtered glasses that separate two superimposed images. These images are
usually overenhanced for dramatic or cinematic purposes. Of late this effect has become
more popular on the PC as well. Shutter glasses that work with your graphics card and
software will switch between one eye and the other, with a changing perspective displayed
onscreen to each eye, thus giving a “true” stereo 3D experience. Unfortunately, many
people complain that this effect gives them a headache or makes them dizzy!

A computer screen is one flat image on a flat surface, not two images from different
perspectives falling on each eye. As it turns out, most of what is considered to be 3D
computer graphics is actually an approximation of true 3D. This approximation is
achieved in the same way that artists have rendered drawings with apparent depth for
years, using the same tricks that nature provides for people with one eye.

You might have noticed at some time in your life that if you cover one eye, the world does
not suddenly fall flat. What happens when you cover one eye? You might think you are
still seeing in 3D, but try this experiment: Place a glass or some other object just out of
arm’s reach, off to your left side. (If it is close, this trick won’t work.) Cover your right eye
with your right hand and reach for the glass. (Maybe you should use an empty plastic
one!) Most people will have a more difficult time estimating how much farther they need
to reach (if at all) before touching the glass. Now, uncover your right eye and reach for the
glass, and you can easily discern how far you need to lean to reach the glass. You now
know why people with one eye often have difficulty with distance perception.

Perspective alone is enough to create the appearance of three dimensions. Note the cube
shown previously in Figure 1.2. Even without coloring or shading, the cube still has the
appearance of a three-dimensional object. Stare at the cube for long enough, however, and
the front and back of the cube switch places. Your brain is confused by the lack of any
surface coloration in the drawing. Figure 1.4 shows the output from the sample program
BLOCK from this chapter’s subdirectory in the source distribution. Run this program as we
progress toward a more and more realistic-appearing cube. We see here that the cube
resting on a plane has an exaggerated perspective but still can produce the “popping”
effect when you stare at it. By pressing the spacebar, you will progress toward a more and
more believable image.

A Brief History of Computer Graphics 13

1

FIGURE 1.4 A line-drawn three-dimensional cube.

3D Artifacts
The reason the world doesn’t suddenly look flat when you cover one eye is that many of
the 3D world’s effects are still present when viewed two-dimensionally. The effects are just
enough to trigger your brain’s ability to discern depth. The most obvious cue is that
nearby objects appear larger than distant objects. This perspective effect is called foreshort-
ening. This effect and color changes, textures, lighting, shading, and variations of color
intensities (due to lighting) together add up to our perception of a three-dimensional
image. In the next section, we take a survey of these tricks.

A Survey of 3D Effects
Now you have some idea that the illusion of 3D is created on a flat computer screen by
means of a bag full of perspective and artistic tricks. Let’s review some of these effects so
we can refer to them later in the book, and you’ll know what we are talking about.

The first term you should know is render. Rendering is the act of taking a geometric
description of a three-dimensional object and turning it into an image of that object
onscreen. All the following 3D effects are applied when the objects or scene are rendered.

Perspective
Perspective refers to the angles between lines that lend the illusion of three dimensions.
Figure 1.4 shows a three-dimensional cube drawn with lines. This is a powerful illusion,
but it can still cause perception problems as we mentioned earlier. (Just stare at this cube
for a while, and it starts popping in and out.) In Figure 1.5, on the other hand, the brain is
given more clues as to the true orientation of the cube because of hidden line removal.
You expect the front of an object to obscure the back of the object from view. For solid
surfaces, we call this hidden surface removal.

CHAPTER 1 Introduction to 3D Graphics and OpenGL14

FIGURE 1.5 A more convincing solid cube.

Color and Shading
If we stare at the cube in Figure 1.5 long enough, we can convince ourselves that we are
looking at a recessed image, and not the outward surfaces of a cube. To further our percep-
tion, we must move beyond line drawing and add color to create solid objects. Figure 1.6
shows what happens when we naively add red to the color of the cube. It doesn’t look like
a cube anymore. By applying different colors to each side, as shown in Figure 1.7, we
regain our perception of a solid object.

A Survey of 3D Effects 15

1

FIGURE 1.6 Adding color alone can create further confusion.

FIGURE 1.7 Adding different colors increases the illusion of three dimensions.

Light and Shadows
Making each side of the cube a different color helps your eye pick out the different sides of
the object. By shading each side appropriately, we can give the cube the appearance of
being one solid color (or material) but also show that it is illuminated by a light at an
angle, as shown in Figure 1.8. Figure 1.9 goes a step further by adding a shadow behind
the cube. Now we are simulating the effects of light on one or more objects and their
interactions. Our illusion at this point is very convincing.

FIGURE 1.8 Proper shading creates the illusion of illumination.

CHAPTER 1 Introduction to 3D Graphics and OpenGL16

FIGURE 1.9 Adding a shadow to further increase realism.

Texture Mapping
Achieving a high level of realism with nothing but thousands or millions of tiny lit and
shaded polygons is a matter of brute force and a lot of hard work. Unfortunately, the more
geometry you throw at graphics hardware, the longer it takes to render. A clever technique
allows you to use simpler geometry but achieve a higher degree of realism. This technique
takes an image, such as a photograph of a real surface or detail, and then applies that
image to the surface of a polygon.

Instead of plain-colored materials, you can have wood grains, cloth, bricks, and so on. This
technique of applying an image to a polygon to supply additional detail is called texture
mapping. The image you supply is called a texture, and the individual elements of the
texture are called texels. Finally, the process of stretching or compressing the texels over
the surface of an object is called filtering. Figure 1.10 shows the now-familiar cube example
with textures applied to each polygon.

FIGURE 1.10 Texture mapping adds detail without adding additional geometry.

Fog
Most of us know what fog is. Fog is an atmospheric effect that adds haziness to objects in
a scene, which is usually a relation of how far away the objects in the scene are from the
viewer and how thick the fog is. Objects very far away (or nearby if the fog is thick) might
even be totally obscured.

Figure 1.11 shows the skyfly GLUT demo (included with most GLUT distributions) with
fog enabled. Despite the crudeness of the canyon walls, note how the fog lends substan-
tially to the believability of the scene.

A Survey of 3D Effects 17

1

FIGURE 1.11 Fog effects provide a convincing illusion for wide-open spaces.

Blending and Transparency
Blending is the combination of colors or objects on the screen. This is similar to the effect
you get with double-exposure photography, where two images are superimposed. You can
use the blending effect for a variety of purposes. By varying the amount each object is
blended with the scene, you can make objects look transparent such that you see the
object and what is behind it (such as glass or a ghost image).

You can also use blending to achieve an illusion of reflection, as shown in Figure 1.12. You
see a textured cube rendered twice. First, the cube is rendered upside down below the floor
level. The marble floor is then blended with the scene, allowing the cube to show
through. Finally, the cube is drawn again right side up and floating over the floor. The
result is the appearance of a reflection in a shiny marble surface.

CHAPTER 1 Introduction to 3D Graphics and OpenGL18

FIGURE 1.12 Blending used to achieve a reflection effect.

Antialiasing
Aliasing is an effect that is visible onscreen due to the fact that an image consists of
discrete pixels. In Figure 1.13, you can see that the lines that make up the cube on the left
have jagged edges (sometimes called jaggies). By carefully blending the lines with the back-
ground color, you can eliminate the jagged edges and give the lines a smooth appearance,
as shown in the cube on the right. This blending technique is called antialiasing. You can
also apply antialiasing to polygon edges, making an object or a scene look more realistic
and natural.

FIGURE 1.13 Cube with jagged lines versus cube with smooth lines.

Common Uses for 3D Graphics
Three-dimensional graphics have many uses in modern computer applications.
Applications for real-time 3D graphics range from interactive games and simulations to
data visualization for scientific, medical, or business uses. Higher-end 3D graphics find
their way into movies and technical and educational publications as well.

Real-Time 3D
As defined earlier, real-time 3D graphics are animated and interactive with the user. One
of the earliest uses for real-time 3D graphics was in military flight simulators. Even today,
flight simulators are a popular diversion for the home enthusiast. Figure 1.14 shows a
screenshot from a popular flight simulator that uses OpenGL for 3D rendering
(www.flightgear.org).

Common Uses for 3D Graphics 19

1

FIGURE 1.14 A popular OpenGL-based flight simulator from Flight Gear.

www.flightgear.org

The applications for 3D graphics on the PC are almost limitless. Perhaps the most
common use today is for computer gaming. Hardly a title ships today that does not
require a 3D graphics card in your PC to play. Although 3D has always been popular for
scientific visualization and engineering applications, the explosion of cheap 3D hardware
has empowered these applications like never before. Business applications are also taking
advantage of the new availability of hardware to incorporate more and more complex
business graphics and database mining visualization techniques. Even the modern GUI is
being affected, and is beginning to evolve to take advantage of 3D hardware capabilities.
The Macintosh OS X, for example, uses OpenGL to render all its windows and controls for
a powerful and eye-popping visual interface.

Figures 1.15 through 1.19 show some of the myriad applications of real-time 3D graphics
on the modern PC. All these images were rendered using OpenGL.

CHAPTER 1 Introduction to 3D Graphics and OpenGL20

FIGURE 1.15 3D graphics used for computer-aided design (CAD).

FIGURE 1.16 3D graphics used for architectural or civil planning (image courtesy of Real 3D,
Inc.).

FIGURE 1.17 3D graphics used for medical imaging applications (VolView by Kitware).

Common Uses for 3D Graphics 21

1

FIGURE 1.18 3D graphics used for scientific visualization (image courtesy of Software Bisque,
Inc.).

FIGURE 1.19 3D graphics used for entertainment (Descent 3 from Outrage Entertainment,
Inc.).

Non–Real-Time 3D
Some compromise is required for real-time 3D applications. Given more processing time,
you can generate higher quality 3D graphics. Typically, you design models and scenes, and
a ray tracer processes the definition to produce a high-quality 3D image. The typical
process is that some modeling application uses real-time 3D graphics to interact with the
artist to create the content. Then the frames are sent to another application (the ray
tracer) or subroutine, which renders the image. Rendering a single frame for a movie such
as Toy Story or Shrek could take hours on a very fast computer, for example. The process of
rendering and saving many thousands of frames generates an animated sequence for play-
back. Although the playback might appear real-time, the content is not interactive, so it is
not considered real-time, but rather pre-rendered.

Shaders
The current state of the art in real-time computer graphics is programmable shading. Today’s
graphics cards are no longer dumb rendering chips, but highly programmable rendering
computers in their own right. Like the term CPU (central processing unit), the term GPU
has been coined, meaning graphics processing unit, referring to the programmable chips
on today’s graphics cards. These are highly parallelized and very, very fast. Just as impor-
tant, the programmer can reconfigure how the card works to achieve virtually any special
effect imaginable.

Every year, shader-based graphics hardware gains ground on tasks traditionally done by
the high-end ray tracing and software rendering tools mentioned previously. Figure 1.20
shows an image of the earth in Software Bisque’s Seeker solar system simulator. This

CHAPTER 1 Introduction to 3D Graphics and OpenGL22

application uses a custom OpenGL shader to generate a realistic and animated view of the
earth over 60 times a second. This includes atmospheric effects, the sun’s reflection in the
water, and even the stars in the background. A color version of this figure is shown in
Color Plate 2 in the Color insert.

Basic 3D Programming Principles 23

1

FIGURE 1.20 Shaders allow for unprecedented real-time realism (image courtesy of Software
Bisque, Inc.).

Basic 3D Programming Principles
Now, you have a pretty good idea of the basics of real-time 3D. We’ve covered some termi-
nology and some sample applications on the PC. How do you actually create these images
on your PC? Well, that’s what the rest of this book is about! You still need a little more
introduction to the basics, which we present here.

Immediate Mode and Retained Mode
There are two different approaches to low-level programming APIs for real-time 3D
graphics—both of which are well supported by OpenGL. The first approach is called
retained mode. In retained mode, you provide the API or toolkit with higher level geometric
descriptions of your objects in the scene. These blocks of geometry data can be transferred
quickly to the graphics hardware, or even stored directly in the hardware’s local memory
for faster access.

The second approach to 3D rendering is called immediate mode. In immediate mode, you
procedurally build up geometric objects one piece at a time. Although flexible, this suffers
performance-wise. We will discuss why this happens and ways to get around it in Chapter
11, “It’s All About the Pipeline: Faster Geometry Throughput.”

With both immediate mode and retained mode, new commands have no effect on render-
ing commands that have already been executed. This gives you a great deal of low-level
control. For example, you can render a series of textured unlit polygons to represent the
sky. Then you issue a command to turn off texturing, followed by a command to turn on
lighting. Thereafter, all geometry (probably drawn on the ground) that you render is
affected by the light but is not textured with the sky image.

Coordinate Systems
Let’s consider now how we describe objects in three dimensions. Before you can specify an
object’s location and size, you need a frame of reference to measure and locate against.
When you draw lines or plot points on a simple flat computer screen, you specify a posi-
tion in terms of a row and column. For example, a standard VGA screen has 640 pixels
from left to right and 480 pixels from top to bottom. To specify a point in the middle of
the screen, you specify that a point should be plotted at (320,240)—that is, 320 pixels
from the left of the screen and 240 pixels down from the top of the screen.

In OpenGL, or almost any 3D API, when you create a window to draw in, you must also
specify the coordinate system you want to use and how to map the specified coordinates
into physical screen pixels. Let’s first see how this applies to two-dimensional drawing and
then extend the principle to three dimensions.

2D Cartesian Coordinates
The most common coordinate system for two-dimensional plotting is the Cartesian coor-
dinate system. Cartesian coordinates are specified by an x coordinate and a y coordinate.
The x coordinate is a measure of position in the horizontal direction, and y is a measure
of position in the vertical direction.

The origin of the Cartesian system is at x=0, y=0. Cartesian coordinates are written as coor-
dinate pairs in parentheses, with the x coordinate first and the y coordinate second, sepa-
rated by a comma. For example, the origin is written as (0,0). Figure 1.21 depicts the
Cartesian coordinate system in two dimensions. The x and y lines with tick marks are
called the axes and can extend from negative to positive infinity. This figure represents the
true Cartesian coordinate system pretty much as you used it in grade school. Today, differ-
ing window mapping modes can cause the coordinates you specify when drawing to be
interpreted differently. Later in the book, you’ll see how to map this true coordinate space
to window coordinates in different ways.

The x-axis and y-axis are perpendicular (intersecting at a right angle) and together define
the xy plane. A plane is, most simply put, a flat surface. In any coordinate system, two
axes (or two lines) that intersect at right angles define a plane. In a system with only two
axes, there is naturally only one plane to draw on.

CHAPTER 1 Introduction to 3D Graphics and OpenGL24

FIGURE 1.21 The Cartesian plane.

Coordinate Clipping
A window is measured physically in terms of pixels. Before you can start plotting points,
lines, and shapes in a window, you must tell OpenGL how to translate specified coordi-
nate pairs into screen coordinates. You do this by specifying the region of Cartesian space
that occupies the window; this region is known as the clipping region. In two-dimensional
space, the clipping region is the minimum and maximum x and y values that are inside
the window. Another way of looking at this is specifying the origin’s location in relation
to the window. Figure 1.22 shows two common clipping regions.

Basic 3D Programming Principles 25

1

+y

–y

+y

–y

–x +x+x–x –x

+–

Window
client
area

+–
50

150

100

(0,0)

–50

–75 +75

Window client

area

FIGURE 1.22 Two clipping regions.

In the first example, on the left of Figure 1.22, x coordinates in the window range left to
right from 0 to +150, and the y coordinates range bottom to top from 0 to +100. A point
in the middle of the screen would be represented as (75,50). The second example shows a
clipping area with x coordinates ranging left to right from –75 to +75 and y coordinates
ranging bottom to top from –50 to +50. In this example, a point in the middle of the
screen would be at the origin (0,0). It is also possible using OpenGL functions (or ordinary
Windows functions for GDI drawing) to turn the coordinate system upside down or flip it
right to left. In fact, the default mapping for Windows windows is for positive y to move
down from the top to bottom of the window. Although useful when drawing text from
top to bottom, this default mapping is not as convenient for drawing graphics.

Viewports: Mapping Drawing Coordinates to Window Coordinates
Rarely will your clipping area width and height exactly match the width and height of the
window in pixels. The coordinate system must therefore be mapped from logical Cartesian
coordinates to physical screen pixel coordinates. This mapping is specified by a setting
known as the viewport. The viewport is the region within the window’s client area that is
used for drawing the clipping area. The viewport simply maps the clipping area to a region
of the window. Usually, the viewport is defined as the entire window, but this is not
strictly necessary; for instance, you might want to draw only in the lower half of the
window.

Figure 1.23 shows a large window measuring 300×200 pixels with the viewport defined as
the entire client area. If the clipping area for this window were set to 0 to 150 along the x-
axis and 0 to 100 along the y-axis, the logical coordinates would be mapped to a larger
screen coordinate system in the viewing window. Each increment in the logical coordinate
system would be matched by two increments in the physical coordinate system (pixels) of
the window.

CHAPTER 1 Introduction to 3D Graphics and OpenGL26

FIGURE 1.23 A viewport defined as twice the size of the clipping area.

In contrast, Figure 1.24 shows a viewport that matches the clipping area. The viewing
window is still 300×200 pixels, however, and this causes the viewing area to occupy the
lower-left side of the window.

Basic 3D Programming Principles 27

1

FIGURE 1.24 A viewport defined as the same dimensions as the clipping area.

You can use viewports to shrink or enlarge the image inside the window and to display
only a portion of the clipping area by setting the viewport to be larger than the window’s
client area.

The Vertex—A Position in Space
In both 2D and 3D, when you draw an object, you actually compose it with several
smaller shapes called primitives. Primitives are one- or two-dimensional entities or surfaces
such as points, lines, and polygons (a flat, multisided shape) that are assembled in 3D
space to create 3D objects. For example, a three-dimensional cube consists of six two-
dimensional squares, each placed on a separate face. Each corner of the square (or of any
primitive) is called a vertex. These vertices are then specified to occupy a particular coordi-
nate in 3D space. A vertex is nothing more than a coordinate in 2D or 3D space. Creating
solid 3D geometry is little more than a game of connect-the-dots! You’ll learn about all the
OpenGL primitives and how to use them in Chapter 3, “Drawing in Space: Geometric
Primitives and Buffers.”

3D Cartesian Coordinates
Now, we extend our two-dimensional coordinate system into the third dimension and add
a depth component. Figure 1.25 shows the Cartesian coordinate system with a new axis, z.
The z-axis is perpendicular to both the x- and y-axes. It represents a line drawn perpendic-
ularly from the center of the screen heading toward the viewer. (We have rotated our view
of the coordinate system from Figure 1.21 to the left with respect to the y-axis and down
and back with respect to the x-axis. If we hadn’t, the z-axis would come straight out at
you, and you wouldn’t see it.) Now, we specify a position in three-dimensional space with
three coordinates: x, y, and z. Figure 1.25 shows the point (–4,4,4) for clarification.

FIGURE 1.25 Cartesian coordinates in three dimensions.

Projections: Getting 3D to 2D
You’ve seen how to specify a position in 3D space using Cartesian coordinates. No matter
how we might convince your eye, however, pixels on a screen have only two dimensions.
How does OpenGL translate these Cartesian coordinates into two-dimensional coordinates
that can be plotted on a screen? The short answer is “trigonometry and simple matrix
manipulation.” Simple? Well, not really; we could actually go on for many pages explain-
ing this “simple” technique and lose most of our readers who didn’t take or don’t remem-
ber their linear algebra from college. You’ll learn more about it in Chapter 4, “Geometric
Transformations: The Pipeline,” and for a deeper discussion, you can check out the refer-
ences in Appendix A, “Further Reading/References.” Fortunately, you don’t need a deep
understanding of the math to use OpenGL to create graphics. You might, however,
discover that the deeper your understanding goes, the more powerful a tool OpenGL
becomes!

The first concept you really need to understand is called projection. The 3D coordinates you
use to create geometry are flattened or projected onto a 2D surface (the window back-
ground). It’s like tracing the outlines of some object behind a piece of glass with a black
marker. When the object is gone or you move the glass, you can still see the outline of the
object with its angular edges. In Figure 1.26, a house in the background is traced onto a
flat piece of glass. By specifying the projection, you specify the viewing volume that you
want displayed in your window and how it should be transformed.

CHAPTER 1 Introduction to 3D Graphics and OpenGL28

+y

–y

+z

–z

+x

–x

(–4,4,4)

FIGURE 1.26 A 3D image projected onto a 2D surface.

Orthographic Projections
You are mostly concerned with two main types of projections in OpenGL. The first is
called an orthographic, or parallel, projection. You use this projection by specifying a square
or rectangular viewing volume. Anything outside this volume is not drawn. Furthermore,
all objects that have the same dimensions appear the same size, regardless of whether they
are far away or nearby. This type of projection (shown in Figure 1.27) is most often used
in architectural design, computer-aided design (CAD), or 2D graphs. Frequently, you will
also use an orthographic projection to add text or 2D overlays on top of your 3D graphic
scenes.

Basic 3D Programming Principles 29

1

2D image

3D scene

FIGURE 1.27 The clipping volume for an orthographic projection.

You specify the viewing volume in an orthographic projection by specifying the far, near,
left, right, top, and bottom clipping planes. Objects and figures that you place within this
viewing volume are then projected (taking into account their orientation) to a 2D image
that appears on your screen.

Perspective Projections
The second and more common projection is the perspective projection. This projection adds
the effect that distant objects appear smaller than nearby objects. The viewing volume (see
Figure 1.28) is something like a pyramid with the top shaved off. The remaining shape is
called the frustum. Objects nearer to the front of the viewing volume appear close to their
original size, but objects near the back of the volume shrink as they are projected to the
front of the volume. This type of projection gives the most realism for simulation and 3D
animation.

CHAPTER 1 Introduction to 3D Graphics and OpenGL30

Far

Top

Left

Bottom
Near

Right

FIGURE 1.28 The clipping volume (frustum) for a perspective projection.

Summary
In this chapter, we introduced the basics of 3D graphics. You saw why you actually need
two images of an object from different angles to be able to perceive true three-dimensional
space. You also saw the illusion of depth created in a 2D drawing by means of perspective,
hidden line removal, coloring, shading, and other techniques. The Cartesian coordinate
system was introduced for 2D and 3D drawing, and you learned about two methods used
by OpenGL to project three-dimensional drawings onto a two-dimensional screen.

We purposely left out the details of how these effects are actually created by OpenGL. In
the chapters that follow, you will find out how to employ these techniques and take
maximum advantage of OpenGL’s power. In the sample code distribution, you’ll find one
program for this chapter that demonstrates some of the 3D effects covered here. In this
program, BLOCK, pressing the spacebar advances you from a wireframe cube to a fully lit
and textured block complete with shadow. You won’t understand the code at this point,
but it makes a powerful demonstration of what is to come. By the time you finish this
book, you will be able to revisit this example and improve on it yourself, or even be able
to write it from scratch.

Summary 31

1

This page intentionally left blank

CHAPTER 2

Using OpenGL

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• Where OpenGL came from and where it’s going

• Which headers need to be included in your project

• How to use GLUT with OpenGL to create a window and draw in it

• How to set colors using RGB (red, green, blue) components

• How viewports and viewing volumes affect image dimensions

• How to perform a simple animation using double buffering

• How the OpenGL state machine works

• How to check for OpenGL errors

• How to make use of OpenGL extensions

Now that you have had an introduction to the basic terminology and the ideas behind 3D
graphics, it’s time to get down to business. Before using OpenGL, we will need to talk
about what OpenGL is and what it is not so that you have an understanding of both and
the power and the limits of this API. This chapter is about the “Big Picture” of how
OpenGL operates and how to set up the rendering framework for your 3D masterpieces.

What Is OpenGL?
OpenGL is strictly defined as “a software interface to graphics hardware.” In essence, it is
a 3D graphics and modeling library that is highly portable and very fast. Using OpenGL,
you can create elegant and beautiful 3D graphics with exceptional visual quality. The
greatest advantage to using OpenGL is that it is orders of magnitude faster than a ray

34 CHAPTER 2 Using OpenGL

tracer or software rendering engine. Initially, it used algorithms carefully developed and
optimized by Silicon Graphics, Inc. (SGI), an acknowledged world leader in computer
graphics and animation. Over time, OpenGL has evolved as other vendors have
contributed their expertise and intellectual property to develop high-performance imple-
mentations of their own.

OpenGL is not a programming language like C or C++. It is more like the C runtime
library, which provides some prepackaged functionality. There really is no such thing as an
“OpenGL program” (okay, maybe with shaders there is, but that comes much later in this
book!) but rather a program the developer wrote that “happens” to use OpenGL as one of
its Application Programming Interfaces (APIs). You might use the C runtime library to
access a file or the Internet, and you might use OpenGL to create real-time 3D graphics.

OpenGL is intended for use with computer hardware that is designed and optimized for the
display and manipulation of 3D graphics. Software-only implementations of OpenGL are
also possible, and the older Microsoft implementations, and Mesa3D (www.mesa3d.org) fall
into this category. Apple also makes a software implementation available on OS X. With
these software-only implementations, rendering may not be performed as quickly, and
some advanced special effects may not be available at all. However, using a software imple-
mentation means that your program can potentially run on a wider variety of computer
systems that may not have a 3D accelerated graphics card installed.

OpenGL is used for various purposes, from CAD engineering and architectural applications
to modeling programs used to create computer-generated monsters in blockbuster movies.
The introduction of an industry-standard 3D API to mass-market operating systems such
as Microsoft Windows and the Macintosh OS X has some exciting repercussions. With
hardware acceleration and fast PC microprocessors becoming commonplace, 3D graphics
are now typical components of consumer and business applications, not only of games
and scientific applications.

Evolution of a Standard
The forerunner of OpenGL was IRIS GL from Silicon Graphics. Originally a 2D graphics
library, it evolved into the 3D programming API for that company’s high-end IRIS graphics
workstations. These computers were more than just general-purpose computers; they had
specialized hardware optimized for the display of sophisticated graphics. The hardware
provided ultra-fast matrix transformations (a prerequisite for 3D graphics), hardware
support for depth buffering, and other features.

Sometimes, however, the evolution of technology is hampered by the need to support
legacy systems. IRIS GL had not been designed from the onset to have a vertex-style geom-
etry processing interface, and it became apparent that to move forward SGI needed to
make a clean break.

OpenGL is the result of SGI’s efforts to evolve and improve IRIS GL’s portability. The new
graphics API would offer the power of GL but would be an “open” standard, with input

www.mesa3d.org

from other graphics hardware vendors, and would allow for easier adaptability to other
hardware platforms and operating systems. OpenGL would be designed from the ground
up for 3D geometry processing.

The OpenGL ARB
An open standard is not really open if only one vendor controls it. SGI’s business at the
time was high-end computer graphics. Once you’re at the top, you find that the opportu-
nities for growth are somewhat limited. SGI realized that it would also be good for the
company to do something good for the industry to help grow the market for high-end
computer graphics hardware. A truly open standard embraced by a number of vendors
would make it easier for programmers to create applications and content that is available
for a wider variety of platforms. Software is what really sells computers, and if SGI wanted
to sell more computers, it needed more software that would run on its computers. Other
vendors realized this, too, and the OpenGL Architecture Review Board (ARB) was born.

Although SGI originally controlled licensing of the OpenGL API, the founding members of
the OpenGL ARB were SGI, Digital Equipment Corporation, IBM, Intel, and Microsoft. On
July 1, 1992, version 1.0 of the OpenGL specification was introduced. Over time, the ARB
grew to consist of many more members, many from the PC hardware community, and it
met four times a year to maintain and enhance the specification and to make plans to
promote the OpenGL standard.

Over time, SGI’s business fortunes declined for reasons well beyond the scope of this book.
In 2006, an essentially bankrupt SGI transferred control of the OpenGL standard from the
ARB to a new working group at The Khronos Group (www.khronos.org). The Khronos
Group is a member-funded industry consortium focused on the creation and maintenance
of open media standards. Most ARB members were already members of Khronos, and the
transition was essentially painless. Today, the Khronos Group continues to evolve and
promote OpenGL and its sibling API, OpenGL ES, which is covered in Chapter 22,
“OpenGL ES—OpenGL on the Small.”

OpenGL exists in two forms. The industry standard is codified in the OpenGL Specification.
The specification describes OpenGL in very complete and specific (the similarity in words
here is not an accident!) terms. The API is completely defined, as is the entire state
machine, and how various features work and operate together. Hardware vendors such as
ATI, NVIDIA, or Apple then take this specification and implement it. This implementation,
then, is the embodiment of OpenGL in a form that software developers and customers can
use to generate real-time graphics. For example, a software driver and a graphics card in
your PC together make up an OpenGL implementation.

Licensing and Conformance
An implementation of OpenGL is either a software library that creates three-dimensional
images in response to the OpenGL function calls or a driver for a hardware device (usually
a display card) that does the same. Hardware implementations are many times faster than
software implementations and are now common even on inexpensive PCs.

What Is OpenGL? 35

2

www.khronos.org

CHAPTER 2 Using OpenGL36

A vendor who wants to create and market an OpenGL implementation must first license
OpenGL from The Khronos Group. They provide the licensee with a sample implementa-
tion (entirely in software) and a device driver kit if the licensee is a PC hardware vendor.
The vendor then uses this to create its own optimized implementation and can add value
with its own extensions. Competition among vendors typically is based on performance,
image quality, and driver stability.

In addition, the vendor’s implementation must pass the OpenGL conformance tests. These
tests are designed to ensure that an implementation is complete (it contains all the neces-
sary function calls) and produces 3D rendered output that is reasonably acceptable for a
given set of functions.

Software developers do not need to license OpenGL or pay any fees to make use of
OpenGL drivers. OpenGL is natively supported by most operating systems, and licensed
drivers are provided by the hardware vendors themselves.

The API Wars
Standards are good for everyone, except for vendors who think that they should be the
only vendors customers can choose from because they know best what customers need.
We have a special legal word for vendors who manage to achieve this status: monopoly.
Most companies recognize that competition is good for everyone in the long run and will
endorse, support, and even contribute to industry standards. An interesting diversion from
this ideal occurred during OpenGL’s youth on the Windows platform.

When low-cost 3D graphics accelerators began to become available for the PC, many hard-
ware vendors and game developers were attracted to OpenGL for its ease of use compared
to Microsoft’s Direct 3D. Microsoft provided a driver kit that made it very easy to make an
OpenGL driver for Windows 98. This kit saved literally years of effort in creating a robust
OpenGL driver for Windows NT and Windows 98. Microsoft discouraged vendors from
using a more rigorous driver model, and every PC graphics card vendor had created
OpenGL drivers ready to ship with Windows 98.

This attention to OpenGL by game developers created quite a political stir at the 1997
SigGraph and Game Developers conferences. Just before Windows 98 was released,
Microsoft announced that it would not extend the OpenGL driver code license beyond the
Windows 98 beta period, and that hardware vendors were forbidden to release their
drivers.

Virtually every PC hardware vendor had a robust and fast OpenGL driver ready to roll for
consumer PCs, but couldn’t ship them. To further complicate things, shortly thereafter a
struggling SGI announced a new Windows NT–based workstation. SGI simultaneously
pledged to discontinue promoting OpenGL for consumer applications, and to work with
Microsoft on a new API called Fahrenheit. OpenGL was as good as dead.

The Future of OpenGL
A funny thing happened on the way to oblivion, and even without SGI, OpenGL began to
take on a life of its own. Hardware vendors with some help from SGI (pre-Fahrenheit)
continued to support OpenGL with new drivers. Games aren’t the only application that
OpenGL was well suited for, and most developers wanted their Windows NT software to
be able to run on the consumer version of Windows, too. When OpenGL was again widely
available on consumer hardware, developers didn’t really need SGI or anyone else touting
the virtues of OpenGL. OpenGL was easy to use and had been around for years. This
meant there was an abundance of documentation (including the first edition of this
book), sample programs, SigGraph papers, and so on. OpenGL began to flourish.

As more developers began to use OpenGL, it became clear who was really in charge of the
industry: the developers. The more applications that shipped with OpenGL support, the
more pressure mounted on hardware vendors to produce better OpenGL hardware and
high-quality drivers. Consumers don’t really care about API technology. They just want
software that works, and they will buy whatever graphics card runs their favorite game or
application the best. Developers care about time to market, portability, and code reuse.
(Go ahead. Try to recompile that old Direct3D 4.0 program. I dare you!) Using OpenGL
enabled many developers to meet customer demand better, and in the end it’s the
customers who pay the bills.

As time passed, Fahrenheit fell solely into Microsoft’s hands and was eventually discontin-
ued altogether. Direct3D has evolved further to include more and more OpenGL features,
functionality, and ease of use. Ten years later, today’s Direct3D bears little resemblance to
the tortured API it once was. OpenGL’s popularity, however, has continued to grow as an
alternative to Windows-specific rendering technology and is now widely supported across
all major operating systems and hardware devices. Even cellphones with 3D graphics tech-
nology support a subset of OpenGL, called OpenGL ES. Today, all new 3D accelerated
graphics cards for the PC ship with both OpenGL and Direct3D drivers. This is largely due
to the fact that many developers continue to prefer OpenGL for new development.
OpenGL today is widely recognized and accepted as the industry-standard API for real-time
3D and 2D graphics. Yes, even 2D! The OpenGL imaging subset and fragment processing
programmability has made it the darling of hardware accelerated image and video process-
ing applications as well.

This momentum will carry OpenGL into the foreseeable future as the API of choice for a
wide range of applications and hardware platforms. All this also makes OpenGL well posi-
tioned to take advantage of future 3D graphics innovations. Because of OpenGL’s exten-
sion mechanism, vendors can expose new hardware features without waiting on Microsoft
or some industry committee, and cutting-edge developers can exploit them as soon as
updated drivers are available. With the addition of the OpenGL shading language (see Part
II, “The New Testament”), OpenGL has shown its continuing adaptability to meet the
challenge of an evolving 3D graphics programming pipeline. Finally, OpenGL is a specifi-
cation that has shown that it can be applied to a wide variety of programming paradigms.
From C/C++ to Java and Visual Basic, even newer languages such as C# are now being
used to create PC games and applications using OpenGL. OpenGL is here to stay.

What Is OpenGL? 37

2

How Does OpenGL Work?
OpenGL is a procedural rather than a descriptive graphics API. Instead of describing the scene
and how it should appear, the programmer actually prescribes the steps necessary to achieve a
certain appearance or effect. These “steps” involve calls to the many OpenGL commands.
These commands are used to draw graphics primitives such as points, lines, and polygons in
three dimensions. In addition, OpenGL supports lighting and shading, texture mapping,
blending, transparency, animation, and many other special effects and capabilities.

OpenGL does not include any functions for window management, user interaction, or file
I/O. Each host environment (such as Mac OS X or Microsoft Windows) has its own func-
tions for this purpose and is responsible for implementing some means of handing over to
OpenGL the drawing control of a window.

There is no “OpenGL file format” for models or virtual environments. Programmers
construct these environments to suit their own high-level needs and then carefully
program them using the lower-level OpenGL commands.

Generic Implementations
As mentioned previously, a generic implementation is a software implementation.
Hardware implementations are created for a specific hardware device, such as a graphics
card or game console. A generic implementation can technically run just about anywhere
as long as the system can display the generated graphics image.

Figure 2.1 shows the typical place that OpenGL and a generic implementation occupy when a
Windows application is running. The typical program calls many functions, some of which
the programmer creates and some of which are provided by the operating system or the
programming language’s runtime library. Windows applications wanting to create output
onscreen usually call a Windows API called the graphics device interface (GDI). The GDI
contains methods that allow you to write text in a window, draw simple 2D lines, and so on.

CHAPTER 2 Using OpenGL38

FIGURE 2.1 OpenGL’s place in a typical application program.

Usually, graphics-card vendors supply a hardware driver that the operating system inter-
faces with to create output on your monitor. A software implementation of OpenGL takes
graphics requests from an application and constructs (rasterizes) a color image of the 3D
graphics. It then supplies this image for display on the monitor. On other operating
systems, the process is reasonably equivalent, but you replace the GDI with that operating
system’s native display services.

OpenGL has a couple of common generic implementations. Microsoft has shipped its soft-
ware implementation with every version of Windows NT since version 3.5 and Windows
95 (Service Release 2 and later). Windows 2000 and XP also contain support for a generic
implementation of OpenGL. These versions of OpenGL are typically slow, and only
support OpenGL functionality up to version 1.1. This by no means limits the capabilities
or efficiency of native vendor-provided OpenGL drivers. We’ll discuss this in more detail
in Chapter 19, “Wiggle: OpenGL on Windows.”

During the height of the so-called “API Wars,” SGI released a software implementation of
OpenGL for Windows that greatly outperformed Microsoft’s implementation. This imple-
mentation is not officially supported but is still occasionally used by a few developers in
niche markets. MESA 3D is another “unofficial” OpenGL software implementation that is
widely supported in the open-source community. Mesa 3D is not an OpenGL license, so it
is an “OpenGL work-alike” rather than an official implementation. In any respect other
than legal, you can essentially consider it to be an OpenGL implementation nonetheless.
The Mesa contributors even make a good attempt to pass the OpenGL conformance tests.

Hardware Implementations
A hardware implementation of OpenGL usually takes the form of a graphics card driver.
Figure 2.2 shows its relationship to the application much as Figure 2.1 did for software
implementations. Note that OpenGL API calls are passed to a hardware driver. This driver
does not pass its output to the Windows GDI for display; the driver interfaces directly with
the graphics display hardware.

How Does OpenGL Work? 39

2

OS
Services

I/O
Services

GDI OpenGL

Application Program

Hardware
Driver

Display
Device

FIGURE 2.2 Hardware-accelerated OpenGL’s place in a typical application program.

A hardware implementation is often referred to as an accelerated implementation because
hardware-assisted 3D graphics usually far outperform software-only implementations. What
isn’t shown in Figure 2.2 is that sometimes part of the OpenGL functionality is still imple-
mented in software as part of the driver, and other features and functionality can be passed
directly to the hardware. This idea brings us to our next topic: the OpenGL pipeline.

The Pipeline
The word pipeline is used to describe a process that can take two or more distinct stages or
steps. Figure 2.3 shows a simplified version of the OpenGL pipeline. As an application
makes OpenGL API function calls, the commands are placed in a command buffer. This
buffer eventually fills with commands, vertex data, texture data, and so on. When the
buffer is flushed, either programmatically or by the driver’s design, the commands and
data are passed to the next stage in the pipeline.

CHAPTER 2 Using OpenGL40

Frame bufferOpenGL
Command

Buffer

OpenGL
API Calls

RasterizationTransform
and Lighting

FIGURE 2.3 A simplified version of the OpenGL pipeline.

Vertex data is usually transformed and lit initially. In subsequent chapters, you’ll find out
more about what this means. For now, you can consider “transform and lighting” to be a
mathematically intensive stage where points used to describe an object’s geometry are
recalculated for the given object’s location and orientation. Lighting calculations are
performed as well to indicate how bright the colors should be at each vertex.

When this stage is complete, the data is fed to the rasterization portion of the pipeline.
The rasterizer actually creates the color image from the geometric, color, and texture data.
The image is then placed in the frame buffer. The frame buffer is the memory of the graph-
ics display device, which means the image is displayed on your screen.

This diagram provides a simplistic view of the OpenGL pipeline, but it is sufficient for
your current understanding of 3D graphics rendering. At a high level, this view is accurate,
so we aren’t compromising your understanding, but at a low level, many more boxes
appear inside each box shown here. There are also some exceptions, such as the arrow in
the figure indicating that some commands skip the transform and lighting stage altogether
(such as displaying raw image data on the screen).

Early OpenGL hardware accelerators were nothing more than fast rasterizers. They acceler-
ated only the rasterization portion of the pipeline. The host system’s CPU did transform
and lighting in a software implementation of that portion of the pipeline. Higher-end
(more expensive) accelerators had transform and lighting on the graphics accelerator. This
arrangement put more of the OpenGL pipeline in hardware and thus provided for higher
performance.

Even most low-end consumer hardware today has the transform and lighting stage in
hardware. The net effect of this arrangement is that higher detailed models and more
complex graphics are possible at real-time rendering rates on inexpensive consumer hard-
ware. Games and applications developers can capitalize on this effect, yielding far more
detailed and visually rich environments.

OpenGL: An API, Not a Language
For the most part, OpenGL is not a programming language; it is an application program-
ming interface (API). Whenever we say that a program is OpenGL-based or an OpenGL
application, we mean that it was written in some programming language (such as C or
C++) that makes calls to one or more of the OpenGL libraries. We are not saying that the
program uses OpenGL exclusively to do drawing. It might combine the best features of
two different graphics packages. Or it might use OpenGL for only a few specific tasks and
environment-specific graphics (such as the Windows GDI) for others. The only exception
to this rule of thumb is, of course, the OpenGL Shading Language, which is covered in
Part II.

As an API, the OpenGL library follows the C calling convention. As it turns out, this
choice of calling convention makes it possible to easily call OpenGL directly from most
other languages as well. In this book, the sample programs are written in C++. C++
programs can easily access C functions and APIs in the same manner as C, with only some
minor considerations. C++ is the modern language of choice for most performance-
minded applications. Very basic C++ classes can dramatically simplify most programming
tasks as well. We promise to keep the object usage to a minimum, no STL/Template/
Operator Overloaded/Meta blah blah…we promise!

Other programming languages—such as Visual Basic—that can call functions in C libraries
can also make use of OpenGL, and OpenGL bindings are available for many other
programming languages. Using OpenGL from these other languages is, however, outside
the scope of this book and can be somewhat tedious to explain. To keep things simple and
easily portable, we’ll stick with C++ for our examples.

Standard Libraries and Headers
Although OpenGL is a “standard” programming library, this library has many implemen-
tations and versions. On Microsoft Windows, for example, the actual Microsoft software
implementation is in the opengl32.dll dynamic link library, located in the Windows
system directory. On most platforms, the OpenGL library is accompanied by the OpenGL
utility library (GLU), which on Windows is in glu32.dll, also located in the system direc-
tory. The utility library is a set of utility functions that perform common (but sometimes
complex) tasks, such as special matrix calculations, or provide support for common
types of curves and surfaces. On Mac OS X, OpenGL and the GLU libraries are both
included in the OpenGL Framework. Frameworks on OS X are similar in many respects
to Windows DLLs.

OpenGL: An API, Not a Language 41

2

The steps for setting up your compiler tools to use the correct OpenGL headers and to link
to the correct OpenGL libraries vary from tool to tool and from platform to platform.
They also change over time as newer versions of these tools are released. It is usually safe
to assume that if you are reading a book on programming 3D graphics, you already know
how to actually compile programs with your preferred development environment. Note
the italics on the word usually! For this reason, in the source code distribution, you’ll find
preconfigured projects for Visual Studio on Windows, XCode on Mac OS X, and some
generic “make” files for Linux. On our Web site (www.opengl.org/superbible) you’ll find
some more detailed tutorials to walk you through this if necessary.

On all platforms, the prototypes for all OpenGL functions, types, and macros are
contained (by convention) in the header file gl.h. The utility library functions are proto-
typed in a different file, glu.h. These files are usually located in a special directory in your
include path, set up automatically when you install your development tools. For example,
the following code shows the initial header inclusions for a basic Windows program that
uses OpenGL:

#include<windows.h>

#include<gl/gl.h>

#include<gl/glu.h>

On an Apple OS X system, your include files might look more like this:

#include <Carbon/Carbon.h>

#include <OpenGL/gl.h>

#include <OpenGL/glu.h>

Some Header Customizations
To keep things from getting too complicated, all the examples in the book (with the
exception being those in Part III, “The Apocrypha,” all on platform-specific code) include
one header file that takes care of all the platform-specific variations:

#include “../../shared/gltools.h” // OpenGL toolkit

This file is in the /shared folder, and all the sample programs have the same relative posi-
tion to this folder. If you look in this header, near the top, you’ll find the platform-specific
code broken out like this:

// Windows

#ifdef WIN32

#include <windows.h> // Must have for Windows platform builds

#include “glee.h” // OpenGL Extension “autoloader”

#include <gl\gl.h> // Microsoft OpenGL headers (version 1.1 by themselves)

CHAPTER 2 Using OpenGL42

www.opengl.org/superbible

#include <gl\glu.h> // OpenGL Utilities

#include “glut.h” // Glut (Free-Glut on Windows)

#endif

// Mac OS X

#ifdef __APPLE__

#include <Carbon/Carbon.h> // Brings in most Apple specific stuff

#include “glee.h” // OpenGL Extension “autoloader”

#include <OpenGL/gl.h> // Apple OpenGL shaders (version depends on

// OS X SDK version)

#include <OpenGL/glu.h> // OpenGL Utilities

#include <Glut/glut.h> // Apples Implementation of GLUT

#endif

You’ll also notice a few other headers we haven’t discussed yet. The first is glee.h. This
header belongs to the GLEE library, which stands for OpenGL Easy Extension library. This
library (or accompanying glee.c source file in our examples) transparently adds OpenGL
extensions to your projects. The basic Microsoft headers include only OpenGL 1.1 func-
tionality, and GLEE adds the rest of the API to your project. Apple keeps their headers
more up-to-date, but still there may be some extensions or later functions you may need.
GLEE works almost like magic!

Finally you’ll see glut.h. We’ll explain what GLUT is soon (all our samples use it). GLUT
is natively supported on OS X and is supplied by Apple with their development tools.
On Windows, we have used freeglut, which is an open-source implementation of the
GLUT library. In addition to this header, on Windows builds, you need to add
freeglut_static.lib. On Mac OS X with XCode, you add the GLUT Framework,
and on Linux, GLUT is included in the library list in the make files.

If you look in the /examples/src/shared folder where gltools.h is located, you’ll also
find gltools.cpp. This source file is also added to many of the sample projects. This
contains a collection of useful and frequently used functions written and used regularly by
the authors in their own OpenGL-based work. A few other headers contain some simple
C++ classes as well, and we’ll discuss these in more detail as they come up.

API Specifics
OpenGL was designed by some clever people who had a lot of experience designing graph-
ics programming APIs. They applied some standard rules to the way functions were named
and variables were declared. The API is simple and clean and easy for vendors to extend.
OpenGL tries to avoid as much policy as possible. Policy refers to assumptions that the
designers make about how programmers will use the API. Examples of policies include
assuming that you always specify vertex data as floating-point values, assuming that fog is
always enabled before any rendering occurs, or assuming that all objects in a scene are

API Specifics 43

2

affected by the same lighting parameters. Making these kinds of assumptions would elimi-
nate many of the popular rendering techniques that have developed over time.

This philosophy has contributed to the longevity and evolution of OpenGL. Still, as time
marches on, unanticipated advances in hardware capabilities, and the creativity of devel-
opers and hardware vendors, has taken its toll on OpenGL as it has progressed through
the years. Despite this, OpenGL’s basic API has shown surprising resilience to new unantic-
ipated features. The ability to compile ten-year-old source code with little to no changes is
a substantial advantage to application developers, and OpenGL has managed for years to
add new features with as little impact on old code as possible. Future versions of OpenGL
are in the works with “lean and mean” profiles, where some older features and models
may eventually be dropped.

Data Types
To make it easier to port OpenGL code from one platform to another, OpenGL defines its
own data types. These data types map to normal C/C++ data types that you can use
instead, if you want. The various compilers and environments, however, have their own
rules for the size and memory layout of various variable types. By using the OpenGL
defined variable types, you can insulate your code from these types of changes.

Table 2.1 lists the OpenGL data types, their corresponding C/C++ data types under most
32-bit environments (Win32/OS X, etc.), and the appropriate suffix for literals. In this
book, we use the suffixes for all literal values. You will see later that these suffixes are also
used in many (but not all) OpenGL function names. The internal representation is the
same on all platforms (even 64-bit OSs), regardless of machine size or compiler used
(provided you have an appropriate SDK!).

TABLE 2.1 OpenGL Variable Types’ Corresponding C Data Types

OpenGL Data Internal Defined as C C
Type Representation Type Literal Suffix

GLbyte 8-bit integer signed char b

GLshort 16-bit integer short s

GLint, GLsizei 32-bit integer long l

GLfloat, 32-bit floating float f

GLclampf point

GLdouble, 64-bit floating double d

GLclampd point

GLubyte, 8-bit unsigned unsigned char ub

GLboolean integer

GLushort 16-bit unsigned unsigned short us

integer

GLuint, GLenum, 32-bit unsigned unsigned long ui

GLbitfield integer

CHAPTER 2 Using OpenGL44

TABLE 2.1 Continued

OpenGL Data Internal Defined as C C
Type Representation Type Literal Suffix

GLchar 8-bit character char None

GLsizeiptr,

GLintptr native pointer ptrdiff_t None

All data types start with a GL to denote OpenGL. Most are followed by their corresponding
C data types (byte, short, int, float, and so on). Some have a u first to denote an
unsigned data type, such as ubyte to denote an unsigned byte. For some uses, a more
descriptive name is given, such as size to denote a value of length or depth. For example,
GLsizei is an OpenGL variable denoting a size parameter that is represented by an integer.
The clamp designation is a hint that the value is expected to be “clamped” to the range
0.0–1.0. The GLboolean variables are used to indicate true and false conditions; GLenum, for
enumerated variables; and GLbitfield, for variables that contain binary bit fields.

Pointers and arrays are not given any special consideration. An array of 10 GLshort vari-
ables is simply declared as

GLshort shorts[10];

and an array of 10 pointers to GLdouble variables is declared with

GLdouble *doubles[10];

Some other pointer object types are used for NURBS and quadrics. They require more
explanation and are covered in later chapters.

Function-Naming Conventions
Most OpenGL functions follow a naming convention that tells you which library the
function is from and often how many and what types of arguments the function takes. All
functions have a root that represents the function’s corresponding OpenGL command. For
example, glColor3f has the root Color. The gl prefix represents the gl library, and the 3f
suffix means the function takes three floating-point arguments. All OpenGL functions take
the following format:

<Library prefix><Root command><Optional argument count><Optional argument type>

Figure 2.4 illustrates the parts of an OpenGL function. This sample function with the
suffix 3f takes three floating-point arguments. Other variations take three integers
(glColor3i), three doubles (glColor3d), and so forth. This convention of adding the
number and types of arguments (see Table 2.1) to the end of OpenGL functions makes it
easy to remember the argument list without having to look it up. Some versions of
glColor take four arguments to specify an alpha component (transparency) as well.

API Specifics 45

2

FIGURE 2.4 A dissected OpenGL function.

In the reference section (Appendix C) of this book, these “families” of functions are listed
by their library prefix and root. All the variations of glColor (glColor3f, glColor4f,
glColor3i, and so on) are listed under a single entry—glColor.

Any conformant C/C++ compiler will assume that any floating-point literal value is of
type double unless explicitly told otherwise via the suffix mechanism. When you’re using
literals for floating-point arguments, if you don’t specify that these arguments are of type
float instead of double, many compilers will issue a warning while compiling because it
detects that you are passing a double to a function defined to accept only floats, resulting
in a possible loss of precision, not to mention a costly runtime conversion from double to
float. As OpenGL programs grow, these warnings quickly number in the hundreds and
make it difficult to find any real syntax errors. You can turn off these warnings using the
appropriate compiler options, but we advise against doing so. It’s better to write clean,
portable code the first time. So clean up those warning messages by cleaning up the code
(in this case, by explicitly using the float type)—not by disabling potentially useful
warnings.

Additionally, you might be tempted to use the functions that accept double-precision
floating-point arguments rather than go to all the bother of specifying your literals as
floats. However, OpenGL uses floats internally, and using anything other than the
single-precision floating-point functions adds a performance bottleneck because the values
are converted to floats anyhow before being processed by OpenGL—not to mention that
every double takes up twice as much memory as a float. For a program with a lot of
numbers “floating” around, these performance hits can add up pretty fast!

Platform Independence
OpenGL is a powerful and sophisticated API for creating 3D graphics, with more than 300
commands that cover everything from setting material colors and reflective properties to
doing rotations and complex coordinate transformations. You might be surprised that
OpenGL does not have a single function or command relating to window or screen

CHAPTER 2 Using OpenGL46

management. In addition, there are no functions for keyboard input or mouse interaction.
Consider, however, that one of the OpenGL designers’ primary goals was for OpenGL to
be a platform independent abstraction of graphics hardware. Creating and managing
windows and polling for user input are inherently operating system related tasks. You do
not ask your graphics card if the user has pressed the enter key! There are, of course, some
other very good platform independent abstractions of this sort, too, but these tasks fall
outside the scope of graphics rendering. Remember the first sentence of this chapter,
“OpenGL is a software interface to graphics hardware.”

Using GLUT
In the beginning, there was AUX, the OpenGL auxiliary library. The AUX library was
created to facilitate the learning and writing of OpenGL programs without the program-
mer being distracted by the minutiae of any particular environment, be it UNIX,
Windows, or whatever. You wouldn’t write “final” code when using AUX; it was more of a
preliminary staging ground for testing your ideas. A lack of basic GUI features limited the
library’s use for building useful applications.

AUX has since been replaced by the GLUT library for cross-platform programming exam-
ples and demonstrations. GLUT stands for OpenGL utility toolkit (not to be confused with
the standard GLU—OpenGL utility library). Mark Kilgard, while at SGI, wrote GLUT as a
more capable replacement for the AUX library and included some GUI features to at least
make sample programs more usable under X Windows. This replacement includes using
pop-up menus, managing other windows, and even providing joystick support. GLUT is
not public domain, but it is free and free to redistribute. GLUT is widely available on most
UNIX distributions (including Linux), and is natively supported by Mac OS X, where
Apple maintains and extends the library. On Windows, GLUT development has been
discontinued. Since GLUT was originally not licensed as open source, a new GLUT imple-
mentation, freeglut, has sprung up to take its place. All the Windows GLUT-based samples
in this book make use of the freeglut library, which is also available on our Web site.

For most of this book, we use GLUT as our program framework. This decision serves two
purposes. The first is that it makes most of the book accessible to a wider audience. With a
little effort, experienced Windows, Linux, or Mac programmers should be able to set up
GLUT for their programming environments and follow most of the examples in this book.

The second point is that using GLUT eliminates the need to know and understand basic
GUI programming on any specific platform. Although we explain the general concepts, we
do not claim to write a book about GUI programming, but rather about OpenGL. Using
GLUT for the basic coverage of the API, we make life a bit easier for Windows/Mac/Linux
novices as well.

It’s unlikely that all the functionality of a commercial application will be embodied
entirely in the code used to draw in 3D. Although GLUT does have some limited GUI
functionality, it is very simple and abbreviated as far as GUI toolkits go. Thus you can’t
rely entirely on the GLUT library for everything. Nevertheless, the GLUT library excels in

Platform Independence 47

2

its role for learning and demonstration exercises, and hiding all the platform specific
details of window creation and OpenGL context initialization. Even for an experienced
programmer, it is still easier to employ the GLUT library to iron out 3D graphics code
before integrating it into a complete application.

Your First Program
To understand the GLUT library better, look at possibly the world’s shortest OpenGL
program, which was written using the GLUT library. Listing 2.1 presents the SIMPLE
program. Its output is shown in Figure 2.5. You’ll also learn just a few things about
OpenGL along the way!

LISTING 2.1 Source Code for SIMPLE: A Very Simple OpenGL Program

#include “../../shared/gltools.h” // OpenGL toolkit

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Flush drawing commands

glFlush();

}

///

// Set up the rendering state

void SetupRC(void)

{

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

}

///

// Main program entry point

void main(void)

int main(int argc, char* argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);

glutCreateWindow(“Simple”);

glutDisplayFunc(RenderScene);

CHAPTER 2 Using OpenGL48

LISTING 2.1 Continued

SetupRC();

glutMainLoop();

return 0;

}

Platform Independence 49

2

FIGURE 2.5 Output from the SIMPLE program.

The SIMPLE program doesn’t do much. When run from the command line (or develop-
ment environment), it creates a standard GUI window with the caption Simple and a clear
blue background. If you are running Visual C++, when you terminate the program, you
see the message Press any key to continue in the console window. You need to press a
key to terminate the program. This standard feature of the Microsoft IDE for running a
console application ensures that you can see whatever output your program places
onscreen (the console window) before the window vanishes. If you run the program from
the command line, you don’t get this behavior. If you double-click on the program file
from Explorer, you see the console window, but it vanishes when the program terminates.

This simple program contains four GLUT library functions (prefixed with glut) and three
“real” OpenGL functions (prefixed with gl). Let’s examine the program line by line, after
which we will introduce some more functions and substantially improve on the first
example.

The Header
Listing 2.1 contains only one include file:

#include “../../shared/gltools.h” // OpenGL toolkit

This file, which we mentioned earlier, includes the gl.h and glut.h headers, which bring
in the function prototypes used by the program.

The Body
Next, we skip down to the entry point of all C programs:

int main(int argc, char* argv[])

{

glutInit(&argc, argv);

Console-mode C and C++ programs always start execution with the function main. If you
are an experienced Windows nerd, you might wonder where WinMain is in this example.
It’s not there because we start with a console-mode application, so we don’t have to start
with window creation and a message loop. With Win32, you can create graphical windows
from console applications, just as you can create console windows from GUI applications.
These details are buried within the GLUT library. (Remember, the GLUT library is designed
to hide just these kinds of platform details.)

The first line of code in main is a call to glutInit, which simply passes along the
command-line parameters and initializes the GLUT library.

Display Mode: Single Buffered
Next we must tell the GLUT library what type of display mode to use when creating the
window:

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);

The flags here tell it to use a single-buffered window (GLUT_SINGLE) and to use RGBA color
mode (GLUT_RGBA). A single-buffered window means that all drawing commands are
performed on the window displayed. An alternative is a double-buffered window, where
the drawing commands are actually executed on an offscreen buffer and then quickly
swapped into view on the window. This method is often used to produce animation
effects and is demonstrated later in this chapter. In fact, we use double-buffered mode for
the rest of the book. RGBA color mode means that you specify colors by supplying sepa-
rate intensities of red, green, blue, and alpha components. The alternative is color index
mode, which is now largely obsolete, in which you specify colors by using an index into a
color palette.

Creating the OpenGL Window
The next call to the GLUT library actually creates the window on the screen. The follow-
ing code creates the window and sets the caption to Simple:

glutCreateWindow(“Simple”);

The single argument to glutCreateWindow is the caption for the window’s title bar.

CHAPTER 2 Using OpenGL50

Displaying Callback
The next line of GLUT-specific code is

glutDisplayFunc(RenderScene);

This line establishes the previously defined function RenderScene as the display callback
function. This means that GLUT calls the function pointed to here whenever the window
needs to be drawn. This call occurs when the window is first displayed or when the
window is resized or uncovered, for example. This is the place where we put our OpenGL
rendering function calls.

Set Up the Context and Go!
The next line is neither GLUT- nor OpenGL-specific but is a convention that we follow
throughout the book:

SetupRC();

In this function, we do any OpenGL initialization that should be performed before render-
ing. Many of the OpenGL states need to be set only once and do not need to be reset
every time you render a frame (a screen full of graphics).

The last GLUT function call comes at the end of the program:

glutMainLoop();

This function starts the GLUT framework running. After you define callbacks for screen
display and other functions (coming up), you turn GLUT loose. glutMainLoop never
returns after it is called until the main window is closed, and needs to be called only once
from an application. This function processes all the operating system–specific messages,
keystrokes, and so on until you terminate the program.

OpenGL Graphics Calls
The SetupRC function contains a single OpenGL function call:

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

This function sets the color used for clearing the window. The prototype for this
function is

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);

GLclampf is defined as a float under most implementations of OpenGL. In OpenGL, a
single color is represented as a mixture of red, green, and blue components. The range for
each component can vary from 0.0 to 1.0. This is similar to the Windows specification of
colors using the RGB macro to create a COLORREF value. The difference is that in Windows
each color component in a COLORREF can range from 0 to 255, giving a total of

Platform Independence 51

2

256×256×256—or more than 16 million colors. With OpenGL, the values for each compo-
nent can be any valid floating-point value between 0 and 1, thus yielding a virtually infi-
nite number of potential colors. Practically speaking, color output is limited on most
devices to 24 bits (16 million colors) total.

Naturally, OpenGL takes this color value and converts it internally to the nearest possible
exact match with the available video hardware. Table 2.2 lists some common colors and
their component values. You can use these values with any of the OpenGL color-related
functions.

TABLE 2.2 Some Common Composite Colors

Composite Red Green Blue
Color Component Component Component

Black 0.0 0.0 0.0

Red 1.0 0.0 0.0

Green 0.0 1.0 0.0

Yellow 1.0 1.0 0.0

Blue 0.0 0.0 1.0

Magenta 1.0 0.0 1.0

Cyan 0.0 1.0 1.0

Dark gray 0.25 0.25 0.25

Light gray 0.75 0.75 0.75

Brown 0.60 0.40 0.12

Pumpkin orange 0.98 0.625 0.12

Pastel pink 0.98 0.04 0.7

Barney purple 0.60 0.40 0.70

White 1.0 1.0 1.0

The last argument to glClearColor is the alpha component, which is used for blending
and special effects such as transparency. Transparency refers to an object’s capability to
allow light to pass through it. Suppose you would like to create a piece of red stained glass,
and a blue light happens to be shining behind it. The blue light affects the appearance of
the red in the glass (blue + red = purple). You can use the alpha component value to
generate a red color that is semitransparent so that it works like a sheet of glass—an object
behind it shows through. There is more to this type of effect than just using the alpha
value, and in Chapter 6, “More on Colors and Materials,” you’ll learn more about this
topic; until then, you should leave the alpha value as 1.

Clearing the Color Buffer
All we have done at this point is set OpenGL to use blue for the clearing color. In our
RenderScene function, we need an instruction to do the actual clearing:

glClear(GL_COLOR_BUFFER_BIT);

CHAPTER 2 Using OpenGL52

The glClear function clears a particular buffer or combination of buffers. A buffer is a
storage area for image information. The red, green, and blue components of a drawing are
usually collectively referred to as the color buffer or pixel buffer.

More than one kind of buffer (color, depth, stencil, and accumulation) is available in
OpenGL, and these buffers are covered in more detail later in the book. For the next
several chapters, all you really need to understand is that the color buffer is the place
where the displayed image is stored internally and that clearing the buffer with glClear
removes the last drawing from the window. You will also see the term framebuffer, which
refers to all these buffers collectively since they work in tandem.

Flushing That Queue
The final OpenGL function call comes last:

glFlush();

This line causes any unexecuted OpenGL commands to be executed. We have one at this
point: glClear.

Internally, OpenGL uses a rendering pipeline that processes commands sequentially.
OpenGL commands and statements often are queued up until the OpenGL driver
processes several “commands” at once. This setup improves performance because commu-
nication with hardware is inherently slow. Making one trip to the hardware with a truck-
load of data is much faster than making several smaller trips for each command or
instruction. We’ll discuss this feature of OpenGL’s operation further in Chapter 11, “It’s All
About the Pipeline: Faster Geometry Throughput.” In the short program in Listing 2.1, the
glFlush function simply tells OpenGL that it should proceed with the drawing instruc-
tions supplied thus far before waiting for any more drawing commands.

SIMPLE might not be the most interesting OpenGL program in existence, but it demon-
strates the basics of getting a window up using the GLUT library, and it shows how to
specify a color and clear the window. Next, we want to spruce up our program by adding
some more GLUT library and OpenGL functions.

Drawing Shapes with OpenGL
The SIMPLE program made an empty window with a blue background. Now, let’s do some
drawing in the window. In addition, we want to be able to move and resize the window
and have our rendering code respond appropriately. In Listing 2.2, you can see the modifi-
cations. Figure 2.6 shows the output of this program (GLRect).

LISTING 2.2 Drawing a Centered Rectangle with OpenGL

#include “../../shared/gltools.h” // OpenGL toolkit

///

// Called to draw scene

Platform Independence 53

2

LISTING 2.2 Continued

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Set current drawing color to red

// R G B

glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color

glRectf(-25.0f, 25.0f, 25.0f, -25.0f);

// Flush drawing commands

glFlush();

}

///

// Set up the rendering state

void SetupRC(void)

{

// Set clear color to blue

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

}

///

// Called by GLUT library when the window has chanaged size

void ChangeSize(GLsizei w, GLsizei h)

{

GLfloat aspectRatio;

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set Viewport to window dimensions

glViewport(0, 0, w, h);

// Reset coordinate system

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

CHAPTER 2 Using OpenGL54

LISTING 2.2 Continued

// Establish clipping volume (left, right, bottom, top, near, far)

aspectRatio = (GLfloat)w / (GLfloat)h;

if (w <= h)

glOrtho (-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio,

1.0, -1.0);

else

glOrtho (-100.0 * aspectRatio, 100.0 * aspectRatio,

-100.0, 100.0, 1.0, -1.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

///

// Main program entry point

void main(void)

int main(int argc, char* argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutCreateWindow(“GLRect”);

glutDisplayFunc(RenderScene);

glutReshapeFunc(ChangeSize);

SetupRC();

glutMainLoop();

return 0;

}

Platform Independence 55

2

FIGURE 2.6 Output from the GLRect program.

Drawing a Rectangle
Previously, all our program did was clear the screen. We’ve now added the following lines
of drawing code:

// Set current drawing color to red

// R G B

glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color

glRectf(-25.0f, 25.0f, 25.0f, -25.0f);

These lines set the color used for future drawing operations (lines and filling) with the call
to glColor3f. Then glRectf draws a filled rectangle.

The glColor3f function selects a color in the same manner as glClearColor, but no alpha
translucency component needs to be specified (the default value for alpha is 1.0 for
completely opaque):

void glColor3f(GLfloat red, GLfloat green, GLfloat blue);

The glRectf function takes floating-point arguments, as denoted by the trailing f. The
number of arguments is not used in the function name because all glRect variations take
four arguments. The four arguments of glRectf, shown here, represent two coordinate
pairs, (x1, y1) and (x2, y2):

void glRectf(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2);

The first pair represents the upper-left corner of the rectangle, and the second pair repre-
sents the lower-right corner.

How does OpenGL map these coordinates to actual window positions? This is done in the
callback function ChangeSize. This function is set as the callback function for whenever
the window changes size (when it is stretched, maximized, and so on). This is set by the
glutReshapeFunc in the same way that the display callback function is set:

glutReshapeFunc(ChangeSize);

Any time the window size or dimensions change, you need to reset the coordinate system.

Scaling to the Window
In nearly all windowing environments, the user can at any time change the size and
dimensions of the window. Even if you are writing a game that always runs in full-screen
mode, the window is still considered to change size once—when it is created. When this
happens, the window usually responds by redrawing its contents, taking into considera-
tion the window’s new dimensions. Sometimes, you might want to simply clip the
drawing for smaller windows or display the entire drawing at its original size in a larger

CHAPTER 2 Using OpenGL56

window. For our purposes, we usually want to scale the drawing to fit within the window,
regardless of the size of the drawing or window. Thus, a very small window would have a
complete but very small drawing, and a larger window would have a similar but larger
drawing. You see this effect in most drawing programs when you stretch a window as
opposed to enlarging the drawing. Stretching a window usually doesn’t change the
drawing size, but magnifying the image makes it grow.

Setting the Viewport and Clipping Volume
In Chapter 1 we discussed how the viewport and viewing volume affect the coordinate
range and scaling of 2D and 3D drawings in a 2D window on the computer screen. Now,
we examine the setting of viewport and clipping volume coordinates in OpenGL.

Although our drawing is a 2D flat rectangle, we are actually drawing in a 3D coordinate
space. The glRectf function draws the rectangle in the xy plane at z = 0. Your perspective
is along the positive z-axis to see the square rectangle at z = 0. (If you’re feeling lost here,
review this material in Chapter 1, “Introduction to 3D Graphics and OpenGL.”)

Whenever the window size changes, the viewport and clipping volume must be redefined
for the new window dimensions. Otherwise, you see an effect like the one shown in Figure
2.7, where the mapping of the coordinate system to screen coordinates stays the same
regardless of the window size.

Platform Independence 57

2

FIGURE 2.7 The effects of changing the window size but not the coordinate system.

Because window size changes are detected and handled differently under various environ-
ments, the GLUT library provides the function glutReshapeFunc, which registers a call-
back that the GLUT library will call whenever the window dimensions change. The
function you pass to glutReshapeFunc is prototyped like this:

void ChangeSize(GLsizei w, GLsizei h);

We have chosen ChangeSize as a descriptive name for this function, and we will use that
name for our future examples.

The ChangeSize function receives the new width and height whenever the window size
changes. We can use this information to modify the mapping of our desired coordinate
system to real screen coordinates, with the help of two OpenGL functions: glViewport
and glOrtho.

Defining the Viewport
To understand how the viewport definition is achieved, let’s look more carefully at the
ChangeSize function. It first calls glViewport with the new width and height of the
window. The glViewport function is defined as

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-left corner of the viewport within the window,
and the width and height parameters specify these dimensions in pixels. Usually, x and y

are both 0, but you can use viewports to render more than one drawing in different areas
of a window. The viewport defines the area within the window in actual screen coordi-
nates that OpenGL can use to draw in (see Figure 2.8). The current clipping volume is
then mapped to the new viewport. If you specify a viewport that is smaller than the
window coordinates, the rendering is scaled smaller, as you see in Figure 2.8.

CHAPTER 2 Using OpenGL58

glViewport(0,0,250,250)

– x

250 250

25
0

glViewport(0,0,125,125)

Viewport 1/2 size of windowWindow and viewport are same

– x

25
0 125

125

FIGURE 2.8 Viewport-to-window mapping.

Defining the Clipped Viewing Volume
The last requirement of our ChangeSize function is to redefine the clipping volume so that
the aspect ratio remains square. The aspect ratio is the ratio of the number of pixels along
a unit of length in the vertical direction to the number of pixels along the same unit of
length in the horizontal direction. In English, this just means the width of the window
divided by the height. An aspect ratio of 1.0 defines a square aspect ratio. An aspect ratio
of 0.5 specifies that for every two pixels in the horizontal direction for a unit of length,
there is one pixel in the vertical direction for the same unit of length.

If you specify a viewport that is not square and it is mapped to a square clipping volume,
the image will be distorted. For example, a viewport matching the window size and
dimensions but mapped to a square clipping volume would cause images to appear tall
and thin in tall and thin windows and wide and short in wide and short windows. In this
case, our square would appear square only when the window was sized to be a square.

In our example, an orthographic projection is used for the clipping volume. The OpenGL
command to create this projection is glOrtho:

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

In 3D Cartesian space, the left and right values specify the minimum and maximum
coordinate value displayed along the x-axis; bottom and top are for the y-axis. The near
and far parameters are for the z-axis, generally with negative values extending away from
the viewer (see Figure 2.9). Many drawing and graphics libraries use window coordinates
(pixels) for drawing commands. Using a real floating-point (and seemingly arbitrary) coor-
dinate system for rendering is one of the hardest things for many beginners to get used to.
After you work through a few programs, though, it quickly becomes second nature.

Platform Independence 59

2

+x–x

–z

+z

–y

+y

FIGURE 2.9 Cartesian space.

Just before the code using glOrtho, notice these two function calls:

// Reset coordinate system

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

The subject of matrices and the OpenGL matrix stacks comes up in Chapter 4, “Geometric
Transformations: The Pipeline,” where we discuss this topic in more detail. The projection
matrix is the place where you actually define your viewing volume. The single call to
glLoadIdentity is needed because glOrtho doesn’t really establish the clipping volume,
but rather modifies the existing clipping volume. It multiplies the matrix that describes
the current clipping volume by the matrix that describes the clipping volume described in
its arguments. For now, you just need to know that glLoadIdentity serves to “reset” the
coordinate system before any matrix manipulations are performed. Without this “reset,”
every time glOrtho is called, each successive call to glOrtho could result in a further
corruption of the intended clipping volume, which might not even display the rectangle.

The last two lines of code, shown here, tell OpenGL that all future transformations will
affect our models (what we draw):

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

We purposely do not cover model transformation until Chapter 4. You do need to know now,
however, how to set up these things with their default values. Otherwise, if you become
adventurous and start experimenting, your output might not match what you expect.

Keeping a Square Square
The following code does the actual work of keeping our square square:

// Establish clipping volume (left, right, bottom, top, near, far)

aspectRatio = (GLfloat)w / (GLfloat)h;

if (w <= h)

glOrtho (-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio,

1.0, -1.0);

else

glOrtho (-100.0 * aspectRatio, 100.0 * aspectRatio,

-100.0, 100.0, 1.0, -1.0);

Our clipping volume (visible coordinate space) is modified so that the left side is always at
x = –100 and the right side extends to 100 unless the window is wider than it is tall. In
that case, the horizontal extent is scaled by the aspect ratio of the window. In the same
manner, the bottom is always at y = –100 and extends upward to 100 unless the window is
taller than it is wide. In that case, the upper coordinate is scaled by the inverse of the
aspect ratio. This serves to keep a square coordinate region 200×200 available (with 0,0 in
the center) regardless of the shape of the window. Figure 2.10 shows how this works.

CHAPTER 2 Using OpenGL60

FIGURE 2.10 The clipping region for three different windows.

Animation with OpenGL and GLUT
So far, we’ve discussed the basics of using the GLUT library for creating a window and
using OpenGL commands for the actual drawing. You will often want to move or rotate
your images and scenes, creating an animated effect. Let’s take the previous example,
which draws a square, and make the square bounce off the sides of the window. You could
create a loop that continually changes your object’s coordinates before calling the
RenderScene function. This would cause the square to appear to move around within the
window.

The GLUT library enables you to register a callback function that makes it easier to set up
a simple animated sequence. This function, glutTimerFunc, takes the name of a function
to call and the amount of time to wait before calling the function:

void glutTimerFunc(unsigned int msecs, void (*func)(int value), int value);

This code sets up GLUT to wait msecs milliseconds before calling the function func. You
can pass a user-defined value in the value parameter. The function called by the timer has
the following prototype:

void TimerFunction(int value);

When the time expires, this function is fired only once. To effect a continuous animation,
you must reset the timer again in the timer function.

In our GLRect program, we can change the hard-coded values for the location of our
rectangle to variables and then constantly modify those variables in the timer function.
This causes the rectangle to appear to move across the window. Let’s look at an example of
this kind of animation. In Listing 2.3, we modify Listing 2.2 to bounce around the square

Animation with OpenGL and GLUT 61

2

200

400

200

200

20
0

20
0

20
0

40
0

off the inside borders of the window. We need to keep track of the position and size of the
rectangle as we go along and account for any changes in window size.

LISTING 2.3 Animated Bouncing Square

#include “../../shared/gltools.h” // OpenGL toolkit

// Initial square position and size

GLfloat x1 = 0.0f;

GLfloat y1 = 0.0f;

GLfloat rsize = 25;

// Step size in x and y directions

// (number of pixels to move each time)

GLfloat xstep = 1.0f;

GLfloat ystep = 1.0f;

// Keep track of windows changing width and height

GLfloat windowWidth;

GLfloat windowHeight;

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Set current drawing color to red

// R G B

glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color

glRectf(x1, y1, x1 + rsize, y1 - rsize);

// Flush drawing commands and swap

glutSwapBuffers();

}

///

// Called by GLUT library when idle (window not being

// resized or moved)

void TimerFunction(int value)

{

CHAPTER 2 Using OpenGL62

LISTING 2.3 Continued

// Reverse direction when you reach left or right edge

if(x1 > windowWidth-rsize || x1 < -windowWidth)

xstep = -xstep;

// Reverse direction when you reach top or bottom edge

if(y1 > windowHeight || y1 < -windowHeight + rsize)

ystep = -ystep;

// Actually move the square

x1 += xstep;

y1 += ystep;

// Check bounds. This is in case the window is made

// smaller while the rectangle is bouncing and the

// rectangle suddenly finds itself outside the new

// clipping volume

if(x1 > (windowWidth-rsize + xstep))

x1 = windowWidth-rsize-1;

else if(x1 < -(windowWidth + xstep))

x1 = - windowsWidth -1;

if(y1 > (windowHeight + ystep))

y1 = windowHeight-1;

else if(y1 < -(windowHeight - rsize + ystep))

y1 = -windowHeight + rsize -1;

// Redraw the scene with new coordinates

glutPostRedisplay();

glutTimerFunc(33,TimerFunction, 1);

}

///

// Main program entry point

int main(int argc, char* argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutInitWindowSize(800,600);

glutCreateWindow(“Bounce”);

Animation with OpenGL and GLUT 63

2

LISTING 2.3 Continued

glutDisplayFunc(RenderScene);

glutReshapeFunc(ChangeSize);

glutTimerFunc(33, TimerFunction, 1);

SetupRC();

glutMainLoop();

return 0;

}

Double Buffering
One of the most important features of any graphics package is support for double buffering.
This feature allows you to execute your drawing code while rendering to an offscreen
buffer. Then a swap command places your drawing onscreen instantly.

Double buffering can serve two purposes. The first is that some complex drawings might
take a long time to draw, and you might not want each step of the image composition to
be visible. Using double buffering, you can compose an image and display it only after it is
complete. The user never sees a partial image; only after the entire image is ready is it
shown onscreen.

A second use for double buffering is animation. Each frame is drawn in the offscreen
buffer and then swapped quickly to the screen when ready. The GLUT library supports
double-buffered windows. In Listing 2.3 note the following line:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);

We have changed GLUT_SINGLE to GLUT_DOUBLE. This change causes all the drawing code to
render in an offscreen buffer.

Next, we also changed the end of the RenderScene function:

. . .

// Flush drawing commands and swap

glutSwapBuffers();

}

No longer are we calling glFlush. This function is no longer needed because when we
perform a buffer swap, we are implicitly performing a flush operation.

These changes cause a smoothly animated bouncing rectangle, shown in Figure 2.11. The
function glutSwapBuffers still performs the flush, even if you are running in single-
buffered mode. Simply change GLUT_DOUBLE back to GLUT_SINGLE in the bounce sample to

CHAPTER 2 Using OpenGL64

see the animation without double buffering. As you’ll see, the rectangle constantly blinks
and stutters, a very unpleasant and poor animation with single buffering.

The OpenGL State Machine 65

2

FIGURE 2.11 Follow the bouncing square.

The GLUT library is a reasonably complete framework for creating sophisticated sample
programs and perhaps even full-fledged commercial applications (assuming you do not
need to use OS-specific or GUI features). It is not the purpose of this book to explore
GLUT in all its glory and splendor, however. Here and in the reference section to come, we
restrict ourselves to the small subset of GLUT needed to demonstrate the various features
of OpenGL.

The OpenGL State Machine
Drawing 3D graphics is a complicated affair. In the chapters ahead, we will cover many
OpenGL functions. For a given piece of geometry, many things can affect how it is drawn.
Is a light shining on it? What are the properties of the light? What are the properties of
the material? Which, if any, texture should be applied? The list could go on and on.

We call this collection of variables the state of the pipeline. A state machine is an abstract
model of a collection of state variables, all of which can have various values, be turned on
or off, and so on. It simply is not practical to specify all the state variables whenever we
try to draw something in OpenGL. Instead, OpenGL employs a state model, or state
machine, to keep track of all the OpenGL state variables. When a state value is set, it
remains set until some other function changes it. Many states are simply on or off.
Lighting, for example (see Chapter 5, “Color, Materials, and Lighting: The Basics”), is
either turned on or turned off. Geometry drawn without lighting is drawn without any
lighting calculations being applied to the colors set for the geometry. Any geometry drawn
after lighting is turned back on is then drawn with the lighting calculations applied.

To turn these types of state variables on and off, you use the following OpenGL function:

void glEnable(GLenum capability);

You turn the variable back off with the corresponding function:

void glDisable(GLenum capability);

For the case of lighting, for instance, you can turn it on by using the following:

glEnable(GL_LIGHTING);

And you turn it back off with this function:

glDisable(GL_LIGHTING);

If you want to test a state variable to see whether it is enabled, OpenGL again has a conve-
nient mechanism:

Glboolean glIsEnabled(GLenum capability);

Not all state variables, however, are simply on or off. Many of the OpenGL functions yet
to come set up values that “stick” until changed. You can query what these values are at
any time as well. A set of query functions allows you to query the values of Booleans, inte-
gers, floats, and double variables. These four functions are prototyped thus:

void glGetBooleanv(GLenum pname, GLboolean *params);

void glGetDoublev(GLenum pname, GLdouble *params);

void glGetFloatv(GLenum pname, GLfloat *params);

void glGetIntegerv(GLenum pname, GLint *params);

Each function returns a single value or a whole array of values, storing the results at the
address you supply. The various parameters are documented in the reference section in
Appendix C, “API Reference” (there are a lot of them!). Most may not make much sense to
you right away, but as you progress through the book, you will begin to appreciate the
power and simplicity of the OpenGL state machine.

Saving and Restoring States
OpenGL also has a convenient mechanism for saving a whole range of state values and
restoring them later. The stack is a convenient data structure that allows values to be
pushed on the stack (saved) and popped off the stack later to retrieve them. Items are
popped off in the opposite order in which they were pushed on the stack. We call this a
Last In First Out (LIFO) data structure. It’s an easy way to just say, “Hey, please save this”
(push it on the stack), and then a little later say, “Give me what I just saved” (pop it off
the stack). You’ll see that the concept of the stack plays a very important role in matrix
manipulation when you get to Chapter 4.

A single OpenGL state value or a whole range of related state values can be pushed on the
attribute stack with the following command:

CHAPTER 2 Using OpenGL66

void glPushAttrib(GLbitfield mask);

Values are correspondingly restored with this command:

void glPopAttrib(GLbitfield mask);

Note that the argument to these functions is a bit field. This means that you use a bitwise
mask, which allows you to perform a bitwise OR (in C using the | operator) of multiple
state values with a single function call. For example, you could save the lighting and
texturing state with a single call like this:

glPushAttrib(GL_TEXTURE_BIT | GL_LIGHTING_BIT);

A complete list of all the OpenGL state values that can be saved and restored with these
functions is located in the reference section in Appendix C, for the glPushAttrib function
listing.

OpenGL Errors
In any project, you want to write robust and well-behaved programs that respond politely
to their users and have some amount of flexibility. Graphical programs that use OpenGL
are no exception, and if you want your programs to run smoothly, you need to account
for errors and unexpected circumstances. OpenGL provides a useful mechanism for you to
perform an occasional sanity check in your code. This capability can be important
because, from the code’s standpoint, it’s not really possible to tell whether the output was
the Space Station Freedom or the Space Station Melted Crayons!

When Bad Things Happen to Good Code
Internally, OpenGL maintains a set of six error flags. Each flag represents a different type
of error. Whenever one of these errors occurs, the corresponding flag is set. To see whether
any of these flags is set, call glGetError:

Glenum glGetError(void);

The glGetError function returns one of the values listed in Table 2.3. The GLU library
defines three errors of its own, but these errors map exactly to two flags already present. If
more than one of these flags is set, glGetError still returns only one distinct value. This
value is then cleared when glGetError is called, and glGetError again will return either
another error flag or GL_NO_ERROR. Usually, you want to call glGetError in a loop that
continues checking for error flags until the return value is GL_NO_ERROR.

You can use another function in the GLU library, gluErrorString, to get a string describ-
ing the error flag:

const GLubyte* gluErrorString(GLenum errorCode);

OpenGL Errors 67

2

This function takes as its only argument the error flag (returned from glGetError) and
returns a static string describing that error. For example, the error flag GL_INVALID_ENUM
returns this string:

invalid enumerant

TABLE 2.3 OpenGL Error Codes

Error Code Description

GL_INVALID_ENUM The enum argument is out of range.

GL_INVALID_VALUE The numeric argument is out of range.

GL_INVALID_OPERATION The operation is illegal in its current state.

GL_STACK_OVERFLOW The command would cause a stack overflow.

GL_STACK_UNDERFLOW The command would cause a stack underflow.

GL_OUT_OF_MEMORY Not enough memory is left to execute the command.

GL_TABLE_TOO_LARGE The specified table is too large.

GL_NO_ERROR No error has occurred.

You can take some peace of mind from the assurance that if an error is caused by an
invalid call to OpenGL, the command or function call is ignored. The only exceptions to
this are any OpenGL functions that take pointers to memory (that may cause a program
to crash if the pointer is invalid).

Identifying the Version
As mentioned previously, sometimes you want to take advantage of a known behavior in a
particular implementation. If you know for a fact that you are running on a particular
vendor’s graphics card, you may rely on some known performance characteristics to
enhance your program. You may also want to enforce some minimum version number for
particular vendors’ drivers. What you need is a way to query OpenGL for the vendor and
version number of the rendering engine (the OpenGL driver). Both the GL library and the
GLU library can return version- and vendor-specific information about themselves.

For the GL library, you can call glGetString:

const GLubyte *glGetString(GLenum name);

This function returns a static string describing the requested aspect of the GL library. The
valid parameter values are listed under glGetString in Appendix C, along with the aspect
of the GL library they represent.

The GLU library has a corresponding function, gluGetString:

const GLubyte *gluGetString(GLenum name);

It returns a string describing the requested aspect of the GLU library.

CHAPTER 2 Using OpenGL68

Getting a Clue with glHint
There is more than one way to skin a cat; so goes the old saying. The same is true with 3D
graphics algorithms. Often a trade-off must be made for the sake of performance, or
perhaps if visual fidelity is the most important issue, performance is less of a considera-
tion. Often an OpenGL implementation may contain two ways of performing a given
task—a fast way that compromises quality slightly and a slower way that improves visual
quality. The function glHint allows you to specify certain preferences of quality or speed
for different types of operations. The function is defined as follows:

void glHint(GLenum target, GLenum mode);

The target parameter allows you to specify types of behavior you want to modify. These
values, listed under glHint in Appendix C, include hints for fog quality, antialiasing accu-
racy, and so on. The mode parameter tells OpenGL what you care most about—faster
render time and nicest output, for instance—or that you don’t care (the only way to get
back to the default behavior). Be warned, however, that all implementations are not
required to honor calls into glHint; it’s the only function in OpenGL whose behavior is
intended to be entirely vendor-specific.

Using Extensions
With OpenGL being a “standard” API, you might think that hardware vendors are able to
compete only on the basis of performance and perhaps visual quality. However, the field
of 3D graphics is very competitive, and hardware vendors are constantly innovating, not
just in the areas of performance and quality, but in graphics methodologies and special
effects. OpenGL allows vendor innovation through its extension mechanism. This mecha-
nism works in two ways. First, vendors can add new functions to the OpenGL API that
developers can use. Second, new tokens or enumerants can be added that will be recog-
nized by existing OpenGL functions such as glEnable.

Making use of new enumerants or tokens is simply a matter of adding a vendor-supplied
header file to your project. Vendors must register their extensions with the OpenGL
Working Group (a subset of the Khronos Group), thus keeping one vendor from using a
value used by someone else. Conveniently, there is a standard header file glext.h that
includes the most common extensions.

Checking for an Extension
Gone are the days when games would be recompiled for a specific graphics card. You have
already seen that you can check for a string identifying the vendor and version of the

Using Extensions 69

2

OpenGL driver. You can also get a string that contains identifiers for all OpenGL exten-
sions supported by the driver. One line of code returns a character array of extension
names:

const char *szExtensions = glGetString(GL_EXTENSIONS);

This string contains the space-delimited names of all extensions supported by the driver.
You can then search this string for the identifier of the extension you want to use. For
example, you might do a quick search for a Windows-specific extension like this:

if (strstr(extensions, “WGL_EXT_swap_control” != NULL))

{

wglSwapIntervalEXT =

(PFNWGLSWAPINTERVALEXTPROC)wglGetProcAddress(“wglSwapIntervalEXT”);

if(wglSwapIntervalEXT != NULL)

wglSwapIntervalEXT(1);

}

If you use this method, you should also make sure that the character following the name
of the extension is either a space or a NULL. What if, for example, this extension is
superceded by the WGL_EXT_swap_control2 extension? In this case, the C runtime function
strstr would still find the first string, but you may not be able to assume that the second
extension behaves exactly like the first. A more robust toolkit function is included in the
file gltools.cpp in the source distribution from our Web site:

int gltIsExtSupported(const char *extension);

This function returns 1 if the named extension is supported or 0 if it is not. The
examples/src/shared directory contains a whole set of helper and utility functions for use
with OpenGL, and many are used throughout this book. All the functions are prototyped
in the file gltools.h.

This example also shows how to get a pointer to a new OpenGL function under Windows.
The windows function wglGetProcAddress returns a pointer to an OpenGL function
(extension) name. Getting a pointer to an extension varies from OS to OS; this topic is
dealt with in more detail in Part III of this book. Fortunately, 99% of the time you can just
use the GLEE library as we have and you “auto-magically” get extension function pointers
for whatever functionality is supported by the driver.

The Windows-specific extension and the typedef (PFNWGLSWAPINTERVALEXTPROC) for
the function type is located in the wglext.h header file, also included in the
examples/src/shared directory. We also discuss this particular important extension in
Chapter 19, “Wiggle: OpenGL on Windows.”

CHAPTER 2 Using OpenGL70

In the meantime, again the gltools library comes to the rescue with the following function:

void *gltGetExtensionPointer(const char *szExtensionName);

This function provides a platform-independent wrapper that returns a pointer to the
named OpenGL extension.

Whose Extension Is This?
Using OpenGL extensions, you can provide code paths in your code to improve rendering
performance and visual quality or even add special effects that are supported only by a
particular vendor’s hardware. But who owns an extension? That is, which vendor created
and supports a given extension? You can usually tell just by looking at the extension
name. Each extension has a three-letter prefix that identifies the source of the extension.
Table 2.4 provides a sampling of extension identifiers.

TABLE 2.4 A Sampling of OpenGL Extension Prefixes

Prefix Vendor

SGI_ Silicon Graphics

ATI_ ATI Technologies

NV_ NVIDIA

IBM_ IBM

WGL_ Microsoft

EXT_ Cross-Vendor

ARB_ ARB Approved

It is not uncommon for one vendor to support another vendor’s extension. For example,
some NVIDIA extensions are widely popular and supported on ATI hardware. When this
happens, the competing vendor must follow the original vendor’s specification (details on
how the extension is supposed to work). Frequently, everyone agrees that the extension is
a good thing to have, and the extension has an EXT_ prefix to show that it is (supposed) to
be vendor neutral and widely supported across implementations.

Finally, we also have ARB-approved extensions. The specification for these extensions has
been reviewed (and argued about) by the OpenGL ARB. These extensions usually signal
the final step before some new technique or function finds its way into the core OpenGL
specification.

Summary
We covered a lot of ground in this chapter. We introduced you to OpenGL, told you a
little bit about its history, introduced the OpenGL utility toolkit (GLUT), and presented
the fundamentals of writing a program that uses OpenGL. Using GLUT, we showed you
the easiest possible way to create a window and draw in it using OpenGL commands. You

Summary 71

2

learned to use the GLUT library to create windows that can be resized, as well as create a
simple animation. You were also introduced to the process of using OpenGL for drawing—
composing and selecting colors, clearing the screen, drawing a rectangle, and setting the
viewport and clipping volume to scale images to match the window size. We discussed the
various OpenGL data types and the headers required to build programs that use OpenGL.

With a little coding finally under your belt, you are ready to dive into some other ideas
you need to be familiar with before you move forward. The OpenGL state machine under-
lies almost everything you do from here on out, and the extension mechanism will make
sure you can access all the OpenGL features supported by your hardware driver, regardless
of your development tool. You also learned how to check for OpenGL errors along the way
to make sure you aren’t making any illegal state changes or rendering commands. With
this foundation, you can move forward to the chapters ahead.

CHAPTER 2 Using OpenGL72

CHAPTER 3

Drawing in Space:
Geometric Primitives and Buffers

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Draw points, lines, and shapes glBegin/glEnd/glVertex

Set shape outlines to wireframe glPolygonMode

or solid objects

Set point sizes for drawing glPointSize

Set line drawing width glLineWidth

Perform hidden surface removal glCullFace/glClear

Set patterns for broken lines glLineStipple

Set polygon fill patterns glPolygonStipple

Use the OpenGL Scissor box glScissor

Use the stencil buffer glStencilFunc/glStencilMask/glStencilOp

If you’ve ever had a chemistry class (and probably even if you haven’t), you know that all
matter consists of atoms and that all atoms consist of only three things: protons,
neutrons, and electrons. All the materials and substances you have ever come into contact
with—from the petals of a rose to the sand on the beach—are just different arrangements
of these three fundamental building blocks. Although this explanation is a little oversim-
plified for almost anyone beyond the third or fourth grade, it demonstrates a powerful
principle: With just a few simple building blocks, you can create highly complex and
beautiful structures.

74 CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers

The connection is fairly obvious. Objects and scenes that you create with OpenGL also
consist of smaller, simpler shapes, arranged and combined in various and unique ways.
This chapter explores these building blocks of 3D objects, called primitives. All primitives
in OpenGL are one-, two-, or three-dimensional objects, ranging from single points to
lines and complex polygons. In this chapter, you learn everything you need to know to
draw objects in three dimensions from these simpler shapes.

Drawing Points in 3D
When you first learned to draw any kind of graphics on any computer system, you proba-
bly started with pixels. A pixel is the smallest element on your computer monitor, and on
color systems that pixel can be any one of many available colors. This is computer graph-
ics at its simplest: Draw a point somewhere on the screen, and make it a specific color.
Then build on this simple concept, using your favorite computer language to produce
lines, polygons, circles, and other shapes and graphics. Perhaps even a GUI…

With OpenGL, however, drawing on the computer screen is fundamentally different.
You’re not concerned with physical screen coordinates and pixels, but rather positional
coordinates in your viewing volume. You let OpenGL worry about how to get your points,
lines, and everything else projected from your established 3D space to the 2D image made
by your computer screen.

This chapter and the next cover the most fundamental concepts of OpenGL or any 3D
graphics toolkit. In the upcoming chapter, we provide substantial detail about how this
transformation from 3D space to the 2D landscape of your computer monitor takes place,
as well as how to transform (rotate, translate, and scale) your objects. For now, we take
this capability for granted to focus on plotting and drawing in a 3D coordinate system.
This approach might seem backward, but if you first know how to draw something and
then worry about all the ways to manipulate your drawings, the material in Chapter 4,
“Geometric Transformations: The Pipeline,” is more interesting and easier to learn. When
you have a solid understanding of graphics primitives and coordinate transformations,
you will be able to quickly master any 3D graphics language or API.

Setting Up a 3D Canvas
Figure 3.1 shows a simple viewing volume that we use for the examples in this chapter.
The area enclosed by this volume is a Cartesian coordinate space that ranges from –100 to
+100 on all three axes—x, y, and z. (For a review of Cartesian coordinates, see Chapter 1,
“Introduction to 3D Graphics and OpenGL.”) Think of this viewing volume as your three-
dimensional canvas on which you draw with OpenGL commands and functions.

FIGURE 3.1 A Cartesian viewing volume measuring 100×100×100.

We established this volume with a call to glOrtho, much as we did for others in the
preceding chapter. Listing 3.1 shows the code for the ChangeSize function that is called
when the window is sized (including when it is first created). This code looks a little differ-
ent from that in the preceding chapter, and you’ll notice some unfamiliar functions
(glMatrixMode, glLoadIdentity). We’ll spend more time on these functions in Chapter 4,
exploring their operation in more detail.

LISTING 3.1 Code to Establish the Viewing Volume in Figure 3.1

// Change viewing volume and viewport. Called when window is resized

void ChangeSize(GLsizei w, GLsizei h)

{

GLfloat nRange = 100.0f;

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set Viewport to window dimensions

glViewport(0, 0, w, h);

// Reset projection matrix stack

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Establish clipping volume (left, right, bottom, top, near, far)

Setting Up a 3D Canvas 75

3

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers76

LISTING 3.1 Continued

if (w <= h)

glOrtho (-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange, nRange);

else

glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange, nRange);

// Reset Model view matrix stack

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

WHY THE CART BEFORE THE HORSE?

Look at any of the source code in this chapter, and you’ll notice some new functions in the
RenderScene functions: glRotate, glPushMatrix, and glPopMatrix. Although they’re covered in
more detail in Chapter 4, we’re introducing them now. They implement some important features
that we want you to have as soon as possible. These functions let you plot and draw in 3D and
help you easily visualize your drawing from different angles. All this chapter’s sample programs
employ the arrow keys for rotating the drawing around the x- and y-axes. Look at any 3D drawing
dead-on (straight down the z-axis), and it might still look two-dimensional. But when you can spin
the drawings around in space, it’s much easier to see the 3D effects of what you’re drawing.

There is a lot to learn about drawing in 3D, and in this chapter we want you to focus on that. By
changing only the drawing code for any of the examples that follow, you can start experimenting
right away with 3D drawing and still get interesting results. Later, you’ll learn how to manipulate
drawings using the other functions.

A 3D Point: The Vertex
To specify a drawing point in this 3D “palette,” we use the OpenGL function glVertex—
without a doubt one of the most used functions in all the OpenGL API. This is the “lowest
common denominator” of all the OpenGL primitives: a single point in space. The
glVertex function can take from one (a pointer) to four parameters of any numerical type,
from bytes to doubles, subject to the naming conventions discussed in Chapter 2, “Using
OpenGL.”

The following single line of code specifies a point in our coordinate system located 50
units along the x-axis, 50 units along the y-axis, and 0 units along the z-axis:

glVertex3f(50.0f, 50.0f, 0.0f);

Figure 3.2 illustrates this point. Here, we chose to represent the coordinates as floating-
point values, as we do for the remainder of the book. Also, the form of glVertex that we
use takes three arguments for the x, y, and z coordinate values, respectively.

FIGURE 3.2 The point (50,50,0) as specified by glVertex3f(50.0f, 50.0f, 0.0f).

Two other forms of glVertex take two and four arguments, respectively. We can represent
the same point in Figure 3.2 with this code:

glVertex2f(50.0f, 50.0f);

This form of glVertex takes only two arguments, specifying the x and y values, and
assumes the z coordinate to be 0.0 always.

The form of glVertex taking four arguments, glVertex4, uses a fourth coordinate value,
w (set to 1.0 by default when not specified) for scaling purposes. You will learn more
about this coordinate in Chapter 4 when we spend more time exploring coordinate
transformations.

Draw Something!
Now, we have a way of specifying a point in space to OpenGL. What can we make of it,
and how do we tell OpenGL what to do with it? Is this vertex a point that should just be
plotted? Is it the endpoint of a line or the corner of a cube? The geometric definition of a
vertex is not just a point in space, but rather the point at which an intersection of two
lines or curves occurs. This is the essence of primitives.

A primitive is simply the interpretation of a set or list of vertices into some shape drawn
on the screen. There are 10 primitives in OpenGL, from a simple point drawn in space to a
closed polygon of any number of sides. One way to draw primitives is to use the glBegin
command to tell OpenGL to begin interpreting a list of vertices as a particular primitive.
You then end the list of vertices for that primitive with the glEnd command. Kind of intu-
itive, don’t you think?

Draw Something! 77

3

Drawing Points
Let’s begin with the first and simplest of primitives: points. Look at the following code:

glBegin(GL_POINTS); // Select points as the primitive

glVertex3f(0.0f, 0.0f, 0.0f); // Specify a point

glVertex3f(50.0f, 50.0f, 50.0f); // Specify another point

glEnd(); // Done drawing points

The argument to glBegin, GL_POINTS tells OpenGL that the following vertices are to be
interpreted and drawn as points. Two vertices are listed here, which translates to two
specific points, both of which would be drawn.

This example brings up an important point about glBegin and glEnd: You can list multi-
ple primitives between calls as long as they are for the same primitive type. In this way,
with a single glBegin/glEnd sequence, you can include as many primitives as you like.
This next code segment is wasteful and will execute more slowly than the preceding code:

glBegin(GL_POINTS); // Specify point drawing

glVertex3f(0.0f, 0.0f, 0.0f);

glEnd();

glBegin(GL_POINTS); // Specify another point

glVertex3f(50.0f, 50.0f, 50.0f);

glEnd()

INDENTING YOUR CODE

In the foregoing examples, did you notice the indenting style used for the calls to glVertex?
Most OpenGL programmers use this convention to make the code easier to read. It is not
required, but it does make finding where primitives start and stop easier.

Our First Example
The code in Listing 3.2 draws some points in our 3D environment. It uses some simple
trigonometry to draw a series of points that form a corkscrew path up the z-axis. This code
is from the POINTS program, which is in the source distribution for this chapter. All the
sample programs use the framework we established in Chapter 2. Notice that in the
SetupRC function, we are setting the current drawing color to green.

LISTING 3.2 Rendering Code to Produce a Spring-Shaped Path of Points

// Define a constant for the value of PI

#define GL_PI 3.1415f

// This function does any needed initialization on the rendering

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers78

LISTING 3.2 Continued

// context.

void SetupRC()

{

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

// Set drawing color to green

glColor3f(0.0f, 1.0f, 0.0f);

}

// Called to draw scene

void RenderScene(void)

{

GLfloat x,y,z,angle; // Storage for coordinates and angles

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Save matrix state and do the rotation

glPushMatrix();

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Call only once for all remaining points

glBegin(GL_POINTS);

z = -50.0f;

for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)

{

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Specify the point and move the Z value up a little

glVertex3f(x, y, z);

z += 0.5f;

}

// Done drawing points

glEnd();

// Restore transformations

Draw Something! 79

3

LISTING 3.2 Continued

glPopMatrix();

// Flush drawing commands

glutSwapBuffers();

}

Only the code between calls to glBegin and glEnd is important for our purpose in this and
the other examples for this chapter. This code calculates the x and y coordinates for an
angle that spins between 0° and 360° three times. We express this programmatically in
radians rather than degrees; if you don’t know trigonometry, you can take our word for it.
If you’re interested, see the box “The Trigonometry of Radians/Degrees.” Each time a point
is drawn, the z value is increased slightly. When this program is run, all you see is a circle
of points because you are initially looking directly down the z-axis. To see the effect, use
the arrow keys to spin the drawing around the x- and y-axes. The effect is illustrated in
Figure 3.3.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers80

FIGURE 3.3 Output from the POINTS sample program.

ONE THING AT A TIME

Again, don’t get too distracted by the functions in this example that we haven’t covered yet
(glPushMatrix, glPopMatrix, and glRotate). These functions are used to rotate the image
around so you can better see the positioning of the points as they are drawn in 3D space. We
cover these functions in some detail in Chapter 4. If we hadn’t used these features now, you
wouldn’t be able to see the effects of your 3D drawings, and this and the following sample
programs wouldn’t be very interesting to look at. For the rest of the sample code in this chapter,
we show only the code that includes the glBegin and glEnd statements.

THE TRIGONOMETRY OF RADIANS/DEGREES

Setting the Point Size 81

3

The figure in this box shows a circle drawn in the xy plane. A line segment from the origin (0,0)
to any point on the circle makes an angle (a) with the x-axis. For any given angle, the trigono-
metric functions sine and cosine return the x and y values of the point on the circle. By stepping
a variable that represents the angle all the way around the origin, we can calculate all the points
on the circle. Note that the C runtime functions sin() and cos() accept angle values measured
in radians instead of degrees. There are 2*PI radians in a circle, where PI is a nonrational number
that is approximately 3.1415. (Nonrational means it is a repeating decimal number that cannot
be represented as a fraction.)

Setting the Point Size
When you draw a single point, the size of the point is one pixel by default. You can
change this size with the function glPointSize:

void glPointSize(GLfloat size);

The glPointSize function takes a single parameter that specifies the approximate diameter
in pixels of the point drawn. Not all point sizes are supported, however, and you should
make sure the point size you specify is available. Use the following code to get the range
of point sizes and the smallest interval between them:

GLfloat sizes[2]; // Store supported point size range

GLfloat step; // Store supported point size increments

// Get supported point size range and step size

glGetFloatv(GL_POINT_SIZE_RANGE,sizes);

glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

Here, the sizes array will contain two elements that contain the smallest and largest valid
value for glPointsize. In addition, the variable step will hold the smallest step size allow-
able between the point sizes. The OpenGL specification requires only that one point size,
1.0, be supported. The Microsoft software implementation of OpenGL, for example, allows
for point sizes from 0.5 to 10.0, with 0.125 the smallest step size. Specifying a size out of
range is not interpreted as an error. Instead, the largest or smallest supported size is used,
whichever is closest to the value specified.

By default, points, unlike other geometry, are not affected by the perspective division.
That is, they do not become smaller when they are further from the viewpoint, and they
do not become larger as they move closer. Points are also always square pixels, even if you
use glPointSize to increase the size of the points. You just get bigger squares! To get
round points, you must draw them antialiased (coming up in Chapter 6, “More on Colors
and Materials”).

OPENGL STATE VARIABLES

As we discussed in Chapter 2, OpenGL maintains the state of many of its internal variables and
settings. This collection of settings is called the OpenGL State Machine. You can query the State
Machine to determine the state of any of its variables and settings. Any feature or capability you
enable or disable with glEnable/glDisable, as well as numeric settings set with glSet, can be
queried with the many variations of glGet.

Let’s look at a sample that uses these new functions. The code in Listing 3.3 produces the
same spiral shape as our first example, but this time, the point sizes are gradually
increased from the smallest valid size to the largest valid size. This example is from the
program POINTSZ in source distribution for this chapter. The output from POINTSZ
shown in Figure 3.4 was run on Microsoft’s software implementation of OpenGL. Figure
3.5 shows the same program run on a hardware accelerator that supports much larger
point sizes.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers82

FIGURE 3.4 Output from the POINTSZ program.

FIGURE 3.5 Output from POINTSZ on hardware supporting much larger point sizes.

LISTING 3.3 Code from POINTSZ That Produces a Spiral with Gradually Increasing Point
Sizes

// Define a constant for the value of PI

#define GL_PI 3.1415f

// Called to draw scene

void RenderScene(void)

{

GLfloat x,y,z,angle; // Storage for coordinates and angles

GLfloat sizes[2]; // Store supported point size range

GLfloat step; // Store supported point size increments

GLfloat curSize; // Store current point size

...

...

// Get supported point size range and step size

glGetFloatv(GL_POINT_SIZE_RANGE,sizes);

glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

// Set the initial point size

curSize = sizes[0];

// Set beginning z coordinate

z = -50.0f;

// Loop around in a circle three times

for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)

Setting the Point Size 83

3

LISTING 3.3 Continued

{

// Calculate x and y values on the circle

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Specify the point size before the primitive is specified

glPointSize(curSize);

// Draw the point

glBegin(GL_POINTS);

glVertex3f(x, y, z);

glEnd();

// Bump up the z value and the point size

z += 0.5f;

curSize += step;

}

...

...

}

This example demonstrates a couple of important things. For starters, notice that
glPointSize must be called outside the glBegin/glEnd statements. Not all OpenGL func-
tions are valid between these function calls. Although glPointSize affects all points
drawn after it, you don’t begin drawing points until you call glBegin(GL_POINTS). For a
complete list of valid functions that you can call within a glBegin/glEnd sequence, see the
reference section in Appendix C.

If you specify a point size larger than what is returned in the size variable, you also may
notice (depending on your hardware) that OpenGL uses the largest available point size but
does not keep growing. This is a general observation about OpenGL function parameters
that have a valid range. Values outside the range are clamped to the range. Values too low
are made the lowest valid value, and values too high are made the highest valid value.

The most obvious thing you probably noticed about the POINTSZ excerpt is that the larger
point sizes are represented simply by larger cubes. This is the default behavior, but it typi-
cally is undesirable for many applications. Also, you might wonder why you can increase
the point size by a value less than one. If a value of 1.0 represents one pixel, how do you
draw less than a pixel, or, say, 2.5 pixels?

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers84

The answer is that the point size specified in glPointSize isn’t the exact point size in
pixels, but the approximate diameter of a circle containing all the pixels that are used to
draw the point. You can get OpenGL to draw the points as better points (that is, small
filled circles) by enabling point smoothing. Together with line smoothing, point smooth-
ing falls under the topic of antialiasing. Antialiasing is a technique used to smooth out
jagged edges and round out corners; it is covered in more detail in Chapter 6.

Points can also be made to grow and shrink with the perspective projection, but this is not
the default behavior. A feature called point parameters makes this possible, and is a bit deep
for this early in the book. We will discuss point parameters along with another interesting
point texturing feature called point sprites in Chapter 9, “Texture Mapping: Beyond the
Basics.”

Drawing Lines in 3D
The GL_POINTS primitive we have been using thus far is reasonably straightforward; for
each vertex specified, it draws a point. The next logical step is to specify two vertices and
draw a line between them. This is exactly what the next primitive, GL_LINES, does. The
following short section of code draws a single line between two points (0,0,0) and
(50,50,50):

glBegin(GL_LINES);

glVertex3f(0.0f, 0.0f, 0.0f);

glVertex3f(50.0f, 50.0f, 50.0f);

glEnd();

Note here that two vertices specify a single primitive. For every two vertices specified, a
single line is drawn. If you specify an odd number of vertices for GL_LINES, the last vertex
is just ignored. Listing 3.4, from the LINES sample program, shows a more complex
sample that draws a series of lines fanned around in a circle. Each point specified in this
sample is paired with a point on the opposite side of a circle. The output from this
program is shown in Figure 3.6.

Drawing Lines in 3D 85

3

FIGURE 3.6 Output from the LINES sample program.

LISTING 3.4 Code from the Sample Program LINES That Displays a Series of Lines Fanned in
a Circle

// Call only once for all remaining points

glBegin(GL_LINES);

// All lines lie in the xy plane.

z = 0.0f;

for(angle = 0.0f; angle <= GL_PI; angle += (GL_PI/20.0f))

{

// Top half of the circle

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

glVertex3f(x, y, z); // First endpoint of line

// Bottom half of the circle

x = 50.0f*sin(angle + GL_PI);

y = 50.0f*cos(angle + GL_PI);

glVertex3f(x, y, z); // Second endpoint of line

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers86

LISTING 3.4 Continued

}

// Done drawing points

glEnd();

Line Strips and Loops
The next two OpenGL primitives build on GL_LINES by allowing you to specify a list of
vertices through which a line is drawn. When you specify GL_LINE_STRIP, a line is drawn
from one vertex to the next in a continuous segment. The following code draws two lines
in the xy plane that are specified by three vertices. Figure 3.7 shows an example.

glBegin(GL_LINE_STRIP);

glVertex3f(0.0f, 0.0f, 0.0f); // V0

glVertex3f(50.0f, 50.0f, 0.0f); // V1

glVertex3f(50.0f, 100.0f, 0.0f); // V2

glEnd();

Drawing Lines in 3D 87

3

FIGURE 3.7 An example of a GL_LINE_STRIP specified by three vertices.

The last line-based primitive is GL_LINE_LOOP. This primitive behaves just like
GL_LINE_STRIP, but one final line is drawn between the last vertex specified and the first
one specified. This is an easy way to draw a closed-line figure. Figure 3.8 shows a
GL_LINE_LOOP drawn using the same vertices as for the GL_LINE_STRIP in Figure 3.7.

FIGURE 3.8 The same vertices from Figure 3.7 used by a GL_LINE_LOOP primitive.

Approximating Curves with Straight Lines
The POINTS sample program, shown earlier in Figure 3.3, showed you how to plot points
along a spring-shaped path. You might have been tempted to push the points closer and
closer together (by setting smaller values for the angle increment) to create a smooth
spring-shaped curve instead of the broken points that only approximated the shape. This
perfectly valid operation can move quite slowly for larger and more complex curves with
thousands of points.

A better way of approximating a curve is to use GL_LINE_STRIP to play connect-the-dots.
As the dots move closer together, a smoother curve materializes without you having to
specify all those points. Listing 3.5 shows the code from Listing 3.2, with GL_POINTS
replaced by GL_LINE_STRIP. The output from this new program, LSTRIPS, is shown in
Figure 3.9. As you can see, the approximation of the curve is quite good. You will find this
handy technique almost ubiquitous among OpenGL programs.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers88

FIGURE 3.9 Output from the LSTRIPS program approximating a smooth curve.

LISTING 3.5 Code from the Sample Program LSTRIPS, Demonstrating Line Strips

// Call only once for all remaining points

glBegin(GL_LINE_STRIP);

z = -50.0f;

for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)

{

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Specify the point and move the z value up a little

glVertex3f(x, y, z);

z += 0.5f;

}

// Done drawing points

glEnd();

Setting the Line Width
Just as you can set different point sizes, you can also specify various line widths when
drawing lines by using the glLineWidth function:

void glLineWidth(GLfloat width);

The glLineWidth function takes a single parameter that specifies the approximate width,
in pixels, of the line drawn. Just as with point sizes, not all line widths are supported, and
you should make sure that the line width you want to specify is available. Use the follow-
ing code to get the range of line widths and the smallest interval between them:

GLfloat sizes[2]; // Store supported line width range

GLfloat step; // Store supported line width increments

// Get supported line width range and step size

glGetFloatv(GL_LINE_WIDTH_RANGE,sizes);

glGetFloatv(GL_LINE_WIDTH_GRANULARITY,&step);

Here, the sizes array will contain two elements that contain the smallest and largest valid
value for glLineWidth. In addition, the variable step will hold the smallest step size allow-
able between the line widths. The OpenGL specification requires only that one line width,
1.0, be supported. The Microsoft implementation of OpenGL allows for line widths from
0.5 to 10.0, with 0.125 the smallest step size.

Drawing Lines in 3D 89

3

Listing 3.6 shows code for a more substantial example of glLineWidth. It’s from the
program LINESW and draws 10 lines of varying widths. It starts at the bottom of the
window at –90 on the y-axis and climbs the y-axis 20 units for each new line. Every time
it draws a new line, it increases the line width by 1. Figure 3.10 shows the output for this
program.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers90

FIGURE 3.10 A demonstration of glLineWidth from the LINESW program.

LISTING 3.6 Drawing Lines of Various Widths

// Called to draw scene

void RenderScene(void)

{

GLfloat y; // Storage for varying Y coordinate

GLfloat fSizes[2]; // Line width range metrics

GLfloat fCurrSize; // Save current size

...

...

...

// Get line size metrics and save the smallest value

glGetFloatv(GL_LINE_WIDTH_RANGE,fSizes);

fCurrSize = fSizes[0];

// Step up y axis 20 units at a time

for(y = -90.0f; y < 90.0f; y += 20.0f)

{

// Set the line width

glLineWidth(fCurrSize);

// Draw the line

glBegin(GL_LINES);

glVertex2f(-80.0f, y);

LISTING 3.6 Continued

glVertex2f(80.0f, y);

glEnd();

// Increase the line width

fCurrSize += 1.0f;

}

...

...

}

Notice that we used glVertex2f this time instead of glVertex3f to specify the coordinates
for the lines. As mentioned, using this technique is only a convenience because we are
drawing in the xy plane, with a z value of 0. To see that you are still drawing lines in three
dimensions, simply use the arrow keys to spin your lines around. You easily see that all
the lines lie on a single plane.

Line Stippling
In addition to changing line widths, you can create lines with a dotted or dashed pattern,
called stippling. To use line stippling, you must first enable stippling with a call to

glEnable(GL_LINE_STIPPLE);

Then the function glLineStipple establishes the pattern that the lines use for drawing:

void glLineStipple(GLint factor, GLushort pattern);

REMINDER

Any feature or capability that is enabled by a call to glEnable can be disabled by a call to
glDisable.

The pattern parameter is a 16-bit value that specifies a pattern to use when drawing the
lines. Each bit represents a section of the line segment that is either on or off. By default,
each bit corresponds to a single pixel, but the factor parameter serves as a multiplier to
increase the width of the pattern. For example, setting factor to 5 causes each bit in the
pattern to represent five pixels in a row that are either on or off. Furthermore, bit 0 (the
least significant bit) of the pattern is used first to specify the line. Figure 3.11 illustrates a
sample bit pattern applied to a line segment.

Drawing Lines in 3D 91

3

FIGURE 3.11 A stipple pattern is used to construct a line segment.

WHY ARE THESE PATTERNS BACKWARD?

You might wonder why the bit pattern for stippling is used in reverse when the line is drawn.
Internally, it’s much faster for OpenGL to shift this pattern to the left one place each time it needs
to get the next mask value. OpenGL was designed for high-performance graphics and frequently
employs similar tricks elsewhere.

Listing 3.7 shows a sample of using a stippling pattern that is just a series of alternating on
and off bits (0101010101010101). This code is taken from the LSTIPPLE program, which
draws 10 lines from the bottom of the window up the y-axis to the top. Each line is stip-
pled with the pattern 0x5555, but for each new line, the pattern multiplier is increased by
1. You can clearly see the effects of the widened stipple pattern in Figure 3.12.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers92

FIGURE 3.12 Output from the LSTIPPLE program.

LISTING 3.7 Code from LSTIPPLE That Demonstrates the Effect of factor on the Bit Pattern

// Called to draw scene

void RenderScene(void)

{

GLfloat y; // Storage for varying y coordinate

GLint factor = 1; // Stippling factor

GLushort pattern = 0x5555; // Stipple pattern

...

...

// Enable Stippling

glEnable(GL_LINE_STIPPLE);

// Step up Y axis 20 units at a time

for(y = -90.0f; y < 90.0f; y += 20.0f)

{

// Reset the repeat factor and pattern

glLineStipple(factor,pattern);

// Draw the line

glBegin(GL_LINES);

glVertex2f(-80.0f, y);

glVertex2f(80.0f, y);

glEnd();

factor++;

}

...

...

}

Just the ability to draw points and lines in 3D gives you a significant set of tools for creat-
ing your own 3D masterpiece. Figure 3.13 shows a 3D weather mapping program with an
OpenGL-rendered map that is rendered entirely of solid and stippled line strips.

Drawing Lines in 3D 93

3

FIGURE 3.13 A 3D map rendered with solid and stippled lines.

Drawing Triangles in 3D
You’ve seen how to draw points and lines and even how to draw some enclosed polygons
with GL_LINE_LOOP. With just these primitives, you could easily draw any shape possible
in three dimensions. You could, for example, draw six squares and arrange them so they
form the sides of a cube.

You might have noticed, however, that any shapes you create with these primitives are not
filled with any color; after all, you are drawing only lines. In fact, arranging six squares
produces just a wireframe cube, not a solid cube. To draw a solid surface, you need more
than just points and lines; you need polygons. A polygon is a closed shape that may or
may not be filled with the currently selected color, and it is the basis of all solid-object
composition in OpenGL.

Triangles: Your First Polygon
The simplest polygon possible is the triangle, with only three sides. The GL_TRIANGLES
primitive draws triangles by connecting three vertices together. The following code draws
two triangles using three vertices each, as shown in Figure 3.14:

glBegin(GL_TRIANGLES);

glVertex2f(0.0f, 0.0f); // V0

glVertex2f(25.0f, 25.0f); // V1

glVertex2f(50.0f, 0.0f); // V2

glVertex2f(-50.0f, 0.0f); // V3

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers94

glVertex2f(-75.0f, 50.0f); // V4

glVertex2f(-25.0f, 0.0f); // V5

glEnd();

Drawing Triangles in 3D 95

3

x

y

1

2

3 3

1 2

V2

V1

V0V5

V4

V3

FIGURE 3.14 Two triangles drawn using GL_TRIANGLES.

NOTE

The triangles will be filled with the currently selected drawing color. If you don’t specify a
drawing color yourself at some point, you will get the default, which is white.

Winding
An important characteristic of any polygonal primitive is illustrated in Figure 3.14. Notice
the arrows on the lines that connect the vertices. When the first triangle is drawn, the
lines are drawn from V0 to V1, then to V2, and finally back to V0 to close the triangle.
This path is in the order in which the vertices are specified, and for this example, that
order is clockwise from your point of view. The same directional characteristic is present
for the second triangle as well.

The combination of order and direction in which the vertices are specified is called
winding. The triangles in Figure 3.14 are said to have clockwise winding because they are
literally wound in the clockwise direction. If we reverse the positions of V4 and V5 on the
triangle on the left, we get counterclockwise winding. Figure 3.15 shows two triangles, each
with opposite windings.

FIGURE 3.15 Two triangles with different windings.

OpenGL, by default, considers polygons that have counterclockwise winding to be front
facing. This means that the triangle on the left in Figure 3.15 shows the front of the trian-
gle, and the one on the right shows the back of the triangle.

Why is this issue important? As you will soon see, you will often want to give the front
and back of a polygon different physical characteristics. You can hide the back of a
polygon altogether or give it a different color and reflective property (see Chapter 5,
“Color, Materials, and Lighting: The Basics”). It’s important to keep the winding of all
polygons in a scene consistent, using front-facing polygons to draw the outside surface of
any solid objects. In the upcoming section on solid objects, we demonstrate this principle
using some models that are more complex.

If you need to reverse the default behavior of OpenGL, you can do so by calling the
following function:

glFrontFace(GL_CW);

The GL_CW parameter tells OpenGL that clockwise-wound polygons are to be considered
front facing. To change back to counterclockwise winding for the front face, use GL_CCW.

Triangle Strips
For many surfaces and shapes, you need to draw several connected triangles. You can save
a lot of time by drawing a strip of connected triangles with the GL_TRIANGLE_STRIP primi-
tive. Figure 3.16 shows the progression of a strip of three triangles specified by a set of five
vertices numbered V0 through V4. Here, you see that the vertices are not necessarily
traversed in the same order in which they were specified. The reason for this is to preserve
the winding (counterclockwise) of each triangle. The pattern is V0, V1, V2; then V2, V1,
V3; then V2, V3, V4; and so on.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers96

FIGURE 3.16 The progression of a GL_TRIANGLE_STRIP.

For the rest of the discussion of polygonal primitives, we don’t show any more code frag-
ments to demonstrate the vertices and the glBegin statements. You should have the swing
of things by now. Later, when we have a real sample program to work with, we’ll resume
the examples.

There are two advantages to using a strip of triangles instead of specifying each triangle
separately. First, after specifying the first three vertices for the initial triangle, you need to
specify only a single point for each additional triangle. This saves a lot of program or data
storage space when you have many triangles to draw. The second advantage is mathemati-
cal performance and bandwidth savings. Fewer vertices means a faster transfer from your
computer’s memory to your graphics card and fewer vertex transformations (see Chapter 4).

TIP

Another advantage to composing large flat surfaces out of several smaller triangles is that when
lighting effects are applied to the scene, OpenGL can better reproduce the simulated effects.
You’ll learn more about lighting in Chapter 5.

Triangle Fans
In addition to triangle strips, you can use GL_TRIANGLE_FAN to produce a group of
connected triangles that fan around a central point. Figure 3.17 shows a fan of three trian-
gles produced by specifying four vertices. The first vertex, V0, forms the origin of the fan.
After the first three vertices are used to draw the initial triangle, all subsequent vertices are
used with the origin (V0) and the vertex immediately preceding it (Vn–1) to form the next
triangle.

Drawing Triangles in 3D 97

3

FIGURE 3.17 The progression of GL_TRIANGLE_FAN.

Building Solid Objects
Composing a solid object out of triangles (or any other polygon) involves more than
assembling a series of vertices in a 3D coordinate space. Let’s examine the sample program
TRIANGLE, which uses two triangle fans to create a cone in our viewing volume. The first
fan produces the cone shape, using the first vertex as the point of the cone and the
remaining vertices as points along a circle farther down the z-axis. The second fan forms a
circle and lies entirely in the xy plane, making up the bottom surface of the cone.

The output from TRIANGLE is shown in Figure 3.18. Here, you are looking directly down
the z-axis and can see only a circle composed of a fan of triangles. The individual triangles
are emphasized by coloring them alternately green and red.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers98

V1

V2
V3

V0

1

2

3

V1

V2

V0

V3

V31 2
2

3

V1

V2

V4

V0

1

2

3

FIGURE 3.18 Initial output from the TRIANGLE sample program.

The code for the SetupRC and RenderScene functions is shown in Listing 3.8. (This listing
contains some unfamiliar variables and specifiers that are explained shortly.) This program
demonstrates several aspects of composing 3D objects. Right-click in the window, and you
will notice an Effects menu; it will be used to enable and disable some 3D drawing features
so that we can explore some of the characteristics of 3D object creation. We’ll describe
these features as we progress.

LISTING 3.8 SetupRC and RenderScene Code for the TRIANGLE Sample Program

// This function does any needed initialization on the rendering

// context.

void SetupRC()

{

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

// Set drawing color to green

glColor3f(0.0f, 1.0f, 0.0f);

// Set color shading model to flat

glShadeModel(GL_FLAT);

// Clockwise-wound polygons are front facing; this is reversed

// because we are using triangle fans

glFrontFace(GL_CW);

}

// Called to draw scene

void RenderScene(void)

{

GLfloat x,y,angle; // Storage for coordinates and angles

int iPivot = 1; // Used to flag alternating colors

// Clear the window and the depth buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Turn culling on if flag is set

if(bCull)

glEnable(GL_CULL_FACE);

else

glDisable(GL_CULL_FACE);

// Enable depth testing if flag is set

if(bDepth)

glEnable(GL_DEPTH_TEST);

else

glDisable(GL_DEPTH_TEST);

// Draw the back side as a wireframe only, if flag is set

Building Solid Objects 99

3

LISTING 3.8 Continued

if(bOutline)

glPolygonMode(GL_BACK,GL_LINE);

else

glPolygonMode(GL_BACK,GL_FILL);

// Save matrix state and do the rotation

glPushMatrix();

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Begin a triangle fan

glBegin(GL_TRIANGLE_FAN);

// Pinnacle of cone is shared vertex for fan, moved up z-axis

// to produce a cone instead of a circle

glVertex3f(0.0f, 0.0f, 75.0f);

// Loop around in a circle and specify even points along the circle

// as the vertices of the triangle fan

for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))

{

// Calculate x and y position of the next vertex

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Alternate color between red and green

if((iPivot %2) == 0)

glColor3f(0.0f, 1.0f, 0.0f);

else

glColor3f(1.0f, 0.0f, 0.0f);

// Increment pivot to change color next time

iPivot++;

// Specify the next vertex for the triangle fan

glVertex2f(x, y);

}

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers100

LISTING 3.8 Continued

// Done drawing fan for cone

glEnd();

// Begin a new triangle fan to cover the bottom

glBegin(GL_TRIANGLE_FAN);

// Center of fan is at the origin

glVertex2f(0.0f, 0.0f);

for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))

{

// Calculate x and y position of the next vertex

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Alternate color between red and green

if((iPivot %2) == 0)

glColor3f(0.0f, 1.0f, 0.0f);

else

glColor3f(1.0f, 0.0f, 0.0f);

// Increment pivot to change color next time

iPivot++;

// Specify the next vertex for the triangle fan

glVertex2f(x, y);

}

// Done drawing the fan that covers the bottom

glEnd();

// Restore transformations

glPopMatrix();

glutSwapBuffers ();

}

Setting Polygon Colors
Until now, we have set the current color only once and drawn only a single shape. Now,
with multiple polygons, things get slightly more interesting. We want to use different

Building Solid Objects 101

3

colors so we can see our work more easily. Colors are actually specified per vertex, not per
polygon. The shading model affects whether the polygon is solidly colored (using the
current color selected when the last vertex was specified) or smoothly shaded between the
colors specified for each vertex.

The line

glShadeModel(GL_FLAT);

tells OpenGL to fill the polygons with the solid color that was current when the polygon’s
last vertex was specified. This is why we can simply change the current color to red or
green before specifying the next vertex in our triangle fan. On the other hand, the line

glShadeModel(GL_SMOOTH);

would tell OpenGL to shade the triangles smoothly from each vertex, attempting to inter-
polate the colors between those specified for each vertex. You’ll learn much more about
color and shading in Chapter 5.

Hidden Surface Removal
Hold down one of the arrow keys to spin the cone around, and don’t select anything from
the Effects menu yet. You’ll notice something unsettling: The cone appears to be swinging
back and forth plus and minus 180°, with the bottom of the cone always facing you, but
not rotating a full 360°. Figure 3.19 shows this effect more clearly.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers102

FIGURE 3.19 The rotating cone appears to be wobbling back and forth.

This wobbling happens because the bottom of the cone is drawn after the sides of the
cone are drawn. No matter how the cone is oriented, the bottom is drawn on top of it,
producing the “wobbling” illusion. This effect is not limited to the various sides and parts
of an object. If more than one object is drawn and one is in front of the other (from the
viewer’s perspective), the last object drawn still appears over the previously drawn object.

You can correct this peculiarity with a simple feature called depth testing. Depth testing is
an effective technique for hidden surface removal, and OpenGL has functions that do this
for you behind the scenes. The concept is simple: When a pixel is drawn, it is assigned a
value (called the z value) that denotes its distance from the viewer’s perspective. Later,
when another pixel needs to be drawn to that screen location, the new pixel’s z value is
compared to that of the pixel that is already stored there. If the new pixel’s z value is
higher, it is closer to the viewer and thus in front of the previous pixel, so the previous
pixel is obscured by the new pixel. If the new pixel’s z value is lower, it must be behind
the existing pixel and thus is not obscured. This maneuver is accomplished internally by a
depth buffer with storage for a depth value for every pixel on the screen. Almost all the
samples in this book use depth testing.

You should request a depth buffer when you set up your OpenGL window with GLUT. For
example, you can request a color and a depth buffer like this:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

To enable depth testing, simply call

glEnable(GL_DEPTH_TEST);

If you do not have a depth buffer, then enabling depth testing will just be ignored. Depth
testing is enabled in Listing 3.8 when the bDepth variable is set to True, and it is disabled
if bDepth is False:

// Enable depth testing if flag is set

if(bDepth)

glEnable(GL_DEPTH_TEST);

else

glDisable(GL_DEPTH_TEST);

The bDepth variable is set when you select Depth Test from the Effects menu. In addition,
the depth buffer must be cleared each time the scene is rendered. The depth buffer is anal-
ogous to the color buffer in that it contains information about the distance of the pixels
from the observer. This information is used to determine whether any pixels are hidden by
pixels closer to the observer:

// Clear the window and the depth buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

A right-click with the mouse opens a pop-up menu that allows you to toggle depth testing
on and off. Figure 3.20 shows the TRIANGLE program with depth testing enabled. It also
shows the cone with the bottom correctly hidden behind the sides. You can see that depth
testing is practically a prerequisite for creating 3D objects out of solid polygons.

Building Solid Objects 103

3

FIGURE 3.20 The bottom of the cone is now correctly placed behind the sides for this
orientation.

Culling: Hiding Surfaces for Performance
You can see that there are obvious visual advantages to not drawing a surface that is
obstructed by another. Even so, you pay some performance overhead because every pixel
drawn must be compared with the previous pixel’s z value. Sometimes, however, you
know that a surface will never be drawn anyway, so why specify it? Culling is the term
used to describe the technique of eliminating geometry that we know will never be seen.
By not sending this geometry to your OpenGL driver and hardware, you can make signifi-
cant performance improvements. One culling technique is backface culling, which elimi-
nates the backsides of a surface.

In our working example, the cone is a closed surface, and we never see the inside. OpenGL
is actually (internally) drawing the back sides of the far side of the cone and then the front
sides of the polygons facing us. Then, by a comparison of z buffer values, the far side of
the cone is either overwritten or ignored. Figures 3.21a and 3.21b show our cone at a
particular orientation with depth testing turned on (a) and off (b). Notice that the green
and red triangles that make up the cone sides change when depth testing is enabled.
Without depth testing, the sides of the triangles at the far side of the cone show through.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers104

FIGURE 3.21A With depth testing.

FIGURE 3.21B Without depth testing.

Earlier in the chapter, we explained how OpenGL uses winding to determine the front and
back sides of polygons and that it is important to keep the polygons that define the outside
of our objects wound in a consistent direction. This consistency is what allows us to tell
OpenGL to render only the front, only the back, or both sides of polygons. By eliminating
the back sides of the polygons, we can drastically reduce the amount of processing necessary
to render the image. Even though depth testing will eliminate the appearance of the inside
of objects, internally OpenGL must take them into account unless we explicitly tell it not to.

Backface culling is enabled or disabled for our program via the following code from Listing 3.8:

// Clockwise-wound polygons are front facing; this is reversed

// because we are using triangle fans

glFrontFace(GL_CW);

...

...

// Turn culling on if flag is set

if(bCull)

glEnable(GL_CULL_FACE);

else

glDisable(GL_CULL_FACE);

Note that we first changed the definition of front-facing polygons to assume clockwise
winding (because our triangle fans are all wound clockwise).

Figure 3.22 demonstrates that the bottom of the cone is gone when culling is enabled. The
reason is that we didn’t follow our own rule about all the surface polygons having the
same winding. The triangle fan that makes up the bottom of the cone is wound clockwise,
like the fan that makes up the sides of the cone, but the front side of the cone’s bottom
section is then facing the inside (see Figure 3.23).

Building Solid Objects 105

3

FIGURE 3.22 The bottom of the cone is culled because the front-facing triangles are inside.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers106

FIGURE 3.23 How the cone was assembled from two triangle fans.

We could have corrected this problem by changing the winding rule, by calling

glFrontFace(GL_CCW);

just before we drew the second triangle fan. But in this example, we wanted to make it
easy for you to see culling in action, as well as set up for our next demonstration of
polygon tweaking.

WHY DO WE NEED BACKFACE CULLING?

You might wonder, “If backface culling is so desirable, why do we need the ability to turn it on
and off?” Backface culling is useful for drawing closed objects or solids, but you won’t always be
rendering these types of geometry. Some flat objects (such as paper) can still be seen from both
sides. If the cone we are drawing here were made of glass or plastic, you would actually be able
to see the front and the back sides of the geometry. (See Chapter 6 for a discussion of drawing
transparent objects.)

Polygon Modes
Polygons don’t have to be filled with the current color. By default, polygons are drawn
solid, but you can change this behavior by specifying that polygons are to be drawn as
outlines or just points (only the vertices are plotted). The function glPolygonMode allows
polygons to be rendered as filled solids, as outlines, or as points only. In addition, you can
apply this rendering mode to both sides of the polygons or only to the front or back. The
following code from Listing 3.8 shows the polygon mode being set to outlines or solid,
depending on the state of the Boolean variable bOutline:

// Draw back side as a polygon only, if flag is set

if(bOutline)

glPolygonMode(GL_BACK,GL_LINE);

else

glPolygonMode(GL_BACK,GL_FILL);

Figure 3.24 shows the back sides of all polygons rendered as outlines. (We had to disable
culling to produce this image; otherwise, the inside would be eliminated and you would
get no outlines.) Notice that the bottom of the cone is now wireframe instead of solid,
and you can see up inside the cone where the inside walls are also drawn as wireframe
triangles.

Other Primitives 107

3

FIGURE 3.24 Using glPolygonMode to render one side of the triangles as outlines.

Other Primitives
Triangles are the preferred primitive for object composition because most OpenGL hard-
ware specifically accelerates triangles, but they are not the only primitives available. Some
hardware provides for acceleration of other shapes as well, and programmatically, using a
general-purpose graphics primitive might be simpler. The remaining OpenGL primitives
provide for rapid specification of a quadrilateral or quadrilateral strip, as well as a general-
purpose polygon.

Four-Sided Polygons: Quads
If you add one more side to a triangle, you get a quadrilateral, or a four-sided figure.
OpenGL’s GL_QUADS primitive draws a four-sided polygon. In Figure 3.25, a quad is drawn
from four vertices. Note also that these quads have clockwise winding. One important rule
to bear in mind when you use quads is that all four corners of the quadrilateral must lie in
a plane (no bent quads!).

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers108

FIGURE 3.25 An example of GL_QUADS.

Quad Strips
As you can for triangle strips, you can specify a strip of connected quadrilaterals with the
GL_QUAD_STRIP primitive. Figure 3.26 shows the progression of a quad strip specified by six
vertices. Note that these quad strips maintain a clockwise winding.

FIGURE 3.26 The progression of GL_QUAD_STRIP.

General Polygons
The final OpenGL primitive is the GL_POLYGON, which you can use to draw a polygon
having any number of sides. Figure 3.27 shows a polygon consisting of five vertices.
Polygons, like quads, must have all vertices on the same plane. An easy way around this
rule is to substitute GL_TRIANGLE_FAN for GL_POLYGON!

FIGURE 3.27 The progression of GL_POLYGON.

WHAT ABOUT RECTANGLES?

All 10 of the OpenGL primitives are used with glBegin/glEnd to draw general-purpose polygonal
shapes. Although in Chapter 2 we used the function glRect as an easy and convenient mecha-
nism for specifying 2D rectangles, henceforth we will resort to using GL_QUADS.

Filling Polygons, or Stippling Revisited
There are two methods for applying a pattern to solid polygons. The customary method is
texture mapping, in which an image is mapped to the surface of a polygon, and this is
covered in Chapter 8, “Texture Mapping: The Basics.” Another way is to specify a stippling
pattern, as we did for lines. A polygon stipple pattern is nothing more than a 32×32
monochrome bitmap that is used for the fill pattern.

To enable polygon stippling, call

glEnable(GL_POLYGON_STIPPLE);

and then call

glPolygonStipple(pBitmap);

pBitmap is a pointer to a data area containing the stipple pattern. Hereafter, all polygons
are filled using the pattern specified by pBitmap (GLubyte *). This pattern is similar to that
used by line stippling, except the buffer is large enough to hold a 32-by-32-bit pattern.
Also, the bits are read with the most significant bit (MSB) first, which is just the opposite
of line stipple patterns. Figure 3.28 shows a bit pattern for a campfire that we use for a
stipple pattern.

Other Primitives 109

3

FIGURE 3.28 Building a polygon stipple pattern.

PIXEL STORAGE

As you will learn in Chapter 7, “Imaging with OpenGL,” you can modify the way pixels for
stipple patterns are interpreted by using the glPixelStore function. For now, however, we stick
to the simple default polygon stippling.

To construct a mask to represent this pattern, we store one row at a time from the bottom
up. Fortunately, unlike line stipple patterns, the data is, by default, interpreted just as it is
stored, with the most significant bit read first. Each byte can then be read from left to
right and stored in an array of GLubyte large enough to hold 32 rows of 4 bytes apiece.

Listing 3.9 shows the code used to store this pattern. Each row of the array represents a
row from Figure 3.28. The first row in the array is the last row of the figure, and so on, up
to the last row of the array and the first row of the figure.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers110

LISTING 3.9 Mask Definition for the Campfire in Figure 3.28

// Bitmap of campfire

GLubyte fire[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x01, 0xf0,

0x00, 0x00, 0x07, 0xf0, 0x0f, 0x00, 0x1f, 0xe0,

0x1f, 0x80, 0x1f, 0xc0, 0x0f, 0xc0, 0x3f, 0x80,

0x07, 0xe0, 0x7e, 0x00, 0x03, 0xf0, 0xff, 0x80,

0x03, 0xf5, 0xff, 0xe0, 0x07, 0xfd, 0xff, 0xf8,

0x1f, 0xfc, 0xff, 0xe8, 0xff, 0xe3, 0xbf, 0x70,

0xde, 0x80, 0xb7, 0x00, 0x71, 0x10, 0x4a, 0x80,

0x03, 0x10, 0x4e, 0x40, 0x02, 0x88, 0x8c, 0x20,

0x05, 0x05, 0x04, 0x40, 0x02, 0x82, 0x14, 0x40,

0x02, 0x40, 0x10, 0x80, 0x02, 0x64, 0x1a, 0x80,

0x00, 0x92, 0x29, 0x00, 0x00, 0xb0, 0x48, 0x00,

0x00, 0xc8, 0x90, 0x00, 0x00, 0x85, 0x10, 0x00,

0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00 };

To make use of this stipple pattern, we must first enable polygon stippling and then
specify this pattern as the stipple pattern. The PSTIPPLE sample program does this and
then draws an octagon using the stipple pattern. Listing 3.10 shows the pertinent code,
and Figure 3.29 shows the output from PSTIPPLE.

Other Primitives 111

3

FIGURE 3.29 Output from the PSTIPPLE program.

LISTING 3.10 Code from PSTIPPLE That Draws a Stippled Octagon

// This function does any needed initialization on the rendering

// context.

void SetupRC()

{

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

// Set drawing color to red

glColor3f(1.0f, 0.0f, 0.0f);

// Enable polygon stippling

glEnable(GL_POLYGON_STIPPLE);

// Specify a specific stipple pattern

glPolygonStipple(fire);

}

// Called to draw scene

void RenderScene(void)

{

// Clear the window

glClear(GL_COLOR_BUFFER_BIT);

...

...

// Begin the stop sign shape,

// use a standard polygon for simplicity

glBegin(GL_POLYGON);

glVertex2f(-20.0f, 50.0f);

glVertex2f(20.0f, 50.0f);

glVertex2f(50.0f, 20.0f);

glVertex2f(50.0f, -20.0f);

glVertex2f(20.0f, -50.0f);

glVertex2f(-20.0f, -50.0f);

glVertex2f(-50.0f, -20.0f);

glVertex2f(-50.0f, 20.0f);

glEnd();

...

...

glutSwapBuffers ();

}

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers112

Figure 3.30 shows the octagon rotated somewhat. Notice that the stipple pattern is still
used, but the pattern is not rotated with the polygon. The stipple pattern is used only for
simple polygon filling onscreen. If you need to map an image to a polygon so that it
mimics the polygon’s surface, you must use texture mapping (see Chapter 8).

Other Primitives 113

3

FIGURE 3.30 PSTIPPLE output with the polygon rotated, showing that the stipple pattern is
not rotated.

Polygon Construction Rules
When you are using many polygons to construct a complex surface, you need to remem-
ber two important rules.

The first rule is that all polygons must be planar. That is, all the vertices of the polygon
must lie in a single plane, as illustrated in Figure 3.31. The polygon cannot twist or bend
in space.

FIGURE 3.31 Planar versus nonplanar polygons.

Here is yet another good reason to use triangles. No triangle can ever be twisted so that all
three points do not line up in a plane because mathematically it takes only three points to
define a plane. (If you can plot an invalid triangle, aside from winding it in the wrong

direction, the Nobel Prize committee might be looking for you! No cheating! Three points
in a straight line do not count!)

The second rule of polygon construction is that the polygon’s edges must not intersect,
and the polygon must be convex. A polygon intersects itself if any two of its lines cross.
Convex means that the polygon cannot have any indentions. A more rigorous test of a
convex polygon is to draw some lines through it. If any given line enters and leaves the
polygon more than once, the polygon is not convex. Figure 3.32 gives examples of good
and bad polygons.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers114

FIGURE 3.32 Some valid and invalid primitive polygons.

WHY THE LIMITATIONS ON POLYGONS?

You might wonder why OpenGL places the restrictions on polygon construction. Handling poly-
gons can become quite complex, and OpenGL’s restrictions allow it to use very fast algorithms
for rendering these polygons. We predict that you’ll not find these restrictions burdensome and
that you’ll be able to build any shapes or objects you need using the existing primitives. Chapter
10, “Curves and Surfaces,” discusses some techniques for breaking a complex shape into smaller
triangles.

Subdivision and Edges
Even though OpenGL can draw only convex polygons, there’s still a way to create a
nonconvex polygon: by arranging two or more convex polygons together. For example,
let’s take a four-point star, as shown in Figure 3.33. This shape is obviously not convex
and thus violates OpenGL’s rules for simple polygon construction. However, the star on
the right is composed of six separate triangles, which are legal polygons.

FIGURE 3.33 A nonconvex four-point star made up of six triangles.

When the polygons are filled, you won’t be able to see any edges and the figure will seem
to be a single shape onscreen. However, if you use glPolygonMode to switch to an outline
drawing, it is distracting to see all those little triangles making up some larger surface area.

OpenGL provides a special flag called an edge flag to address those distracting edges. By
setting and clearing the edge flag as you specify a list of vertices, you inform OpenGL
which line segments are considered border lines (lines that go around the border of your
shape) and which ones are not (internal lines that shouldn’t be visible). The glEdgeFlag
function takes a single parameter that sets the edge flag to True or False. When the func-
tion is set to True, any vertices that follow mark the beginning of a boundary line
segment. Listing 3.11 shows an example of this from the STAR sample program.

LISTING 3.11 Sample Usage of glEdgeFlag from the STAR Program

// Begin the triangles

glBegin(GL_TRIANGLES);

glEdgeFlag(bEdgeFlag);

glVertex2f(-20.0f, 0.0f);

glEdgeFlag(TRUE);

glVertex2f(20.0f, 0.0f);

glVertex2f(0.0f, 40.0f);

glVertex2f(-20.0f,0.0f);

glVertex2f(-60.0f,-20.0f);

glEdgeFlag(bEdgeFlag);

glVertex2f(-20.0f,-40.0f);

glEdgeFlag(TRUE);

glVertex2f(-20.0f,-40.0f);

glVertex2f(0.0f, -80.0f);

glEdgeFlag(bEdgeFlag);

Other Primitives 115

3

LISTING 3.11 Continued

glVertex2f(20.0f, -40.0f);

glEdgeFlag(TRUE);

glVertex2f(20.0f, -40.0f);

glVertex2f(60.0f, -20.0f);

glEdgeFlag(bEdgeFlag);

glVertex2f(20.0f, 0.0f);

glEdgeFlag(TRUE);

// Center square as two triangles

glEdgeFlag(bEdgeFlag);

glVertex2f(-20.0f, 0.0f);

glVertex2f(-20.0f,-40.0f);

glVertex2f(20.0f, 0.0f);

glVertex2f(-20.0f,-40.0f);

glVertex2f(20.0f, -40.0f);

glVertex2f(20.0f, 0.0f);

glEdgeFlag(TRUE);

// Done drawing triangles

glEnd();

The Boolean variable bEdgeFlag is toggled on and off by a menu option to make the edges
appear and disappear. If this flag is True, all edges are considered boundary edges and
appear when the polygon mode is set to GL_LINES. In Figure 3.34, you can see the output
from STAR, showing the wireframe star with and without edges.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers116

FIGURE 3.34 The STAR program with edges enabled (left) and without edges enabled
(right).

Other Buffer Tricks
You learned from Chapter 2 that OpenGL does not render (draw) these primitives directly
on the screen. Instead, rendering is done in a buffer, which is later swapped to the
screen. We refer to these two buffers as the front (the screen) and back color buffers. By
default, OpenGL commands are rendered into the back buffer, and when you call
glutSwapBuffers (or your operating system–specific buffer swap function), the front and
back buffers are swapped so that you can see the rendering results. You can, however,
render directly into the front buffer if you want. This capability can be useful for display-
ing a series of drawing commands so that you can see some object or shape actually being
drawn. There are two ways to do this; both are discussed in the following section.

Using Buffer Targets
The first way to render directly into the front buffer is to just tell OpenGL that you want
drawing to be done there. You do this by calling the following function:

void glDrawBuffer(Glenum mode);

Specifying GL_FRONT causes OpenGL to render to the front buffer, and GL_BACK moves
rendering back to the back buffer. OpenGL implementations can support more than just a
single front and back buffer for rendering, such as left and right buffers for stereo render-
ing, and auxiliary buffers. These other buffers are documented further in Appendix C, “API
Reference.”

The second way to render to the front buffer is to simply not request double-buffered
rendering when OpenGL is initialized. OpenGL is initialized differently on each OS plat-
form, but with GLUT, we initialize our display mode for RGB color and double-buffered
rendering with the following line of code:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

To get single-buffered rendering, you simply omit the bit flag GLUT_DOUBLE, as shown here:

glutInitDisplayMode(GLUT_RGB);

When you do single-buffered rendering, it is important to call either glFlush or glFinish
whenever you want to see the results actually drawn to screen. A buffer swap implicitly
performs a flush of the pipeline and waits for rendering to complete before the swap actu-
ally occurs. We’ll discuss the mechanics of this process in more detail in Chapter 11, “It’s
All About the Pipeline: Faster Geometry Throughput.”

Listing 3.12 shows the drawing code for the sample program SINGLE. This example uses a
single rendering buffer to draw a series of points spiraling out from the center of the
window. The RenderScene function is called repeatedly and uses static variables to cycle
through a simple animation. The output of the SINGLE sample program is shown in
Figure 3.35.

Other Buffer Tricks 117

3

FIGURE 3.35 Output from the single-buffered rendering example.

LISTING 3.12 Drawing Code for the SINGLE Sample

///

// Called to draw scene

void RenderScene(void)

{

static GLdouble dRadius = 0.1;

static GLdouble dAngle = 0.0;

// Clear blue window

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

if(dAngle == 0.0)

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_POINTS);

glVertex2d(dRadius * cos(dAngle), dRadius * sin(dAngle));

glEnd();

dRadius *= 1.01;

dAngle += 0.1;

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers118

LISTING 3.12 Continued

if(dAngle > 30.0)

{

dRadius = 0.1;

dAngle = 0.0;

}

glFlush();

}

Manipulating the Depth Buffer
The color buffers are not the only buffers that OpenGL renders into. In the preceding
chapter, we mentioned other buffer targets, including the depth buffer. However, the
depth buffer is filled with depth values instead of color values. Requesting a depth buffer
with GLUT is as simple as adding the GLUT_DEPTH bit flag when initializing the display
mode:

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

You’ve already seen that enabling the use of the depth buffer for depth testing is as easy as
calling the following:

glEnable(GL_DEPTH_TEST);

Even when depth testing is not enabled, if a depth buffer is created, OpenGL will write
corresponding depth values for all color fragments that go into the color buffer.
Sometimes, though, you may want to temporarily turn off writing values to the depth
buffer as well as depth testing. You can do this with the function glDepthMask:

void glDepthMask(GLboolean mask);

Setting the mask to GL_FALSE disables writes to the depth buffer but does not disable
depth testing from being performed using any values that have already been written to
the depth buffer. Calling this function with GL_TRUE re-enables writing to the depth buffer,
which is the default state. Masking color writes is also possible but is a bit more involved;
it’s mentioned in Chapter 6.

Cutting It Out with Scissors
One way to improve rendering performance is to update only the portion of the screen
that has changed. You may also need to restrict OpenGL rendering to a smaller rectangular
region inside the window. OpenGL allows you to specify a scissor rectangle within your
window where rendering can take place. By default, the scissor rectangle is the size of the

Other Buffer Tricks 119

3

window, and no scissor test takes place. You turn on the scissor test with the ubiquitous
glEnable function:

glEnable(GL_SCISSOR_TEST);

You can, of course, turn off the scissor test again with the corresponding glDisable func-
tion call. The rectangle within the window where rendering is performed, called the scissor
box, is specified in window coordinates (pixels) with the following function:

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-left corner of the scissor box, with width and
height being the corresponding dimensions of the scissor box. Listing 3.13 shows the
rendering code for the sample program SCISSOR. This program clears the color buffer
three times, each time with a smaller scissor box specified before the clear. The result is a
set of overlapping colored rectangles, as shown in Figure 3.36.

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers120

FIGURE 3.36 Shrinking scissor boxes.

LISTING 3.13 Using the Scissor Box to Render a Series of Rectangles

void RenderScene(void)

{

// Clear blue window

LISTING 3.13 Continued

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

glClear(GL_COLOR_BUFFER_BIT);

// Now set scissor to smaller red sub region

glClearColor(1.0f, 0.0f, 0.0f, 0.0f);

glScissor(100, 100, 600, 400);

glEnable(GL_SCISSOR_TEST);

glClear(GL_COLOR_BUFFER_BIT);

// Finally, an even smaller green rectangle

glClearColor(0.0f, 1.0f, 0.0f, 0.0f);

glScissor(200, 200, 400, 200);

glClear(GL_COLOR_BUFFER_BIT);

// Turn scissor back off for next render

glDisable(GL_SCISSOR_TEST);

glutSwapBuffers();

}

Using the Stencil Buffer
Using the OpenGL scissor box is a great way to restrict rendering to a rectangle within the
window. Frequently, however, we want to mask out an irregularly shaped area using a
stencil pattern. In the real world, a stencil is a flat piece of cardboard or other material
that has a pattern cut out of it. Painters use the stencil to apply paint to a surface using
the pattern in the stencil. Figure 3.37 shows how this process works.

Other Buffer Tricks 121

3

FIGURE 3.37 Using a stencil to paint a surface in the real world.

In the OpenGL world, we have the stencil buffer instead. The stencil buffer provides a
similar capability but is far more powerful because we can create the stencil pattern
ourselves with rendering commands. To use OpenGL stenciling, we must first request a
stencil buffer using the platform-specific OpenGL setup procedures. When using GLUT, we
request one when we initialize the display mode. For example, the following line of code
sets up a double-buffered RGB color buffer with stencil:

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_STENCIL);

The stencil operation is relatively fast on modern hardware-accelerated OpenGL imple-
mentations. It can also be turned on and off with glEnable/glDisable. For example, we
turn on the stencil test with the following line of code:

glEnable(GL_STENCIL_TEST);

With the stencil test enabled, drawing occurs only at locations that pass the stencil test.
You set up the stencil test that you want to use with this function:

void glStencilFunc(GLenum func, GLint ref, GLuint mask);

The stencil function that you want to use, func, can be any one of these values: GL_NEVER,
GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, and GL_NOTEQUAL. These
values tell OpenGL how to compare the value already stored in the stencil buffer with the
value you specify in ref. These values correspond to never or always passing, passing if
the reference value is less than, less than or equal, greater than or equal, greater than, and
not equal to the value already stored in the stencil buffer, respectively. In addition, you
can specify a mask value that is bitwise ANDed with both the reference value and the value
from the stencil buffer before the comparison takes place.

STENCIL BITS

You need to realize that the stencil buffer may be of limited precision. Stencil buffers are typically
only between 1 and 8 bits deep. Each OpenGL implementation may have its own limits on the
available bit depth of the stencil buffer, and each operating system or environment has its own
methods of querying and setting this value. In GLUT, you just get the most stencil bits available,
but for finer-grained control, you need to refer to the operating system–specific chapters later in
the book. Values passed to ref and mask that exceed the available bit depth of the stencil buffer
are simply truncated, and only the maximum number of least significant bits is used.

Creating the Stencil Pattern
You now know how the stencil test is performed, but how are values put into the stencil
buffer to begin with? First, we must make sure that the stencil buffer is cleared before we
start any drawing operations. We do this in the same way that we clear the color and
depth buffers with glClear—using the bit mask GL_STENCIL_BUFFER_BIT. For example, the
following line of code clears the color, depth, and stencil buffers simultaneously:

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers122

Other Buffer Tricks 123

3

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

The value used in the clear operation is set previously with a call to

glClearStencil(GLint s);

When the stencil test is enabled, rendering commands are tested against the value in the
stencil buffer using the glStencilFunc parameters we just discussed. Fragments (color
values placed in the color buffer) are either written or discarded based on the outcome of
that stencil test. The stencil buffer itself is also modified during this test, and what goes
into the stencil buffer depends on how you’ve called the glStencilOp function:

void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);

These values tell OpenGL how to change the value of the stencil buffer if the stencil test
fails (fail), and even if the stencil test passes, you can modify the stencil buffer if the
depth test fails (zfail) or passes (zpass). The valid values for these arguments are GL_KEEP,
GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR, GL_INVERT, GL_INCR_WRAP, and GL_DECR_WRAP.
These values correspond to keeping the current value, setting it to zero, replacing with the
reference value (from glStencilFunc), incrementing or decrementing the value, inverting
it, and incrementing/decrementing with wrap, respectively. Both GL_INCR and GL_DECR

increment and decrement the stencil value but are clamped to the minimum and
maximum value that can be represented in the stencil buffer for a given bit depth.
GL_INCR_WRAP and likewise GL_DECR_WRAP simply wrap the values around when they
exceed the upper and lower limits of a given bit representation.

In the sample program STENCIL, we create a spiral line pattern in the stencil buffer, but
not in the color buffer. The bouncing rectangle from Chapter 2 comes back for a visit, but
this time, the stencil test prevents drawing of the red rectangle anywhere the stencil buffer
contains a 0x1 value. Listing 3.14 shows the relevant drawing code.

LISTING 3.14 Rendering Code for the STENCIL Sample

void RenderScene(void)

{

GLdouble dRadius = 0.1; // Initial radius of spiral

GLdouble dAngle; // Looping variable

// Clear blue window

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

// Use 0 for clear stencil, enable stencil test

glClearStencil(0.0f);

glEnable(GL_STENCIL_TEST);

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers124

LISTING 3.14 Continued

// Clear color and stencil buffer

glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

// All drawing commands fail the stencil test, and are not

// drawn, but increment the value in the stencil buffer.

glStencilFunc(GL_NEVER, 0x0, 0x0);

glStencilOp(GL_INCR, GL_INCR, GL_INCR);

// Spiral pattern will create stencil pattern

// Draw the spiral pattern with white lines. We

// make the lines white to demonstrate that the

// stencil function prevents them from being drawn

glColor3f(1.0f, 1.0f, 1.0f);

glBegin(GL_LINE_STRIP);

for(dAngle = 0; dAngle < 400.0; dAngle += 0.1)

{

glVertex2d(dRadius * cos(dAngle), dRadius * sin(dAngle));

dRadius *= 1.002;

}

glEnd();

// Now, allow drawing, except where the stencil pattern is 0x1

// and do not make any further changes to the stencil buffer

glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

// Now draw red bouncing square

// (x and y) are modified by a timer function

glColor3f(1.0f, 0.0f, 0.0f);

glRectf(x, y, x + rsize, y - rsize);

// All done, do the buffer swap

glutSwapBuffers();

}

The following two lines cause all fragments to fail the stencil test. The values of ref and
mask are irrelevant in this case and are not used.

glStencilFunc(GL_NEVER, 0x0, 0x0);

glStencilOp(GL_INCR, GL_INCR, GL_INCR);

Other Buffer Tricks 125

3

The arguments to glStencilOp, however, cause the value in the stencil buffer to be written
(incremented actually), regardless of whether anything is seen on the screen. Following these
lines, a white spiral line is drawn, and even though the color of the line is white so you can
see it against the blue background, it is not drawn in the color buffer because it always fails
the stencil test (GL_NEVER). You are essentially rendering only to the stencil buffer!

Next, we change the stencil operation with these lines:

glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

Now, drawing will occur anywhere the stencil buffer is not equal (GL_NOTEQUAL) to 0x1,
which is anywhere onscreen that the spiral line is not drawn. The subsequent call to
glStencilOp is optional for this example, but it tells OpenGL to leave the stencil buffer
alone for all future drawing operations. Although this sample is best seen in action, Figure
3.38 shows an image of what the bounding red square looks like as it is “stenciled out.”

FIGURE 3.38 The bouncing red square with masking stencil pattern.

Just as with the depth buffer, you can also mask out writes to the stencil buffer by using
the function glStencilMask:

void glStencilMask(GLboolean mask);

126 CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers

Setting the mask to false does not disable stencil test operations but does prevent any
operation from writing values into the stencil buffer.

Summary
We covered a lot of ground in this chapter. At this point, you can create your 3D space for
rendering, and you know how to draw everything from points and lines to complex poly-
gons. We also showed you how to assemble these two-dimensional primitives as the
surface of three-dimensional objects.

You also learned about some of the other buffers that OpenGL renders into besides the
color buffer. As we move forward throughout the book, we will use the depth and stencil
buffers for many other techniques and special effects. In Chapter 6, you will learn about
yet another OpenGL buffer, the Accumulation buffer. You’ll see later that all these buffers
working together can create some outstanding and very realistic 3D graphics.

We encourage you to experiment with what you have learned in this chapter. Use your
imagination and create some of your own 3D objects before moving on to the rest of the
book. You’ll then have some personal samples to work with and enhance as you learn and
explore new techniques throughout the book.

CHAPTER 4

Geometric Transformations:
The Pipeline

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Establish your position in the scene gluLookAt

Position objects within the scene glTranslate/glRotate

Scale objects glScale

Establish a perspective transformation gluPerspective

Perform your own matrix transformations glLoadMatrix/glMultMatrix

Use a camera to move around in a scene gluLookAt

In Chapter 3, “Drawing in Space: Geometric Primitives and Buffers,” you learned how to
draw points, lines, and various primitives in 3D. To turn a collection of shapes into a
coherent scene, you must arrange them in relation to one another and to the viewer. In
this chapter, you start moving shapes and objects around in your coordinate system.
(Actually, you don’t move the objects, but rather shift the coordinate system to create the
view you want.) The ability to place and orient your objects in a scene is a crucial tool for
any 3D graphics programmer. As you will see, it is actually convenient to describe your
objects’ dimensions around the origin and then transform the objects into the desired
position.

Is This the Dreaded Math Chapter?
In most books on 3D graphics programming, yes, this would be the dreaded math chapter.
However, you can relax; we take a more moderate approach to these principles than some
texts.

128 CHAPTER 4 Geometric Transformations: The Pipeline

The keys to object and coordinate transformations are two matrices maintained by
OpenGL. To familiarize you with these matrices, this chapter strikes a compromise
between two extremes in computer graphics philosophy. On the one hand, we could
warn you, “Please review a textbook on linear algebra before reading this chapter.” On the
other hand, we could perpetuate the deceptive reassurance that you can “learn to do 3D
graphics without all those complex mathematical formulas.” But we don’t agree with
either camp.

In reality, you can get along just fine without understanding the finer mathematics of 3D
graphics, just as you can drive your car every day without having to know anything at all
about automotive mechanics and the internal combustion engine. But you had better
know enough about your car to realize that you need an oil change every so often, that
you have to fill the tank with gas regularly, and that you must change the tires when they
get bald. This knowledge makes you a responsible (and safe!) automobile owner. If you
want to be a responsible and capable OpenGL programmer, the same standards apply. You
need to understand at least the basics so you know what can be done and what tools best
suit the job. If you are a beginner, you will find that, with some practice, matrix math and
vectors will gradually make more and more sense, and you will develop a more intuitive
(and powerful) ability to make full use of the concepts we introduce in this chapter.

So even if you don’t already have the ability to multiply two matrices in your head, you
need to know what matrices are and that they are the means to OpenGL’s 3D magic. But
before you go dusting off that old linear algebra textbook (doesn’t everyone have one?),
have no fear: OpenGL does all the math for you. Think of using OpenGL as using a calcu-
lator to do long division when you don’t know how to do it on paper. Although you don’t
have to do it yourself, you still know what it is and how to apply it. See—you can eat your
cake and have it too!

Understanding Transformations
If you think about it, most 3D graphics aren’t really 3D. We use 3D concepts and termi-
nology to describe what something looks like; then this 3D data is “squished” onto a 2D
computer screen. We call the process of squishing 3D data down into 2D data projection,
and we introduced both orthographic and perspective projections back in Chapter 1,
“Introduction to 3D Graphics and OpenGL.” We refer to the projection whenever we want
to describe the type of transformation (orthographic or perspective) that occurs during
projection, but projection is only one of the types of transformations that occur in
OpenGL. Transformations also allow you to rotate objects around; move them about; and
even stretch, shrink, and warp them.

Three types of geometric transformations occur between the time you specify your vertices
and the time they appear on the screen: viewing, modeling, and projection. In this
section, we examine the principles of each type of transformation, which are summarized
in Table 4.1.

TABLE 4.1 Summary of the OpenGL Transformation Terminology

Transformation Use

Viewing Specifies the location of the viewer or camera

Modeling Moves objects around the scene

Modelview Describes the duality of viewing and modeling transformations

Projection Sizes and reshapes the viewing volume.

Viewport A pseudo-transformation that scales the final output to the window

Eye Coordinates
An important concept throughout this chapter is that of eye coordinates. Eye coordinates
are from the viewpoint of the observer, regardless of any transformations that may occur;
you can think of them as “absolute” screen coordinates. Thus, eye coordinates represent a
virtual fixed coordinate system that is used as a common frame of reference. All the trans-
formations discussed in this chapter are described in terms of their effects relative to the
eye coordinate system.

Figure 4.1 shows the eye coordinate system from two viewpoints. On the left (a), the eye
coordinates are represented as seen by the observer of the scene (that is, perpendicular to
the monitor). On the right (b), the eye coordinate system is rotated slightly so you can
better see the relation of the z-axis. Positive x and y are pointed right and up, respectively,
from the viewer’s perspective. Positive z travels away from the origin toward the user, and
negative z values travel farther away from the viewpoint into the screen.

Understanding Transformations 129

4

+x

–x

+y

–y

+z

–z

+x–x

+y

–y
Observer

(b)(a)

FIGURE 4.1 Two perspectives of eye coordinates.

When you draw in 3D with OpenGL, you use the Cartesian coordinate system. In the
absence of any transformations, the system in use is identical to the eye coordinate system
just described.

CHAPTER 4 Geometric Transformations: The Pipeline130

Viewing Transformations
The viewing transformation is the first to be applied to your scene. It is used to determine
the vantage point of the scene. By default, the point of observation in a perspective
projection is at the origin (0,0,0) looking down the negative z-axis (“into” the monitor
screen). This point of observation is moved relative to the eye coordinate system to
provide a specific vantage point. When the point of observation is located at the origin, as
in a perspective projection, objects drawn with positive z values are behind the observer.
In an orthographic projection, however, the viewer is assumed to be infinitely far away on
the positive Z axis, and can see everything within the viewing volume.

The viewing transformation allows you to place the point of observation anywhere you
want and look in any direction. Determining the viewing transformation is like placing
and pointing a camera at the scene.

In the grand scheme of things, you must specify the viewing transformation before any
other modeling transformations. The reason is that it appears to move the current working
coordinate system in respect to the eye coordinate system. All subsequent transformations
then occur based on the newly modified coordinate system. Later, you’ll see more easily
how this works, when we actually start looking at how to make these transformations.

Modeling Transformations
Modeling transformations are used to manipulate your model and the particular objects
within it. These transformations move objects into place, rotate them, and scale them.
Figure 4.2 illustrates three of the most common modeling transformations that you will
apply to your objects. Figure 4.2a shows translation, in which an object is moved along a
given axis. Figure 4.2b shows a rotation, in which an object is rotated about one of the
axes. Finally, Figure 4.2c shows the effects of scaling, where the dimensions of the object
are increased or decreased by a specified amount. Scaling can occur nonuniformly (the
various dimensions can be scaled by different amounts), so you can use scaling to stretch
and shrink objects.

The final appearance of your scene or object can depend greatly on the order in which the
modeling transformations are applied. This is particularly true of translation and rotation.
Figure 4.3a shows the progression of a square rotated first about the z-axis and then trans-
lated down the newly transformed x-axis. In Figure 4.3b, the same square is first translated
down the x-axis and then rotated around the z-axis. The difference in the final disposi-
tions of the square occurs because each transformation is performed with respect to the
last transformation performed. In Figure 4.3a, the square is rotated with respect to the
origin first. In 4.3b, after the square is translated, the rotation is performed around the
newly translated origin.

FIGURE 4.2 The modeling transformations.

Understanding Transformations 131

4

θ

θ

Initial square Rotated around z-axis to
yield new x1 axis

Now translation along
x is along x1

(a)

(b)

x1
x1

y1 y1

xx x

y yy

Initial square Translate origin along x-axis Translated coordinate
system is now rotated

x1

x1

y1

y1

xx x

y yy

FIGURE 4.3 Modeling transformations: rotation/translation and translation/rotation.

The Modelview Duality
The viewing and modeling transformations are, in fact, the same in terms of their internal
effects as well as their effects on the final appearance of the scene. The distinction between
the two is made purely as a convenience for the programmer. There is no real difference
visually between moving an object backward and moving the reference system forward; as
shown in Figure 4.4, the net effect is the same. (You experience this effect firsthand when
you’re sitting in your car at an intersection and you see the car next to you roll forward; it
might seem to you that your own car is rolling backward.) The viewing transformation is
simply a modeling-like transformation that is applied to the entire scene, where objects in
your scene will often each have their own individual model transformation, applied after
the viewing transformation. The term modelview indicates that these two transformations
are combined in the transformation pipeline into a single matrix—the modelview matrix.

CHAPTER 4 Geometric Transformations: The Pipeline132

Moving the observer

(a)

Moving the coordinate system

(b)

A A

FIGURE 4.4 Two ways of looking at the viewing transformation.

The viewing transformation, therefore, is essentially nothing but a modeling transforma-
tion that you apply to a virtual object (the viewer) before drawing objects. As you will
soon see, new transformations are repeatedly specified as you place more objects in the
scene. By convention, the initial transformation provides a reference from which all other
transformations are based.

Projection Transformations
The projection transformation is applied to your vertices after the modelview transforma-
tion. This projection actually defines the viewing volume and establishes clipping planes.
The clipping planes are plane equations in 3D space that OpenGL uses to determine
whether geometry can be seen by the viewer. More specifically, the projection transforma-
tion specifies how a finished scene (after all the modeling is done) is projected to the final
image on the screen. You’ll learn about two types of projections in this chapter: ortho-
graphic and perspective.

In an orthographic, or parallel, projection, all the polygons are drawn onscreen with exactly
the relative dimensions specified. Lines and polygons are mapped directly to the 2D screen
using parallel lines, which means no matter how far away something is, it is still drawn
the same size, just flattened against the screen. This type of projection is typically used for
rendering two-dimensional images such as blueprints or two-dimensional graphics such as
text or onscreen menus.

A perspective projection shows scenes more as they appear in real life instead of as a blue-
print. The trademark of perspective projections is foreshortening, which makes distant
objects appear smaller than nearby objects of the same size. Lines in 3D space that might
be parallel do not always appear parallel to the viewer. With a railroad track, for instance,
the rails are parallel, but using perspective projection, they appear to converge at some
distant point.

The benefit of perspective projection is that you don’t have to figure out where lines
converge or how much smaller distant objects are. All you need to do is specify the scene
using the modelview transformations and then apply the perspective projection. OpenGL
works all the magic for you. Figure 4.5 compares orthographic and perspective projections
on two different scenes.

Understanding Transformations 133

4

Everything same size

Objects shrink in
distance

FIGURE 4.5 A side-by-side example of an orthographic versus perspective projection.

Orthographic projections are used most often for 2D drawing purposes where you want an
exact correspondence between pixels and drawing units. You might use them for a
schematic layout, text, or perhaps a 2D graphing application. You also can use an ortho-
graphic projection for 3D renderings when the depth of the rendering has a very small
depth in comparison to the distance from the viewpoint. Perspective projections are used
for rendering scenes that contain wide-open spaces or objects that need to have the fore-
shortening applied. For the most part, perspective projections are typical for 3D graphics. In
fact, looking at a 3D object with an orthographic projection can be somewhat unsettling.

Viewport Transformations
When all is said and done, you end up with a two-dimensional projection of your scene
that will be mapped to a window somewhere on your screen. This mapping to physical
window coordinates is the last transformation that is done, and it is called the viewport
transformation. Usually, a one-to-one correspondence exists between the color buffer and
window pixels, but this is not always strictly the case. In some circumstances, the viewport
transformation remaps what are called “normalized” device coordinates to window coordi-
nates. Fortunately, this is something you don’t need to worry about.

The Matrix: Mathematical Currency for 3D Graphics
Now that you’re armed with some basic vocabulary and definitions of transformations,
you’re ready for some simple matrix mathematics. Let’s examine how OpenGL performs
these transformations and get to know the functions you call to achieve the desired
effects.

The mathematics behind these transformations are greatly simplified by the mathematical
notation of the matrix. You can achieve each of the transformations we have discussed by
multiplying a matrix that contains the vertices (usually, this is a simple vector) by a matrix
that describes the transformation. Thus, all the transformations achievable with OpenGL
can be described as the product of two or more matrix multiplications.

What Is a Matrix?
The Matrix is not just a Hollywood movie trilogy, but an exceptionally powerful mathemati-
cal tool that greatly simplifies the process of solving one or more equations with variables
that have complex relationships to each other. One common example of this, near and
dear to the hearts of graphics programmers, is coordinate transformations. For example, if
you have a point in space represented by x, y, and z coordinates, and you need to know
where that point is if you rotate it some number of degrees around some arbitrary point
and orientation, you would use a matrix. Why? Because the new x coordinate depends not
only on the old x coordinate and the other rotation parameters, but also on what the y and
z coordinates were as well. This kind of dependency between the variables and solution is
just the sort of problem that matrices excel at. For fans of the Matrix movies who have a
mathematical inclination, the term matrix is indeed an appropriate title.

Mathematically, a matrix is nothing more than a set of numbers arranged in uniform rows
and columns—in programming terms, a two-dimensional array. A matrix doesn’t have to
be square, but each row or column must have the same number of elements as every other
row or column in the matrix. Figure 4.6 presents some examples of matrices. They don’t
represent anything in particular, but serve only to demonstrate matrix structure. Note that
it is also valid for a matrix to have a single column or row. A single row or column of
numbers is also more simply called a vector, and vectors also have some interesting and
useful applications all their own.

CHAPTER 4 Geometric Transformations: The Pipeline134

FIGURE 4.6 Three examples of matrices.

Matrix and vector are two important terms that you will see often in 3D graphics program-
ming literature. When dealing with these quantities, you will also see the term scalar. A
scalar is just an ordinary single number used to represent magnitude or a specific quantity
(you know—a regular old, plain, simple number…like before you cared or had all this
jargon added to your vocabulary).

Matrices can be multiplied and added together, but they can also be multiplied by vectors
and scalar values. Multiplying a point (a vector) by a matrix (a transformation) yields a
new transformed point (a vector). Matrix transformations are actually not too difficult to
understand but can be intimidating at first. Because an understanding of matrix transfor-
mations is fundamental to many 3D tasks, you should still make an attempt to become
familiar with them. Fortunately, only a little understanding is enough to get you going
and doing some pretty incredible things with OpenGL. Over time, and with a little more
practice and study (see Appendix A, “Further Reading/References”), you will master this
mathematical tool yourself.

In the meantime, you can find a number of useful matrix and vector functions and
features available, with source code, in the files math3d.h and math3d.cpp in the /shared
folder. This 3d math library (referred to for now on simply as math3d) will greatly simplify
many tasks in this chapter and the ones to come. One “useful” feature of this library is
that it lacks incredibly clever and highly optimized code! This makes the library highly
portable and very easy to understand. You’ll also find it has a very OpenGL-like API.

The Transformation Pipeline
To effect the types of transformations described in this chapter, you modify two matrices
in particular: the modelview matrix and the projection matrix. Don’t worry; OpenGL
provides some high-level functions that you can call for these transformations. After
you’ve mastered the basics of the OpenGL API, you will undoubtedly start trying some of
the more advanced 3D rendering techniques. Only then will you need to call the lower-
level functions that actually set the values contained in the matrices.

The road from raw vertex data to screen coordinates is a long one. Figure 4.7 provides a
flowchart of this process. First, your vertex is converted to a 1×4 matrix in which the first
three values are the x, y, and z coordinates. The fourth number is a scaling factor that you
can apply manually by using the vertex functions that take four values. This is the w coor-
dinate, usually 1.0 by default. You will seldom modify this value directly.

The Matrix: Mathematical Currency for 3D Graphics 135

4

1
2
3

1
2
3
4

4
5
6

7
8
9

0
1.5
2

42
0.877

14

FIGURE 4.7 The vertex transformation pipeline.

The vertex is then multiplied by the modelview matrix, which yields the transformed eye
coordinates. The eye coordinates are then multiplied by the projection matrix to yield clip
coordinates. OpenGL effectively eliminates all data outside this clipping space. The clip
coordinates are then divided by the w coordinate to yield normalized device coordinates.
The w value may have been modified by the projection matrix or the modelview matrix,
depending on the transformations that occurred. Again, OpenGL and the high-level
matrix functions hide this process from you.

Finally, your coordinate triplet is mapped to a 2D plane by the viewport transformation.
This is also represented by a matrix, but not one that you specify or modify directly.
OpenGL sets it up internally depending on the values you specified to glViewport.

The Modelview Matrix
The modelview matrix is a 4×4 matrix that represents the transformed coordinate system
you are using to place and orient your objects. The vertices you provide for your primi-
tives are used as a single-column matrix and multiplied by the modelview matrix to yield
new transformed coordinates in relation to the eye coordinate system.

In Figure 4.8, a matrix containing data for a single vertex is multiplied by the modelview
matrix to yield new eye coordinates. The vertex data is actually four elements with an
extra value, w, that represents a scaling factor. This value is set by default to 1.0, and rarely
will you change it yourself.

CHAPTER 4 Geometric Transformations: The Pipeline136

x0

y0

z0

w0

xe

ye

ze

we

xc

yc

zc

wc

xc/wc

yc/wc

zc/wc

Modelview
matrix

Projection
matrix

Viewport
transformation

Perspective
division

…

…

Original
vertex data

Transformed
eye coordinates

Window coordinates

Clip
coordinates

Normalized
device coordinates

FIGURE 4.8 A matrix equation that applies the modelview transformation to a single vertex.

Translation
Let’s consider an example that modifies the modelview matrix. Say you want to draw a
cube using the GLUT library’s glutWireCube function. You simply call

glutWireCube(10.0f);

A cube that measures 10 units on a side is then centered at the origin. To move the cube
up the y-axis by 10 units before drawing it, you multiply the modelview matrix by a
matrix that describes a translation of 10 units up the y-axis and then do your drawing. In
skeleton form, the code looks like this:

// Construct a translation matrix for positive 10 Y

...

// Multiply it by the modelview matrix

...

// Draw the cube

glutWireCube(10.0f);

Actually, such a matrix is fairly easy to construct, but it requires quite a few lines of code.
Fortunately, OpenGL provides a high-level function that performs this task for you:

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

This function takes as parameters the amount to translate along the x, y, and z directions.
It then constructs an appropriate matrix and multiplies it onto the current matrix stack.
The pseudocode looks like the following, and the effect is illustrated in Figure 4.9:

// Translate up the y-axis 10 units

glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the cube

glutWireCube(10.0f);

The Matrix: Mathematical Currency for 3D Graphics 137

4

=
M

FIGURE 4.9 A cube translated 10 units in the positive y direction.

IS TRANSLATION ALWAYS A MATRIX OPERATION?

The studious reader may note that translations do not always require a full matrix multiplication,
but can be simplified with a simple scalar addition to the vertex position. However, for more
complex transformations that include combined simultaneous operations, it is correct to describe
translation as a matrix operation. Fortunately, if you let OpenGL do the heavy lifting for you, as
we have done here, the implementation can usually figure out the optimum method to use.

Rotation
To rotate an object about one of the three coordinate axes, or indeed any arbitrary vector,
you have to devise a rotation matrix. Again, a high-level function comes to the rescue:

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

Here, we perform a rotation around the vector specified by the x, y, and z arguments. The
angle of rotation is in the counterclockwise direction measured in degrees and specified by
the argument angle. In the simplest of cases, the rotation is around only one of the coor-
dinate systems cardinal axes (X, Y, or Z).

You can also perform a rotation around an arbitrary axis by specifying x, y, and z values
for that vector. To see the axis of rotation, you can just draw a line from the origin to the
point represented by (x,y,z). The following code rotates the cube by 45° around an arbi-
trary axis specified by (1,1,1), as illustrated in Figure 4.10:

// Perform the transformation

glRotatef(45.0f, 1.0f, 1.0f, 1.0f);

// Draw the cube

glutWireCube(10.0f);

CHAPTER 4 Geometric Transformations: The Pipeline138

z

x

y

10

FIGURE 4.10 A cube rotated about an arbitrary axis.

Scaling
A scaling transformation changes the size of your object by expanding or contracting all
the vertices along the three axes by the factors specified. The function

glScalef(GLfloat x, GLfloat y, GLfloat z);

multiplies the x, y, and z values by the scaling factors specified.

Scaling does not have to be uniform, and you can use it to both stretch and squeeze
objects along different directions. For example, the following code produces a cube that is
twice as large along the x- and z-axes as the cubes discussed in the previous examples, but
still the same along the y-axis. The result is shown in Figure 4.11.

// Perform the scaling transformation

glScalef(2.0f, 1.0f, 2.0f);

// Draw the cube

glutWireCube(10.0f);

The Matrix: Mathematical Currency for 3D Graphics 139

4

x

(1,1,1)

45

z

y

z

x

y

10

10

FIGURE 4.11 A nonuniform scaling of a cube.

The Identity Matrix
About now, you might be wondering why we had to bother with all this matrix stuff in
the first place. Can’t we just call these transformation functions to move our objects
around and be done with it? Do we really need to know that it is the modelview matrix
that is modified?

The answer is yes and no (but it’s no only if you are drawing a single object in your
scene). The reason is that the effects of these functions are cumulative. Each time you call
one, the appropriate matrix is constructed and multiplied by the current modelview
matrix. The new matrix then becomes the current modelview matrix, which is then multi-
plied by the next transformation, and so on.

Suppose you want to draw two spheres—one 10 units up the positive y-axis and one 10
units out the positive x-axis, as shown in Figure 4.12. You might be tempted to write code
that looks something like this:

// Go 10 units up the y-axis

glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere

glutSolidSphere(1.0f,15,15);

// Go 10 units out the x-axis

glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere

glutSolidSphere(1.0f);

CHAPTER 4 Geometric Transformations: The Pipeline140

z

x

y

10

10

FIGURE 4.12 Two spheres drawn on the y- and x-axes.

Consider, however, that each call to glTranslate is cumulative on the modelview matrix,
so the second call translates 10 units in the positive x direction from the previous transla-
tion in the y direction. This yields the results shown in Figure 4.13.

The Matrix: Mathematical Currency for 3D Graphics 141

4

z

x

y

10

10

FIGURE 4.13 The result of two consecutive translations.

You can make an extra call to glTranslate to back down the y-axis 10 units in the nega-
tive direction, but this makes some complex scenes difficult to code and debug—not to
mention that you throw extra transformation math at the CPU or GPU. A simpler method
is to reset the modelview matrix to a known state—in this case, centered at the origin of
the eye coordinate system.

You reset the origin by loading the modelview matrix with the identity matrix. The identity
matrix specifies that no transformation is to occur, in effect saying that all the coordinates
you specify when drawing are in eye coordinates. An identity matrix contains all 0s, with
the exception of a diagonal row of 1s. When this matrix is multiplied by any vertex
matrix, the result is that the vertex matrix is unchanged. Figure 4.14 shows this equation.
Later in the chapter, we discuss in more detail why these numbers are where they are.

 8 . 0
 4 . 5
- 2 . 0
 1 . 0

 8 . 0
 4 . 5
- 2 . 0
 1 . 0

1.0

0

0

0

0

1.0

0

0

0

0

1.0

0

0

0

0

1.0

=

FIGURE 4.14 Multiplying a vertex by the identity matrix yields the same vertex matrix.

As we’ve already stated, the details of performing matrix multiplication are outside the
scope of this book. For now, just remember this: Loading the identity matrix means that
no transformations are performed on the vertices. In essence, you are resetting the
modelview matrix to the origin.

The following two lines load the identity matrix into the modelview matrix:

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

The first line specifies that the current operating matrix is the modelview matrix. After
you set the current operating matrix (the matrix that your matrix functions are affecting),
it remains the active matrix until you change it. The second line loads the current matrix
(in this case, the modelview matrix) with the identity matrix.

Now, the following code produces the results shown earlier in Figure 4.12:

// Set current matrix to modelview and reset

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// Go 10 units up the y-axis

glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere

glutSolidSphere(1.0f, 15, 15);

// Reset modelview matrix again

glLoadIdentity();

// Go 10 units out the x-axis

glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere

glutSolidSphere(1.0f, 15, 15);

The Matrix Stacks
Resetting the modelview matrix to identity before placing every object is not always desir-
able. Often, you want to save the current transformation state and then restore it after
some objects have been placed. This approach is most convenient when you have initially
transformed the modelview matrix as your viewing transformation (and thus are no
longer located at the origin).

To facilitate this procedure, OpenGL maintains a matrix stack for both the modelview and
projection matrices. A matrix stack works just like an ordinary program stack. You can
push the current matrix onto the stack with glPushMatrix to save it and then make your
changes to the current matrix. Popping the matrix off the stack with glPopMatrix then
restores it. Figure 4.15 shows the stack principle in action.

CHAPTER 4 Geometric Transformations: The Pipeline142

FIGURE 4.15 The matrix stack in action.

TEXTURE MATRIX STACK

The texture stack is another matrix stack available to you. You use it to transform texture coordi-
nates. Chapter 8, “Texture Mapping: The Basics,” examines texture mapping and texture coordi-
nates and contains a discussion of the texture matrix stack.

The stack depth can reach a maximum value that you can retrieve with a call to either

glGet(GL_MAX_MODELVIEW_STACK_DEPTH);

or

glGet(GL_MAX_PROJECTION_STACK_DEPTH);

If you exceed the stack depth, you get a GL_STACK_OVERFLOW error; if you try to pop a
matrix value off the stack when there is none, you generate a GL_STACK_UNDERFLOW error.
The stack depth is implementation dependent. For the Microsoft software implementa-
tion, the values are 32 for the modelview and 2 for the projection stack.

A Nuclear Example
Let’s put to use what we have learned. In the next example, we build a crude, animated
model of an atom. This atom has a single sphere at the center to represent the nucleus
and three electrons in orbit about the atom. We use an orthographic projection, as we
have in all the examples so far in this book.

Our ATOM program uses the GLUT timer callback mechanism (discussed in Chapter 2,
“Using OpenGL”) to redraw the scene about 10 times per second. Each time the
RenderScene function is called, the angle of revolution about the nucleus is incremented.
Also, each electron lies in a different plane. Listing 4.1 shows the RenderScene function
for this example, and the output from the ATOM program is shown in Figure 4.16.

The Matrix: Mathematical Currency for 3D Graphics 143

4

glPushMatrix glPopMatrix

Matrix stack

LISTING 4.1 RenderScene Function from ATOM Sample Program

// Called to draw scene

void RenderScene(void)

{

// Angle of revolution around the nucleus

static GLfloat fElect1 = 0.0f;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Reset the modelview matrix

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// Translate the whole scene out and into view

// This is the initial viewing transformation

glTranslatef(0.0f, 0.0f, -100.0f);

// Red Nucleus

glColor3ub(255, 0, 0);

glutSolidSphere(10.0f, 15, 15);

// Yellow Electrons

glColor3ub(255,255,0);

// First Electron Orbit

// Save viewing transformation

glPushMatrix();

// Rotate by angle of revolution

glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

// Translate out from origin to orbit distance

glTranslatef(90.0f, 0.0f, 0.0f);

// Draw the electron

glutSolidSphere(6.0f, 15, 15);

// Restore the viewing transformation

glPopMatrix();

CHAPTER 4 Geometric Transformations: The Pipeline144

LISTING 4.1 Continued

// Second Electron Orbit

glPushMatrix();

glRotatef(45.0f, 0.0f, 0.0f, 1.0f);

glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

glTranslatef(-70.0f, 0.0f, 0.0f);

glutSolidSphere(6.0f, 15, 15);

glPopMatrix();

// Third Electron Orbit

glPushMatrix();

glRotatef(360.0f, -45.0f, 0.0f, 0.0f, 1.0f);

glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

glTranslatef(0.0f, 0.0f, 60.0f);

glutSolidSphere(6.0f, 15, 15);

glPopMatrix();

// Increment the angle of revolution

fElect1 += 10.0f;

if(fElect1 > 360.0f)

fElect1 = 0.0f;

// Show the image

glutSwapBuffers();

}

The Matrix: Mathematical Currency for 3D Graphics 145

4

FIGURE 4.16 Output from the ATOM sample program.

Let’s examine the code for placing one of the electrons, a couple of lines at a time. The first
line saves the current modelview matrix by pushing the current transformation on the stack:

// First Electron Orbit

// Save viewing transformation

glPushMatrix();

Now the coordinate system appears to be rotated around the y-axis by an angle, fElect1:

// Rotate by angle of revolution

glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

The electron is drawn by translating down the newly rotated coordinate system:

// Translate out from origin to orbit distance

glTranslatef(90.0f, 0.0f, 0.0f);

Then the electron is drawn (as a solid sphere), and we restore the modelview matrix by
popping it off the matrix stack:

// Draw the electron

glutSolidSphere(6.0f, 15, 15);

// Restore the viewing transformation

glPopMatrix();

The other electrons are placed similarly.

Using Projections
In our examples so far, we have used the modelview matrix to position our vantage point
of the viewing volume and to place our objects therein. The projection matrix actually
specifies the size and shape of our viewing volume.

Thus far in this book, we have created a simple parallel viewing volume using the function
glOrtho, setting the near and far, left and right, and top and bottom clipping coordinates.
In OpenGL, when the projection matrix is loaded with the identity matrix, the diagonal
line of 1s specifies that the clipping planes extend from the origin to +1 or –1 in all direc-
tions. The projection matrix by itself does no scaling or perspective adjustments unless
you load a perspective projection matrix.

The next two sample programs, ORTHO and PERSPECT, are not covered in detail from the
standpoint of their source code. These examples use lighting and shading that we haven’t
covered yet to help highlight the differences between an orthographic and a perspective
projection. These interactive samples make it much easier for you to see firsthand how the
projection can distort the appearance of an object. If possible, you should run these exam-
ples while reading the next two sections.

CHAPTER 4 Geometric Transformations: The Pipeline146

Orthographic Projections
The orthographic projection that we have used for most of this book so far is square on all
sides. The logical width is equal at the front, back, top, bottom, left, and right sides. This
produces a parallel projection, which is useful for drawings of specific objects that do not
have any foreshortening when viewed from a distance. This is good for 2D graphics such
as text, or architectural drawings for which you want to represent the exact dimensions
and measurements onscreen.

Figure 4.17 shows the output from the sample program ORTHO in this chapter’s subdirec-
tory in the source distribution. To produce this hollow, tubelike box, we used an ortho-
graphic projection just as we did for all our previous examples. Figure 4.18 shows the same
box rotated more to the side so you can see how long it actually is.

Using Projections 147

4

FIGURE 4.17 A hollow square tube shown with an orthographic projection.

FIGURE 4.18 A side view showing the length of the square tube.

In Figure 4.19, you’re looking directly down the barrel of the tube. Because the tube does
not converge in the distance, this is not an entirely accurate view of how such a tube
appears in real life. To add some perspective, we must use a perspective projection.

CHAPTER 4 Geometric Transformations: The Pipeline148

FIGURE 4.19 Looking down the barrel of the tube.

Perspective Projections
A perspective projection performs perspective division to shorten and shrink objects that
are farther away from the viewer. The width of the back of the viewing volume does not
have the same measurements as the front of the viewing volume after being projected to
the screen. Thus, an object of the same logical dimensions appears larger at the front of
the viewing volume than if it were drawn at the back of the viewing volume.

The picture in our next example is of a geometric shape called a frustum. A frustum is a
truncated section of a pyramid viewed from the narrow end to the broad end. Figure 4.20
shows the frustum, with the observer in place.

Observer

Perspective viewing volume

near
0

far

FIGURE 4.20 A perspective projection defined by a frustum.

You can define a frustum with the function glFrustum. Its parameters are the coordinates
and distances between the front and back clipping planes. However, glFrustum is not as
intuitive about setting up your projection to get the desired effects, and is typically used
for more specialized purposes (for example, stereo, tiles, asymmetric view volumes). The
utility function gluPerspective is easier to use and somewhat more intuitive for most
purposes:

void gluPerspective(GLdouble fovy, GLdouble aspect,

GLdouble zNear, GLdouble zFar);

Parameters for the gluPerspective function are a field-of-view angle in the vertical direc-
tion, the aspect ratio of the width to height, and the distances to the near and far clipping
planes (see Figure 4.21). You find the aspect ratio by dividing the width (w) by the height
(h) of the window or viewport.

Using Projections 149

4

Observer

near

fovy

h

w

far

FIGURE 4.21 The frustum as defined by gluPerspective.

Listing 4.2 shows how we change our orthographic projection from the previous examples
to use a perspective projection. Foreshortening adds realism to our earlier orthographic
projections of the square tube (see Figures 4.22, 4.23, and 4.24). The only substantial
change we made for our typical projection code in Listing 4.2 was substituting the call to
gluOrtho2D with gluPerspective.

FIGURE 4.22 The square tube with a perspective projection.

FIGURE 4.23 A side view with foreshortening.

CHAPTER 4 Geometric Transformations: The Pipeline150

FIGURE 4.24 Looking down the barrel of the tube with perspective added.

LISTING 4.2 Setting Up the Perspective Projection for the PERSPECT Sample Program

// Change viewing volume and viewport. Called when window is resized

void ChangeSize(GLsizei w, GLsizei h)

{

GLfloat fAspect;

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set viewport to window dimensions

glViewport(0, 0, w, h);

LISTING 4.2 Continued

fAspect = (GLfloat)w/(GLfloat)h;

// Reset coordinate system

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Produce the perspective projection

gluPerspective(60.0f, fAspect, 1.0, 400.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

We made the same changes to the ATOM example in ATOM2 to add perspective. Run the
two side by side, and you see how the electrons appear to be smaller as they swing far
away behind the nucleus.

A Far-Out Example
For a more complete example showing modelview manipulation and perspective projec-
tions, we have modeled the sun and the earth/moon system in revolution in the SOLAR
sample program. This is a classic example of nested transformations with objects being
transformed relative to one another using the matrix stack. We have enabled some light-
ing and shading for drama so that you can more easily see the effects of our operations.
You’ll learn about shading and lighting in the next two chapters.

In our model, the earth moves around the sun, and the moon revolves around the earth.
A light source is placed at the center of the sun, which is drawn without lighting to make
it appear to be the glowing light source. This powerful example shows how easily you can
produce sophisticated effects with OpenGL.

Listing 4.3 shows the code that sets up the projection and the rendering code that keeps
the system in motion. A timer elsewhere in the program triggers a window redraw 10
times a second to keep the RenderScene function in action. Notice in Figures 4.25 and
4.26 that when the earth appears larger, it’s on the near side of the sun; on the far side, it
appears smaller.

LISTING 4.3 Code That Produces the Sun/Earth/Moon System

// Change viewing volume and viewport. Called when window is resized

void ChangeSize(GLsizei w, GLsizei h)

{

GLfloat fAspect;

Using Projections 151

4

LISTING 4.3 Continued

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set viewport to window dimensions

glViewport(0, 0, w, h);

// Calculate aspect ratio of the window

fAspect = (GLfloat)w/(GLfloat)h;

// Set the perspective coordinate system

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Field of view of 45 degrees, near and far planes 1.0 and 425

gluPerspective(45.0f, fAspect, 1.0, 425.0);

// Modelview matrix reset

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

// Called to draw scene

void RenderScene(void)

{

// Earth and moon angle of revolution

static float fMoonRot = 0.0f;

static float fEarthRot = 0.0f;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the matrix state and do the rotations

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

// Translate the whole scene out and into view

glTranslatef(0.0f, 0.0f, -300.0f);

// Set material color, to yellow

// Sun

glColor3ub(255, 255, 0);

CHAPTER 4 Geometric Transformations: The Pipeline152

LISTING 4.3 Continued

glDisable(GL_LIGHTING);

glutSolidSphere(15.0f, 15, 15);

glEnable(GL_LIGHTING);

// Position the light after we draw the Sun!

glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

// Rotate coordinate system

glRotatef(fEarthRot, 0.0f, 1.0f, 0.0f);

// Draw the earth

glColor3ub(0,0,255);

glTranslatef(105.0f,0.0f,0.0f);

glutSolidSphere(15.0f, 15, 15);

// Rotate from Earth-based coordinates and draw moon

glColor3ub(200,200,200);

glRotatef(fMoonRot,0.0f, 1.0f, 0.0f);

glTranslatef(30.0f, 0.0f, 0.0f);

fMoonRot+= 15.0f;

if(fMoonRot > 360.0f)

fMoonRot = 0.0f;

glutSolidSphere(6.0f, 15, 15);

// Restore the matrix state

glPopMatrix(); // Modelview matrix

// Step Earth orbit 5 degrees

fEarthRot += 5.0f;

if(fEarthRot > 360.0f)

fEarthRot = 0.0f;

// Show the image

glutSwapBuffers();

}

Using Projections 153

4

FIGURE 4.25 The sun/earth/moon system with the earth on the near side.

CHAPTER 4 Geometric Transformations: The Pipeline154

FIGURE 4.26 The sun/earth/moon system with the earth on the far side.

Advanced Matrix Manipulation
These higher-level “canned” transformations (for rotation, scaling, and translation) are
great for many simple transformation problems. Real power and flexibility, however, are
afforded to those who take the time to understand using matrices directly. Doing so is not
as hard as it sounds, but first you need to understand the magic behind those 16 numbers
that make up a 4×4 transformation matrix.

OpenGL represents a 4×4 matrix not as a two-dimensional array of floating-point values,
but as a single array of 16 floating-point values. This approach is different from many
math libraries, which do take the two-dimensional array approach. For example, OpenGL
prefers the first of these two examples:

GLfloat matrix[16]; // Nice OpenGL friendly matrix

GLfloat matrix[4][4]; // Popular, but not as efficient for OpenGL

OpenGL can use the second variation, but the first is a more efficient representation. The
reason for this will become clear in a moment. These 16 elements represent the 4×4
matrix, as shown in Figure 4.27. When the array elements traverse down the matrix
columns one by one, we call this column-major matrix ordering. In memory, the 4×4

approach of the two-dimensional array (the second option in the preceding code) is laid
out in a row-major order. In math terms, the two orientations are the transpose of one
another.

Advanced Matrix Manipulation 155

4

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

FIGURE 4.27 Column-major matrix ordering.

The real magic lies in the fact that these 16 values represent a particular position in space
and an orientation of the three axes with respect to the eye coordinate system (remember
that fixed, unchanging coordinate system we talked about earlier). Interpreting these
numbers is not hard at all. The four columns each represent a four-element vector. To keep
things simple for this book, we focus our attention on just the first three elements of these
vectors. The fourth column vector contains the x, y, and z values of the transformed coor-
dinate system’s origin. When you call glTranslate on the identity matrix, all it does is put
your values for x, y, and z in the 12th, 13th, and 14th position of the matrix.

The first three elements of the first three columns are just directional vectors that repre-
sent the orientation (vectors here are used to represent a direction) of the x-, y-, and z-axes
in space. For most purposes, these three vectors are always at 90° angles from each other,
and are usually each of unit length (unless you are also applying a scale or shear). The
mathematical term for this (in case you want to impress your friends) is orthonormal when
the vectors are unit length, and orthogonal when they are not. Figure 4.28 shows the 4×4
transformation matrix with the column vectors highlighted. Notice that the last row of
the matrix is all 0s with the exception of the very last element, which is 1.

Xx
Xy
Xz
0

Yx
Yy
Yz
0

Zx
Zy
Zz
0

Tx
Ty
Tz
1

X
ax

is
dir

ec
tio

n

Y
ax

is
dir

ec
tio

n

Z
ax

is
dir

ec
tio

n

Tra
ns

lat
ion

/lo
ca

tio
n

FIGURE 4.28 How a 4×4 matrix represents a position and orientation in 3D space.

The most amazing thing is that if you have a 4×4 matrix that contains the position and
orientation of a different coordinate system, and you multiply a vertex (as a column
matrix or vector) by this matrix, the result is a new vertex that has been transformed to
the new coordinate system. This means that any position in space and any desired orien-
tation can be uniquely defined by a 4×4 matrix, and if you multiply all of an object’s
vertices by this matrix, you transform the entire object to the given location and orienta-
tion in space!

HARDWARE TRANSFORMATIONS

Most OpenGL implementations have what is called hardware transform and lighting. This means
that the transformation matrix multiplies many thousands of vertices on special graphics hard-
ware that performs this operation very, very fast. (Intel and AMD can eat their hearts out!)
However, functions such as glRotate and glScale, which create transformation matrices for you,
are usually not hardware accelerated because typically they represent an exceedingly small frac-
tion of the enormous amount of matrix math that must be done to draw a scene.

Loading a Matrix
After you have a handle on the way the 4×4 matrix represents a given location and orien-
tation, you may to want to compose and load your own transformation matrices. You can
load an arbitrary column-major matrix into the projection, modelview, or texture matrix
stacks by using the following function:

glLoadMatrixf(GLfloat m);

or

glLoadMatrixd(GLfloat m);

Most OpenGL implementations store and manipulate pipeline data as floats and not
doubles; consequently, using the second variation may incur some performance penalty
because 16 double-precision numbers must be converted into single-precision floats.

The following code shows an array being loaded with the identity matrix and then being
loaded into the modelview matrix stack. This example is equivalent to calling
glLoadIdentity using the higher-level functions:

// Load an identity matrix

GLfloat m[] = { 1.0f, 0.0f, 0.0f, 0.0f, // X Column

0.0f, 1.0f, 0.0f, 0.0f, // Y Column

0.0f, 0.0f, 1.0f, 0.0f, // Z Column

0.0f, 0.0f, 0.0f, 1.0f }; // Translation

glMatrixMode(GL_MODELVIEW);

glLoadMatrixf(m);

CHAPTER 4 Geometric Transformations: The Pipeline156

Although OpenGL implementations use column-major ordering, OpenGL (versions 1.2
and later) does provide functions to load a matrix in row-major ordering. The following
two functions perform the transpose operation on the matrix when loading it on the
matrix stack:

void glLoadTransposeMatrixf(Glfloat* m);

and

void glLoadTransposeMatrixd(Gldouble* m);

Performing Your Own Transformations
Let’s look at an example now that shows how to create and load your own transformation
matrix—the hard way! In the sample program TRANSFORM, we draw a torus (a doughnut-
shaped object) in front of our viewing location and make it rotate in place. The function
DrawTorus does the necessary math to generate the torus’s geometry and takes as an argu-
ment a 4×4 transformation matrix to be applied to the vertices. We create the matrix and
apply the transformation manually to each vertex to transform the torus. Let’s start with
the main rendering function in Listing 4.4.

LISTING 4.4 Code to Set Up the Transformation Matrix While Drawing

void RenderScene(void)

{

M3DMatrix44f transformationMatrix; // Storage for rotation matrix

static GLfloat yRot = 0.0f; // Rotation angle for animation

yRot += 0.5f;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Build a rotation matrix

m3dRotationMatrix44(transformationMatrix, m3dDegToRad(yRot),

0.0f, 1.0f, 0.0f);

transformationMatrix[12] = 0.0f;

transformationMatrix[13] = 0.0f;

transformationMatrix[14] = -2.5f;

DrawTorus(transformationMatrix);

// Do the buffer Swap

glutSwapBuffers();

}

Advanced Matrix Manipulation 157

4

We begin by declaring storage for the matrix here:

M3DMatrix44f transformationMatrix; // Storage for rotation matrix

The data type M3DMatrix44f is of our own design and is simply a typedef declared in
math3d.h for a floating-point array 16 elements long:

typedef GLfloat M3DMatrix44f[16]; // A column major 4x4 matrix of type GLfloat

The animation in this sample works by continually incrementing the variable yRot that
represents the rotation around the y-axis. After clearing the color and depth buffer, we
compose our transformation matrix as follows:

m3dRotationMatrix44(transformationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);

transformationMatrix[12] = 0.0f;

transformationMatrix[13] = 0.0f;

transformationMatrix[14] = -2.5f;

Here, the first line contains a call to another math3d function, m3dRotationMatrix44. This
function takes a rotation angle in radians (for more efficient calculations) and three argu-
ments specifying a vector around which you want the rotation to occur. The macro func-
tion m3dDegToRad does an in-place conversion from degrees to radians. With the exception
of the angle being in radians instead of degrees, this is almost exactly like the OpenGL
function glRotate. The first argument is a matrix into which you want to store the result-
ing rotation matrix.

As you saw in Figure 4.28, the last column of the matrix represents the translation of the
transformation. Rather than do a full matrix multiplication, we can simply inject the
desired translation directly into the matrix. Now the resulting matrix represents both a
translation in space (a location to place the torus) and then a rotation of the object’s coor-
dinate system applied at that location.

Next, we pass this transformation matrix to the DrawTorus function. We do not need to
list the entire function to create a torus here, but focus your attention to these lines:

objectVertex[0] = x0*r;

objectVertex[1] = y0*r;

objectVertex[2] = z;

m3dTransformVector3(transformedVertex, objectVertex, mTransform);

glVertex3fv(transformedVertex);

The three components of the vertex are loaded into an array and passed to the function
m3dTransformVector3. This math3d function performs the multiplication of the vertex
against the matrix and returns the transformed vertex in the array transformedVertex. We
then use the vector version of glVertex and send the vertex data down to OpenGL. The
result is a spinning torus, as shown in Figure 4.29.

CHAPTER 4 Geometric Transformations: The Pipeline158

FIGURE 4.29 The spinning torus, doing our own transformations.

It is important that you see at least once the real mechanics of how vertices are trans-
formed by a matrix using such a drawn-out example. As you progress as an OpenGL
programmer, you will find that the need to transform points manually will arise for tasks
that are not specifically related to rendering operations, such as collision detection
(bumping into objects), frustum culling (throwing away and not drawing things you can’t
see), and some other special effects algorithms.

For geometry processing, however, the TRANSFORM sample program is very inefficient,
despite its instructional value. We are letting the CPU do all the matrix math instead of
letting OpenGL’s dedicated hardware do the work for us (which is much faster than the
CPU!). In addition, because OpenGL has the modelview matrix, all our transformed points
are being multiplied yet again by the identity matrix. This does not change the value of
our transformed vertices, but it is still a wasted operation.

For the sake of completeness, we provide an improved example, TRANSFORMGL, that
instead uses our transformation matrix but hands it over to OpenGL using the function
glLoadMatrixf. We eliminate our DrawTorus function with its dedicated transformation
code and use a more general-purpose torus drawing function, gltDrawTorus, from the
glTools library. The relevant code is shown in Listing 4.5.

Advanced Matrix Manipulation 159

4

LISTING 4.5 Loading the Transformation Matrix Directly into OpenGL

// Build a rotation matrix

m3dRotationMatrix44(transformationMatrix, m3dDegToRad(yRot),

0.0f, 1.0f, 0.0f);

transformationMatrix[12] = 0.0f;

transformationMatrix[13] = 0.0f;

transformationMatrix[14] = -2.5f;

glLoadMatrixf(transformationMatrix);

gltDrawTorus(0.35, 0.15, 40, 20);

Adding Transformations Together
In the preceding example, we simply constructed a single transformation matrix and
loaded it into the modelview matrix. This technique had the effect of transforming any
and all geometry that followed by that matrix before being rendered. As you’ve seen in
the previous examples, we often add one transformation to another. For example, we used
glTranslate followed by glRotate to first translate and then rotate an object before being
drawn. Behind the scenes, when you call multiple transformation functions, OpenGL
performs a matrix multiplication between the existing transformation matrix and the one
you are adding or appending to it. For example, in the TRANSFORMGL example, we
might replace the code in Listing 4.5 with something like the following:

glPushMatrix();

glTranslatef(0.0f, 0.0f, -2.5f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

gltDrawTorus(0.35, 0.15, 40, 20);

glPopMatrix();

Using this approach has the effect of saving the current identity matrix, multiplying the
translation matrix, multiplying the rotation matrix, and then transforming the torus by
the result. You can do these multiplications yourself by using the math3d function
m3dMatrixMultiply, as shown here:

M3DMatrix44f rotationMatrix, translationMatrix, transformationMatrix;

...

m3dRotationMatrix44(rotationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);

m3dTranslationMatrix44(translationMatrix, 0.0f, 0.0f, -2.5f);

m3dMatrixMultiply44(transformationMatrix, translationMatrix, rotationMatrix);

glLoadMatrixf(transformationMatrix);

gltDrawTorus(0.35f, 0.15f, 40, 20);

CHAPTER 4 Geometric Transformations: The Pipeline160

OpenGL also has its own matrix multiplication function, glMultMatrix, that takes a
matrix and multiplies it by the currently loaded matrix and stores the result at the top of
the matrix stack. In our final code fragment, we once again show code equivalent to the
preceding, but this time we let OpenGL do the actual multiplication:

M3DMatrix44f rotationMatrix, translationMatrix, transformationMatrix;

...

glPushMatrix();

m3dRotationMatrix44(rotationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);

gltTranslationMatrix44(translationMatrix, 0.0f, 0.0f, -2.5f);

glMultMatrixf(translationMatrix);

glMultMatirxf(rotationMatrix);

gltDrawTorus(0.35f, 0.15f, 40, 20);

glPopMatrix();

As you can see, there is considerable flexibility in how you handle model transformations.
Using the OpenGL functions allows you to offload as much as possible to the graphics
hardware. Using your own functions gives you ultimate control over any intermediate
steps. The freedom to mix and match approaches as needed is another reason OpenGL is
an extremely powerful and flexible API for doing 3D graphics.

Moving Around in OpenGL Using Cameras and Actors
To represent a location and orientation of any object in your 3D scene, you can use a
single 4×4 matrix that represents its transform. Working with matrices directly, however,
can still be somewhat awkward, so programmers have always sought ways to represent a
position and orientation in space more succinctly. Fixed objects such as terrain are often
untransformed, and their vertices usually specify exactly where the geometry should be
drawn in space. Objects that move about in the scene are often called actors, paralleling
the idea of actors on a stage.

Actors have their own transformations, and often other actors are transformed not only
with respect to the world coordinate system (eye coordinates), but also with respect to
other actors. Each actor with its own transformation is said to have its own frame of refer-
ence, or local object coordinate system. It is often useful to translate between local and
world coordinate systems and back again for many nonrendering-related geometric tests.

An Actor Frame
A simple and flexible way to represent a frame of reference is to use a data structure (or
class in C++) that contains a position in space, a vector that points forward, and a vector
that points upward. Using these quantities, you can uniquely identify a given position and

Moving Around in OpenGL Using Cameras and Actors 161

4

orientation in space. The following class, GLFrame, makes use of the math3d library, and
stores this information all in one place:

class GLFrame

{

protected:

M3DVector3f vLocation;

M3DVector3f vUp;

M3DVector3f vForward;

public:

. . .

};

Using a frame of reference such as this to represent an object’s position and orientation is
a very powerful mechanism. To begin with, you can use this data directly to create a 4×4
transformation matrix. Referring to Figure 4.28, the up vector becomes the y column of
the matrix, whereas the forward-looking vector becomes the z column vector and the posi-
tion is the translation column vector. This leaves only the x column vector, and because
we know that all three axes are unit length and perpendicular to one another (orthonor-
mal), we can calculate the x column vector by performing the cross product of the y and z
vectors. Listing 4.6 shows the GLFrame method GetMatrix, which does exactly that.

LISTING 4.6 Code to Derive a 4×4 Matrix from a Frame

///

// Derives a 4x4 transformation matrix from a frame of reference

void GLFrame::GetMatrix(M3DTMatrix44f mMatrix, bool bRotationOnly = false)

{

// Calculate the right side (x) vector, drop it right into the matrix

M3DVector3f vXAxis;

m3dCrossProduct(vXAxis, vUp, vForward);

// Set matrix column does not fill in the fourth value...

m3dSetMatrixColumn44(matrix, vXAxis, 0);

matrix[3] = 0.0f;

// Y Column

m3dSetMatrixColumn44(matrix, vUp, 1);

matrix[7] = 0.0f;

// Z Column

m3dSetMatrixColumn44(matrix, vForward, 2);

matrix[11] = 0.0f;

CHAPTER 4 Geometric Transformations: The Pipeline162

LISTING 4.6 Continued

// Translation (already done)

if(bRotationOnly == true)

{

matrix[12] = 0.0f;

matrix[13] = 0.0f;

matrix[14] = 0.0f;

}

else

m3dSetMatrixColumn44(matrix, vOrigin, 3);

matrix[15] = 1.0f;

}

Applying an actor’s transform is as simple as calling glMultMatrixf with the resulting
matrix.

Euler Angles: “Use the Frame, Luke!”
Many graphics programming books recommend an even simpler mechanism for storing
an object’s position and orientation: Euler angles. Euler angles require less space because
you essentially store an object’s position and then just three angles—representing a rota-
tion around the x-, y-, and z-axes—sometimes called yaw, pitch, and roll. A structure like
this might represent an airplane’s location and orientation:

struct EULER {

M3DVector3f vPosition;

GLfloat fRoll;

GLfloat fPitch;

GLfloat fYaw;

};

Euler angles are a bit slippery and are sometimes called “oily angles” by some in the indus-
try. The first problem is that a given position and orientation can be represented by more
than one set of Euler angles. Having multiple sets of angles can lead to problems as you
try to figure out how to smoothly move from one orientation to another. Occasionally, a
second problem called “gimbal lock” comes up; this problem makes it impossible to
achieve a rotation around one of the axes. Lastly, Euler angles make it more tedious to
calculate new coordinates for simply moving forward along your line of sight or trying to
figure out new Euler angles if you want to rotate around one of your own local axes.

Some literature today tries to solve the problems of Euler angles by using a mathematical
tool called quaternions. Quaternions, which can be difficult to understand, really don’t
solve any problems with Euler angles that you can’t solve on your own by just using the

Moving Around in OpenGL Using Cameras and Actors 163

4

frame of reference method covered previously. We already promised that this book would
not get too heavy on the math, so we will not debate the merits of each system here. But
we should say that the quaternion versus linear algebra (matrix) debate is more than 100
years old and by far predates their application to computer graphics!

Camera Management
There is really no such thing as a camera transformation in OpenGL. We use the camera as
a useful metaphor to help us manage our point of view in some sort of immersive 3D
environment. If we envision a camera as an object that has some position in space and
some given orientation, we find that our current frame of reference system can represent
both actors and our camera in a 3D environment.

To apply a camera transformation, we take the camera’s actor transform and flip it so that
moving the camera backward is equivalent to moving the whole world forward. Similarly,
turning to the left is equivalent to rotating the whole world to the right. To render a given
scene, we usually take the approach outlined in Figure 4.30.

CHAPTER 4 Geometric Transformations: The Pipeline164

Save Identity Matrix

Apply camera transform

Draw stuff that doesn’t move

Draw moving stuff (Actors)

 Save camera transform

 Apply actor transform

 Draw actor geometry

 Restore camera transform

Restore identity matrix

Lo
op

Lo
op

FIGURE 4.30 Typical rendering loop for a 3D environment.

The OpenGL utility library contains a function that uses the same data we stored in our
frame structure to create our camera transformation:

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,

GLdouble centerx, GLdouble centery, GLdouble centerz,

GLdouble upx, GLdouble upy, GLdouble upz);

This function takes the position of the eye point, a point directly in front of the eye point,
and the direction of the up vector. The GLFrame class also contains a shortcut function that
performs the equivalent action using its internal frame of reference:

void GLFrame::ApplyCameraTransform(bool bRotOnly = false);

The GLFrame class has the added flexibility that you can apply the camera’s rotation trans-
form only. The C++ default parameter shown here allows you to ignore this unless you
have some special need for this feature.

Bringing It All Together
Now let’s work through one final example for this chapter to bring together all the
concepts we have discussed so far. In the sample program SPHEREWORLD, we create a
world populated by a number of spheres (Sphere World) placed at random locations on
the ground. Each sphere is represented by an individual GLFrame class instance for its loca-
tion and orientation. We also use the frame to represent a camera that can be moved
about Sphere World using the keyboard arrow keys. In the middle of Sphere World, we use
the simpler high-level transformation routines to draw a spinning torus with another
sphere in orbit around it.

This example combines all the ideas we have discussed thus far and shows them working
together. In addition to the main source file sphereworld.cpp, the project also includes
the gltools.cpp, math3d.cpp, and glframe.h modules from the \shared folder. We do not
provide the entire listing here because it uses the same GLUT framework as all the other
samples, but the important functions are shown in Listing 4.7.

LISTING 4.7 Main Functions for the SPHEREWORLD Sample

#define NUM_SPHERES 50

GLFrame spheres[NUM_SPHERES];

GLFrame frameCamera;

//

// This function does any needed initialization on the rendering

// context.

void SetupRC()

{

int iSphere;

// Bluish background

glClearColor(0.0f, 0.0f, .50f, 1.0f);

// Draw everything as wire frame

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

// Randomly place the sphere inhabitants

for(iSphere = 0; iSphere < NUM_SPHERES; iSphere++)

{

// Pick a random location between -20 and 20 at .1 increments

float x = ((float)((rand() % 400) - 200) * 0.1f);

Bringing It All Together 165

4

LISTING 4.7 Continued

float z = (float)((rand() % 400) - 200) * 0.1f;

spheres[iSphere].SetOrigin(x, 0.0f, z);

}

}

///

// Draw a gridded ground

void DrawGround(void)

{

GLfloat fExtent = 20.0f;

GLfloat fStep = 1.0f;

GLfloat y = -0.4f;

GLint iLine;

glBegin(GL_LINES);

for(iLine = -fExtent; iLine <= fExtent; iLine += fStep)

{

glVertex3f(iLine, y, fExtent); // Draw Z lines

glVertex3f(iLine, y, -fExtent);

glVertex3f(fExtent, y, iLine);

glVertex3f(-fExtent, y, iLine);

}

glEnd();

}

// Called to draw scene

void RenderScene(void)

{

int i;

static GLfloat yRot = 0.0f; // Rotation angle for animation

yRot += 0.5f;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

frameCamera.ApplyCameraTransform();

CHAPTER 4 Geometric Transformations: The Pipeline166

LISTING 4.7 Continued

// Draw the ground

DrawGround();

// Draw the randomly located spheres

for(i = 0; i < NUM_SPHERES; i++)

{

glPushMatrix();

spheres[i].ApplyActorTransform();

glutSolidSphere(0.1f, 13, 26);

glPopMatrix();

}

glPushMatrix();

glTranslatef(0.0f, 0.0f, -2.5f);

glPushMatrix();

glRotatef(-yRot * 2.0f, 0.0f, 1.0f, 0.0f);

glTranslatef(1.0f, 0.0f, 0.0f);

glutSolidSphere(0.1f, 13, 26);

glPopMatrix();

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

gltDrawTorus(0.35, 0.15, 40, 20);

glPopMatrix();

glPopMatrix();

// Do the buffer Swap

glutSwapBuffers();

}

// Respond to arrow keys by moving the camera frame of reference

void SpecialKeys(int key, int x, int y)

{

if(key == GLUT_KEY_UP)

frameCamera.MoveForward(0.1f);

if(key == GLUT_KEY_DOWN)

frameCamera.MoveForward(-0.1f);

if(key == GLUT_KEY_LEFT)

Bringing It All Together 167

4

LISTING 4.7 Continued

frameCamera.RotateLocalY(0.1f);

if(key == GLUT_KEY_RIGHT)

frameCamera.RotateLocalY(-0.1f);

// Refresh the Window

glutPostRedisplay();

}

The first few lines contain a macro to define the number of spherical inhabitants as 50.
Then we declare an array of frames and another frame to represent the camera:

#define NUM_SPHERES 50

GLFrame spheres[NUM_SPHERES];

GLFrame frameCamera;

The GLFrame class has a constructor that initializes the camera or actor as being at the
origin and pointing down the negative z-axis (the OpenGL default viewing orientation).

The SetupRC function contains a loop that initializes the array of sphere frames and selects
a random x and z location for their positions:

// Randomly place the sphere inhabitants

for(iSphere = 0; iSphere < NUM_SPHERES; iSphere++)

{

// Pick a random location between -20 and 20 at .1 increments

float x = ((float)((rand() % 400) - 200) * 0.1f);

float z = (float)((rand() % 400) - 200) * 0.1f;

spheres[iSphere].SetOrigin(x, 0.0f, z);

}

The DrawGround function then draws the ground as a series of crisscross grids using a series
of GL_LINE segments:

///

// Draw a gridded ground

void DrawGround(void)

{

GLfloat fExtent = 20.0f;

GLfloat fStep = 1.0f;

GLfloat y = -0.4f;

GLint iLine;

CHAPTER 4 Geometric Transformations: The Pipeline168

glBegin(GL_LINES);

for(iLine = -fExtent; iLine <= fExtent; iLine += fStep)

{

glVertex3f(iLine, y, fExtent); // Draw Z lines

glVertex3f(iLine, y, -fExtent);

glVertex3f(fExtent, y, iLine);

glVertex3f(-fExtent, y, iLine);

}

glEnd();

}

The RenderScene function draws the world from our point of view. Note that we first save
the identity matrix and then apply the camera transformation using the GLFrame member
function ApplyCameraTransform. The ground is static and is transformed by the camera
only to appear that you are moving over it:

glPushMatrix();

frameCamera.ApplyCameraTransform();

// Draw the ground

DrawGround();

Then we draw each of the randomly located spheres. The ApplyActorTransform member
function creates a transformation matrix from the frame of reference and multiplies it by
the current matrix (which is the camera matrix). Each sphere must have its own transform
relative to the camera, so the camera is saved each time with a call to glPushMatrix and
restored again with glPopMatrix to get ready for the next sphere or transformation:

// Draw the randomly located spheres

for(i = 0; i < NUM_SPHERES; i++)

{

glPushMatrix();

spheres[i].ApplyActorTransform();

glutSolidSphere(0.1f, 13, 26);

glPopMatrix();

}

Now for some fancy footwork! First, we move the coordinate system a little farther down
the z-axis so that we can see what we are going to draw next. We save this location and
then perform a rotation, followed by a translation and the drawing of a sphere. This effect
makes the sphere appear to revolve around the origin in front of us. We then restore our
transformation matrix, but only so that the location of the origin is z = –2.5. Then another

Bringing It All Together 169

4

rotation is performed before the torus is drawn. This has the effect of making a torus that
spins in place:

glPushMatrix();

glTranslatef(0.0f, 0.0f, -2.5f);

glPushMatrix();

glRotatef(-yRot * 2.0f, 0.0f, 1.0f, 0.0f);

glTranslatef(1.0f, 0.0f, 0.0f);

glutSolidSphere(0.1f, 13, 26);

glPopMatrix();

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

gltDrawTorus(0.35, 0.15, 40, 20);

glPopMatrix();

glPopMatrix();

The total effect is that we see a grid on the ground with many spheres scattered about at
random locations. Out in front, we see a spinning torus, with a sphere moving rapidly in
orbit around it. Figure 4.31 shows the result.

CHAPTER 4 Geometric Transformations: The Pipeline170

FIGURE 4.31 The output from the SPHEREWORLD program.

Finally, the SpecialKeys function is called whenever one of the arrow keys is pressed. The
up- and down-arrow keys call the glTools function gltMoveFrameForward, which simply
moves the frame forward along its line of sight. The gltRotateFrameLocalY function
rotates a frame of reference around its local y-axis (regardless of orientation) in response to
the left- and right-arrow keys:

void SpecialKeys(int key, int x, int y)

{

if(key == GLUT_KEY_UP)

frameCamera.MoveForward(0.1f);

if(key == GLUT_KEY_DOWN)

frameCamera.MoveForward(-0.1f);

if(key == GLUT_KEY_LEFT)

frameCamera.RotateLocalY(0.1f);

if(key == GLUT_KEY_RIGHT)

frameCamera.RotateLocalY(-0.1f);

// Refresh the Window

glutPostRedisplay();

}

A NOTE ON KEYBOARD POLLING

Moving the camera in response to keystroke messages can sometimes result in less than the
smoothest possible animation. The reason is that the keyboard repeat rate is usually no more
than about 20 times per second. For best results, you should render at least 30 frames per
second (with 60 being more optimal) and poll the keyboard once for each frame of animation.
Doing this with a portability library like GLUT is somewhat tricky, but in the OS-specific chapters
later in this book, we will cover ways to achieve the smoothest possible animation and methods
to best create time-based animation instead of the frame-based animation (moving by a fixed
amount each time the scene is redrawn) done here.

Summary
In this chapter, you learned concepts crucial to using OpenGL for creation of 3D scenes.
Even if you can’t juggle matrices in your head, you now know what matrices are and how
they are used to perform the various transformations. You also learned how to manipulate
the modelview and projection matrix stacks to place your objects in the scene and to
determine how they are viewed onscreen.

Summary 171

4

We also showed you the functions needed to perform your own matrix magic, if you are
so inclined. These functions allow you to create your own matrices and load them onto
the matrix stack or multiply them by the current matrix first. The chapter also introduced
the powerful concept of a frame of reference, and you saw how easy it is to manipulate
frames and convert them into transformations.

Finally, we began to make more use of the glTools and math3d libraries that accompany
this book. These libraries are written entirely in portable C++ and provide you with a
handy toolkit of miscellaneous math and helper routines that can be used along with
OpenGL.

CHAPTER 4 Geometric Transformations: The Pipeline172

CHAPTER 5

Color, Materials, and Lighting:
The Basics

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Specify a color in terms of RGB components glColor

Set the shading model glShadeModel

Set the lighting model glLightModel

Set lighting parameters glLight

Set material reflective properties glColorMaterial/glMaterial

Use surface normals glNormal

This is the chapter where 3D graphics really start to look interesting (unless you really dig
wireframe models!), and it only gets better from here. You’ve been learning OpenGL from
the ground up—how to put programs together and then how to assemble objects from
primitives and manipulate them in 3D space. Until now, we’ve been laying the founda-
tion, and you still can’t tell what the house is going to look like! To recoin a phrase,
“Where’s the beef?”

To put it succinctly, the beef starts here. For most of the rest of this book, science takes a
back seat and magic rules. According to Arthur C. Clarke, “Any sufficiently advanced tech-
nology is indistinguishable from magic.” Of course, there is no real magic involved in
color and lighting, but it sure can seem that way at times. If you want to dig into the
“sufficiently advanced technology” (mathematics), see Appendix A, “Further
Reading/References.”

Another name for this chapter might be “Adding Realism to Your Scenes.” You see, there is
more to an object’s color in the real world than just what color we might tell OpenGL to
make it. In addition to having a color, objects can appear shiny or dull or can even glow

174 CHAPTER 5 Color, Materials, and Lighting: The Basics

with their own light. An object’s apparent color varies with bright or dim lighting, and
even the color of the light hitting an object makes a difference. An illuminated object can
even be shaded across its surface when lit or viewed from an angle.

What Is Color?
First, let’s talk a little bit about color itself. How is a color made in nature, and how do we
see colors? Understanding color theory and how the human eye sees a color scene will
lend some insight into how you create a color programmatically. (If color theory is old hat
to you, you can probably skip this section.)

Light as a Wave
Color is simply a wavelength of light that is visible to the human eye. If you had any
physics classes in school, you might remember something about light being both a wave
and a particle. It is modeled as a wave that travels through space much like a ripple through
a pond, and it is modeled as a particle, such as a raindrop falling to the ground. If this
concept seems confusing, you know why most people don’t study quantum mechanics!

The light you see from nearly any given source is actually a mixture of many different
kinds of light. These kinds of light are identified by their wavelengths. The wavelength of
light is measured as the distance between the peaks of the light wave, as illustrated in
Figure 5.1.

FIGURE 5.1 How a wavelength of light is measured.

Wavelengths of visible light range from 390 nanometers (one billionth of a meter) for
violet light to 720 nanometers for red light; this range is commonly called the visible spec-
trum. You’ve undoubtedly heard the terms ultraviolet and infrared; they represent light not
visible to the naked eye, lying beyond the ends of the spectrum. You will recognize the
spectrum as containing all the colors of the rainbow (see Figure 5.2).

FIGURE 5.2 The spectrum of visible light.

Light as a Particle
“Okay, Mr. Smart Brain,” you might ask. “If color is a wavelength of light and the only
visible light is in this ‘rainbow’ thing, where is the brown for my Fig Newtons or the black
for my coffee or even the white of this page?” We begin answering that question by telling
you that black is not a color, nor is white. Actually, black is the absence of color, and
white is an even combination of all the colors at once. That is, a white object reflects all
wavelengths of colors evenly, and a black object absorbs all wavelengths evenly.

As for the brown of those fig bars and the many other colors that you see, they are indeed
colors. Actually, at the physical level, they are composite colors. They are made of varying
amounts of the “pure” colors found in the spectrum. To understand how this concept
works, think of light as a particle. Any given object when illuminated by a light source is
struck by “billions and billions” (my apologies to the late Carl Sagan) of photons, or tiny
light particles. Remembering our physics mumbo jumbo, each of these photons is also a
wave, which has a wavelength and thus a specific color in the spectrum.

All physical objects consist of atoms. The reflection of photons from an object depends on
the kinds of atoms, the number of each kind, and the arrangement of atoms (and their
electrons) in the object. Some photons are reflected and some are absorbed (the absorbed
photons are usually converted to heat), and any given material or mixture of materials
(such as your fig bar) reflects more of some wavelengths than others. Figure 5.3 illustrates
this principle.

What Is Color? 175

5

FIGURE 5.3 An object reflects some photons and absorbs others.

CHAPTER 5 Color, Materials, and Lighting: The Basics176

Your Personal Photon Detector
The reflected light from your fig bar, when seen by your eye, is interpreted as color. The
billions of photons enter your eye and are focused onto the back of your eye, where your
retina acts as sort of a photographic plate. The retina’s millions of cone cells are excited
when struck by the photons, and this causes neural energy to travel to your brain, which
interprets the information as light and color. The more photons that strike the cone cells,
the more excited they get. This level of excitation is interpreted by your brain as the
brightness of the light, which makes sense; the brighter the light, the more photons there
are to strike the cone cells.

The eye has three kinds of cone cells. All of them respond to photons, but each kind
responds most to a particular wavelength. One is more excited by photons that have
reddish wavelengths; one, by green wavelengths; and one, by blue wavelengths. Thus,
light that is composed mostly of red wavelengths excites red-sensitive cone cells more
than the other cells, and your brain receives the signal that the light you are seeing is
mostly reddish. You do the math: A combination of different wavelengths of various
intensities will, of course, yield a mix of colors. All wavelengths equally represented thus
are perceived as white, and no light of any wavelength is black.

You can see that any “color” that your eye perceives actually consists of light all over the
visible spectrum. The “hardware” in your eye detects what it sees in terms of the relative
concentrations and strengths of red, green, and blue light. Figure 5.4 shows how brown is
composed of a photon mix of 60% red photons, 40% green photons, and 10% blue
photons.

FIGURE 5.4 How the “color” brown is perceived by the eye.

The Computer as a Photon Generator
Now that you understand how the human eye discerns colors, it makes sense that when
you want to generate a color with a computer, you do so by specifying separate intensities
for the red, green, and blue components of the light. It so happens that color computer
monitors are designed to produce three kinds of light (can you guess which three?), each
with varying degrees of intensity. For years the CRT (Cathode Ray Tube) reigned supreme.
In the back of these computer monitors is an electron gun that shoots electrons at the

back of the screen. This screen contains phosphors that emit red, green, and blue light
when struck by the electrons. The intensity of the light emitted varies with the intensity
of the electron beam. These three color phosphors are packed closely together to make up
a single physical dot on the screen (see Figure 5.5).

A few hold-outs still prefer the CRT technology over LCD (Liquid Crystal Display) for
various reasons, such as higher refresh rate. LCDs work in a similar way by combining
three colors of light, except they are solid state. Each pixel on your LCD screen has a light
behind it and three very small computer-controlled polarized (red, green, and blue) filters.
Basic LCD technology is based on the polarization of light, and blocking that light with
the LCD material electronically. A huge technological achievement to be sure, but it still
all boils down to very crowded tiny dots emitting red, green, and blue light.

PC Color Hardware 177

5

R

BG

FIGURE 5.5 How a computer monitor generates colors.

You might recall that in Chapter 2, “Using OpenGL,” we explained how OpenGL defines a
color exactly as intensities of red, green, and blue, with the glColor command.

PC Color Hardware
There once was a time (actually, 1982) when state-of-the-art PC graphics hardware meant
the Hercules graphics card. This card could produce bitmapped images with a resolution of
720×348, and crisper text than the original IBM Monochrome Display Adapter (MDA)
developed for the original IBM PC. The drawback was that each pixel had only two states:
on and off. At that time, bitmapped graphics of any kind on a PC were a big deal, and you
could produce some great monochrome graphics—even 3D!

Actually predating the Hercules card by one year was the Color Graphics Adapter (CGA)
card. Also introduced with the first IBM PC, this card could support resolutions of
320×200 pixels and could place any 4 of 16 colors on the screen at once. A higher resolu-
tion (640×200) with 2 colors was also possible but wasn’t as effective or cost conscious as
the Hercules card. (Color monitors = $$$.) CGA was puny by today’s standards; it was
even outmatched by the graphics capabilities of a $200 Commodore 64 or Atari home
computer at the time. Lacking adequate resolution for business graphics or even modest
modeling, CGA was used primarily for simple PC games or business applications that
could benefit from colored text. Generally, it was hard to make a good business justifica-
tion for this more expensive hardware.

The next big breakthrough for PC graphics came in 1984 when IBM introduced the
Enhanced Graphics Adapter (EGA) card. This one could do more than 25 lines of colored
text in new text modes, and for graphics, it could support 640×350-pixel bitmapped
graphics in 16 colors! Other technical improvements eliminated some flickering problems
of the CGA ancestor and provided for better and smoother animation. Now arcade-style
games, real business graphics, and even simple 3D graphics became not only possible but
even reasonable on the PC. This advance was a giant move beyond CGA, but still PC
graphics were in their infancy.

The last mainstream PC graphics standard set by IBM was the VGA card (which stood for
Video Graphics Array rather than the commonly held Video Graphics Adapter), intro-
duced in 1987. This card was significantly faster than the EGA; it could support 16 colors
at a higher resolution (640×480) and 256 colors at a lower resolution of 320×200. These
256 colors were selected from a palette of more than 16 million possible colors. That’s
when the floodgates opened for PC graphics. Near photo-realistic graphics became possible
on PCs. Ray tracers, 3D games, and photo-editing software began to pop up in the PC
market.

IBM, as well, had a high-end graphics card—the 8514—, introduced in 1987 for its “work-
stations.” This card could do 1,024×768 graphics at 256 colors, and came with a whopping
one megabyte of memory! IBM thought this card would be used only by CAD and scien-
tific applications! But one thing is certain about consumers: They always want more. It
was this short-sightedness that cost IBM its role as standard setter in the PC graphics
market. Other vendors began to ship “Super-VGA” cards that could display higher and
higher resolutions, with more and more colors. First, we saw 800×600, then 1,024×768
and even higher, with first 256 colors, and then 32,000, and 65,000. Today, 32-bit color
cards can display 16 million colors at resolutions far greater than 1,024×768. Even entry-
level Windows PCs sold today can support at least 16 million colors at resolutions of
1,024×768 or more.

All this power makes for some really cool possibilities—photo-realistic 3D graphics, to
name just one. When Microsoft ported OpenGL to the Windows platform, that move
enabled creation of high-end graphics applications for PCs. Combine today’s fast

CHAPTER 5 Color, Materials, and Lighting: The Basics178

processors with 3D-graphics accelerated graphics cards, and you can get the kind of perfor-
mance possible only a few years ago on $100,000 graphics workstations—for the cost of a
Wal-Mart Christmas special! Today’s typical home machines are capable of sophisticated
simulations, games, and more. Already the term virtual reality has become as antiquated as
those old Buck Rogers rocket ships as we begin to take advanced 3D graphics for granted.

PC Display Modes
Microsoft Windows and the Apple Macintosh revolutionized the world of PC graphics in
two respects. First, they created mainstream graphical operating environments that were
adopted by the business world at large and, soon thereafter, the consumer market. Second,
they made PC graphics significantly easier for programmers to do. The graphics hardware
was “virtualized” by display device drivers. Instead of having to write instructions directly
to the video hardware, programmers today can write to a single API (such as OpenGL),
and the operating system handles the specifics of talking to the hardware.

Screen Resolution
Screen resolution for today’s computers can vary from 640×480 pixels up to 1,600×1,200
or more. The lower resolutions of, say, 640×480 are considered adequate for some graphics
display tasks; people with eye problems often run at the lower resolutions, but on a large
monitor or display. You must always take into account the size of the window with the
clipping volume and viewport settings (see Chapter 2). By scaling the size of the drawing
to the size of the window, you can easily account for the various resolutions and window
size combinations that can occur. Well-written graphics applications display the same
approximate image regardless of screen resolution. The user should automatically be able
to see more and sharper details as the resolution increases.

Color Depth
If an increase in screen resolution or in the number of available drawing pixels in turn
increases the detail and sharpness of the image, so too should an increase in available
colors improve the clarity of the resulting image. An image displayed on a computer that
can display millions of colors should look remarkably better than the same image
displayed with only 16 colors.

Bang the Rocks Together!
The most primitive display modes you may ever encounter are the 4-bit (16-color) and 8-
bit (256-color) modes. These modes do rarely show up, but only as the base display mode
when you first install an operating system without any specific graphics card drivers. At
one time, these depths were the “new hotness,” but these modes are useless by today’s
standards for graphics applications and can be safely ignored.

PC Display Modes 179

5

Going Deeper
Typical consumer graphics hardware today comes in three flavors: 16, 24, and 32 bits per
pixel. The 16-bit display modes are available on many shipping graphics cards today, but
are rarely used on purpose. This mode supports 65,536 different colors, and consumes less
memory for the color buffer than the higher bit depth modes. Many graphics applications
have very noticeable visual artifacts (usually in color gradations) at this color depth. The
24- and 32-bit display modes support 8 bits of color per color component, allowing more
than 16 million colors onscreen at a time.

Nearly all 3D graphics hardware today supports 32-bit color mode. This allows for 8 bits
per RGBA color channel. Visually, there is no real difference between 24- and 32-bit
display modes. A graphics card that reserves 32 bits per pixel does so for one of two
reasons. First, most memory architectures perform faster with each pixel occupying exactly
4 bytes instead of 3. Second, the extra 8 bits per pixel can be used to store an alpha value
in the color buffer. This alpha value can be used for some graphics operations. You’ll learn
more about uses for alpha in the next chapter.

In Chapter 18, “Advanced Buffers,” you’ll learn about OpenGL’s support for the most
cutting-edge color technology: floating-point color buffers.

Using Color in OpenGL
You now know that OpenGL specifies an exact color as separate intensities of red, green,
and blue components. You also know that modern PC hardware might be able to display
nearly all these combinations or only a very few. How, then, do we specify a desired color
in terms of these red, green, and blue components?

The Color Cube
Because a color is specified by three positive color values, we can model the available
colors as a volume that we call the RGB colorspace. Figure 5.6 shows what this colorspace
looks like at the origin with red, green, and blue as the axes. The red, green, and blue
coordinates are specified just like x, y, and z coordinates. At the origin (0,0,0), the relative
intensity of each component is zero, and the resulting color is black. The maximum
available on the PC for storage information is 24 bits, so with 8 bits for each component,
let’s say that a value of 255 along the axis represents full saturation of that component.
We then end up with a cube measuring 255 on each side. The corner directly opposite
black, where the concentrations are (0,0,0), is white, with relative concentrations of
(255,255,255). At full saturation (255) from the origin along each axis lie the pure colors
of red, green, and blue.

CHAPTER 5 Color, Materials, and Lighting: The Basics180

FIGURE 5.6 The origin of RGB colorspace.

This “color cube” (see Figure 5.7) contains all the possible colors, either on the surface of
the cube or within the interior of the cube. For example, all possible shades of gray
between black and white lie internally on the diagonal line between the corner at (0,0,0)
and the corner at (255,255,255).

Using Color in OpenGL 181

5

FIGURE 5.7 The RGB colorspace.

Figure 5.8 shows the smoothly shaded color cube produced by a sample program from this
chapter, CCUBE. The surface of this cube shows the color variations from black on one
corner to white on the opposite corner. Red, green, and blue are present on their corners
255 units from black. Additionally, the colors yellow, cyan, and magenta have corners
showing the combination of the other three primary colors. You can also spin the color
cube around to examine all its sides by pressing the arrow keys.

FIGURE 5.8 The output from CCUBE is this color cube.

Setting the Drawing Color
Let’s briefly review the glColor function. It is prototyped as follows:

void glColor<x><t>(red, green, blue, alpha);

In the function name, the <x> represents the number of arguments; it might be 3 for three
arguments of red, green, and blue or 4 for four arguments to include the alpha compo-
nent. The alpha component specifies the translucency of the color and is covered in more
detail in the next chapter. For now, just use a three-argument version of the function.

The <t> in the function name specifies the argument’s data type and can be b, d, f, i, s,
ub, ui, or us, for byte, double, float, integer, short, unsigned byte, unsigned integer, and
unsigned short data types, respectively. Another version of the function has a v appended
to the end; this version takes an array that contains the arguments (the v stands for
vectored). In Appendix C, “API Reference,” you will find an entry with more details on the
glColor function.

Most OpenGL programs that you’ll see use glColor3f and specify the intensity of each
component as 0.0 for none or 1.0 for full intensity. However, it might be easier, if you
have Windows programming experience, to use the glColor3ub version of the function.
This version takes three unsigned bytes, from 0 to 255, to specify the intensities of red,
green, and blue. Using this version of the function is like using the Windows RGB macro
to specify a color:

glColor3ub(0,255,128) = RGB(0,255,128)

CHAPTER 5 Color, Materials, and Lighting: The Basics182

In fact, this approach might make it easier for you to match your OpenGL colors to exist-
ing RGB colors used by your program for other non-OpenGL drawing tasks. However, we
should say that, internally, OpenGL represents color values as floating-point values, and
you may incur some performance penalties due to the constant conversion to floats that
must take place at runtime. It is also possible that in the future, higher resolution color
buffers may evolve (in fact, floating-point color buffers are already starting to appear),
and your color values specified as floats will be more faithfully represented by the color
hardware.

Shading
Our previous working definition for glColor was that this function sets the current
drawing color, and all objects drawn after this command have the last color specified.
After discussing the OpenGL drawing primitives in a preceding chapter, we can now
expand this definition as follows: The glColor function sets the current color that is used
for all vertices drawn after the command. So far, all our examples have drawn wireframe
objects or solid objects with each face a different solid color. If we specify a different color
for each vertex of a primitive (point, line, or polygon), what color is the interior?

Let’s answer this question first regarding points. A point has only one vertex, and what-
ever color you specify for that vertex is the resulting color for that point. Easy enough.

A line, however, has two vertices, and each can be set to a different color. The color of the
line depends on the shading model. Shading is simply defined as the smooth transition
from one color to the next. Any two points in the RGB colorspace (refer to Figure 5.7) can
be connected by a straight line.

Smooth shading causes the colors along the line to vary as they do through the color cube
from one color point to the other. Figure 5.9 shows the color cube with the black and
white corners identified. Below it is a line with two vertices, one black and one white. The
colors selected along the length of the line match the colors along the straight line in the
color cube, from the black to the white corners. This results in a line that progresses from
black through lighter shades of gray and eventually to white.

Using Color in OpenGL 183

5

FIGURE 5.9 How a line is shaded from black to white.

You can do shading mathematically by finding the equation of the line connecting two
points in the three-dimensional RGB colorspace. Then you can simply loop through from
one end of the line to the other, retrieving coordinates along the way to provide the color
of each pixel on the screen. Many good books on computer graphics explain the algo-
rithm to accomplish this effect, scale your color line to the physical line on the screen,
and so on. Fortunately, OpenGL does all this work for you!

The shading exercise becomes slightly more complex for polygons. A triangle, for instance,
can also be represented as a plane within the color cube. Figure 5.10 shows a triangle with
each vertex at full saturation for the red, green, and blue color components. The code to
display this triangle is shown in Listing 5.1 and in the sample program titled TRIANGLE.

CHAPTER 5 Color, Materials, and Lighting: The Basics184

FIGURE 5.10 A triangle in RGB colorspace.

LISTING 5.1 Drawing a Smooth-Shaded Triangle with Red, Green, and Blue Corners

// Enable smooth shading

glShadeModel(GL_SMOOTH);

// Draw the triangle

glBegin(GL_TRIANGLES);

// Red Apex

glColor3ub((GLubyte)255,(GLubyte)0,(GLubyte)0);

glVertex3f(0.0f,200.0f,0.0f);

// Green on the right bottom corner

glColor3ub((GLubyte)0,(GLubyte)255,(GLubyte)0);

glVertex3f(200.0f,-70.0f,0.0f);

// Blue on the left bottom corner

glColor3ub((GLubyte)0,(GLubyte)0,(GLubyte)255);

glVertex3f(-200.0f, -70.0f, 0.0f);

glEnd();

Setting the Shading Model
The first line of Listing 5.1 actually sets the shading model OpenGL uses to do smooth
shading—the model we have been discussing. This is the default shading model, but it’s a
good idea to call this function anyway to ensure that your program is operating the way
you intended.

Using Color in OpenGL 185

5

The other shading model that can be specified with glShadeModel is GL_FLAT for flat
shading. Flat shading means that no shading calculations are performed on the interior of
primitives. Generally, with flat shading, the color of the primitive’s interior is the color
that was specified for the last vertex. The only exception is for a GL_POLYGON primitive, in
which case the color is that of the first vertex.

Next, the code in Listing 5.1 sets the top of the triangle to be pure red, the lower-right
corner to be green, and the remaining lower-left corner to be blue. Because smooth
shading is specified, the interior of the triangle is shaded to provide a smooth transition
between each corner.

The output from the TRIANGLE program is shown in Figure 5.11. This output represents
the plane shown graphically in Figure 5.10.

CHAPTER 5 Color, Materials, and Lighting: The Basics186

FIGURE 5.11 The output from the TRIANGLE program.

Polygons, more complex than triangles, can also have different colors specified for each
vertex. In these instances, the underlying logic for shading can become more intricate.
Fortunately, you never have to worry about it with OpenGL. No matter how complex your
polygon, OpenGL successfully shades the interior points between each vertex.

Color in the Real World
Real objects don’t appear in a solid or shaded color based solely on their RGB values.
Figure 5.12 shows the output from the program titled JET from the sample code for this
chapter. It’s a simple jet airplane, hand plotted with triangles using only the methods
covered so far in this book. As usual, JET and the other example programs in this chapter
allow you to spin the object around by using the arrow keys to better see the effects.

FIGURE 5.12 A simple jet built by setting a different color for each triangle.

The selection of colors is meant to highlight the three-dimensional structure of the jet.
Aside from the crude assemblage of triangles, however, you can see that the jet looks
hardly anything like a real object. Suppose you constructed a model of this airplane and
painted each flat surface the colors represented. The model would still appear glossy or flat
depending on the kind of paint used, and the color of each flat surface would vary with
the angle of your view and any sources of light.

OpenGL does a reasonably good job of approximating the real world in terms of lighting
conditions. To do so, it uses a simple and intuitive lighting model that isn’t necessarily
based on the physics of real world light. In the OpenGL lighting model, unless an object
emits its own light, it is illuminated by three kinds of light: ambient, diffuse, and specular.
In the real world, there is of course no such thing. However, for our abstraction of light-
ing, these three kinds of light allow us to simulate and control the three main kinds of
effects that light has when shining on materials.

Ambient Light
Ambient light doesn’t come from any particular direction. It has an original source some-
where, but the rays of light have bounced around the room or scene and become direc-
tionless. Objects illuminated by ambient light are evenly lit on all surfaces in all
directions. You can think of all previous examples in this book as being lit by a bright
ambient light because the objects were always visible and evenly colored (or shaded)
regardless of their rotation or viewing angle. Figure 5.13 shows an object illuminated by
ambient light. You can think of ambient light as a global “brightening” factor applied per
light source. In OpenGL, this lighting component really approximates scattered light in
the environment that originates from the light source.

Color in the Real World 187

5

FIGURE 5.13 An object illuminated purely by ambient light.

Diffuse Light
The diffuse part of an OpenGL light is the directional component that appears to come
from a particular direction and is reflected off a surface with an intensity proportional to
the angle at which the light rays strike the surface. Thus, the object surface is brighter if
the light is pointed directly at the surface than if the light grazes the surface from a greater
angle. Good examples of diffuse light sources include a lamp, candle, or sunlight stream-
ing in a side window at noon. Essentially, it is the diffuse component of a light source that
produces the shading (or change in color) across a lit object’s surface. In Figure 5.14, the
object is illuminated by a diffuse light source.

CHAPTER 5 Color, Materials, and Lighting: The Basics188

FIGURE 5.14 An object illuminated by a purely diffuse light source.

Specular Light
Like diffuse light, specular light is a highly directional property, but it interacts more
sharply with the surface and in a particular direction. A highly specular light (really a
material property in the real world) tends to cause a bright spot on the surface it shines
on, which is called the specular highlight. Because of its highly directional nature, it is even
possible that depending on a viewer’s position, the specular highlight may not even be
visible. A spotlight and the sun are good examples of sources that produce strong specular
highlights. Figure 5.15 shows an object illuminated by a purely specular light source.

FIGURE 5.15 An object illuminated by a purely specular light source.

Putting It All Together
No single light source is composed entirely of any of the three types of light just
described. Rather, it is made up of varying intensities of each. For example, a red laser
beam in a lab is composed of almost a pure-red specular component producing a very
bright spot where it strikes any object. However, smoke or dust particles scatter the beam
all over the room, giving it a very small ambient component. This would produce a slight
red hue on other objects in the room. If the beam strikes a surface at a glancing blow, a
very small diffuse shading component may be seen across the surface it illuminates
(although in this case it would be largely overpowered by the specular highlight).

Thus, a light source in a scene is said to be composed of three lighting components:
ambient, diffuse, and specular. Just like the components of a color, each lighting compo-
nent is defined with an RGBA value that describes the relative intensities of red, green,
and blue light that make up that component (for the purposes of light color, the alpha
value is ignored). For example, our red laser light might be described by the component
values in Table 5.1.

TABLE 5.1 Color and Light Distribution for a Red Laser Light Source

Red Green Blue Alpha

Specular 0.99 0.0 0.0 1.0

Diffuse 0.10 0.0 0.0 1.0

Ambient 0.05 0.0 0.0 1.0

Note that the red laser beam has no green or blue light. Also, note that specular, diffuse,
and ambient light can each range in intensity from 0.0 to 1.0. You could interpret this
table as saying that the red laser light in some scenes has a very high specular component,
a small diffuse component, and a very small ambient component. Wherever it shines, you
are probably going to see a reddish spot. Also, because of conditions in the room, the
ambient component—likely due to smoke or dust particles in the air—scatters a tiny bit of
light all about the room.

Color in the Real World 189

5

Materials in the Real World
Light is only part of the equation. In the real world, objects do have a color of their own.
Earlier in this chapter, we described the color of an object as defined by its reflected wave-
lengths of light. A blue ball reflects mostly blue photons and absorbs most others. This
assumes that the light shining on the ball has blue photons in it to be reflected and
detected by the observer. Generally, most scenes in the real world are illuminated by a
white light containing an even mixture of all the colors. Under white light, therefore,
most objects appear in their proper or “natural” colors. However, this is not always so; put
the blue ball in a dark room with only a yellow light, and the ball appears black to the
viewer because all the yellow light is absorbed and there is no blue to be reflected.

Material Properties
When we use lighting, we do not describe polygons as having a particular color, but rather
as consisting of materials that have certain reflective properties. Instead of saying that a
polygon is red, we say that the polygon is made of a material that reflects mostly red light.
We are still saying that the surface is red, but now we must also specify the material’s
reflective properties for ambient, diffuse, and specular light sources. A material might be
shiny and reflect specular light very well, while absorbing most of the ambient or diffuse
light. Conversely, a flat colored object might absorb all specular light and not look shiny
under any circumstances. Another property to be specified is the emission property for
objects that emit their own light, such as taillights or glow-in-the-dark watches.

Adding Light to Materials
Setting lighting and material properties to achieve the desired effect takes some practice.
There are no color cubes or rules of thumb to give you quick and easy answers. This is the
point at which analysis gives way to art, and science yields to magic. When drawing an
object, OpenGL decides which color to use for each pixel in the object. That object has
reflective “colors,” and the light source has “colors” of its own. How does OpenGL deter-
mine which colors to use? Understanding these principles is not difficult, but it does take
some simple grade-school multiplication. (See, that teacher told you you’d need it one
day!)

Each vertex of your primitives is assigned an RGB color value based on the net effect of
the ambient, diffuse, and specular illumination multiplied by the ambient, diffuse, and
specular reflectance of the material properties. Because you make use of smooth shading
between the vertices, the illusion of illumination is achieved.

Calculating Ambient Light Effects
To calculate ambient light effects, you first need to put away the notion of color and
instead think only in terms of red, green, and blue intensities. For an ambient light source
of half-intensity red, green, and blue components, you have an RGB value for that source

CHAPTER 5 Color, Materials, and Lighting: The Basics190

of (0.5, 0.5, 0.5). If this ambient light illuminates an object with ambient reflective proper-
ties specified in RGB terms of (0.5, 1.0, 0.5), the net “color” component from the ambient
light is

(0.5 * 0.5, 0.5 * 1.0, 0.5 * 0.5) = (0.25, 0.5, 0.25)

This is the result of multiplying each of the ambient light source terms by each of the
ambient material property terms (see Figure 5.16).

Materials in the Real World 191

5FIGURE 5.16 Calculating the ambient color component of an object.

Thus, the material color components actually determine the percentage of incident light
that is reflected. In our example, the ambient light had a red component that was at one-
half intensity, and the material ambient property of 0.5 specified that one-half of that one-
half intensity light was reflected. Half of a half is a fourth, or 0.25.

Diffuse and Specular Effects
Calculating ambient light is as simple as it gets. Diffuse light also has RGB intensities that
interact in the same way with material properties. However, diffuse light is directional, and
the intensity at the surface of the object varies depending on the angle between the
surface and the light source, the distance to the light source, any attenuation factors
(whether it is foggy between the light and the surface), and so on. The same goes for spec-
ular light sources and intensities. The net effect in terms of RGB values is figured the same
way as for ambient light, with the intensity of the light source (adjusted for the angle of
incidence) being multiplied by the material reflectance. Finally, all three RGB terms are
added to yield a final color for the object. If any single color component is greater than
1.0, it is clamped to that value. (You can’t get more intense than full intensity!)

Generally, the ambient and diffuse components of light sources and materials are the same
and have the greatest effect in determining the color of the object. Specular light and
material properties tend to be light gray or white. The specular component depends signif-
icantly on the angle of incidence, and specular highlights on an object are usually set to
white.

Adding Light to a Scene
This text might seem like a lot of theory to digest all of a sudden. Let’s slow down and
start exploring some examples of the OpenGL code needed for lighting; this exploration
will also help reinforce what you’ve just learned. We demonstrate some additional features
and requirements of lighting in OpenGL. The next few examples build on our JET
program. The initial version contains no lighting code and just draws triangles with
hidden surface elimination (depth testing) enabled. When we’re done, the jet’s metallic
surface will glisten in the sunlight as you rotate it with the arrow keys.

Enabling the Lighting
To tell OpenGL to use lighting calculations, call glEnable with the GL_LIGHTING
parameter:

glEnable(GL_LIGHTING);

This call alone tells OpenGL to use material properties and lighting parameters in deter-
mining the color for each vertex in your scene. However, without any specified material
properties or lighting parameters, your object remains dark and unlit, as shown in Figure
5.17. Look at the code for any of the JET-based sample programs, and you can see that we
have called the function SetupRC right after creating the rendering context. This is the
place where we do any initialization of lighting parameters.

CHAPTER 5 Color, Materials, and Lighting: The Basics192

FIGURE 5.17 An unlit jet reflects no light.

Setting Up Cosmic Background Radiation
There is a global light source in OpenGL that emits only ambient light. I call this the
Cosmic Background Radiation—a term borrowed from the Big Bang theory—because
it’s a light source that shines evenly in all directions. This global ambient illumination is a

zero-cost way to add a simple offset to the results of OpenGL lighting calculations. This
can be useful, for example, to illuminate the back sides of objects that are not being illu-
minated directly by a light source. If your lit scene appears too dark, you can monkey with
this ambient light until you get the levels you want.

This global ambient light is set in the OpenGL light model, which can be modified with
the glLightModel function.

The first lighting parameter used in our next example (the AMBIENT program) is
GL_LIGHT_MODEL_AMBIENT. It lets you specify a global ambient light that illuminates all
objects evenly from all sides. The following code specifies a bright white light:

// Bright white light – full intensity RGB values

GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

// Enable lighting

glEnable(GL_LIGHTING);

// Set light model to use ambient light specified by ambientLight[]

glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);

The variation of glLightModel shown here, glLightModelfv, takes as its first parameter the
lighting model parameter being modified or set and then an array of the RGBA values that
make up the light. The default RGBA values of this global ambient light are (0.2, 0.2, 0.2,
1.0), which is fairly dim. Other lighting model parameters allow you to determine whether
the front, back, or both sides of polygons are illuminated and how the calculation of spec-
ular lighting angles is performed. See the reference section in Appendix C for more infor-
mation on these parameters.

Setting Material Properties
Now that we have an ambient light source, we need to set some material properties so that
our polygons reflect light and we can see our jet. There are two ways to set material prop-
erties. The first is to use the function glMaterial before specifying each polygon or set of
polygons. Examine the following code fragment:

Glfloat gray[] = { 0.75f, 0.75f, 0.75f, 1.0f };

...

...

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);

glBegin(GL_TRIANGLES);

glVertex3f(-15.0f,0.0f,30.0f);

glVertex3f(0.0f, 15.0f, 30.0f);

glVertex3f(0.0f, 0.0f, -56.0f);

glEnd();

Adding Light to a Scene 193

5

The first parameter to glMaterialfv specifies whether the front, back, or both (GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK) take on the material properties specified. The second
parameter tells which properties are being set; in this instance, both the ambient and
diffuse reflectances are set to the same values. The final parameter is an array containing
the RGBA values that make up these properties. All primitives specified after the
glMaterial call are affected by the last values set, until another call to glMaterial
is made.

Under most circumstances, the ambient and diffuse components are the same, and unless
you want specular highlights (sparkling, shiny spots), you don’t need to define specular
reflective properties. Even so, it would still be quite tedious if we had to define an array for
every color in our object and call glMaterial before each polygon or group of polygons.

Now we are ready for the second and preferred way of setting material properties, called
color tracking. With color tracking, you can tell OpenGL to set material properties by only
calling glColor. To enable color tracking, call glEnable with the GL_COLOR_MATERIAL
parameter:

glEnable(GL_COLOR_MATERIAL);

Then the function glColorMaterial specifies the material parameters that follow the
values set by glColor. For example, to set the ambient and diffuse properties of the fronts
of polygons to track the colors set by glColor, call

glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

The earlier code fragment setting material properties would then be as follows. This
approach looks like more code, but it actually saves many lines of code and executes faster
as the number of different colored polygons grows:

// Enable color tracking

glEnable(GL_COLOR_MATERIAL);

// Front material ambient and diffuse colors track glColor

glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

...

...

glcolor3f(0.75f, 0.75f, 0.75f);

glBegin(GL_TRIANGLES);

glVertex3f(-15.0f,0.0f,30.0f);

glVertex3f(0.0f, 15.0f, 30.0f);

glVertex3f(0.0f, 0.0f, -56.0f);

glEnd();

CHAPTER 5 Color, Materials, and Lighting: The Basics194

Listing 5.2 contains the code we add with the SetupRC function to our jet example to set
up a bright ambient light source and to set the material properties that allow the object to
reflect light and be seen. We have also changed the colors of the jet so that each section
rather than each polygon is a different color. The final output, shown in Figure 5.18, is
not much different from the image before we had lighting. However, if we reduce the
ambient light by half, we get the image shown in Figure 5.19. To reduce it by half, we set
the ambient light RGBA values to the following:

GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f };

You can see how we might reduce the ambient light in a scene to produce a dimmer
image. This capability is useful for simulations in which dusk approaches gradually or
when a more direct light source is blocked, as when an object is in the shadow of another,
larger object.

Adding Light to a Scene 195

5

FIGURE 5.18 The output from the completed AMBIENT sample program.

FIGURE 5.19 The output from the AMBIENT program when the light source is cut in half.

LISTING 5.2 Setup for Ambient Lighting Conditions

// This function does any needed initialization on the rendering

// context. Here it sets up and initializes the lighting for

// the scene.

void SetupRC()

{

// Light values

// Bright white light

GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

glEnable(GL_DEPTH_TEST); // Hidden surface removal

glEnable(GL_CULL_FACE); // Do not calculate inside of jet

glFrontFace(GL_CCW); // Counterclockwise polygons face out

// Lighting stuff

glEnable(GL_LIGHTING); // Enable lighting

// Set light model to use ambient light specified by ambientLight[]

glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);

glEnable(GL_COLOR_MATERIAL); // Enable material color tracking

// Front material ambient and diffuse colors track glColor

glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

// Nice light blue background

glClearColor(0.0f, 0.0f, 05.f,1.0f);

}

Using a Light Source
Manipulating the ambient light has its uses, but for most applications attempting to
model the real world, you must specify one or more specific sources of light. In addition
to their intensities and colors, these sources have a location and/or a direction. The place-
ment of these lights can dramatically affect the appearance of your scene.

OpenGL supports at least eight independent light sources located anywhere in your scene
or out of the viewing volume. You can locate a light source an infinite distance away and
make its light rays parallel or make it a nearby light source radiating outward. You can also
specify a spotlight with a specific cone of light radiating from it, as well as manipulate its
characteristics.

CHAPTER 5 Color, Materials, and Lighting: The Basics196

Which Way Is Up?
When you specify a light source, you tell OpenGL where it is and in which direction it’s
shining. Often, the light source shines in all directions, but it can be directional. Either
way, for any object you draw, the rays of light from any source (other than a pure ambient
source) strike the surface of the polygons that make up the object at an angle. Of course,
in the case of a directional light, the surfaces of all polygons might not necessarily be illu-
minated. To calculate the shading effects across the surface of the polygons, OpenGL must
be able to calculate the angle.

In Figure 5.20, a polygon (a square) is being struck by a ray of light from some source. The
ray makes an angle (A) with the plane as it strikes the surface. The light is then reflected at
an angle (B) toward the viewer (or you wouldn’t see it). These angles are used in conjunction
with the lighting and material properties we have discussed thus far to calculate the appar-
ent color of that location. It happens by design that the locations used by OpenGL are the
vertices of the polygon. Because OpenGL calculates the apparent colors for each vertex and
then does smooth shading between them, the illusion of lighting is created. Magic!

Using a Light Source 197

5

FIGURE 5.20 Light is reflected off objects at specific angles.

From a programming standpoint, these lighting calculations present a slight conceptual
difficulty. Each polygon is created as a set of vertices, which are nothing more than points.
Each vertex is then struck by a ray of light at some angle. How then do you (or OpenGL)
calculate the angle between a point and a line (the ray of light)? Of course, you can’t
geometrically find the angle between a single point and a line in 3D space because there
are an infinite number of possibilities. Therefore, you must associate with each vertex
some piece of information that denotes a direction upward from the vertex and away from
the surface of the primitive.

Surface Normals
A line from the vertex in the upward direction starts in some imaginary plane (or your
polygon) at a right angle. This line is called a normal vector. The term normal vector might
sound like something the Star Trek crew members toss around, but it just means a line
perpendicular to a real or imaginary surface. A vector is a line pointed in some direction,

and the word normal is just another way for eggheads to say perpendicular (intersecting at
a 90° angle). As if the word perpendicular weren’t bad enough! Therefore, a normal vector is
a line pointed in a direction that is at a 90° angle to the surface of your polygon. Figure
5.21 presents examples of 2D and 3D normal vectors.

CHAPTER 5 Color, Materials, and Lighting: The Basics198

FIGURE 5.21 A 2D and a 3D normal vector.

You might already be asking why we must specify a normal vector for each vertex. Why
can’t we just specify a single normal for a polygon and use it for each vertex? We can—
and for our first few examples, we do. However, sometimes you don’t want each normal to
be exactly perpendicular to the surface of the polygon. You may have noticed that many
surfaces are not flat! You can approximate these surfaces with flat, polygonal sections, but
you end up with a jagged or multifaceted surface. Later, we discuss a technique to produce
the illusion of smooth curves with flat polygons by “tweaking” surface normals (more
magic!). But first things first…

Specifying a Normal
To see how we specify a normal for a vertex, let’s look at Figure 5.22—a plane floating
above the xz plane in 3D space. We’ve made this illustration simple to demonstrate the
concept. Notice the line through the vertex (1,1,0) that is perpendicular to the plane. If we
select any point on this line, say (1,10,0), the line from the first point (1,1,0) to the second
point (1,10,0) is our normal vector. The second point specified actually indicates that the
direction from the vertex is up in the y direction. This convention is also used to indicate
the front and back sides of polygons, as the vector travels up and away from the front
surface.

FIGURE 5.22 A normal vector traveling perpendicular from the surface.

You can see that this second point is the number of units in the x, y, and z directions for
some point on the normal vector away from the vertex. Rather than specify two points for
each normal vector, we can subtract the vertex from the second point on the normal,
yielding a single coordinate triplet that indicates the x, y, and z steps away from the
vertex. For our example, this is

(1,10,0) – (1,1,0) = (1 – 1, 10 – 1, 0) = (0,9,0)

Here’s another way of looking at this example: If the vertex were translated to the origin,
the point specified by subtracting the two original points would still specify the direction
pointing away and at a 90° angle from the surface. Figure 5.23 shows the newly translated
normal vector.

Using a Light Source 199

5

FIGURE 5.23 The newly translated normal vector.

The vector is a directional quantity that tells OpenGL which direction the vertices (or
polygon) face. This next code segment shows a normal vector being specified for one of
the triangles in the JET sample program:

glBegin(GL_TRIANGLES);

glNormal3f(0.0f, -1.0f, 0.0f);

glVertex3f(0.0f, 0.0f, 60.0f);

glVertex3f(-15.0f, 0.0f, 30.0f);

glVertex3f(15.0f,0.0f,30.0f);

glEnd();

The function glNormal3f takes the coordinate triplet that specifies a normal vector point-
ing in the direction perpendicular to the surface of this triangle. In this example, the
normals for all three vertices have the same direction, which is down the negative y-axis.
This is a simple example because the triangle is lying flat in the xz plane, and it actually
represents a bottom section of the jet. You’ll see later that often we want to specify a
different normal for each vertex.

The prospect of specifying a normal for every vertex or polygon in your drawing might
seem daunting, especially because few surfaces lie cleanly in one of the major planes.
Never fear! Shortly we’ll present a reusable function that you can call again and again to
calculate your normals for you.

CHAPTER 5 Color, Materials, and Lighting: The Basics200

x

z

y

(0,9,0)

Translated Normal

(1,10,0)

(1,1,0)

POLYGON WINDING

Take special note of the order of the vertices in the jet’s triangle. If you view this triangle being
drawn from the direction in which the normal vector points, the corners appear counterclockwise
around the triangle. This is called polygon winding. By default, the front of a polygon is defined as
the side from which the vertices appear to be wound in a counterclockwise fashion.

Unit Normals
As OpenGL does its magic, all surface normals must eventually be converted to unit
normals. A unit normal is just a normal vector that has a length of 1. The normal in
Figure 5.23 has a length of 9. You can find the length of any normal by squaring each
component, adding them together, and taking the square root. Divide each component of
the normal by the length, and you get a vector pointed in exactly the same direction, but
only 1 unit long. In this case, our new normal vector is specified as (0,1,0). This is called
normalization. Thus, for lighting calculations, all normal vectors must be normalized. Talk
about jargon!

You can tell OpenGL to convert your normals to unit normals automatically, by enabling
normalization with glEnable and a parameter of GL_NORMALIZE:

glEnable(GL_NORMALIZE);

This approach does, however, have performance penalties on some implementations. It’s
far better to calculate your normals ahead of time as unit normals instead of relying on
OpenGL to perform this task for you.

You should note that calls to the glScale transformation function also scale the length of
your normals. If you use glScale and lighting, you can obtain undesired results from your
OpenGL lighting. If you have specified unit normals for all your geometry and used a
constant scaling factor with glScale (all geometry is scaled by the same amount), an alter-
native to GL_NORMALIZE (available in OpenGL 1.2 and later) is GL_RESCALE_NORMALS. You
enable this parameter with a call such as

glEnable(GL_RESCALE_NORMALS);

This call tells OpenGL that your normals are not unit length, but they can all be scaled by
the same amount to make them unit length. OpenGL figures this out by examining the
modelview matrix. The result is fewer mathematical operations per vertex than are other-
wise required.

Because it is better to give OpenGL unit normals to begin with, the math3d library comes
with a function that will take any normal vector and “normalize” it for you:

void m3dNormalizeVector(M3DVector3f vNormal);

Using a Light Source 201

5

Finding a Normal
Figure 5.24 presents another polygon that is not simply lying in one of the axis planes.
The normal vector pointing away from this surface is more difficult to guess, so we need
an easy way to calculate the normal for any arbitrary polygon in 3D coordinates.

CHAPTER 5 Color, Materials, and Lighting: The Basics202

FIGURE 5.24 A nontrivial normal problem.

You can easily calculate the normal vector for any polygon by taking three points that lie
in the plane of that polygon. Figure 5.25 shows three points—P1, P2, and P3—that you
can use to define two vectors: vector V1 from P1 to P2, and vector V2 from P1 to P3.
Mathematically, two vectors in three-dimensional space define a plane. (Your original
polygon lies in this plane.) If you take the cross product of those two vectors (written
mathematically as V1 X V2), the resulting vector is perpendicular to that plane. Figure
5.26 shows the vector V3 derived by taking the cross product of V1 and V2. Be careful to
get the order correct. Cross products are not like multiplication of scalar values. The vector
produced by V1 X V2 points in the opposite direction of a vector produced by V2 X V1.

FIGURE 5.25 Two vectors defined by three points on a plane.

FIGURE 5.26 A normal vector as the cross product of two vectors.

Again, because this is such a useful and often-used method, the math3d library contains a
function that calculates a normal vector based on three points on a polygon:

void m3dFindNormal(M3DVector3f vNormal, const M3DVector3f vP1,

const M3DVector3f vP2, const M3DVector3f vP3);

To use this function, pass it a vector to store the normal, and three vectors (each just an
array of three floats) from your polygon or triangle (specified in counterclockwise winding
order). Note that this returned normal vector is not necessarily unit length (normalized).

Setting Up a Source
Now that you understand the requirements of setting up your polygons to receive and
interact with a light source, it’s time to turn on the lights! Listing 5.3 shows the SetupRC
function from the sample program LITJET. Part of the setup process for this sample
program creates a light source and places it to the upper left, slightly behind the viewer.
The light source GL_LIGHT0 has its ambient and diffuse components set to the intensities
specified by the arrays ambientLight[] and diffuseLight[]. This results in a moderate
white light source:

GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };

GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };

...

...

// Set up and enable light 0

glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);

glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);

Finally, the light source GL_LIGHT0 is enabled:

glEnable(GL_LIGHT0);

The light is positioned by this code, located in the ChangeSize function:

GLfloat lightPos[] = { -50.f, 50.0f, 100.0f, 1.0f };

Using a Light Source 203

5

...

...

glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

Here, lightPos[] contains the position of the light. The last value in this array is 1.0,
which specifies that the designated coordinates are the position of the light source. If the
last value in the array is 0.0, it indicates that the light is an infinite distance away along
the vector specified by this array. We’ll touch more on this issue later. Lights are like
geometric objects in that they can be moved around by the modelview matrix. By placing
the light’s position when the viewing transformation is performed, we ensure that the
light is in the proper location regardless of how we transform the geometry.

LISTING 5.3 Light and Rendering Context Setup for LITJET

// This function does any needed initialization on the rendering

// context. Here it sets up and initializes the lighting for

// the scene.

void SetupRC()

{

// Light values and coordinates

GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };

GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };

glEnable(GL_DEPTH_TEST); // Hidden surface removal

glFrontFace(GL_CCW); // Counterclockwise polygons face out

glEnable(GL_CULL_FACE); // Do not calculate inside of jet

// Enable lighting

glEnable(GL_LIGHTING);

// Set up and enable light 0

glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);

glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);

glEnable(GL_LIGHT0);

// Enable color tracking

glEnable(GL_COLOR_MATERIAL);

// Set material properties to follow glColor values

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

// Light blue background

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

CHAPTER 5 Color, Materials, and Lighting: The Basics204

LISTING 5.3 Continued

// Rescale normals to unit length

glEnable(GL_NORMALIZE);

}

Setting the Material Properties
Notice in Listing 5.3 that color tracking is enabled, and the properties to be tracked are the
ambient and diffuse reflective properties for the front surface of the polygons. This is just
as it was defined in the AMBIENT sample program:

// Enable color tracking

glEnable(GL_COLOR_MATERIAL);

// Set material properties to follow glColor values

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

Specifying the Polygons
The rendering code from the first two JET samples changes considerably now to support
the new lighting model. Listing 5.4 is an excerpt taken from the RenderScene function
from LITJET.

LISTING 5.4 Code Sample That Sets Color and Calculates and Specifies Normals and
Polygons

M3DVector3f vNormal; // Storage for calculated surface normal

...

...

// Set material color

glColor3ub(128, 128, 128);

glBegin(GL_TRIANGLES);

glNormal3f(0.0f, -1.0f, 0.0f);

glVertex3f(0.0f, 0.0f, 60.0f);

glVertex3f(-15.0f, 0.0f, 30.0f);

glVertex3f(15.0f,0.0f,30.0f);

// Vertices for this panel

{

M3DVector3f vPoints[3] = {{ 15.0f, 0.0f, 30.0f},

{ 0.0f, 15.0f, 30.0f},

{ 0.0f, 0.0f, 60.0f}};

Using a Light Source 205

5

LISTING 5.4 Continued

// Calculate the normal for the plane

m3dFindNormal(vNormal, vPoints[0], vPoints[1], vPoints[2]);

glNormal3fv(vNormal);

glVertex3fv(vPoints[0]);

glVertex3fv(vPoints[1]);

glVertex3fv(vPoints[2]);

}

{

M3DVector3f vPoints[3] = {{ 0.0f, 0.0f, 60.0f },

{ 0.0f, 15.0f, 30.0f },

{ -15.0f, 0.0f, 30.0f }};

m3dFindNormal(vNormal, vPoints[0], vPoints[1], vPoints[2]);

glNormal3fv(vNormal);

glVertex3fv(vPoints[0]);

glVertex3fv(vPoints[1]);

glVertex3fv(vPoints[2]);

}

. . .

glEnd();

Notice that we are calculating the normal vector using the m3dFindNormal function from
math3d. Also, the material properties are now following the colors set by glColor. One
other thing you notice is that not every triangle is blocked by glBegin/glEnd functions.
You can specify once that you are drawing triangles, and every three vertices are used for a
new triangle until you specify otherwise with glEnd. For very large numbers of polygons,
this technique can considerably boost performance by eliminating many unnecessary
function calls and primitive batch setup.

Figure 5.27 shows the output from the completed LITJET sample program. The jet is now a
single shade of gray instead of multiple colors. We changed the color to make it easier to
see the lighting effects on the surface. Even though the plane is one solid “color,” you can
still see the shape due to the lighting. By rotating the jet around with the arrow keys, you
can see the dramatic shading effects as the surface of the jet moves and interacts with the
light.

CHAPTER 5 Color, Materials, and Lighting: The Basics206

FIGURE 5.27 The output from the LITJET program.

TIP

The most obvious way to improve the performance of this code is to calculate all the normal
vectors ahead of time and store them for use in the RenderScene function. Before you pursue
this, read Chapter 11, “It’s All About the Pipeline: Faster Geometry Throughput,” for the material
on display lists and vertex arrays. Display lists and vertex arrays provide a means of storing calcu-
lated values not only for the normal vectors, but for the polygon data as well. Remember, these
examples are meant to demonstrate the concepts. They are not necessarily the most efficient
code possible.

Lighting Effects
The ambient and diffuse lights from the LITJET example are sufficient to provide the illu-
sion of lighting. The surface of the jet appears shaded according to the angle of the inci-
dent light. As the jet rotates, these angles change and you can see the lighting effects
changing in such a way that you can easily guess where the light is coming from.

We ignored the specular component of the light source, however, as well as the specular
reflectivity of the material properties on the jet. Although the lighting effects are
pronounced, the surface of the jet is rather flatly colored. Ambient and diffuse lighting
and material properties are all you need if you are modeling clay, wood, cardboard, cloth,
or some other flatly colored object. But for metallic surfaces such as the skin of an
airplane, some shine is often desirable.

Specular Highlights
Specular lighting and material properties add needed gloss to the surface of your objects.
This shininess has a brightening effect on an object’s color and can produce specular
highlights when the angle of incident light is sharp in relation to the viewer. A specular

Lighting Effects 207

5

highlight is what occurs when nearly all the light striking the surface of an object is
reflected away. The white sparkle on a shiny red ball in the sunlight is a good example of
a specular highlight.

Specular Light
You can easily add a specular component to a light source. The following code shows the
light source setup for the LITJET program, modified to add a specular component to the
light:

// Light values and coordinates

GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };

GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };

GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};

...

...

// Enable lighting

glEnable(GL_LIGHTING);

// Set up and enable light 0

glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);

glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);

glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

glEnable(GL_LIGHT0);

The specular[] array specifies a very bright white light source for the specular component
of the light. Our purpose here is to model bright sunlight. The following line simply adds
this specular component to the light source GL_LIGHT0:

glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

If this were the only change you made to LITJET, you wouldn’t see any difference in the
jet’s appearance. We haven’t yet defined any specular reflectance properties for the mater-
ial properties.

Specular Reflectance
Adding specular reflectance to material properties is just as easy as adding the specular
component to the light source. This next code segment shows the code from LITJET, again
modified to add specular reflectance to the material properties:

// Light values and coordinates

GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };

CHAPTER 5 Color, Materials, and Lighting: The Basics208

...

...

// Enable color tracking

glEnable(GL_COLOR_MATERIAL);

// Set material properties to follow glColor values

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

// All materials hereafter have full specular reflectivity

// with a high shine

glMaterialfv(GL_FRONT, GL_SPECULAR,specref);

glMateriali(GL_FRONT,GL_SHININESS,128);

As before, we enable color tracking so that the ambient and diffuse reflectance of the
materials follows the current color set by the glColor functions. (Of course, we don’t want
the specular reflectance to track glColor because we are specifying it separately and it
doesn’t change.)

Now, we’ve added the array specref[], which contains the RGBA values for our specular
reflectance. This array of all 1s produces a surface that reflects nearly all incident specular
light. The following line sets the material properties for all subsequent polygons to have
this reflectance:

glMaterialfv(GL_FRONT, GL_SPECULAR,specref);

Because we do not call glMaterial again with the GL_SPECULAR property, all materials have
this property. We set up the example this way on purpose because we want the entire jet
to appear made of metal or very shiny composites.

What we have done here in our setup routine is important: We have specified that the
ambient and diffuse reflective material properties of all future polygons (until we say
otherwise with another call to glMaterial or glColorMaterial) change as the current
color changes, but that the specular reflective properties remain the same.

Specular Exponent
As stated earlier, high specular light and reflectivity brighten the colors of the object.
For this example, the present extremely high specular light (full intensity) and specular
reflectivity (full reflectivity) result in a jet that appears almost totally white or gray except
where the surface points away from the light source (in which case, it is black and unlit).
To temper this effect, we use the next line of code after the specular component is
specified:

glMateriali(GL_FRONT,GL_SHININESS,128);

Lighting Effects 209

5

The GL_SHININESS property sets the specular exponent of the material, which specifies
how small and focused the specular highlight is. A value of 0 specifies an unfocused specu-
lar highlight, which is actually what is producing the brightening of the colors evenly
across the entire polygon. If you set this value, you reduce the size and increase the focus
of the specular highlight, causing a shiny spot to appear. The larger the value, the more
shiny and pronounced the surface. The range of this parameter is 1–128 for all confor-
mant implementations of OpenGL.

Listing 5.5 shows the new SetupRC code in the sample program SHINYJET. This is the only
code that has changed from LITJET (other than the title of the window) to produce a very
shiny and glistening jet. Figure 5.28 shows the output from this program, but to fully
appreciate the effect, you should run the program and hold down one of the arrow keys to
spin the jet about in the sunlight.

CHAPTER 5 Color, Materials, and Lighting: The Basics210

FIGURE 5.28 The output from the SHINYJET program.

LISTING 5.5 Setup from SHINYJET to Produce Specular Highlights on the Jet

// This function does any needed initialization on the rendering

// context. Here it sets up and initializes the lighting for

// the scene.

void SetupRC()

{

// Light values and coordinates

GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };

GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };

GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};

GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };

LISTING 5.5 Continued

glEnable(GL_DEPTH_TEST); // Hidden surface removal

glFrontFace(GL_CCW); // Counterclockwise polygons face out

glEnable(GL_CULL_FACE); // Do not calculate inside of jet

// Enable lighting

glEnable(GL_LIGHTING);

// Set up and enable light 0

glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);

glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);

glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

glEnable(GL_LIGHT0);

// Enable color tracking

glEnable(GL_COLOR_MATERIAL);

// Set material properties to follow glColor values

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

// All materials hereafter have full specular reflectivity

// with a high shine

glMaterialfv(GL_FRONT, GL_SPECULAR,specref);

glMateriali(GL_FRONT,GL_SHININESS,128);

// Light blue background

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

glEnable(GL_NORMALIZE);

}

Normal Averaging
Earlier, we mentioned that by “tweaking” your normals, you can produce apparently
smooth surfaces with flat polygons. This technique, known as normal averaging, produces
some interesting optical illusions. Say you have a sphere made up of quads and triangles
like the one shown in Figure 5.29.

Lighting Effects 211

5

FIGURE 5.29 A typical sphere made up of quads and triangles.

If each face of the sphere had a single normal specified, the sphere would look like a large
faceted jewel. If you specify the “true” normal for each vertex, however, the lighting calcu-
lations at each vertex produce values that OpenGL smoothly interpolates across the face of
the polygon. Thus, the flat polygons are shaded as if they were a smooth surface.

What do we mean by “true” normal? The polygonal representation is only an approxima-
tion of the true surface. Theoretically, if we used enough polygons, the surface would
appear smooth. This is similar to the idea we used in Chapter 3, “Drawing in Space:
Geometric Primitives and Buffers,” to draw a smooth curve with a series of short line
segments. If we consider each vertex to be a point on the true surface, the actual normal
value for that surface is the true normal for the surface.

For our case of the sphere, the normal would point directly out from the center of the
sphere through each vertex. We show this graphically for a simple 2D case in Figures 5.30
and 5.31. In Figure 5.30, each flat segment has a normal pointing perpendicular to its
surface. We did this just like we did for our LITJET example previously. Figure 5.31,
however, shows how each normal is not perpendicular to the line segment but is perpen-
dicular to the surface of the sphere, or the tangent line to the surface.

The tangent line touches the curve in one place and does not penetrate it. The 3D equiva-
lent is a tangent plane. In Figure 5.31, you can see the outline of the actual surface and
that the normal is actually perpendicular to the line tangent to the surface.

CHAPTER 5 Color, Materials, and Lighting: The Basics212

FIGURE 5.31 Each normal is perpendicular to the surface itself.

For a sphere, calculation of the normal is reasonably simple. (The normal actually has the
same values as the vertex relative to the center!) For other nontrivial surfaces, the calcula-
tion might not be so easy. In such cases, you calculate the normals for each polygon that
shares a vertex. The actual normal you assign to that vertex is the average of these
normals. The visual effect is a nice, smooth, regular surface, even though it is actually
composed of numerous small, flat segments.

Putting It All Together
Now it’s time for a more complex sample program. We demonstrate how to use normals to
create a smooth surface appearance, move a light around in a scene, create a spotlight,
and, finally, identify one of the drawbacks of OpenGL vertex-based lighting.

Putting It All Together 213

5

Approximation
of surface

Actual
surface

Tangent line

FIGURE 5.30 An approximation with normals perpendicular to each face.

Our next sample program, SPOT, performs all these tasks. Here, we create a solid sphere in
the center of our viewing volume with glutSolidSphere. We shine a spotlight on this
sphere that we can move around, and we change the “smoothness” of the normals and
demonstrate some of the limitations of OpenGL lighting.

So far, we have been specifying a light’s position with glLight as follows:

// Array to specify position

GLfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };

...

...

// Set the light position

glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

The array lightPos[] contains the x, y, and z values that specify either the light’s actual
position in the scene or the direction from which the light is coming. The last value, 1.0
in this case, indicates that the light is actually present at this location. By default, the light
radiates equally in all directions from this location, but you can change this default to
make a spotlight effect.

To make a light source an infinite distance away and coming from the direction specified
by this vector, you place 0.0 in this last lightPos[] array element. A directional light
source, as this is called, strikes the surface of your objects evenly. That is, all the light rays
are parallel. In a positional light source, on the other hand, the light rays diverge from the
light source.

Creating a Spotlight
Creating a spotlight is no different from creating any other positional light source. The
code in Listing 5.6 shows the SetupRC function from the SPOT sample program. This
program places a blue sphere in the center of the window. It also creates a spotlight that
you can move vertically with the up- and down-arrow keys and horizontally with the left-
and right-arrow keys. As the spotlight moves over the surface of the sphere, a specular
highlight follows it on the surface.

LISTING 5.6 Lighting Setup for the SPOT Sample Program

// Light values and coordinates

GLfloat lightPos[] = { 0.0f, 0.0f, 75.0f, 1.0f };

GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};

GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };

GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f};

GLfloat spotDir[] = { 0.0f, 0.0f, -1.0f };

// This function does any needed initialization on the rendering

CHAPTER 5 Color, Materials, and Lighting: The Basics214

LISTING 5.6 Continued

// context. Here it sets up and initializes the lighting for

// the scene.

void SetupRC()

{

glEnable(GL_DEPTH_TEST); // Hidden surface removal

glFrontFace(GL_CCW); // Counterclockwise polygons face out

glEnable(GL_CULL_FACE); // Do not try to display the back sides

// Enable lighting

glEnable(GL_LIGHTING);

// Set up and enable light 0

// Supply a slight ambient light so the objects can be seen

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientLight);

// The light is composed of just diffuse and specular components

glLightfv(GL_LIGHT0,GL_DIFFUSE,ambientLight);

glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

// Specific spot effects

// Cut-off angle is 60 degrees

glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,60.0f);

// Enable this light in particular

glEnable(GL_LIGHT0);

// Enable color tracking

glEnable(GL_COLOR_MATERIAL);

// Set material properties to follow glColor values

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

// All materials hereafter have full specular reflectivity

// with a high shine

glMaterialfv(GL_FRONT, GL_SPECULAR,specref);

glMateriali(GL_FRONT, GL_SHININESS,128);

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

}

Putting It All Together 215

5

The following line from the listing is actually what makes a positional light source into a
spotlight:

// Specific spot effects

// Cut-off angle is 60 degrees

glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,60.0f);

The GL_SPOT_CUTOFF value specifies the radial angle of the cone of light emanating from
the spotlight, from the center line to the edge of the cone. For a normal positional light,
this value is 180° so that the light is not confined to a cone. In fact, for spotlights, only
values from 0° to 90° are valid. Spotlights emit a cone of light, and objects outside this
cone are not illuminated. Figure 5.32 shows how this angle translates to the cone width.

CHAPTER 5 Color, Materials, and Lighting: The Basics216

FIGURE 5.32 The angle of the spotlight cone.

Drawing a Spotlight
When you place a spotlight in a scene, the light must come from somewhere. Just because
you have a source of light at some location doesn’t mean that you see a bright spot there.
For our SPOT sample program, we placed a red cone at the spotlight source to show where
the light was coming from. Inside the end of this cone, we placed a bright yellow sphere
to simulate a light bulb.

CAN YOU SEE THE LIGHT?

In a word, no. Lights in OpenGL cannot be seen by themselves. Spotlights do not create cones of
light, and beams of sunlight streaming in a window do not create beams or shafts of light. To
create these effects in OpenGL, you will actually have to draw geometry, such as real cones or
shafts, often using the blending operations covered later in this book. Lights also go through
objects and do not cast shadows. One technique for drawing shadows will be presented soon.

This sample has a pop-up menu that we use to demonstrate several things. The pop-up
menu contains items to set flat and smooth shading and to produce a sphere for low,
medium, and high approximation. Surface approximation means to break the mesh of a
curved surface into a finer mesh of polygons (more vertices). Figure 5.33 shows a wire-
frame representation of a highly approximated sphere next to one that has few polygons.

Putting It All Together 217

5

FIGURE 5.33 On the left is a highly approximated sphere; on the right, a sphere made up of
fewer polygons.

Figure 5.34 shows our sample in its initial state with the spotlight moved off slightly to
one side. (You can use the arrow keys to move the spotlight.) The sphere consists of a few
polygons, which are flat shaded. In Windows, use the right mouse button to open a pop-
up menu (Ctrl-click on the Mac) where you can switch between smooth and flat shading
and between very low, medium, and very high approximation for the sphere. Listing 5.7
shows the complete code for rendering the scene.

FIGURE 5.34 The SPOT sample—low approximation, flat shading.

LISTING 5.7 The Rendering Function for SPOT, Showing How the Spotlight Is Moved

// Called to draw scene

void RenderScene(void)

{

LISTING 5.7 Continued

if(iShade == MODE_FLAT)

glShadeModel(GL_FLAT);

else // iShade = MODE_SMOOTH;

glShadeModel(GL_SMOOTH);

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// First place the light

// Save the coordinate transformation

glPushMatrix();

// Rotate coordinate system

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

// Specify new position and direction in rotated coords

glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spotDir);

// Draw a red cone to enclose the light source

glColor3ub(255,0,0);

// Translate origin to move the cone out to where the light

// is positioned.

glTranslatef(lightPos[0],lightPos[1],lightPos[2]);

glutSolidCone(4.0f,6.0f,15,15);

// Draw a smaller displaced sphere to denote the light bulb

// Save the lighting state variables

glPushAttrib(GL_LIGHTING_BIT);

// Turn off lighting and specify a bright yellow sphere

glDisable(GL_LIGHTING);

glColor3ub(255,255,0);

glutSolidSphere(3.0f, 15, 15);

// Restore lighting state variables

glPopAttrib();

// Restore coordinate transformations

glPopMatrix();

CHAPTER 5 Color, Materials, and Lighting: The Basics218

LISTING 5.7 Continued

// Set material color and draw a sphere in the middle

glColor3ub(0, 0, 255);

if(iTess == MODE_VERYLOW)

glutSolidSphere(30.0f, 7, 7);

else

if(iTess == MODE_MEDIUM)

glutSolidSphere(30.0f, 15, 15);

else // iTess = MODE_MEDIUM;

glutSolidSphere(30.0f, 50, 50);

// Display the results

glutSwapBuffers();

}

The variables iTess and iMode are set by the GLUT menu handler and control how many
sections the sphere is broken into and whether flat or smooth shading is employed. Note
that the light is positioned before any geometry is rendered. As pointed out in Chapter 2,
OpenGL is an immediate-mode API: If you want an object to be illuminated, you have to
put the light where you want it before drawing the object.

You can see in Figure 5.34 that the sphere is coarsely lit and each flat face is clearly
evident. Switching to smooth shading helps a little, as shown in Figure 5.35.

Putting It All Together 219

5

FIGURE 5.35 Smoothly shaded but inadequate approximation.

Increasing the approximation helps, as shown in Figure 5.36, but you still see disturbing
artifacts as you move the spotlight around the sphere. These lighting artifacts are one of
the drawbacks of OpenGL lighting. A better way to characterize this situation is to say that
these artifacts are a drawback of vertex lighting (not necessarily OpenGL!). By lighting the
vertices and then interpolating between them, we get a crude approximation of lighting.
This approach is sufficient for many cases, but as you can see in our spot example, it is not
sufficient in others. If you switch to very high approximation and move the spotlight, you
see the lighting blemishes all but vanish.

CHAPTER 5 Color, Materials, and Lighting: The Basics220

FIGURE 5.36 Choosing a finer mesh of polygons yields better vertex lighting.

With most OpenGL hardware implementations accelerating transformations and lighting
effects, we are able to more finely approximate geometry for better OpenGL-based lighting
effects. For the very best quality light effects, we will turn to shaders, in Part III, “The
Apocrypha.”

The final observation you need to make about the SPOT sample appears when you set the
sphere for medium approximation and flat shading. As shown in Figure 5.37, each face of
the sphere is flatly lit. Each vertex is the same color but is modulated by the value of the
normal and the light. With flat shading, each polygon is made the color of the last vertex
color specified and not smoothly interpolated between each one.

FIGURE 5.37 A multifaceted sphere.

Shadows
A chapter on color and lighting naturally calls for a discussion of shadows. Adding
shadows to your scenes can greatly improve their realism and visual effectiveness. In
Figures 5.38 and 5.39, you see two views of a lighted cube. Although both are lit, the one
with a shadow is more convincing than the one without the shadow.

Shadows 221

5

FIGURE 5.38 A lighted cube without a shadow.

FIGURE 5.39 A lighted cube with a shadow.

What Is a Shadow?
Conceptually, drawing a shadow is quite simple. A shadow is produced when an object
keeps light from a light source from striking some object or surface behind the object
casting the shadow. The area on the shadowed object’s surface, outlined by the object
casting the shadow, appears dark. We can produce a shadow programmatically by flatten-
ing the original object into the plane of the surface in which the object lies. The object is
then drawn in black or some dark color, perhaps with some translucence. There are many
methods and algorithms for drawing shadows, some quite complex. This book’s primary
focus is on the OpenGL API. It is our hope that, after you’ve mastered the tool, some of
the additional reading suggested in Appendix A will provide you with a lifetime of learn-
ing new applications for this tool. Chapter 14, “Depth Textures and Shadows,” covers
some new direct support in OpenGL for making shadows; for our purposes in this chapter,
we demonstrate one of the simpler methods that works quite well when casting shadows
on a flat surface (such as the ground). Figure 5.40 illustrates this flattening.

CHAPTER 5 Color, Materials, and Lighting: The Basics222

FIGURE 5.40 Flattening an object to create a shadow.

We squish an object against another surface by using some of the advanced matrix manip-
ulations we touched on in the preceding chapter. Here, we boil down this process to make
it as simple as possible.

Squish Code
We need to flatten the modelview projection matrix so that any and all objects drawn into
it are now in this flattened two-dimensional world. No matter how the object is oriented,
it is projected (squished) into the plane in which the shadow lies. The next two considera-
tions are the distance and direction of the light source. The direction of the light source
determines the shape of the shadow and influences the size. If you’ve ever seen your
shadow in the early or late hours, you know how long and warped your shadow can
appear, depending on the position of the sun.

The function m3dMakePlanarShadowMatrix from the math3d library, shown in Listing 5.8,
takes the plane equation of the plane in which you want the shadow to appear (three
points that cannot be along the same straight line can be fed to m3dGetPlaneEquation to
get the equation of the plane), and the position of the light source, and returns a transfor-
mation matrix that this function constructs. Without delving into the linear algebra, what
this function does is build a transformation matrix. If you multiply this matrix by the
current modelview matrix, all further drawing is flattened into this plane.

A Shadow Example
To demonstrate the use of this shadow matrix, we suspend our jet in air high above the
ground. We place the light source directly above and a bit to the left of the jet. As you use
the arrow keys to spin the jet around, the shadow cast by the jet appears flattened on the
ground below. The output from this SHADOW sample program is shown in Figure 5.41.

Shadows 223

5

FIGURE 5.41 The output from the SHADOW sample program.

The code in Listing 5.8 shows how the shadow projection matrix was created for this
example. Note that we create the matrix once in SetupRC and save it in a global variable.

LISTING 5.8 Setting Up the Shadow Projection Matrix

GLfloat lightPos[] = { -75.0f, 150.0f, -50.0f, 0.0f };

...

...

// Transformation matrix to project shadow

M3DMatrix44f shadowMat;

...

...

// This function does any needed initialization on the rendering

// context. Here it sets up and initializes the lighting for

// the scene.

void SetupRC()

{

// Any three points on the ground (counterclockwise order)

M3DVector3f points[3] = {{ -30.0f, -149.0f, -20.0f },

{ -30.0f, -149.0f, 20.0f },

{ 40.0f, -149.0f, 20.0f }};

glEnable(GL_DEPTH_TEST); // Hidden surface removal

glFrontFace(GL_CCW); // Counterclockwise polygons face out

glEnable(GL_CULL_FACE); // Do not calculate inside of jet

// Enable lighting

glEnable(GL_LIGHTING);

...

// Code to set up lighting, etc.

...

// Get the plane equation from three points on the ground

M3DVector4f vPlaneEquation;

m3dGetPlaneEquation(vPlaneEquation, points[0], points[1], points[2]);

// Calculate projection matrix to draw shadow on the ground

m3dMakePlanarShadowMatrix(shadowMat, vPlaneEquation, lightPos);

. . .

}

CHAPTER 5 Color, Materials, and Lighting: The Basics224

Listing 5.9 shows the rendering code for the shadow example. We first draw the ground.
Then we draw the jet as we normally do, restore the modelview matrix, and multiply it by
the shadow matrix. This procedure creates our squish matrix. Then we draw the jet again.
(We’ve modified our code to accept a flag telling the DrawJet function to render in color
or black.) After restoring the modelview matrix once again, we draw a small yellow sphere
to approximate the position of the light. Note that we disable depth testing before we
draw a plane below the jet to indicate the ground.

This rectangle lies in the same plane in which our shadow is drawn, and we want to make
sure the shadow is drawn. We have never before discussed what happens if we draw two
objects or planes in the same location. We have discussed depth testing as a means to
determine what is drawn in front of what, however. If two objects occupy the same loca-
tion, usually the last one drawn is shown. Sometimes, however, an effect called z-fighting
causes fragments from both objects to be intermingled, resulting in a mess!

LISTING 5.9 Rendering the Jet and Its Shadow

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Draw the ground; we do manual shading to a darker green

// in the background to give the illusion of depth

glBegin(GL_QUADS);

glColor3ub(0,32,0);

glVertex3f(400.0f, -150.0f, -200.0f);

glVertex3f(-400.0f, -150.0f, -200.0f);

glColor3ub(0,255,0);

glVertex3f(-400.0f, -150.0f, 200.0f);

glVertex3f(400.0f, -150.0f, 200.0f);

glEnd();

// Save the matrix state and do the rotations

glPushMatrix();

// Draw jet at new orientation; put light in correct position

// before rotating the jet

glEnable(GL_LIGHTING);

glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

Shadows 225

5

LISTING 5.9 Continued

DrawJet(FALSE);

// Restore original matrix state

glPopMatrix();

// Get ready to draw the shadow and the ground

// First disable lighting and save the projection state

glDisable(GL_DEPTH_TEST);

glDisable(GL_LIGHTING);

glPushMatrix();

// Multiply by shadow projection matrix

glMultMatrixf((GLfloat *)shadowMat);

// Now rotate the jet around in the new flattened space

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Pass true to indicate drawing shadow

DrawJet(TRUE);

// Restore the projection to normal

glPopMatrix();

// Draw the light source

glPushMatrix();

glTranslatef(lightPos[0],lightPos[1], lightPos[2]);

glColor3ub(255,255,0);

glutSolidSphere(5.0f,10,10);

glPopMatrix();

// Restore lighting state variables

glEnable(GL_DEPTH_TEST);

// Display the results

glutSwapBuffers();

}

CHAPTER 5 Color, Materials, and Lighting: The Basics226

Sphere World Revisited
Our last example for this chapter is too long to list the source code in its entirety. In the
preceding chapter’s SPHEREWORLD sample program, we created an immersive 3D world
with animation and camera movement. In this chapter, we’ve revisited Sphere World and
have added lights and material properties to the torus and sphere inhabitants. Finally, we
have also used our planar shadow technique to add a shadow to the ground! We will keep
coming back to this example from time to time as we add more and more of our OpenGL
functionality to the code. The output of this chapter’s version of SPHEREWORLD is shown
in Figure 5.42.

Summary 227

5

FIGURE 5.42 Fully lit and shadowed Sphere World.

Summary
This chapter introduced some of the more magical and powerful capabilities of OpenGL.
We started by adding color to 3D scenes, as well as smooth shading. We then saw how to
specify one or more light sources and define their lighting characteristics in terms of
ambient, diffuse, and specular components. We explained how the corresponding material
properties interact with these light sources and demonstrated some special effects, such as
adding specular highlights and softening sharp edges between adjoining triangles.

Also covered were lighting positions and the creation and manipulation of spotlights. The
high-level matrix munching function presented here makes shadow generation as easy as
it gets for planar shadows.

This page intentionally left blank

CHAPTER 6

More on Colors and Materials

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Blend colors and objects together glBlendFunc/glBlendFuncSeparate/ glBlendEquation/

glBlendColor

Use alpha testing to eliminate fragments glAlphaFunc

Add depth cues with fog glFog, glFogCoord

Render motion-blurred animation glAccum

In the preceding chapter, you learned that there is more to making a ball appear red than
just setting the drawing color to red. Material properties and lighting parameters can go a
long way toward adding realism to your graphics, but modeling the real world has a few
other challenges that we will address in this chapter. For starters, many effects are accom-
plished by means of blending colors together. Transparent objects such as stained-glass
windows or plastic bottles allow you to see through them, but the light from the objects
behind them is blended with the color of the transparent object you are seeing through.
This type of transparency is achieved in OpenGL by drawing the background objects first
and then blending the foreground object in front with the colors that are already present
in the color buffer. A good part of making this technique work requires that we now
consider the fourth color component that until now we have been ignoring, alpha.

Blending
You have already learned that OpenGL rendering places color values in the color buffer
under normal circumstances. You have also learned that depth values for each fragment
are also placed in the depth buffer. When depth testing is turned off (disabled), new color
values simply overwrite any other values already present in the color buffer. When depth
testing is turned on (enabled), new color fragments replace an existing fragment only if

230 CHAPTER 6 More on Colors and Materials

they are deemed closer to the near clipping plane than the values already there. Under
normal circumstances then, any drawing operation is either discarded entirely, or just
completely overwrites any old color values, depending on the result of the depth test. This
obliteration of the underlying color values no longer happens the moment you turn on
OpenGL blending:

glEnable(GL_BLEND);

When blending is enabled, the incoming color is combined with the color value already
present in the color buffer. How these colors are combined leads to a great many and
varied special effects.

Combining Colors
First, we must introduce a more official terminology for the color values coming in and
already in the color buffer. The color value already stored in the color buffer is called the
destination color, and this color value contains the three individual red, green, and blue
components, and optionally a stored alpha value as well. A color value that is coming in
as a result of more rendering commands that may or may not interact with the destina-
tion color is called the source color. The source color also contains either three or four
color components (red, green, blue, and optionally alpha).

How the source and destination colors are combined when blending is enabled is
controlled by the blending equation. By default, the blending equation looks like this:

C
f
= (C

s
* S) + (C

d
* D)

Here, C
f
is the final computed color, C

s
is the source color, C

d
is the destination color, and

S and D are the source and destination blending factors. These blending factors are set
with the following function:

glBlendFunc(GLenum S, GLenum D);

As you can see, S and D are enumerants and not physical values that you specify directly.
Table 6.1 lists the possible values for the blending function. The subscripts stand for
source, destination, and color (for blend color, to be discussed shortly). R, G, B, and A
stand for Red, Green, Blue, and Alpha, respectively.

TABLE 6.1 OpenGL Blending Factors

Alpha Blend
Function RGB Blend Factors Factor

GL_ZERO (0,0,0) 0

GL_ONE (1,1,1) 1

GL_SRC_COLOR (R
s
,G

s
,B

s
) A

s

GL_ONE_MINUS_SRC_COLOR (1,1,1) – (R
s
,G

s
,B

s
) 1 – A

s

Alpha Blend
Function RGB Blend Factors Factor

GL_DST_COLOR (R
d
,G

d
,B

d
) A

d

GL_ONE_MINUS_DST_COLOR (1,1,1) – (R
d
,G

d
,B

d
) 1 – A

d

GL_SRC_ALPHA (A
s
,A

s
,A

s
) A

s

GL_ONE_MINUS_SRC_ALPHA (1,1,1) – (A
s
,A

s
,A

s
) 1 – A

s

GL_DST_ALPHA (A
d
,A

d
,A

d
) A

d

GL_ONE_MINUS_DST_ALPHA (1,1,1) – (A
d
,A

d
,A

d
) 1 – A

d

GL_CONSTANT_COLOR (R
c
,G

c
,B

c
) A

c

GL_ONE_MINUS_CONSTANT_COLOR (1,1,1) – (R
c
,G

c
,B

c
) 1 – A

c

GL_CONSTANT_ALPHA (A
c
,A

c
,A

c
) A

c

GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1) – (A
c
,A

c
,A

c
) 1 – A

c

GL_SRC_ALPHA_SATURATE (f,f,f)* 1

* Where f = min(A
s
, 1 – A

d
).

Remember that colors are represented by floating-point numbers, so adding them,
subtracting them, and even multiplying them are all perfectly valid operations. Table 6.1
may seem a bit bewildering, so let’s look at a common blending function combination:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

This function tells OpenGL to take the source (incoming) color and multiply the color
(the RGB values) by the alpha value. Add this to the result of multiplying the destination
color by one minus the alpha value from the source. Say, for example, that you have the
color Red (1.0f, 0.0f, 0.0f, 0.0f) already in the color buffer. This is the destination color, or
C

d
. If something is drawn over this with the color blue and an alpha of 0.6 (0.0f, 0.0f, 1.0f,

0.6f), you would compute the final color as shown here:

C
d

= destination color = (1.0f, 0.0f, 0.0f, 0.0f)

C
s
= source color = (0.0f, 0.0f, 1.0f, 0.6f)

S = source alpha = 0.6

D = one minus source alpha = 1.0 – 0.6 = 0.4

Now, the equation

C
f
= (C

s
* S) + (C

d
* D)

evaluates to

C
f
= (Blue * 0.6) + (Red * 0.4)

Blending 231

6

CHAPTER 6 More on Colors and Materials232

The final color is a scaled combination of the original red value and the incoming blue
value. The higher the incoming alpha value, the more of the incoming color is added and
the less of the original color is retained.

This blending function is often used to achieve the effect of drawing a transparent object
in front of some other opaque object. This technique does require, however, that you
draw the background object or objects first and then draw the transparent object blended
over the top. The effect can be quite dramatic. For example, in the REFLECTION sample
program, we will use transparency to achieve the illusion of a reflection in a mirrored
surface. We begin with a rotating torus with a sphere revolving around it, similar to the
view in the Sphere World example from Chapter 5, “Color, Materials, and Lighting: The
Basics.” Beneath the torus and sphere, we will place a reflective tiled floor. The output
from this program is shown in Figure 6.1, and the drawing code is shown in Listing 6.1.

FIGURE 6.1 Using blending to create a fake reflection effect.

LISTING 6.1 Rendering Function for the REFLECTION Program

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

// Move light under floor to light the “reflected” world

glLightfv(GL_LIGHT0, GL_POSITION, fLightPosMirror);

glPushMatrix();

glFrontFace(GL_CW); // geometry is mirrored,

// swap orientation

glScalef(1.0f, -1.0f, 1.0f);

DrawWorld();

glFrontFace(GL_CCW);

glPopMatrix();

// Draw the ground transparently over the reflection

glDisable(GL_LIGHTING);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

DrawGround();

glDisable(GL_BLEND);

glEnable(GL_LIGHTING);

// Restore correct lighting and draw the world correctly

glLightfv(GL_LIGHT0, GL_POSITION, fLightPos);

DrawWorld();

glPopMatrix();

// Do the buffer Swap

glutSwapBuffers();

}

The basic algorithm for this effect is to draw the scene upside down first. We use one func-
tion to draw the scene, DrawWorld, but to draw it upside down, we scale by –1 to invert
the y-axis, reverse our polygon winding, and place the light down beneath us. After
drawing the upside-down world, we draw the ground, but we use blending to create a
transparent floor over the top of the inverted world. Finally, we turn off blending, put the
light back overhead, and draw the world right side up.

Blending 233

6

Changing the Blending Equation
The blending equation we showed you earlier,

C
f
= (C

s
* S) + (C

d
* D)

is the default blending equation. You can actually choose from five different blending
equations, each given in Table 6.2 and selected with the following function:

void glBlendEquation(GLenum mode);

TABLE 6.2 Available Blend Equation Modes

Mode Function

GL_FUNC_ADD (default) C
f
= (C

s
* S) + (C

d
* D)

GL_FUNC_SUBTRACT C
f
= (C

s
* S) – (C

d
* D)

GL_FUNC_REVERSE_SUBTRACT C
f
= (C

d
* D) – (C

s
* S)

GL_MIN C
f
= min(C

s
, C

d
)

GL_MAX C
f
= max(C

s
, C

d
)

In addition to glBlendFunc, you have even more flexibility with this function:

void glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha,

GLenum dstAlpha);

Whereas glBlendFunc specifies the blend functions for source and destination RGBA
values, glBlendFuncSeparate allows you to specify blending functions for the RGB and
alpha components separately.

Finally, as shown in Table 6.1, the GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA, and GL_ONE_MINUS_CONSTANT_ALPHA values all allow a constant blend-
ing color to be introduced to the blending equation. This constant blending color is
initially black (0.0f, 0.0f, 0.0f, 0.0f), but it can be changed with this function:

void glBlendColor(GLclampf red, GLclampf green, Glclampf blue, GLclampf alpha);

Antialiasing
Another use for OpenGL’s blending capabilities is antialiasing. Under most circumstances,
individual rendered fragments are mapped to individual pixels on a computer screen.
These pixels are square (or squarish), and usually you can spot the division between two
colors quite clearly. These jaggies, as they are often called, catch the eye’s attention and
can destroy the illusion that the image is natural. These jaggies are a dead giveaway that
the image is computer generated! For many rendering tasks, it is desirable to achieve as
much realism as possible, particularly in games, simulations, or artistic endeavors. Figure
6.2 shows the output for the sample program SMOOTHER. In Figure 6.3, we have zoomed
in on a line segment and some points to show the jagged edges.

CHAPTER 6 More on Colors and Materials234

FIGURE 6.2 Output from the program SMOOTHER.

Blending 235

6

FIGURE 6.3 A closer look at some jaggies.

To get rid of the jagged edges between primitives, OpenGL uses blending to blend the
color of the fragment with the destination color of the pixel and its surrounding pixels. In
essence, pixel colors are smeared slightly to neighboring pixels along the edges of any
primitives.

Turning on antialiasing is simple. First, you must enable blending and set the blending
function to be the same as you used in the preceding section for transparency:

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

You also need to make sure the blend equation is set to GL_ADD, but because this is the
default and most common blending equation, we don’t show it here. After blending is
enabled and the proper blending function and equation are selected, you can choose to
antialias points, lines, and/or polygons (any solid primitive) by calling glEnable:

glEnable(GL_POINT_SMOOTH); // Smooth out points

glEnable(GL_LINE_SMOOTH); // Smooth out lines

glEnable(GL_POLYGON_SMOOTH); // Smooth out polygon edges

You should use GL_POLYGON_SMOOTH with care. You might expect to smooth out edges on
solid geometry, but there are other tedious rules to making this work. For example, geome-
try that overlaps requires a different blending mode, and you may need to sort your scene
from front to back. We won’t go into the details because this method of solid object
antialiasing has fallen out of common use and has largely been replaced by a superior
route to smoothing edges on 3D geometry called multisampling. This feature is discussed in
the next section. Without multisampling, you can still get this overlapping geometry
problem with antialiased lines that overlap. For wireframe rendering, for example, you can
usually get away with just disabling depth testing to avoid the depth artifacts at the line
intersections.

Listing 6.2 shows the code from the SMOOTHER program that responds to a pop-up menu
that allows the user to switch between antialiased and non-antialiased rendering modes.
When this program is run with antialiasing enabled, the points and lines appear smoother
(fuzzier). In Figure 6.4, a zoomed-in section shows the same area as Figure 6.3, but now
with the jagged edges smoothed out.

CHAPTER 6 More on Colors and Materials236

FIGURE 6.4 No more jaggies!

LISTING 6.2 Switching Between Antialiased and Normal Rendering

///

// Reset flags as appropriate in response to menu selections

void ProcessMenu(int value)

{

switch(value)

{

case 1:

// Turn on antialiasing, and give hint to do the best

// job possible.

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_BLEND);

glEnable(GL_POINT_SMOOTH);

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);

glEnable(GL_LINE_SMOOTH);

glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);

glEnable(GL_POLYGON_SMOOTH);

glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);

break;

case 2:

// Turn off blending and all smoothing

Blending 237

6

LISTING 6.2 Continued

glDisable(GL_BLEND);

glDisable(GL_LINE_SMOOTH);

glDisable(GL_POINT_SMOOTH);

glDisable(GL_POLYGON_SMOOTH);

break;

default:

break;

}

// Trigger a redraw

glutPostRedisplay();

}

Note especially here the calls to the glHint function discussed in Chapter 2, “Using
OpenGL.” There are many algorithms and approaches to achieve antialiased primitives.
Any specific OpenGL implementation may choose any one of those approaches, and
perhaps even support two! You can ask OpenGL, if it does support multiple antialiasing
algorithms, to choose one that is very fast (GL_FASTEST) or the one with the most accuracy
in appearance (GL_NICEST).

Multisample
One of the biggest advantages to antialiasing is that it smoothes out the edges of primi-
tives and can lend a more natural and realistic appearance to renderings. Point and line
smoothing is widely supported, but unfortunately polygon smoothing is not available on
all platforms. Even when GL_POLYGON_SMOOTH is available, it is not as convenient a means
of having your whole scene antialiased as you might think. Because it is based on the
blending operation, you would need to sort all your primitives from front to back! Yuck.

A more recent addition to OpenGL to address this shortcoming is multisampling. When
this feature is supported (it is an OpenGL 1.3 feature), an additional buffer is added to the
framebuffer that includes the color, depth, and stencil values. All primitives are sampled
multiple times per pixel, and the results are stored in this buffer. These samples are
resolved to a single value each time the pixel is updated, so from the programmer’s stand-
point, it appears automatic and happens “behind the scenes.” Naturally, this extra
memory and processing that must take place are not without their performance penalties,
and some implementations may not support multisampling for multiple rendering
contexts.

To get multisampling, you must first obtain a rendering context that has support for a
multisampled framebuffer. This varies from platform to platform, but GLUT exposes a bit
field (GLUT_MULTISAMPLE) that allows you to request this until you reach the operating

CHAPTER 6 More on Colors and Materials238

system–specific chapters in Part III. For example, to request a multisampled, full-color,
double-buffered frame buffer with depth, you would call

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | GLUT_MULTISAMPLE);

You can turn multisampling on and off using the glEnable/glDisable combination and
the GL_MULTISAMPLE token:

glEnable(GL_MULTISAMPLE);

or

glDisable(GL_MULTISAMPLE);

The sample program MULTISAMPLE is simply the Sphere World sample from the preced-
ing chapter with multisampling selected and enabled. Figure 6.5 shows the difference
between two zoomed-in sections from each program. You can see that multisampling
really helps smooth out the geometry’s edges on the image to the right, lending to a much
more pleasing appearance to the rendered output.

Blending 239

6

FIGURE 6.5 Zoomed-in view contrasting normal and multisampled rendering.

Another important note about multisampling is that when it is enabled, the point, line,
and polygon smoothing features are ignored if enabled. This means you cannot use point
and line smoothing at the same time as multisampling. On a given OpenGL implementa-
tion, points and lines may look better with smoothing turned on instead of multisam-
pling. To accommodate this, you might turn off multisampling before drawing points and
lines and then turn on multisampling for other solid geometry. The following pseudocode
shows a rough outline of how to do this:

glDisable(GL_MULTISAMPLE);

glEnable(GL_POINT_SMOOTH);

// Draw some smooth points

// ...

glDisable(GL_POINT_SMOOTH);

glEnable(GL_MULTISAMPLE);

Of course if you do not have a multisampled buffer to begin with, OpenGL behaves as if
GL_MULTISAMPLE were disabled.

STATE SORTING

Turning different OpenGL features on and off changes the internal state of the driver. These state
changes can be costly in terms of rendering performance. Frequently, performance-sensitive
programmers will go to great lengths to sort all the drawing commands so that geometry
needing the same state will be drawn together. This state sorting is one of the more common
techniques to improve rendering speed in games.

The multisample buffers use the RGB values of fragments by default and do not include
the alpha component of the colors. You can change this by calling glEnable with one of
the following three values:

• GL_SAMPLE_ALPHA_TO_COVERAGE—Use the alpha value.

• GL_SAMPLE_ALPHA_TO_ONE—Set alpha to 1 and use it.

• GL_SAMPLE_COVERAGE—Use the value set with glSampleCoverage.

When GL_SAMPLE_COVERAGE is enabled, the glSampleCoverage function allows you to
specify a specific value that is ANDed (bitwise) with the fragment coverage value:

void glSampleCoverage(GLclampf value, GLboolean invert);

This fine-tuning of how the multisample operation works is not strictly specified by the
specification, and the exact results may vary from implementation to implementation.

Applying Fog
Another easy-to-use special effect that OpenGL supports is fog. With fog, OpenGL blends a
fog color that you specify with geometry after all other color computations have been
completed. The amount of the fog color mixed with the geometry varies with the distance
of the geometry from the camera origin. The result is a 3D scene that appears to contain
fog. Fog can be useful for slowly obscuring objects as they “disappear” into the back-
ground fog; or a slight amount of fog will produce a hazy effect on distant objects, provid-
ing a powerful and realistic depth cue. Figure 6.6 shows output from the sample program
FOGGED. As you can see, this is nothing more than the ubiquitous Sphere World example
with fog turned on.

CHAPTER 6 More on Colors and Materials240

FIGURE 6.6 Sphere World with fog.

Listing 6.3 shows the few lines of code added to the SetupRC function to produce this
effect.

LISTING 6.3 Setting Up Fog for Sphere World

// Grayish background

glClearColor(fLowLight[0], fLowLight[1], fLowLight[2], fLowLight[3]);

// Set up Fog parameters

glEnable(GL_FOG); // Turn Fog on

glFogfv(GL_FOG_COLOR, fLowLight); // Set fog color to match background

glFogf(GL_FOG_START, 5.0f); // How far away does the fog start

glFogf(GL_FOG_END, 30.0f); // How far away does the fog stop

glFogi(GL_FOG_MODE, GL_LINEAR); // Which fog equation to use

Turning fog on and off is as easy as using the following functions:

glEnable/glDisable(GL_FOG);

Applying Fog 241

6

The means of changing fog parameters (how the fog behaves) is to use the glFog func-
tion. There are several variations on glFog:

void glFogi(GLenum pname, GLint param);

void glFogf(GLenum pname, GLfloat param);

void glFogiv(GLenum pname, GLint* params);

void glFogfv(GLenum pname, GLfloat* params);

The first use of glFog shown here is

glFogfv(GL_FOG_COLOR, fLowLight); // Set fog color to match background

When used with the GL_FOG_COLOR parameter, this function expects a pointer to an array
of floating-point values that specifies what color the fog should be. Here, we used the
same color for the fog as the background clear color. If the fog color does not match the
background (there is no strict requirement for this), as objects become fogged, they will
become a fog-colored silhouette against the background.

The next two lines allow us to specify how far away an object must be before fog is
applied and how far away the object must be for the fog to be fully applied (where the
object is completely the fog color):

glFogf(GL_FOG_START, 5.0f); // How far away does the fog start

glFogf(GL_FOG_END, 30.0f); // How far away does the fog stop

The parameter GL_FOG_START specifies how far away from the eye fogging begins to take
effect, and GL_FOG_END is the distance from the eye where the fog color completely over-
powers the color of the object. The transition from start to end is controlled by the fog
equation, which we set to GL_LINEAR here:

glFogi(GL_FOG_MODE, GL_LINEAR); // Which fog equation to use

Fog Equations
The fog equation calculates a fog factor that varies from 0 to 1 as the distance of the frag-
ment moves between the start and end distances. OpenGL supports three fog equations:
GL_LINEAR, GL_EXP, and GL_EXP2. These equations are shown in Table 6.3.

TABLE 6.3 Three OpenGL Supported Fog Equations

Fog Mode Fog Equation

GL_LINEAR f = (end – c) / (end – start)

GL_EXP f = exp(–d * c)

GL_EXP2 f = exp(–(d * c)2)

CHAPTER 6 More on Colors and Materials242

In these equations, c is the distance of the fragment from the eye plane, end is the
GL_FOG_END distance, and start is the GL_FOG_START distance. The value d is the fog density.
Fog density is typically set with glFogf:

glFogf(GL_FOG_DENSITY, 0.5f);

Note that GL_FOG_START and GL_FOG_END only have an effect on GL_LINEAR fog. Figure 6.7
shows graphically how the fog equation and fog density parameters affect the transition
from the original fragment color to the fog color. GL_LINEAR is a straight linear progres-
sion, whereas the GL_EXP and GL_EXP2 equations show two characteristic curves for their
transitions. The fog density value has no effect with linear fog (GL_LINEAR), but the other
two curves you see here are generally pulled downward with increasing density values.
These graphs, for example, show approximately a density value of 0.5.

Applying Fog 243

6

Start EndFOG distance

%
original

color

0

100

GL_EXP

GL_LINEAR

GL_EXP2

FIGURE 6.7 Fog density equations.

The distance to a fragment from the eye plane can be calculated in one of two ways. Some
implementations (notably NVIDIA hardware) will use the actual fragment depth. Other
implementations (notably many ATI chipsets) use the vertex distance and interpolate
between vertices. The former method is sometimes referred to as fragment fog; and the
later, vertex fog. Fragment fog requires more work than vertex fog, but often has a higher
quality appearance. Both of the previously mentioned implementations honor the glHint
parameter GL_FOG_HINT. To explicitly request fragment fog (better looking, but more work),
call

glHint(GL_FOG_HINT, GL_NICEST);

For faster, less precise fog, you’d call

glHint(GL_FOG_HINT, GL_FASTEST);

Remember that hints are implementation dependent, may change over time, and are not
required to be acknowledged or used by the driver at all. Indeed, you can’t even rely on
which fog method will be the default!

Fog Coordinates
Rather than letting OpenGL calculate fog distance for you, you can actually do this your-
self. This value is called the fog coordinate and can be set manually with the function
glFogCoordf:

void glFogCoordf(Glfloat fFogDistance);

Fog coordinates are ignored unless you change the fog coordinate source with this func-
tion call:

glFogi(GL_FOG_COORD_SRC, GL_FOG_COORD); // use glFogCoord1f

To return to OpenGL-derived fog values, change the last parameter to GL_FRAGMENT_DEPTH:

glFogi(GL_FOG_COORD_SRC, GL_FRAGMENT_DEPTH);

This fog coordinate when specified is used as the fog distance in the equations of Table
6.3. Specifying your own fog distance allows you to change the way distance is calculated.
For example, you may want elevation to play a role, lending to volumetric fog effects.

Accumulation Buffer
In addition to the color, stencil, and depth buffers, OpenGL supports what is called the
accumulation buffer. This buffer allows you to render to the color buffer, and then instead
of displaying the results in the window, copy the contents of the color buffer to the accu-
mulation buffer. Several supported copy operations allow you to repeatedly blend, in
different ways, the color buffer contents with the accumulated contents in the accumula-
tion buffer (thus its name). When you have finished accumulating an image, you can
then copy the accumulation buffer back to the color buffer and display the results with a
buffer swap.

The behavior of the accumulation buffer is controlled by one function:

void glAccum(GLenumm op, GLfloat value);

The first parameter specifies which accumulation operation you want to use, and the
second is a floating-point value used to scale the operation. Table 6.4 lists the accumula-
tion operations supported.

CHAPTER 6 More on Colors and Materials244

TABLE 6.4 OpenGL Accumulation Operations

Operation Description

GL_ACCUM Scales the color buffer values by value and adds them to the current contents

of the accumulation buffer.

GL_LOAD Scales the color buffer values by value and replaces the current contents of

the accumulation buffer.

GL_RETURN Scales the color values from the accumulation buffer by value and then

copies the values to the color buffer.

GL_MULT Scales the color values in the accumulation buffer by value and stores the

result in the accumulation buffer.

GL_ADD Scales the color values in the accumulation buffer by value and adds the

result to the current accumulation buffer contents.

Because of the large amount of memory that must be copied and processed for accumula-
tion buffer operations, few real-time applications make use of this capability. For non-
real-time rendering, OpenGL can produce some astonishing effects that you might not
expect from a real-time API. For example, you can render a scene multiple times and move
the point of view around by a fraction of a pixel each time. Accumulating these multiple
rendering passes blurs the sharp edges and can produce an entire scene fully antialiased
with a quality that surpasses anything that can be done with multisampling. You can also
use this blurring effect to blur the background or foreground of an image and then render
the object of focus clearly afterward, simulating some depth-of-field camera effects.

In our sample program MOTIONBLUR, we will demonstrate yet another use of the accu-
mulation buffer to create what appears to be a motion blur effect. A moving sphere is
drawn repeatedly in different positions. Each time it is drawn, it is accumulated to the
accumulation buffer, with a smaller weight on subsequent passes. The result is a brighter
red sphere with a ghostlike image of itself following along behind. The output from this
program is shown in Figure 6.8.

Accumulation Buffer 245

6

FIGURE 6.8 A motion-blurred flying sphere.

Listing 6.4 shows the DrawGeometry function, which draws all the geometry of the scene.
The RenderScene function then repeatedly calls this function and accumulates the results
into the accumulation buffer. When that process is finished, the lines

glAccum(GL_RETURN, 1.0f);

glutSwapBuffers();

copy the accumulation buffer back to the color buffer and perform the buffer swap.

LISTING 6.4 Using the Accumulation Buffer for Motion Blur

///

// Draw the ground and the revolving sphere

void DrawGeometry(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

DrawGround();

// Place the moving sphere

CHAPTER 6 More on Colors and Materials246

LISTING 6.4 Continued

glColor3f(1.0f, 0.0f, 0.0f);

glTranslatef(0.0f, 0.5f, -3.5f);

glRotatef(-(yRot * 2.0f), 0.0f, 1.0f, 0.0f);

glTranslatef(1.0f, 0.0f, 0.0f);

glutSolidSphere(0.1f, 17, 9);

glPopMatrix();

}

///

// Called to draw scene. The world is drawn multiple times with each

// frame blended with the last. The current rotation is advanced each

// time to create the illusion of motion blur.

void RenderScene(void)

{

GLfloat fPass;

GLfloat fPasses = 10.0f;

// Set the current rotation back a few degrees

yRot = 35.0f;

for(fPass = 0.0f; fPass < fPasses; fPass += 1.0f)

{

yRot += .75f; //1.0f / (fPass+1.0f);

// Draw sphere

DrawGeometry();

// Accumulate to back buffer

if(fPass == 0.0f)

glAccum(GL_LOAD, 0.5f);

else

glAccum(GL_ACCUM, 0.5f * (1.0f / fPasses));

}

// copy accumulation buffer to color buffer and

// do the buffer Swap

glAccum(GL_RETURN, 1.0f);

glutSwapBuffers();

}

Accumulation Buffer 247

6

Finally, you must remember to ask for an accumulation buffer when you set up your
OpenGL rendering context (see the OS-specific chapters in Part III for how to perform this
task on your platform). GLUT also provides support for the accumulation buffer by
passing the token GLUT_ACCUM to the glutInitDisplayMode function, as shown here:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | GLUT_ACCUM);

Other Color Operations
Blending is a powerful OpenGL feature that enables a myriad of special effects algorithms.
Aside from direct support for blending, fog, and an accumulation buffer, OpenGL also
supports some other means of tweaking color values and fragments as they are written to
the color buffer.

Color Masking
After a final color is computed, when it is about to be written to the color buffer, OpenGL
allows you to mask out one or more of the color channels with the glColorMask function:

void glColorMask(GLboolean red, GLboolean green, GLboolean blue,

GLboolean alpha);

The parameters are for the red, green, blue, and alpha channels, respectively. Passing
GL_TRUE allows writing of this channel, and GL_FALSE prevents writing to this channel.

Color Logical Operations
Many 2D graphics APIs allow binary logical operations to be performed between the
source and the destination colors. OpenGL also supports these types of 2D operations with
the glLogicOp function:

void glLogicOp(GLenum op);

The logical operation modes are listed in Table 6.5. The logical operation is not enabled by
default and is controlled, as most states are, with glEnable/glDisable using the value
GL_COLOR_LOGIC_OP. For example, to turn on the logical operations, you use the following:

glEnable(GL_COLOR_LOGIC_OP);

TABLE 6.5 Bitwise Color Logical Operations

Argument Value Operation

GL_CLEAR 0

GL_AND s & d

GL_AND_REVERSE s & ~d

GL_COPY s

CHAPTER 6 More on Colors and Materials248

Argument Value Operation

GL_AND_INVERTED ~s & d

NOOP d

XOR s xor d

OR s | d

NOR ~(s | d)

GL_EQUIV ~(s xor d)

GL_INVERT ~d

GL_OR_REVERSE s | ~d

GL_COPY_INVERTED ~s

GL_OR_INVERTED ~s | d

GL_NAND ~(s & d)

SET all 1s

Alpha Testing
Alpha testing allows you to tell OpenGL to discard incoming fragments whose alpha value
fails the alpha comparison test. Discarded fragments are not written to the color, depth,
stencil, or accumulation buffers. This feature allows you to improve performance by drop-
ping values that otherwise might be written to the buffers and to eliminate geometry from
the depth buffer that may not be visible in the color buffer (because of very low alpha
values). The alpha test value and comparison function are specified with the glAlphaFunc
function:

void glAlphaFunc(GLenum func, GLclampf ref);

The reference value is clamped to the range 0.0 to 1.0, and the comparison function may
be specified by any of the constants in Table 6.6. You can turn alpha testing on and off
with glEnable/glDisable using the constant GL_ALPHA_TEST. The behavior of this function
is similar to the glDepthFunc function (see Appendix C, “API Reference”).

TABLE 6.6 Alpha Test Comparison Functions

Constant Comparison Function

GL_NEVER Never passes

GL_ALWAYS Always passes

GL_LESS Passes if the fragment is less than the reference value

GL_LEQUAL Passes if the fragment is less than or equal to the reference value

GL_EQUAL Passes if the fragment is equal to the reference value

GL_GEQUAL Passes if the fragment is greater than or equal to the reference

value

GL_GREATER Passes if the fragment is greater than the reference value

GL_NOTEQUAL Passes if the fragment is not equal to the reference value

Other Color Operations 249

6

Dithering
Dithering is a simple operation (in principle) that allows a display system with a small
number of discrete colors to simulate displaying a much wider range of colors. For
example, the color gray can be simulated by displaying a mix of white and black dots on
the screen. More white than black dots make for a lighter gray, whereas more black dots
make a darker gray. When your eye is far enough from the display, you cannot see the
individual dots, and the blending effect creates the illusion of the color mix. This tech-
nique is useful for display systems that support only 8 or 16 bits of color information.
Each OpenGL implementation is free to implement its own dithering algorithm, but the
effect can be dramatically improved image quality on lower-end color systems. By default,
dithering is turned on, and it can be controlled with glEnable/glDisable and the
constant GL_DITHER:

glEnable(GL_DITHER); // Initially enabled

On higher-end display systems with greater color resolution, the implementation may not
need dithering, and dithering may not be employed at a potentially considerable perfor-
mance savings.

Summary
In this chapter, we took color beyond simple shading and lighting effects. You saw how to
use blending to create transparent and reflective surfaces and create antialiased points,
lines, and polygons with the blending and multisampling features of OpenGL. You also
were introduced to the accumulation buffer and saw at least one common special effect
that it is normally used for. Finally, you saw how OpenGL supports other color manipula-
tion features such as color masks, bitwise color operations, and dithering, and how to use
the alpha test to discard fragments altogether. Now we progress further in the next chapter
from colors, shading, and blending to operations that incorporate real image data.

Included in the source distribution for this chapter, you’ll find an update of the Sphere
World example from Chapter 5. You can study the source code to see how we have incor-
porated many of the techniques from this chapter to add some additional depth queuing
to the world with fog, partially transparent shadows on the ground, and fully antialiased
rendering of all geometry.

CHAPTER 6 More on Colors and Materials250

CHAPTER 7

Imaging with OpenGL

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Set the raster position glRasterPos/glWindowPos

Draw bitmaps glBitmap

Read and write color images glReadPixels/glDrawPixels

Magnify, shrink, and flip images glPixelZoom

Set up operations on colors glPixelTransfer/glPixelMap

Perform color substitutions glColorTable

Perform advanced image filtering glConvolutionFilter2D

Collect statistics on images glHistogram/glGetHistogram

In the preceding chapters, you learned the basics of OpenGL’s acclaimed 3D graphics capa-
bilities. Until now, all output has been the result of three-dimensional primitives being
transformed and projected to 2D space and finally rasterized into the color buffer.
However, OpenGL also supports reading and writing directly from and to the color buffer.
This means image data can be read directly from the color buffer into your own memory
buffer, where it can be manipulated or written to a file. This also means you can derive or
read image data from a file and place it directly into the color buffer yourself. OpenGL
goes beyond merely reading and writing 2D images and has support for a number of
imaging operations that can be applied automatically during reading and writing opera-
tions. This chapter is all about OpenGL’s rich but sometimes overlooked 2D capabilities.

252 CHAPTER 7 Imaging with OpenGL

Bitmaps
In the beginning, there were bitmaps. And they were…good enough. The original elec-
tronic computer displays were monochrome (one color), typically green or amber, and
every pixel on the screen had one of two states: on or off. Computer graphics were simple
in the early days, and image data was represented by bitmaps—a series of ones and zeros
representing on and off pixel values. In a bitmap, each bit in a block of memory corre-
sponds to exactly one pixel’s state on the screen. We introduced this idea in the “Filling
Polygons, or Stippling Revisited” section in Chapter 3, “Drawing in Space: Geometric
Primitives and Buffers.” Bitmaps can be used for masks (polygon stippling), fonts and
character shapes, and even two-color dithered images. Figure 7.1 shows an image of a
horse represented as a bitmap. Even though only two colors are used (black and white
dots), the representation of a horse is still apparent. Compare this image with the one in
Figure 7.2, which shows a grayscale image of the same horse. In this pixelmap, each pixel
has one of 256 different intensities of gray. We discuss pixelmaps further in the next
section. The term bitmap is often applied to images that contain grayscale or full-color
data. This description is especially common on the Windows platform in relation to the
poorly named .BMP (bitmap) file extension. Many would argue that, strictly speaking, this
is a gross misapplication of the term. In this book, we use the term bitmap (correctly!) to
mean a true binary map of on and off values, and we use the term pixelmap (or frequently
pixmap for short) for image data that contains color or intensity values for each pixel.

FIGURE 7.1 A bitmapped image of a horse.

FIGURE 7.2 A pixmap image of a horse.

Bitmapped Data
The rendering components of the sample program BITMAPS are shown in Listing 7.1. This
program uses the same bitmap data used in Chapter 3 for the polygon stippling sample
that represents the shape of a small campfire arranged as a pattern of bits measuring
32×32. Remember that bitmaps are built from the bottom up, which means the first row
of data actually represents the bottom row of the bitmapped image. This program creates a
512×512 window and fills the window with 16 rows and columns of the campfire bitmap.
The output is shown in Figure 7.3. Note that the ChangeSize function sets an orthographic
projection matching the window’s width and height in pixels.

Bitmaps 253

7

CHAPTER 7 Imaging with OpenGL254

FIGURE 7.3 The 16 rows and columns of the campfire bitmap.

LISTING 7.1 The BITMAPS Sample Program

#include “../../shared/gltools.h” // OpenGL toolkit

// Bitmap of campfire

GLubyte fire[128] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x01, 0xf0,

0x00, 0x00, 0x07, 0xf0, 0x0f, 0x00, 0x1f, 0xe0,

0x1f, 0x80, 0x1f, 0xc0, 0x0f, 0xc0, 0x3f, 0x80,

0x07, 0xe0, 0x7e, 0x00, 0x03, 0xf0, 0xff, 0x80,

0x03, 0xf5, 0xff, 0xe0, 0x07, 0xfd, 0xff, 0xf8,

0x1f, 0xfc, 0xff, 0xe8, 0xff, 0xe3, 0xbf, 0x70,

LISTING 7.1 Continued

0xde, 0x80, 0xb7, 0x00, 0x71, 0x10, 0x4a, 0x80,

0x03, 0x10, 0x4e, 0x40, 0x02, 0x88, 0x8c, 0x20,

0x05, 0x05, 0x04, 0x40, 0x02, 0x82, 0x14, 0x40,

0x02, 0x40, 0x10, 0x80, 0x02, 0x64, 0x1a, 0x80,

0x00, 0x92, 0x29, 0x00, 0x00, 0xb0, 0x48, 0x00,

0x00, 0xc8, 0x90, 0x00, 0x00, 0x85, 0x10, 0x00,

0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00 };

. . .

. . .

///

// Called to draw scene

void RenderScene(void)

{

int x, y;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Set color to white

glColor3f(1.0f, 1.0f, 1.0f);

// Loop through 16 rows and columns

for(y = 0; y < 16; y++)

{

// Set raster position for this “square”

glRasterPos2i(0, y * 32);

for(x = 0; x < 16; x++)

// Draw the “fire” bitmap, advance raster position

glBitmap(32, 32, 0.0, 0.0, 32.0, 0.0, fire);

}

// Do the buffer Swap

glutSwapBuffers();

}

Bitmaps 255

7

The Raster Position
The real meat of the BITMAPS sample program occurs in the RenderScene function where
a set of nested loops draws 16 rows of 16 columns of the campfire bitmap:

// Loop through 16 rows and columns

for(y = 0; y < 16; y++)

{

// Set raster position for this “square”

glRasterPos2i(0, y * 32);

for(x = 0; x < 16; x++)

// Draw the “fire” bitmap, advance raster position

glBitmap(32, 32, 0.0, 0.0, 32.0, 0.0, fire);

}

The first loop (y variable) steps the row from 0 to 16. The following function call sets the
raster position to the place where you want the bitmap drawn:

glRasterPos2i(0, y * 32);

The raster position is interpreted much like a call to glVertex in that the coordinates are
transformed by the current modelview and projection matrices. The resulting window
position becomes the current raster position. All rasterizing operations (bitmaps and
pixmaps) occur with the current raster position specifying the image’s lower-left corner. If
the current raster position falls outside the window’s viewport, it is invalid, and any
OpenGL operations that require the raster position will fail.

In this example, we deliberately set the OpenGL projection to match the window dimen-
sions so that we could use window coordinates to place the bitmaps. However, this tech-
nique may not always be convenient, so OpenGL provides an alternative function that
allows you to set the raster position in window coordinates without regard to the current
transformation matrix or projection (basically, they are ignored):

void glWindowPos2i(GLint x, GLint y);

The glWindowPos function comes in two- and three-argument flavors and accepts integers,
floats, doubles, and short arguments much like glVertex. See the reference section in
Appendix C, “API Reference,” for a complete breakdown.

One important note about the raster position is that the color of the bitmap is set when
either glRasterPos or glWindowPos is called. This means that the current color previously
set with glColor is bound to subsequent bitmap operations. Calls to glColor made after
the raster position is set will have no effect on the bitmap color.

CHAPTER 7 Imaging with OpenGL256

Drawing the Bitmap
Finally, we get to the command that actually draws the bitmap into the color buffer:

glBitmap(32, 32, 0.0, 0.0, 32.0, 0.0, fire);

The glBitmap function copies the supplied bitmap to the color buffer at the current raster
position and optionally advances the raster position all in one operation. This function
has the following syntax:

void glBitmap(GLsize width, GLsize height, GLfloat xorig, GLfloat yorig,

GLfloat xmove, GLfloat ymove, GLubyte *bitmap);

The first two parameters, width and height, specify the width and height of the bitmap
(in bits). The next two parameters, xorig and yorig, specify the floating-point origin of
the bitmap. To begin at the lower-left corner of the bitmap, specify 0.0 for both of these
arguments. Then xmove and ymove specify an offset in pixels to move the raster position in
the x and y directions after the bitmap is rendered. This is important because it means
that the raster operation automatically updates the raster position for the next raster oper-
ation. Think about how this would make a bitmapped text system in OpenGL easier to
implement! Note that these four parameters are all in floating-point units. The final argu-
ment, bitmap, is simply a pointer to the bitmap data. Note that when a bitmap is drawn,
only the 1s in the image create fragments in the color buffer; 0s have no effect on
anything already present.

Pixel Packing
Bitmaps and pixmaps are rarely packed tightly into memory. On many hardware plat-
forms, each row of a bitmap or pixmap should begin on some particular byte-aligned
address for performance reasons. Most compilers automatically put variables and buffers at
an address alignment optimal for that architecture. OpenGL, by default, assumes a 4-byte
alignment, which is appropriate for many systems in use today. The campfire bitmap used
in the preceding example was tightly packed, but it didn’t cause problems because the
bitmap just happened to also be 4-byte aligned. Recall that the bitmap was 32 bits wide,
exactly 4 bytes. If we had used a 34-bit-wide bitmap (only 2 more bits), we would have
had to pad each row with an extra 30 bits of unused storage, for a total of 64 bits (8 bytes
is evenly divisible by 4). Although this may seem like a waste of memory, this arrange-
ment allows most CPUs to more efficiently grab blocks of data (such as a row of bits for a
bitmap).

You can change how pixels for bitmaps or pixmaps are stored and retrieved by using the
following functions:

void glPixelStorei(GLenum pname, GLint param);

void glPixelStoref(GLenum pname, GLfloat param);

Pixel Packing 257

7

If you want to change to tightly packed pixel data, for example, you make the following
function call:

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

GL_UNPACK_ALIGNMENT specifies how OpenGL will unpack image data from the data buffer.
Likewise, you can use GL_PACK_ALIGNMENT to tell OpenGL how to pack data being read
from the color buffer and placed in a user-specified memory buffer. The complete list of
pixel storage modes available through this function is given in Table 7.1 and explained in
more detail in Appendix C.

TABLE 7.1 glPixelStore Parameters

Parameter Name Type Initial Value

GL_PACK_SWAP_BYTES GLboolean GL_FALSE

GL_UNPACK_SWAP_BYTES GLboolean GL_FALSE

GL_PACK_LSB_FIRST GLboolean GL_FALSE

GL_UNPACK_LSB_FIRST GLboolean GL_FALSE

GL_PACK_ROW_LENGTH GLint 0

GL_UNPACK_ROW_LENGTH GLint 0

GL_PACK_SKIP_ROWS GLint 0

GL_UNPACK_SKIP_ROWS GLint 0

GL_PACK_SKIP_PIXELS GLint 0

GL_UNPACK_SKIP_PIXELS GLint 0

GL_PACK_ALIGNMENT GLint 4

GL_UNPACK_ALIGNMENT GLint 4

GL_PACK_IMAGE_HEIGHT GLint 0

GL_UNPACK_IMAGE_HEIGHT GLint 0

GL_PACK_SKIP_IMAGES GLint 0

GL_UNPACK_SKIP_IMAGES GLint 0

Pixmaps
Of more interest and somewhat greater utility on today’s full-color computer systems are
pixmaps. A pixmap is similar in memory layout to a bitmap; however, each pixel may be
represented by more than one bit of storage. Extra bits of storage for each pixel allow
either intensity (sometimes referred to as luminance values) or color component values to
be stored. You draw pixmaps at the current raster position just like bitmaps, but you draw
them using a new function:

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,

GLenum type, const void *pixels);

CHAPTER 7 Imaging with OpenGL258

The first two arguments specify the width and height of the image in pixels. The third
argument specifies the format of the image data, followed by the data type of the data and
finally a pointer to the data itself. Unlike glBitmap, this function does not update the
raster position and is considerably more flexible in the way you can specify image data.

Each pixel is represented by one or more data elements contained at the *pixels pointer.
The color layout of these data elements is specified by the format parameter using one of
the constants listed in Table 7.2.

TABLE 7.2 OpenGL Pixel Formats

Constant Description

GL_RGB Colors are in red, green, blue order.

GL_RGBA Colors are in red, green, blue, alpha order.

GL_BGR Colors are in blue, green, red order.

GL_BGRA Colors are in blue, green, red, alpha order.

GL_RED Each pixel contains a single red component.

GL_GREEN Each pixel contains a single green component.

GL_BLUE Each pixel contains a single blue component.

GL_ALPHA Each pixel contains a single alpha component.

GL_LUMINANCE Each pixel contains a single luminance

(intensity) component.

GL_LUMINANCE_ALPHA Each pixel contains a luminance followed by

an alpha component.

GL_STENCIL_INDEX Each pixel contains a single stencil value.

GL_DEPTH_COMPONENT Each pixel contains a single depth value.

Two of the formats, GL_STENCIL_INDEX and GL_DEPTH_COMPONENT, are used for reading and
writing directly to the stencil and depth buffers. The type parameter interprets the data
pointed to by the *pixels parameter. It tells OpenGL what data type within the buffer is
used to store the color components. The recognized values are specified in Table 7.3.

TABLE 7.3 Data Types for Pixel Data

Constant Description

GL_UNSIGNED_BYTE Each color component is an 8-bit unsigned integer

GL_BYTE Signed 8-bit integer

GL_BITMAP Single bits, no color data; same as glBitmap

GL_UNSIGNED_SHORT Unsigned 16-bit integer

GL_SHORT Signed 16-bit integer

GL_UNSIGNED_INT Unsigned 32-bit integer

GL_INT Signed 32-bit integer

GL_FLOAT Single-precision float

GL_UNSIGNED_BYTE_3_2_2 Packed RGB values

GL_UNSIGNED_BYTE_2_3_3_REV Packed RGB values

Pixmaps 259

7

TABLE 7.3 Continued

Constant Description

GL_UNSIGNED_SHORT_5_6_5 Packed RGB values

GL_UNSIGNED_SHORT_5_6_5_REV Packed RGB values

GL_UNSIGNED_SHORT_4_4_4_4 Packed RGBA values

GL_UNSIGNED_SHORT_4_4_4_4_REV Packed RGBA values

GL_UNSIGNED_SHORT_5_5_5_1 Packed RGBA values

GL_UNSIGNED_SHORT_1_5_5_5_REV Packed RGBA values

GL_UNSIGNED_INT_8_8_8_8 Packed RGBA values

GL_UNSIGNED_INT_8_8_8_8_REV Packed RGBA values

GL_UNSIGNED_INT_10_10_10_2 Packed RGBA values

GL_UNSIGNED_INT_2_10_10_10_REV Packed RGBA values

Packed Pixel Formats
The packed formats listed in Table 7.3 were introduced in OpenGL 1.2 as a means of
allowing image data to be stored in a more compressed form that matched a range of color
graphics hardware. Display hardware designs could save memory or operate faster on a
smaller set of packed pixel data. These packed pixel formats are still found on some PC
hardware and may continue to be useful for future hardware platforms.

The packed pixel formats compress color data into as few bits as possible, with the
number of bits per color channel shown in the constant. For example, the
GL_UNSIGNED_BYTE_3_3_2 format stores 3 bits of the first component, 3 bits of the second
component, and 2 bits of the third component. Remember, the specific components
(red, green, blue, and alpha) are still ordered according to the format parameter of
glDrawPixels. The components are ordered from the highest bits (most significant bit, or
MSB) to the lowest (least significant bit, or LSB). GL_UNSIGNED_BYTE_2_3_3_REV reverses
this order and places the last component in the top 2 bits, and so on. Figure 7.4 shows
graphically the bitwise layout for these two arrangements. All the other packed formats are
interpreted in the same manner.

CHAPTER 7 Imaging with OpenGL260

UNSIGNED_BYTE_3_3_2

1st Component

7 6 5 4 3 2 1 0

2nd 3rd

UNSIGNED_BYTE_2_3_3_REV

1st Component

7 6 5 4 3 2 1 0

2nd3rd

FIGURE 7.4 Sample layout for two packed pixel formats.

A More Colorful Example
Now it’s time to put your new pixel knowledge to work with a more colorful and realistic
rendition of a campfire. Figure 7.5 shows the output of the next sample program, IMAGE-
LOAD. This program loads an image, fire.tga, and uses glDrawPixels to place the image
directly into the color buffer. This program is almost identical to the BITMAPS sample
program with the exception that the color image data is read from a targa image file (note
the .tga file extension) using the glTools function gltLoadTGA and then drawn with a
call to glDrawPixels instead of glBitmap. The function that loads the file and displays it is
shown in Listing 7.2.

Pixmaps 261

7

FIGURE 7.5 A campfire image loaded from a file.

LISTING 7.2 The RenderScene Function to Load and Display the Image File

// Called to draw scene

void RenderScene(void)

{

GLbyte *pImage = NULL;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Targas are 1 byte aligned

LISTING 7.2 Continued

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

// Load the TGA file, get width, height, and component/format information

pImage = gltLoadTGA(“fire.tga”, &iWidth, &iHeight, &iComponents, &eFormat);

// Use Window coordinates to set raster position

glRasterPos2i(0, 0);

// Draw the pixmap

if(pImage != NULL)

glDrawPixels(iWidth, iHeight, eFormat, GL_UNSIGNED_BYTE, pImage);

// Don’t need the image data anymore

free(pImage);

// Do the buffer Swap

glutSwapBuffers();

}

Note the call that reads the targa file:

// Load the TGA file, get width, height, and component/format information

pImage = gltLoadTGA(“fire.tga”, &iWidth, &iHeight, &iComponents, &eFormat);

We use this function frequently in other sample programs when the need arises to load
image data from a file. The first argument is the filename (with the path if necessary) of
the targa file to load. The targa image format is a well-supported and common image file
format. Unlike JPEG files, targa files (usually) store an image in its uncompressed form.
The gltLoadTGA function opens the file and then reads in and parses the header to deter-
mine the width, height, and data format of the file. The number of components can be
one, three, or four for luminance, RGB, or RGBA images, respectively. The final parameter
is a pointer to a GLenum that receives the corresponding OpenGL image format for the file.
If the function call is successful, it returns a newly allocated pointer (using malloc) to the
image data read directly from the file. If the file is not found, or some other error occurs,
the function returns NULL. The complete listing for the gltLoadTGA function is given in
Listing 7.3.

LISTING 7.3 The gltLoadTGA Function to Load Targa Files for Use in OpenGL

//

// Allocate memory and load targa bits. Returns pointer to new buffer,

// height, and width of texture, and the OpenGL format of data.

CHAPTER 7 Imaging with OpenGL262

LISTING 7.3 Continued

// Call free() on buffer when finished!

// This only works on pretty vanilla targas... 8, 24, or 32 bit color

// only, no palettes, no RLE encoding.

GLbyte *gltLoadTGA(const char *szFileName,

GLint *iWidth, GLint *iHeight,

GLint *iComponents, GLenum *eFormat)

{

FILE *pFile; // File pointer

TGAHEADER tgaHeader; // TGA file header

unsigned long lImageSize; // Size in bytes of image

short sDepth; // Pixel depth;

GLbyte *pBits = NULL; // Pointer to bits

// Default/Failed values

*iWidth = 0;

*iHeight = 0;

*eFormat = GL_BGR_EXT;

*iComponents = GL_RGB8;

// Attempt to open the file

pFile = fopen(szFileName, “rb”);

if(pFile == NULL)

return NULL;

// Read in header (binary)

fread(&tgaHeader, 18/* sizeof(TGAHEADER)*/, 1, pFile);

// Do byte swap for big vs little endian

#ifdef __APPLE__

BYTE_SWAP(tgaHeader.colorMapStart);

BYTE_SWAP(tgaHeader.colorMapLength);

BYTE_SWAP(tgaHeader.xstart);

BYTE_SWAP(tgaHeader.ystart);

BYTE_SWAP(tgaHeader.width);

BYTE_SWAP(tgaHeader.height);

#endif

// Get width, height, and depth of texture

*iWidth = tgaHeader.width;

*iHeight = tgaHeader.height;

sDepth = tgaHeader.bits / 8;

Pixmaps 263

7

LISTING 7.3 Continued

// Put some validity checks here. Very simply, I only understand

// or care about 8, 24, or 32 bit targas.

if(tgaHeader.bits != 8 && tgaHeader.bits != 24 && tgaHeader.bits != 32)

return NULL;

// Calculate size of image buffer

lImageSize = tgaHeader.width * tgaHeader.height * sDepth;

// Allocate memory and check for success

pBits = malloc(lImageSize * sizeof(GLbyte));

if(pBits == NULL)

return NULL;

// Read in the bits

// Check for read error. This should catch RLE or other

// weird formats that I don’t want to recognize

if(fread(pBits, lImageSize, 1, pFile) != 1)

{

free(pBits);

return NULL;

}

// Set OpenGL format expected

switch(sDepth)

{

case 3: // Most likely case

*eFormat = GL_BGR_EXT;

*iComponents = GL_RGB8;

break;

case 4:

*eFormat = GL_BGRA_EXT;

*iComponents = GL_RGBA8;

break;

case 1:

*eFormat = GL_LUMINANCE;

*iComponents = GL_LUMINANCE8;

break;

};

// Done with File

fclose(pFile);

CHAPTER 7 Imaging with OpenGL264

LISTING 7.3 Continued

// Return pointer to image data

return pBits;

}

You may notice that the number of components is not set to the integers 1, 3, or 4, but
GL_LUMINANCE8, GL_RGB8, and GL_RGBA8. OpenGL recognizes these special constants as a
request to maintain full image precision internally when it manipulates the image data.
For example, for performance reasons, some OpenGL implementations may down-sample
a 24-bit color image to 16 bits internally. This is especially common for texture loads (see
Chapter 8, “Texture Mapping: The Basics”) on many implementations in which the
display output color resolution is only 16 bits, but a higher bit depth image is loaded.
These constants are requests to the implementation to store and use the image data as
supplied at their full 8-bit-per-channel color depth.

Moving Pixels Around
Writing pixel data to the color buffer can be very useful in and of itself, but you can also
read pixel data from the color buffer and even copy data from one part of the color buffer
to another. The function to read pixel data works just like glDrawPixels, but in reverse:

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,

GLenum format, GLenum type, const void *pixels);

You specify the x and y in window coordinates of the lower-left corner of the rectangle to
read followed by the width and height of the rectangle in pixels. The format and type

parameters are the format and type you want the data to have. If the color buffer stores
data differently than what you have requested, OpenGL will take care of the necessary
conversions. This capability can be very useful, especially after you learn a couple of magic
tricks that you can do during this process using the glPixelTransfer function (coming up
in the “Pixel Transfer” section). The pointer to the image data, *pixels, must be valid and
must contain enough storage to contain the image data after conversion, or you will likely
get a nasty memory exception at runtime. Also be aware that if you specify window coor-
dinates that are out of bounds, you will get data only for the pixels within the actual
OpenGL frame buffer.

Copying pixels from one part of the color buffer to another is also easy, and you don’t
have to allocate any temporary storage during the operation. First, set the raster position
using glRasterPos or glWindowPos to the destination corner (remember, the lower-left
corner) where you want the image data copied. Then use the following function to
perform the copy operation:

void glCopyPixels(GLint x, GLint y, GLsizei width,

GLsizei height, GLenum type);

Pixmaps 265

7

The x and y parameters specify the lower-left corner of the rectangle to copy, followed by
the width and height in pixels. The type parameter should be GL_COLOR to copy color
data. You can also use GL_DEPTH and GL_STENCIL here, and the copy will be performed in
the depth or stencil buffer instead. Moving depth and stencil values around can also be
useful for some rendering algorithms and special effects.

By default, all these pixel operations operate on the back buffer for double-buffered
rendering contexts, and the front buffer for single-buffered rendering contexts. You can
change the source or destination of these pixel operations by using these two functions:

void glDrawBuffer(GLenum mode);

void glReadBuffer(GLenum mode);

The glDrawBuffer function affects where pixels are drawn by either glDrawPixels or
glCopyPixels operations. You can use any of the valid buffer constants discussed in
Chapter 3: GL_NONE, GL_FRONT, GL_BACK, GL_FRONT_AND_BACK, GL_FRONT_LEFT,
GL_FRONT_RIGHT, and so on.

The glReadBuffer function accepts the same constants and sets the target color buffer for
read operations performed by glReadPixels or glCopyPixels.

Saving Pixels
You now know enough about how to move pixels around to write another useful function
for the glTools library. A counterpart to the targa loading function, gltLoadTGA, is
gltWriteTGA. This function reads the color data from the front color buffer and saves it to
an image file in the targa file format. You use this function in the next section when you
start playing with some interesting OpenGL pixel operations. The complete listing for the
gltWriteTGA function is shown in Listing 7.4.

LISTING 7.4 The gltWriteTGA Function to Save the Screen as a Targa File

//

// Capture the current viewport and save it as a targa file.

// Be sure to call SwapBuffers for double buffered contexts or

// glFinish for single buffered contexts before calling this function.

// Returns 0 if an error occurs, or 1 on success.

GLint gltWriteTGA(const char *szFileName)

{

FILE *pFile; // File pointer

TGAHEADER tgaHeader; // TGA file header

unsigned long lImageSize; // Size in bytes of image

GLbyte *pBits = NULL; // Pointer to bits

GLint iViewport[4]; // Viewport in pixels

GLenum lastBuffer; // Storage for the current read buffer setting

CHAPTER 7 Imaging with OpenGL266

LISTING 7.4 Continued

// Get the viewport dimensions

glGetIntegerv(GL_VIEWPORT, iViewport);

// How big is the image going to be (targas are tightly packed)

lImageSize = iViewport[2] * 3 * iViewport[3];

// Allocate block. If this doesn’t work, go home

pBits = (GLbyte *)malloc(lImageSize);

if(pBits == NULL)

return 0;

// Read bits from color buffer

glPixelStorei(GL_PACK_ALIGNMENT, 1);

glPixelStorei(GL_PACK_ROW_LENGTH, 0);

glPixelStorei(GL_PACK_SKIP_ROWS, 0);

glPixelStorei(GL_PACK_SKIP_PIXELS, 0);

// Get the current read buffer setting and save it. Switch to

// the front buffer and do the read operation. Finally, restore

// the read buffer state

glGetIntegerv(GL_READ_BUFFER, &lastBuffer);

glReadBuffer(GL_FRONT);

glReadPixels(0, 0, iViewport[2], iViewport[3], GL_BGR,

GL_UNSIGNED_BYTE, pBits);

glReadBuffer(lastBuffer);

// Initialize the Targa header

tgaHeader.identsize = 0;

tgaHeader.colorMapType = 0;

tgaHeader.imageType = 2;

tgaHeader.colorMapStart = 0;

tgaHeader.colorMapLength = 0;

tgaHeader.colorMapBits = 0;

tgaHeader.xstart = 0;

tgaHeader.ystart = 0;

tgaHeader.width = iViewport[2];

tgaHeader.height = iViewport[3];

tgaHeader.bits = 24;

tgaHeader.descriptor = 0;

// Do byte swap for big vs little endian

#ifdef __APPLE__

Pixmaps 267

7

LISTING 7.4 Continued

BYTE_SWAP(tgaHeader.colorMapStart);

BYTE_SWAP(tgaHeader.colorMapLength);

BYTE_SWAP(tgaHeader.xstart);

BYTE_SWAP(tgaHeader.ystart);

BYTE_SWAP(tgaHeader.width);

BYTE_SWAP(tgaHeader.height);

#endif

// Attempt to open the file

pFile = fopen(szFileName, “wb”);

if(pFile == NULL)

{

free(pBits); // Free buffer and return error

return 0;

}

// Write the header

fwrite(&tgaHeader, sizeof(TGAHEADER), 1, pFile);

// Write the image data

fwrite(pBits, lImageSize, 1, pFile);

// Free temporary buffer and close the file

free(pBits);

fclose(pFile);

// Success!

return 1;

}

More Fun with Pixels
In this section, we discuss OpenGL’s support for magnifying and reducing images, flipping
images, and performing some special operations during the transfer of pixel data to and
from the color buffer. Rather than having a different sample program for every special
effect discussed, we have provided one sample program named OPERATIONS. This sample
program ordinarily displays a simple color image loaded from a targa file. A right mouse
click is attached to the GLUT menu system, allowing you to select from one of eight
drawing modes or to save the modified image to a disk file named screenshot.tga. Listing
7.5 provides the essential elements of the program in its entirety. We dissect this program
and explain it piece by piece in the coming sections.

CHAPTER 7 Imaging with OpenGL268

LISTING 7.5 Source Code for the OPERATIONS Sample Program

// Operations.cpp

// OpenGL SuperBible

// Demonstrates Imaging Operations

// Program by Richard S. Wright Jr.

#include “../../shared/gltools.h” // OpenGL toolkit

#include <math.h>

//

// Module globals to save source image data

static GLbyte *pImage = NULL;

static GLint iWidth, iHeight, iComponents;

static GLenum eFormat;

// Global variable to store desired drawing mode

static GLint iRenderMode = 1;

//

// This function does any needed initialization on the rendering

// context.

void SetupRC(void)

{

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

// Load the horse image

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

pImage = gltLoadTGA(“horse.tga”, &iWidth, &iHeight,

&iComponents, &eFormat);

}

void ShutdownRC(void)

{

// Free the original image data

free(pImage);

}

//

// Reset flags as appropriate in response to menu selections

void ProcessMenu(int value)

{

More Fun with Pixels 269

7

LISTING 7.5 Continued

if(value == 0)

// Save image

gltWriteTGA(“ScreenShot.tga”);

else

// Change render mode index to match menu entry index

iRenderMode = value;

// Trigger Redraw

glutPostRedisplay();

}

//

// Called to draw scene

void RenderScene(void)

{

GLint iViewport[4];

GLbyte *pModifiedBytes = NULL;

GLfloat invertMap[256];

GLint i;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Current Raster Position always at bottom-left-hand corner

glRasterPos2i(0, 0);

// Do image operation, depending on rendermode index

switch(iRenderMode)

{

case 2: // Flip the pixels

glPixelZoom(-1.0f, -1.0f);

glRasterPos2i(iWidth, iHeight);

break;

case 3: // Zoom pixels to fill window

glGetIntegerv(GL_VIEWPORT, iViewport);

glPixelZoom((GLfloat) iViewport[2] / (GLfloat)iWidth,

(GLfloat) iViewport[3] / (GLfloat)iHeight);

break;

case 4: // Just Red

CHAPTER 7 Imaging with OpenGL270

LISTING 7.5 Continued

glPixelTransferf(GL_RED_SCALE, 1.0f);

glPixelTransferf(GL_GREEN_SCALE, 0.0f);

glPixelTransferf(GL_BLUE_SCALE, 0.0f);

break;

case 5: // Just Green

glPixelTransferf(GL_RED_SCALE, 0.0f);

glPixelTransferf(GL_GREEN_SCALE, 1.0f);

glPixelTransferf(GL_BLUE_SCALE, 0.0f);

break;

case 6: // Just Blue

glPixelTransferf(GL_RED_SCALE, 0.0f);

glPixelTransferf(GL_GREEN_SCALE, 0.0f);

glPixelTransferf(GL_BLUE_SCALE, 1.0f);

break;

case 7: // Black & White, more tricky

// First draw image into color buffer

glDrawPixels(iWidth, iHeight, eFormat,

GL_UNSIGNED_BYTE, pImage);

// Allocate space for the luminance map

pModifiedBytes = (GLbyte *)malloc(iWidth * iHeight);

// Scale colors according to NSTC standard

glPixelTransferf(GL_RED_SCALE, 0.3f);

glPixelTransferf(GL_GREEN_SCALE, 0.59f);

glPixelTransferf(GL_BLUE_SCALE, 0.11f);

// Read pixels into buffer (scale above will be applied)

glReadPixels(0,0,iWidth, iHeight, GL_LUMINANCE,

GL_UNSIGNED_BYTE, pModifiedBytes);

// Return color scaling to normal

glPixelTransferf(GL_RED_SCALE, 1.0f);

glPixelTransferf(GL_GREEN_SCALE, 1.0f);

glPixelTransferf(GL_BLUE_SCALE, 1.0f);

break;

case 8: // Invert colors

invertMap[0] = 1.0f;

More Fun with Pixels 271

7

LISTING 7.5 Continued

for(i = 1; i < 256; i++)

invertMap[i] = 1.0f - (1.0f / 255.0f * (GLfloat)i);

glPixelMapfv(GL_PIXEL_MAP_R_TO_R, 255, invertMap);

glPixelMapfv(GL_PIXEL_MAP_G_TO_G, 255, invertMap);

glPixelMapfv(GL_PIXEL_MAP_B_TO_B, 255, invertMap);

glPixelTransferi(GL_MAP_COLOR, GL_TRUE);

break;

case 1: // Just do a plain old image copy

default:

// This line intentionally left blank

break;

}

// Do the pixel draw

if(pModifiedBytes == NULL)

glDrawPixels(iWidth, iHeight, eFormat, GL_UNSIGNED_BYTE,

pImage);

else

{

glDrawPixels(iWidth, iHeight, GL_LUMINANCE, GL_UNSIGNED_BYTE,

pModifiedBytes);

free(pModifiedBytes);

}

// Reset everything to default

glPixelTransferi(GL_MAP_COLOR, GL_FALSE);

glPixelTransferf(GL_RED_SCALE, 1.0f);

glPixelTransferf(GL_GREEN_SCALE, 1.0f);

glPixelTransferf(GL_BLUE_SCALE, 1.0f);

glPixelZoom(1.0f, 1.0f); // No Pixel Zooming

// Do the buffer Swap

glutSwapBuffers();

}

. . .

. . .

///

// Main program entrypoint

CHAPTER 7 Imaging with OpenGL272

LISTING 7.5 Continued

int main(int argc, char* argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GL_DOUBLE);

glutInitWindowSize(800 ,600);

glutCreateWindow(“OpenGL Image Operations”);

glutReshapeFunc(ChangeSize);

glutDisplayFunc(RenderScene);

// Create the Menu and add choices

glutCreateMenu(ProcessMenu);

glutAddMenuEntry(“Save Image”,0);

glutAddMenuEntry(“DrawPixels”,1);

glutAddMenuEntry(“FlipPixels”,2);

glutAddMenuEntry(“ZoomPixels”,3);

glutAddMenuEntry(“Just Red Channel”,4);

glutAddMenuEntry(“Just Green Channel”,5);

glutAddMenuEntry(“Just Blue Channel”,6);

glutAddMenuEntry(“Black and White”, 7);

glutAddMenuEntry(“Invert Colors”, 8);

glutAttachMenu(GLUT_RIGHT_BUTTON);

SetupRC(); // Do setup

glutMainLoop(); // Main program loop

ShutdownRC(); // Do shutdown

return 0;

}

The basic framework of this program is simple. Unlike with the previous example, IMAGE-
LOAD, here the image is loaded and kept in memory for the duration of the program so
that reloading the image is not necessary every time the screen must be redrawn. The
information about the image and a pointer to the bytes are kept as module global vari-
ables, as shown here:

static GLbyte *pImage = NULL;

static GLint iWidth, iHeight, iComponents;

static GLenum eFormat;

More Fun with Pixels 273

7

The SetupRC function then does little other than load the image and initialize the global
variables containing the image format, width, and height:

// Load the horse image

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

pImage = gltLoadTGA(“horse.tga”, &iWidth, &iHeight,

&iComponents, &eFormat);

When the program terminates, be sure to free the memory allocated by the gltLoadTGA
function in ShutdownRC:

free(pImage);

In the main function, we create a menu and add entries and values for the different opera-
tions you want to accomplish:

// Create the Menu and add choices

glutCreateMenu(ProcessMenu);

glutAddMenuEntry(“Save Image”,0);

glutAddMenuEntry(“Draw Pixels”,1);

glutAddMenuEntry(“Flip Pixels”,2);

glutAddMenuEntry(“Zoom Pixels”,3);

glutAddMenuEntry(“Just Red Channel”,4);

glutAddMenuEntry(“Just Green Channel”,5);

glutAddMenuEntry(“Just Blue Channel”,6);

glutAddMenuEntry(“Black and White”, 7);

glutAddMenuEntry(“Invert Colors”, 8);

glutAttachMenu(GLUT_RIGHT_BUTTON);

These menu selections then set the variable iRenderMode to the desired value or, if the
value is 0, save the image as it is currently displayed:

void ProcessMenu(int value)

{

if(value == 0)

// Save image

gltWriteTGA(“ScreenShot.tga”);

else

// Change render mode index to match menu entry index

iRenderMode = value;

// Trigger Redraw

glutPostRedisplay();

}

CHAPTER 7 Imaging with OpenGL274

Finally, the image is actually drawn into the color buffer in the RenderScene function. This
function contains a switch statement that uses the iRenderMode variable to select from one
of eight different drawing modes. The default case is simply to perform an unaltered
glDrawPixels function, placing the image in the lower-left corner of the window, as
shown in Figure 7.6. The other cases, however, are now the subject of our discussion.

More Fun with Pixels 275

7FIGURE 7.6 The default output of the OPERATIONS sample program.

Pixel Zoom
Another simple yet common operation that you may want to perform on pixel data is
stretching or shrinking the image. OpenGL calls this pixel zoom and provides a function
that performs this operation:

void glPixelZoom(GLfloat xfactor, GLfloat yfactor);

The two arguments, xfactor and yfactor, specify the amount of zoom to occur in the
x and y directions. Zoom can shrink, expand, or even reverse an image. For example, a
zoom factor of 2 causes the image to be written at twice its size along the axis specified,
whereas a factor of 0.5 shrinks it by half. As an example, the menu selection Zoom Pixels
in the OPERATIONS sample program sets the render mode to 3. The following code lines
are then executed before the call to glDrawPixels, causing the x and y zoom factors to
stretch the image to fill the entire window:

case 3: // Zoom pixels to fill window

glGetIntegerv(GL_VIEWPORT, iViewport);

glPixelZoom((GLfloat) iViewport[2] / (GLfloat)iWidth,

(GLfloat) iViewport[3] / (GLfloat)iHeight);

break;

The output is shown in Figure 7.7.

CHAPTER 7 Imaging with OpenGL276

FIGURE 7.7 Using pixel zoom to stretch an image to match the window size.

A negative zoom factor, on the other hand, has the effect of flipping the image along the
direction of the zoom. Using such a zoom factor not only reverses the order of the pixels
in the image, but also reverses the direction onscreen that the pixels are drawn with
respect to the raster position. For example, normally an image is drawn with the lower-left
corner being placed at the current raster position. If both zoom factors are negative, the
raster position becomes the upper-right corner of the resulting image.

In the OPERATIONS sample program, selecting Flip Pixels inverts the image both horizon-
tally and vertically. As shown in the following code snippet, the pixel zoom factors are
both set to -1.0, and the raster position is changed from the lower-left corner of the
window to a position that represents the upper-right corner of the image to be drawn
(the image’s width and height):

case 2: // Flip the pixels

glPixelZoom(-1.0f, -1.0f);

glRasterPos2i(iWidth, iHeight);

break;

Figure 7.8 shows the inverted image when this option is selected.

More Fun with Pixels 277

7

FIGURE 7.8 Image displayed with x and y dimensions inverted.

Pixel Transfer
In addition to zooming pixels, OpenGL supports a set of simple mathematical operations
that can be performed on image data as it is transferred either to or from the color buffer.
These pixel transfer modes are set with one of the following functions and the pixel
transfer parameters listed in Table 7.4:

void glPixelTransferi(GLenum pname, GLint param);

void glPixelTransferf(GLenum pname, GLfloat param);

TABLE 7.4 Pixel Transfer Parameters

Constant Type Default Value

GL_MAP_COLOR GLboolean GL_FALSE

GL_MAP_STENCIL GLboolean GL_FALSE

GL_RED_SCALE GLfloat 1.0

GL_GREEN_SCALE GLfloat 1.0

GL_BLUE_SCALE GLfloat 1.0

GL_ALPHA_SCALE GLfloat 1.0

GL_DEPTH_SCALE GLfloat 1.0

GL_RED_BIAS GLfloat 0.0

GL_GREEN_BIAS GLfloat 0.0

GL_BLUE_BIAS GLfloat 0.0

GL_ALPHA_BIAS GLfloat 0.0

GL_DEPTH_BIAS GLfloat 0.0

GL_POST_CONVOLUTION_RED_SCALE GLfloat 1.0

GL_POST_CONVOLUTION_GREEN_SCALE GLfloat 1.0

GL_POST_CONVOLUTION_BLUE_SCALE GLfloat 1.0

GL_POST_CONVOLUTION_ALPHA_SCALE GLfloat 1.0

GL_POST_CONVOLUTION_RED_BIAS GLfloat 0.0

GL_POST_CONVOLUTION_GREEN_BIAS GLfloat 0.0

GL_POST_CONVOLUTION_BLUE_BIAS GLfloat 0.0

GL_POST_CONVOLUTION_ALPHA_BIAS GLfloat 0.0

GL_POST_COLOR_MATRIX_RED_SCALE GLfloat 1.0

GL_POST_COLOR_MATRIX_GREEN_SCALE GLfloat 1.0

GL_POST_COLOR_MATRIX_BLUE_SCALE GLfloat 1.0

GL_POST_COLOR_MATRIX_ALPHA_SCALE GLfloat 1.0

GL_POST_COLOR_MATRIX_RED_BIAS GLfloat 0.0

GL_POST_COLOR_MATRIX_GREEN_BIAS GLfloat 0.0

GL_POST_COLOR_MATRIX_BLUE_BIAS GLfloat 0.0

GL_POST_COLOR_MATRIX_ALPHA_BIAS GLfloat 0.0

The scale and bias parameters allow you to scale and bias individual color channels. A
scaling factor is multiplied by the component value, and a bias value is added to that
component value. A scale and bias operation is common in computer graphics for adjust-
ing color channel values. The equation is simple:

New Value = (Old Value * Scale Value) + Bias Value

By default, the scale values are 1.0, and the bias values are 0.0. They essentially have no
effect on the component values. Say you want to display a color image’s red component
values only. To do this, you set the blue and green scale factors to 0.0 before drawing and
back to 1.0 afterward:

CHAPTER 7 Imaging with OpenGL278

glPixelTransferf(GL_GREEN_SCALE, 0.0f);

glPixelTransfer(GL_BLUE_SCALE, 0.0f);

The OPERATIONS sample program includes the menu selections Just Red, Just Green, and
Just Blue, which demonstrate this particular example. Each selection turns off all but one
color channel to show the image’s red, green, or blue color values only:

case 4: // Just Red

glPixelTransferf(GL_RED_SCALE, 1.0f);

glPixelTransferf(GL_GREEN_SCALE, 0.0f);

glPixelTransferf(GL_BLUE_SCALE, 0.0f);

break;

case 5: // Just Green

glPixelTransferf(GL_RED_SCALE, 0.0f);

glPixelTransferf(GL_GREEN_SCALE, 1.0f);

glPixelTransferf(GL_BLUE_SCALE, 0.0f);

break;

case 6: // Just Blue

glPixelTransferf(GL_RED_SCALE, 0.0f);

glPixelTransferf(GL_GREEN_SCALE, 0.0f);

glPixelTransferf(GL_BLUE_SCALE, 1.0f);

break;

After drawing, the pixel transfer for the color channels resets the scale values to 1.0:

glPixelTransferf(GL_RED_SCALE, 1.0f);

glPixelTransferf(GL_GREEN_SCALE, 1.0f);

glPixelTransferf(GL_BLUE_SCALE, 1.0f);

The post-convolution and post-color matrix scale and bias parameters perform the same
operation but wait until after the convolution or color matrix operations have been
performed. These operations are available in the imaging subset, which will be discussed
shortly.

A more interesting example of the pixel transfer operations is to display a color image in
black and white. The OPERATIONS sample does this when you choose the Black and
White menu selection. First, the full-color image is drawn to the color buffer:

glDrawPixels(iWidth, iHeight, eFormat, GL_UNSIGNED_BYTE, pImage);

Next, a buffer large enough to hold just the luminance values for each pixel is allocated:

pModifiedBytes = (GLbyte *)malloc(iWidth * iHeight);

More Fun with Pixels 279

7

Remember, a luminance image has only one color channel, and here you allocate 1 byte
(8 bits) per pixel. OpenGL automatically converts the image in the color buffer to lumi-
nance for use when you call glReadPixels but request the data be in the GL_LUMINANCE
format:

glReadPixels(0,0,iWidth, iHeight, GL_LUMINANCE,

GL_UNSIGNED_BYTE, pModifiedBytes);

The luminance image can then be written back into the color buffer, and you would see
the converted black-and-white image:

glDrawPixels(iWidth, iHeight, GL_LUMINANCE, GL_UNSIGNED_BYTE,

pModifiedBytes);

Using this approach sounds like a good plan, and it almost works. The problem is that
when OpenGL converts a color image to luminance, it simply adds the color channels
together. If the three color channels add up to a value greater than 1.0, it is simply
clamped to 1.0. This has the effect of oversaturating many areas of the image. This effect
is shown in Figure 7.9.

CHAPTER 7 Imaging with OpenGL280

FIGURE 7.9 Oversaturation due to OpenGL’s default color-to-luminance operation.

To solve this problem, you must set the pixel transfer mode to scale the color value appro-
priately when OpenGL does the transfer from color to luminance colorspaces. According
to the National Television Standards Committee (NTSC) standard, the conversion from
RGB colorspace to black and white (grayscale) is

Luminance = (0.3 * Red) + (0.59 * Green) + (0.11 * Blue)

You can easily set up this conversion in OpenGL by calling these functions just before
glReadPixels:

// Scale colors according to NTSC standard

glPixelTransferf(GL_RED_SCALE, 0.3f);

glPixelTransferf(GL_GREEN_SCALE, 0.59f);

glPixelTransferf(GL_BLUE_SCALE, 0.11f);

After reading pixels, you return the pixel transfer mode to normal:

// Return color scaling to normal

glPixelTransferf(GL_RED_SCALE, 1.0f);

glPixelTransferf(GL_GREEN_SCALE, 1.0f);

glPixelTransferf(GL_BLUE_SCALE, 1.0f);

The output is now a nice grayscale representation of the image. Because the figures in this
book are not in color, but grayscale, the output onscreen looks exactly like the image in
Figure 7.6. Color Plate 3 does, however, show the image (upper left) in full color, and the
lower right in grayscale.

Pixel Mapping
In addition to scaling and bias operations, the pixel transfer operation also supports color
mapping. A color map is a table used as a lookup to convert one color value (used as an
index into the table) to another color value (the color value stored at that index). Color
mapping has many applications, such as performing color corrections, making gamma
adjustments, or converting to and from different color representations.

You’ll notice an interesting example in the OPERATIONS sample program when you select
Invert Colors. In this case, a color map is set up to flip all the color values during a pixel
transfer. This means all three channels are mapped from the range 0.0 to 1.0 to the range
1.0 to 0.0. The result is an image that looks like a photographic negative.

You enable pixel mapping by calling glPixelTransfer with the GL_MAP_COLOR parameter
set to GL_TRUE:

glPixelTransferi(GL_MAP_COLOR, GL_TRUE);

More Fun with Pixels 281

7

To set up a pixel map, you must call another function, glPixelMap, and supply the map in
one of three formats:

glPixelMapuiv(GLenum map, GLint mapsize, GLuint *values);

glPixelMapusv(GLenum map, GLint mapsize, GLushort *values);

glPixelMapfv(GLenum map, GLint mapsize, GLfloat *values);

The valid map values are listed in Table 7.5.

TABLE 7.5 Pixelmap Parameters

Map Name Description

GL_PIXEL_MAP_R_TO_R Remapping of red components

GL_PIXEL_MAP_G_TO_G Remapping of green components

GL_PIXEL_MAP_B_TO_B Remapping of blue components

GL_PIXEL_MAP_A_TO_A Remapping of alpha components

For the example, you set up a map of 256 floating-point values and fill the map with
intermediate values from 1.0 to 0.0:

GLfloat invertMap[256];

...

...

invertMap[0] = 1.0f;

for(i = 1; i < 256; i++)

invertMap[i] = 1.0f - (1.0f / 255.0f * (GLfloat)i);

Then you set the red, green, and blue maps to this inversion map and turn on color
mapping:

glPixelMapfv(GL_PIXEL_MAP_R_TO_R, 255, invertMap);

glPixelMapfv(GL_PIXEL_MAP_G_TO_G, 255, invertMap);

glPixelMapfv(GL_PIXEL_MAP_B_TO_B, 255, invertMap);

glPixelTransferi(GL_MAP_COLOR, GL_TRUE);

When glDrawPixels is called, the color components are remapped using the inversion
table, essentially creating a color negative image. Figure 7.10 shows the output in black
and white. Color Plate 3 in the Color insert shows a full-color image of this effect in the
upper-right corner.

CHAPTER 7 Imaging with OpenGL282

FIGURE 7.10 Using a color map to create a color negative image. (This figure also appears in
the Color insert.)

The Imaging “Subset” and Pipeline
All the OpenGL functions covered so far in this chapter for image manipulation have been
a part of the core OpenGL API since version 1.0. The only exception is the glWindowPos
function, which was added in OpenGL 1.4 to make it easier to set the raster position.
These features provide OpenGL with adequate support for most image manipulation
needs. For more advanced imaging operations, OpenGL may also include, as of version
1.2, an imaging subset. The imaging subset is optional, which means vendors may choose
not to include this functionality in their implementation. However, if the imaging subset
is supported, it is an all-or-nothing commitment to support the entire functionality of
these features.

Your application can determine at runtime whether the imaging subset is supported by
searching the extension string for the token “GL_ARB_imaging”. For example, when you
use the glTools library, your code might look something like this:

if(gltIsExtSupported(“GL_ARB_imaging”) == 0)

{

// Error, imaging not supported

...

}

else

The Imaging “Subset” and Pipeline 283

7

{

// Do some imaging stuff

...

...

}

You access the imaging subset through the OpenGL extension mechanism, which means
you will likely need to use the glext.h header file and obtain function pointers for the
functions you need to use. Some OpenGL implementations, depending on your platform’s
development tools, may already have these functions and constants included in the gl.h
OpenGL header file (for example, in the Apple XCode headers, they are already defined).
For compiles on the Macintosh, we use the built-in support for the imaging subset; for
other platforms, we use the extension mechanism to obtain function pointers to the
imaging functions. This is all done transparently by adding glee.h and glee.c to your
project. These files are located in the examples/src//shared directory in the source distri-
bution for this book. It is safe to assume that you’ll need these files for most of the rest of
the sample programs in this book.

The IMAGING sample program is modeled much like the previous OPERATIONS sample
program in that a single sample program demonstrates different operations via the context
menu. When the program starts, it checks for the availability of the imaging subset and
aborts if it is not found:

// Check for imaging subset, must be done after window

// is created or there won’t be an OpenGL context to query

if(gltIsExtSupported(“GL_ARB_imaging”) == 0)

{

printf(“Imaging subset not supported\r\n”);

return 0;

}

The entire RenderScene function is presented in Listing 7.6. We discuss the various pieces
of this function throughout this section.

LISTING 7.6 The RenderScene Function from the Sample Program IMAGING

///

// Called to draw scene

void RenderScene(void)

{

GLint i; // Looping variable

GLint iViewport[4]; // Viewport

GLint iLargest; // Largest histogram value

static GLubyte invertTable[256][3]; // Inverted color table

CHAPTER 7 Imaging with OpenGL284

LISTING 7.6 Continued

// Do a black and white scaling

static GLfloat lumMat[16] = { 0.30f, 0.30f, 0.30f, 0.0f,

0.59f, 0.59f, 0.59f, 0.0f,

0.11f, 0.11f, 0.11f, 0.0f,

0.0f, 0.0f, 0.0f, 1.0f };

static GLfloat mSharpen[3][3] = { // Sharpen convolution kernel

{0.0f, -1.0f, 0.0f},

{-1.0f, 5.0f, -1.0f },

{0.0f, -1.0f, 0.0f }};

static GLfloat mEmboss[3][3] = { // Emboss convolution kernel

{ 2.0f, 0.0f, 0.0f },

{ 0.0f, -1.0f, 0.0f },

{ 0.0f, 0.0f, -1.0f }};

static GLint histoGram[256]; // Storage for histogram statistics

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Current Raster Position always at bottom-left-hand corner of window

glRasterPos2i(0, 0);

glGetIntegerv(GL_VIEWPORT, iViewport);

glPixelZoom((GLfloat) iViewport[2] / (GLfloat)iWidth,

(GLfloat) iViewport[3] / (GLfloat)iHeight);

if(bHistogram == GL_TRUE) // Collect Histogram data

{

// We are collecting luminance data, use our conversion formula

// instead of OpenGL’s (which just adds color components together)

glMatrixMode(GL_COLOR);

glLoadMatrixf(lumMat);

glMatrixMode(GL_MODELVIEW);

// Start collecting histogram data, 256 luminance values

glHistogram(GL_HISTOGRAM, 256, GL_LUMINANCE, GL_FALSE);

glEnable(GL_HISTOGRAM);

}

// Do image operation, depending on rendermode index

switch(iRenderMode)

The Imaging “Subset” and Pipeline 285

7

LISTING 7.6 Continued

{

case 5: // Sharpen image

glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_RGB, 3, 3,

GL_LUMINANCE, GL_FLOAT, mSharpen);

glEnable(GL_CONVOLUTION_2D);

break;

case 4: // Emboss image

glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_RGB, 3, 3,

GL_LUMINANCE, GL_FLOAT, mEmboss);

glEnable(GL_CONVOLUTION_2D);

glMatrixMode(GL_COLOR);

glLoadMatrixf(lumMat);

glMatrixMode(GL_MODELVIEW);

break;

case 3: // Invert Image

for(i = 0; i < 255; i++)

{

invertTable[i][0] = (GLubyte)(255 - i);

invertTable[i][1] = (GLubyte)(255 - i);

invertTable[i][2] = (GLubyte)(255 - i);

}

glColorTable(GL_COLOR_TABLE, GL_RGB, 256, GL_RGB,

GL_UNSIGNED_BYTE, invertTable);

glEnable(GL_COLOR_TABLE);

break;

case 2: // Brighten Image

glMatrixMode(GL_COLOR);

glScalef(1.25f, 1.25f, 1.25f);

glMatrixMode(GL_MODELVIEW);

break;

case 1: // Just do a plain old image copy

default:

// This line intentionally left blank

break;

}

// Do the pixel draw

CHAPTER 7 Imaging with OpenGL286

LISTING 7.6 Continued

glDrawPixels(iWidth, iHeight, eFormat, GL_UNSIGNED_BYTE, pImage);

// Fetch and draw histogram?

if(bHistogram == GL_TRUE)

{

// Read histogram data into buffer

glGetHistogram(GL_HISTOGRAM, GL_TRUE, GL_LUMINANCE, GL_INT, histoGram);

// Find largest value for scaling graph down

iLargest = 0;

for(i = 0; i < 255; i++)

if(iLargest < histoGram[i])

iLargest = histoGram[i];

// White lines

glColor3f(1.0f, 1.0f, 1.0f);

glBegin(GL_LINE_STRIP);

for(i = 0; i < 255; i++)

glVertex2f((GLfloat)i,

(GLfloat)histoGram[i] / (GLfloat) iLargest * 128.0f);

glEnd();

bHistogram = GL_FALSE;

glDisable(GL_HISTOGRAM);

}

// Reset everything to default

glMatrixMode(GL_COLOR);

glLoadIdentity();

glMatrixMode(GL_MODELVIEW);

glDisable(GL_CONVOLUTION_2D);

glDisable(GL_COLOR_TABLE);

// Show our hard work...

glutSwapBuffers();

}

The image-processing subset can be broken down into three major areas of new function-
ality: the color matrix and color table, convolutions, and histograms. Bear in mind that
image processing is a broad and complex topic all by itself and could easily warrant an

The Imaging “Subset” and Pipeline 287

7

entire book on this subject alone. What follows is an overview of this functionality with
some simple examples of their use. For a more in-depth discussion on image processing,
see the list of suggested references in Appendix A, “Further Reading/References.”

OpenGL imaging operations are processed in a specific order along what is called the
imaging pipeline. In the same way that geometry is processed by the transformation
pipeline, image data goes through the imaging operations in a fixed manner. Figure 7.11
breaks down the imaging pipeline operation by operation. The sections that follow
describe these operations in more detail.

CHAPTER 7 Imaging with OpenGL288

Image
data

Color
lookup Convolutions

Post-
convolution

color
lookup

Color
matrix

operations

Post-color
matrix

color lookup

Histogram
calculations

Minmax
calculations

Processed
image
data

FIGURE 7.11 The OpenGL imaging pipeline.

Color Matrix
The simplest piece of new functionality added with the imaging subset is the color matrix.
You can think of color values as coordinates in colorspace—RGB being akin to XYZ on the
color axis of the color cube (described in Chapter 5, “Color, Materials, and Lighting: The
Basics”). You could think of the alpha color component as the W component of a vector,
and it would be transformed appropriately by a 4×4 color matrix. The color matrix is a
matrix stack that works just like the other OpenGL matrix stacks (GL_MODELVIEW,
GL_PROJECTION, GL_TEXTURE). You can make the color matrix stack the current stack by
calling glMatrixMode with the argument GL_COLOR:

glMatrixMode(GL_COLOR);

All the matrix manipulation routines (glLoadIdentity, glLoadMatrix, and so on) are avail-
able for the color matrix. The color matrix stack can be pushed and popped as well, but
implementations are required to support only a color stack two elements deep.

A menu item named Increase Contrast in the IMAGING sample program sets the render
mode to 2, which causes the RenderScene function to use the color matrix to set a positive
scaling factor to the color values, increasing the contrast of the image:

case 2: // Brighten Image

glMatrixMode(GL_COLOR);

glScalef(1.25f, 1.25f, 1.25f);

glMatrixMode(GL_MODELVIEW);

break;

The effect is subtle yet clearly visible when the change occurs onscreen. After rendering,
the color matrix is restored to identity:

// Reset everything to default

glMatrixMode(GL_COLOR);

glLoadIdentity();

glMatrixMode(GL_MODELVIEW);

Color Lookup
With color tables, you can specify a table of color values used to replace a pixel’s current
color. This functionality is similar to pixel mapping but has some added flexibility in the
way the color table is composed and applied. The following function is used to set up a
color table:

void glColorTable(GLenum target, GLenum internalFormat, GLsizei width,

GLenum format, GLenum type,

const GLvoid *table);

The target parameter specifies where in the imaging pipeline the color table is to be
applied. This parameter may be one of the size values listed in Table 7.6.

TABLE 7.6 The Place to Apply the Color Lookup Table

Target Location

GL_COLOR_TABLE Applied at the beginning of the imaging pipeline

GL_POST_CONVOLUTION_COLOR_TABLE Applied after the convolution operation

GL_POST_COLOR_MATRIX_COLOR_TABLE Applied after the color matrix operation

GL_PROXY_COLOR_TABLE Verify this color table will fit

GL_PROXY_POST_CONVOLUTION_COLOR_TABLE Verify this color table will fit

GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE Verify this color table will fit

You use the GL_PROXY prefixed targets to verify that the supplied color table can be loaded
(will fit into memory).

The internalFormat parameter specifies the internal OpenGL representation of the color
table pointed to by table. It can be any of the following symbolic constants: GL_ALPHA,
GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMI-
NANCE8, GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,

The Imaging “Subset” and Pipeline 289

7

GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, GL_
LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_
INTENSITY8, GL_INTENSTIY12, GL_INTENSITY16, GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5,
GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,
GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16. The color component name in this list
should be fairly obvious to you by now, and the numerical suffix simply represents the bit
count of that component’s representation.

The format and type parameters describe the format of the color table being supplied in
the table pointer. The values for these parameters all correspond to the same arguments
used in glDrawPixels, and are listed in Tables 7.2 and 7.3.

The following example demonstrates a color table in action. It duplicates the color inver-
sion effect from the OPERATIONS sample program but uses a color table instead of pixel
mapping. When you choose the Invert Color menu selection, the render mode is set to 3,
and the following segment of the RenderScene function is executed:

case 3: // Invert Image

for(i = 0; i < 255; i++)

{

invertTable[i][0] = 255 - i;

invertTable[i][1] = 255 - i;

invertTable[i][2] = 255 - i;

}

glColorTable(GL_COLOR_TABLE, GL_RGB, 256, GL_RGB,

GL_UNSIGNED_BYTE, invertTable);

glEnable(GL_COLOR_TABLE);

For a loaded color table to be used, you must also enable the color table with a call to
glEnable with the GL_COLOR_TABLE parameter. After the pixels are drawn, the color table is
disabled:

glDisable(GL_COLOR_TABLE);

The output from this example matches exactly the image from Figure 7.10.

Proxies
An OpenGL implementation’s support for color tables may be limited by system resources.
Large color tables, for example, may not be loaded if they require too much memory. You
can use the proxy color table targets listed in Table 7.6 to determine whether a given color
table fits into memory and can be used. These targets are used in conjunction with
glGetColorTableParameter to see whether a color table will fit. The
glGetColorTableParameter function enables you to query OpenGL about the various

CHAPTER 7 Imaging with OpenGL290

settings of the color tables; it is discussed in greater detail in Appendix C. Here, you can
use this function to see whether the width of the color table matches the width requested
with the proxy color table call:

GLint width;

...

...

glColorTable(GL_PROXY_COLOR_TABLE, GL_RGB, 256, GL_RGB,

GL_UNSIGNED_BYTE, NULL);

glGetColorTableParameteriv(GL_PROXY_COLOR_TABLE, GL_COLOR_TABLE_WIDTH, &width);

if(width == 0) {

// Error...

...

Note that you do not need to specify the pointer to the actual color table for a proxy.

Other Operations
Also in common with pixel mapping, the color table can be used to apply a scaling factor
and a bias to color component values. You do this with the following function:

void glColorTableParameteriv(GLenum target, GLenum pname, GLint *param);

void glColorTableParameterfv(GLenum target, GLenum pname, GLfloat *param);

The glColorTableParameter function’s target parameter can be GL_COLOR_TABLE,
GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE. The pname
parameter sets the scale or bias by using the value GL_COLOR_TABLE_SCALE or
GL_COLOR_TABLE_BIAS, respectively. The final parameter is a pointer to an array of four
elements storing the red, green, blue, and alpha scale or bias values to be used.

You can also actually render a color table by using the contents of the color buffer (after
some rendering or drawing operation) as the source data for the color table. The function
glCopyColorTable takes data from the current read buffer (the current GL_READ_BUFFER) as
its source:

void glCopyColorTable(GLenum target, GLenum internalFormat,

GLint x, GLint y, GLsizei width);

The target and internalFormat parameters are identical to those used in glColorTable.
The color table array is then taken from the color buffer starting at the x,y location and
taking width pixels.

You can replace all or part of a color table by using the glColorSubTable function:

void glColorSubTable(GLenum target, GLsizei start, GLsizei count,

GLenum format, GLenum type, const void *data);

The Imaging “Subset” and Pipeline 291

7

Here, most parameters correspond directly to the glColorTable function, except for start
and count. The start parameter is the offset into the color table to begin the replacement,
and count is the number of color values to replace.

Finally, you can also replace all or part of a color table from the color buffer in a manner
similar to glCopyColorTable by using the glCopyColorSubTable function:

void glCopyColorSubTable(GLenum target, GLsizei start,

GLint x, GLint y, GLsizei width);

Again, the source of the color table is the color buffer, with x and y placing the position to
begin reading color values, start being the location within the color table to begin the
replacement, and width being the number of color values to replace.

Convolutions
Convolutions are a powerful image-processing technique, with many applications such as
blurring, sharpening, and other special effects. A convolution is a filter that processes
pixels in an image according to some pattern of weights called a kernel. The convolution
replaces each pixel with the weighted average value of that pixel and its neighboring
pixels, with each pixel’s color values being scaled by the weights in the kernel.

Typically, convolution kernels are rectangular arrays of floating-point values that represent
the weights of a corresponding arrangement of pixels in the image. For example, the
following kernel from the IMAGING sample program performs a sharpening operation:

static GLfloat mSharpen[3][3] = { // Sharpen convolution kernel

{0.0f, -1.0f, 0.0f},

{-1.0f, 5.0f, -1.0f },

{0.0f, -1.0f, 0.0f }};

The center pixel value is 5.0, which places a higher emphasis on that pixel value. The
pixels immediately above, below, and to the right and left have a decreased weight, and
the corner pixels are not accounted for at all. Figure 7.12 shows a sample block of image
data with the convolution kernel superimposed. The 5 in the kernel’s center is the pixel
being replaced, and you can see the kernel’s values as they are applied to the surrounding
pixels to derive the new center pixel value (represented by the circle). The convolution
kernel is applied to every pixel in the image, resulting in a sharpened image. You can see
this process in action by selecting Sharpen Image in the IMAGING sample program.

CHAPTER 7 Imaging with OpenGL292

FIGURE 7.12 The sharpening kernel in action.

To apply the convolution filter, the IMAGING program simply calls these two functions
before the glDrawPixels operation:

glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_RGB, 3, 3,

GL_LUMINANCE, GL_FLOAT, mSharpen);

glEnable(GL_CONVOLUTION_2D);

The glConvolutionFilter2D function has the following syntax:

void glConvolutionFilter2D(GLenum target, GLenum internalFormat,

GLsizei width, GLsizei height, GLenum format,

GLenum type, const GLvoid *image);

The first parameter, target, must be GL_CONVOLUTION_2D. The second parameter,
internalFormat, takes the same values as glColorTable and specifies to which pixel
components the convolution is applied. The width and height parameters are the width
and height of the convolution kernel. Finally, format and type specify the format and
type of pixels stored in image. In the case of the sharpening filter, the pixel data is in
GL_RGB format, and the kernel is GL_LUMINANCE because it contains simply a single weight
per pixel (as opposed to having a separate weight for each color channel). Convolution
kernels are turned on and off simply with glEnable or glDisable and the parameter
GL_CONVOLUTION_2D.

Convolutions are a part of the imaging pipeline and can be combined with other imaging
operations. For example, the sharpening filter already demonstrated was used in conjunc-
tion with pixel zoom to fill the entire window with the image. For a more interesting
example, let’s combine pixel zoom with the color matrix and a convolution filter. The
following code excerpt defines a color matrix that will transform the image into a black-
and-white (grayscale) image and a convolution filter that does embossing:

The Imaging “Subset” and Pipeline 293

7

0 0-1

-1 -15

0 0-1

Convolution
kernel

Pixel data

// Do a black and white scaling

static GLfloat lumMat[16] = { 0.30f, 0.30f, 0.30f, 0.0f,

0.59f, 0.59f, 0.59f, 0.0f,

0.11f, 0.11f, 0.11f, 0.0f,

0.0f, 0.0f, 0.0f, 1.0f };

static GLfloat mSharpen[3][3] = { // Sharpen convolution kernel

{0.0f, -1.0f, 0.0f},

{-1.0f, 5.0f, -1.0f },

{0.0f, -1.0f, 0.0f }};

static GLfloat mEmboss[3][3] = { // Emboss convolution kernel

{ 2.0f, 0.0f, 0.0f },

{ 0.0f, -1.0f, 0.0f },

{ 0.0f, 0.0f, -1.0f }};

When you select Emboss Image from the pop-up menu, the render state is changed to 4,
and the following case from the RenderScene function is executed before glDrawPixels:

case 4: // Emboss image

glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_RGB, 3, 3,

GL_LUMINANCE, GL_FLOAT, mEmboss);

glEnable(GL_CONVOLUTION_2D);

glMatrixMode(GL_COLOR);

glLoadMatrixf(lumMat);

glMatrixMode(GL_MODELVIEW);

break;

The embossed image is displayed in Figure 7.13, and is shown in Color Plate 3 in the
lower-left corner.

CHAPTER 7 Imaging with OpenGL294

FIGURE 7.13 Using convolutions and the color matrix for an embossed effect.

From the Color Buffer
Convolution kernels can also be loaded from the color buffer. The following function
behaves similarly to loading a color table from the color buffer:

void glCopyConvolutionFilter2D(GLenum target, GLenum internalFormat,

GLint x, GLint y, GLsizei width, GLsizei height);

The target value must always be GL_CONVOLUTION_2D, and internalFormat refers to the
format of the color data, as in glConvolutionFilter2D. The kernel is loaded from pixel
data from the color buffer located at (x,y) and the given width and height.

Separable Filters
A separable convolution filter is one whose kernel can be represented by the matrix outer
product of two one-dimensional filters. For example, in Figure 7.14, one-dimensional row
and column matrices are multiplied to yield a final 3×3 matrix (the new kernel filter).

The Imaging “Subset” and Pipeline 295

7

1 1-2

-2 -24

1 1-2

-1

2

-1

-1 -12 =

FIGURE 7.14 The outer product to two one-dimensional filters.

The following function is used to specify these two one-dimensional filters:

void glSeparableFilter2D(GLenum target, GLenum internalFormat,

GLsizei width, GLsizei height,

GLenum format, GLenum type,

void *row, const GLvoid *column);

The parameters all have the same meaning as in glConvolutionFilter2D, with the excep-
tion that now you have two parameters for passing in the address of the filters: row and
column. The target parameter, however, must be GL_SEPARABLE_2D in this case.

One-Dimensional Kernels
OpenGL also supports one-dimensional convolution filters, but they are applied only to
one-dimensional texture data. They behave in the same manner as two-dimensional
convolutions, with the exception that they are applied only to rows of pixels (or actually
texels in the case of one-dimensional texture maps). These one-dimensional convolutions
have one-dimensional kernels, and you can use the corresponding functions for loading
and copying the filters:

glConvolutionFilter1D(GLenum target, GLenum internalFormat,

GLsizei width, GLenum format, GLenum type,

const GLvoid *image);

glCopyConvolutionFilter1D(GLenum target, GLenum internalFormat,

GLint x, GLint y, GLsizei width);

Of course, with these functions the target must be set to GL_CONVOLUTION_1D.

Other Convolution Tweaks
When a convolution filter kernel is applied to an image, along the edges of the image the
kernel will overlap and fall outside the image’s borders. How OpenGL handles this situa-
tion is controlled via the convolution border mode. You set the convolution border mode
by using the glConvolutionParameter function, which has four variations:

glConvolutionParameteri(GLenum target, GLenum pname, GLint param);

glConvolutionParameterf(GLenum target, GLenum pname, GLfloat param);

glConvolutionParameteriv(GLenum target, GLenum pname, GLint *params);

glConvolutionParameterfv(GLenum target, GLenum pname, GLfloat *params);

The target parameter for these functions can be GL_CONVOLUTION_1D, GL_CONVOLUTION_2D,
or GL_SEPARABLE_2D. To set the border mode, you use GL_CONVOLUTION_BORDER_MODE as the
pname parameter and one of the border mode constants as param.

If you set param to GL_CONSTANT_BORDER, the pixels outside the image border are computed
from a constant pixel value. To set this pixel value, call glConvolutionParameterfv with

CHAPTER 7 Imaging with OpenGL296

GL_CONSTANT_BORDER and a floating-point array containing the RGBA values to be used as
the constant pixel color.

If you set the border mode to GL_REDUCE, the convolution kernel is not applied to the edge
pixels. Thus, the kernel never overlaps the edge of the image. In this case, however, you
should note that you are essentially shrinking the image by the width and height of the
convolution filter.

The final border mode is GL_REPLICATE_BORDER. In this case, the convolution is applied as
if the horizontal and vertical edges of an image are replicated as many times as necessary
to prevent overlap.

You can also apply a scale and bias value to kernel values by using
GL_CONVOLUTION_FILTER_BIAS and/or GL_CONVOLUTION_FILTER_SCALE for the parameter
name (pname) and supplying the bias and scale values in param or params.

Histogram
A histogram is a graphical representation of an image’s frequency distribution. In English,
it is simply a count of how many times each color value is used in an image, displayed as
a sort of bar graph. Histograms may be collected for an image’s intensity values or sepa-
rately for each color channel. Histograms are frequently employed in image processing,
and many digital cameras can display histogram data of captured images. Photographers
use this information to determine whether the camera captured the full dynamic range of
the subject or if perhaps the image is too over- or underexposed. Popular image-processing
packages such as Adobe Photoshop also calculate and display histograms, as shown in
Figure 7.15.

The Imaging “Subset” and Pipeline 297

7

FIGURE 7.15 A histogram display in Photoshop.

When histogram collection is enabled, OpenGL collects statistics about any images as they
are written to the color buffer. To prepare to collect histogram data, you must tell OpenGL
how much data to collect and in what format you want the data. You do this with the
glHistogram function:

void glHistogram(GLenum target, GLsizei width,

GLenum internalFormat, GLboolean sink);

The target parameter must be either GL_HISTOGRAM or GL_PROXY_HISTOGRAM (used to deter-
mine whether sufficient resources are available to store the histogram). The width parame-
ter tells OpenGL how many entries to make in the histogram table. This value must be a
power of 2 (1, 2, 4, 8, 16, and so on). The internalFormat parameter specifies the data
format you expect the histogram to be stored in, corresponding to the valid format para-
meters for color tables and convolution filters, with the exception that GL_INTENSITY is
not included. Finally, you can discard the pixels and not draw anything by specifying
GL_TRUE for the sink parameter. You can turn histogram data collection on and off with
glEnable or glDisable by passing in GL_HISTOGRAM, as in this example:

glEnable(GL_HISTOGRAM);

After image data has been transferred, you collect the histogram data with the following
function:

void glGetHistogram(GLenum target, GLboolean reset, GLenum format,

GLenum type, GLvoid *values);

The only valid value for target is GL_HISTOGRAM. Setting reset to GL_TRUE clears the
histogram data. Otherwise, the histogram becomes cumulative, and each pixel transfer
continues to accumulate statistical data in the histogram. The format parameter specifies
the data format of the collected histogram information, and type and values are the data
type to be used and the address where the histogram is to be placed.

Now, let’s look at an example using a histogram. In the IMAGING sample program, select-
ing Histogram from the menu displays a grayscale version of the image and a graph in the
lower-left corner that represents the statistical frequency of each color luminance value.
The output is shown in Figure 7.16.

CHAPTER 7 Imaging with OpenGL298

FIGURE 7.16 A histogram of the luminance values of the image.

The first order of business in the RenderScene function is to allocate storage for the
histogram. The following line creates an array of integers 256 elements long. Each element
in the array contains a count of the number of times that corresponding luminance value
was used when the image was drawn onscreen:

static GLint histoGram[256]; // Storage for histogram statistics

Next, if the histogram flag is set (through the menu selection), you tell OpenGL to begin
collecting histogram data. The function call to glHistogram instructs OpenGL to collect
statistics about the 256 individual luminance values that may be used in the image. The
sink is set to false so that the image is also drawn onscreen:

if(bHistogram == GL_TRUE) // Collect Histogram data

{

// We are collecting luminance data, use our conversion formula

// instead of OpenGL’s (which just adds color components together)

glMatrixMode(GL_COLOR);

glLoadMatrixf(lumMat);

glMatrixMode(GL_MODELVIEW);

// Start collecting histogram data, 256 luminance values

glHistogram(GL_HISTOGRAM, 256, GL_LUMINANCE, GL_FALSE);

The Imaging “Subset” and Pipeline 299

7

glEnable(GL_HISTOGRAM);

}

Note that in this case you also need to set up the color matrix to provide the grayscale
color conversion. OpenGL’s default conversion to GL_LUMINANCE is simply a summing of
the red, green, and blue color components. When you use this conversion formula, the
histogram graph will have the same shape as the one from Photoshop for the same image
displayed in Figure 7.15.

After the pixels are drawn, you collect the histogram data with the code shown here:

// Fetch and draw histogram?

if(bHistogram == GL_TRUE)

{

// Read histogram data into buffer

glGetHistogram(GL_HISTOGRAM, GL_TRUE, GL_LUMINANCE, GL_INT, histoGram);

Now you traverse the histogram data and search for the largest collected value. You do this
because you will use this value as a scaling factor to fit the graph in the lower-left corner
of the display:

// Find largest value for scaling graph down

GLint iLargest = 0;

for(i = 0; i < 255; i++)

if(iLargest < histoGram[i])

iLargest = histoGram[i];

Finally, it’s time to draw the graph of statistics. The following code segment simply sets
the drawing color to white and then loops through the histogram data creating a single
line strip. The data is scaled by the largest value so that the graph is 256 pixels wide and
128 pixels high. When all is done, the histogram flag is reset to false and the histogram
data collection is disabled with a call to glDisable:

// White lines

glColor3f(1.0f, 1.0f, 1.0f);

glBegin(GL_LINE_STRIP);

for(i = 0; i < 255; i++)

glVertex2f((GLfloat)i, (GLfloat)histoGram[i] /

(GLfloat) iLargest * 128.0f);

glEnd();

bHistogram = GL_FALSE;

glDisable(GL_HISTOGRAM);

}

CHAPTER 7 Imaging with OpenGL300

Minmax Operations
In the preceding sample, you traversed the histogram data to find the largest luminance
component for the rendered image. If you need only the largest or smallest components
collected, you can choose not to collect the entire histogram for a rendered image, but
instead collect the largest and smallest values. This minmax data collection operates in a
similar manner to histograms. First, you specify the format of the data on which you want
statistics gathered by using the following function:

void glMinmax(GLenum target, GLenum internalFormat, GLboolean sink);

Here, target is GL_MINMAX, and internalFormat and sink behave precisely as in
glHistogram. You must also enable minmax data collection:

glEnable(GL_MINMAX);

The minmax data is collected with the glGetMinmax function, which is analogous to
glGetHistogram:

void glGetMinmax(GLenum target, GLboolean reset, GLenum format,

GLenum type, GLvoid *values);

Again, the target parameter is GL_MINMAX, and the other parameters map to their counter-
parts in glGetHistogram.

Summary
In this chapter, we have shown that OpenGL provides first-class support for color image
manipulation—from reading and writing bitmaps and color images directly to the color
buffer, to color processing operations and color lookup maps. Optionally, many OpenGL
implementations go even further by supporting the OpenGL imaging subset. The imaging
subset makes it easy to add sophisticated image-processing filters and analysis to your
graphics-intensive programs.

We have also laid the groundwork in this chapter for our return to 3D geometry in the
next chapter, where we begin coverage of OpenGL’s texture mapping capabilities. You’ll
find that the functions covered in this chapter that load and process image data are used
directly when we extend the manipulation of image data by mapping it to 3D primitives.

Summary 301

7

This page intentionally left blank

CHAPTER 8

Texture Mapping: The Basics

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Load texture images glTexImage/glTexSubImage

Map textures to geometry glTexCoord

Change the texture environment glTexEnv

Set texture mapping parameters glTexParameter

Generate mipmaps gluBuildMipmaps

Manage multiple textures glBindTexture

In the preceding chapter, we covered in detail the groundwork for loading image data into
OpenGL. Image data, unless modified by pixel zoom, generally has a one-to-one corre-
spondence between a pixel in an image and a pixel on the screen. In fact, this is where we
get the term pixel (picture element). In this chapter, we extend this knowledge further by
applying images to three-dimensional primitives. When we apply image data to a geomet-
ric primitive, we call this a texture or texture map. Figure 8.1 shows the dramatic difference
that can be achieved by texture mapping geometry. The cube on the left is a lit and
shaded featureless surface, whereas the cube on the right shows a richness in detail that
can be reasonably achieved only with texture mapping.

304 CHAPTER 8 Texture Mapping: The Basics

FIGURE 8.1 The stark contrast between textured and untextured geometry.

A texture image when loaded has the same makeup and arrangement as pixmaps, but now
a one-to-one correspondence seldom exists between texels (the individual picture elements
in a texture) and pixels on the screen. This chapter covers the basics of loading a texture
map into memory and all the ways in which it may be mapped to and applied to geomet-
ric primitives.

Loading Textures
The first necessary step in applying a texture map to geometry is to load the texture into
memory. Once loaded, the texture becomes part of the current texture state (more on this
later). Three OpenGL functions are most often used to load texture data from a memory
buffer (which is, for example, read from a disk file):

void glTexImage1D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLint border,

GLenum format, GLenum type, void *data);

void glTexImage2D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLsizei height, GLint border,

GLenum format, GLenum type, void *data);

void glTexImage3D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLsizei height, GLsizei depth, GLint border,

GLenum format, GLenum type, void *data);

These three rather lengthy functions tell OpenGL everything it needs to know about how
to interpret the texture data pointed to by the data parameter.

The first thing you should notice about these functions is that they are essentially three
flavors of the same root function, glTexImage. OpenGL supports one-, two-, and three-
dimensional texture maps and uses the corresponding function to load that texture and

make it current. You should also be aware that OpenGL copies the texture information
from data when you call one of these functions. This data copy can be quite expensive,
and in the section “Texture Objects,” later in this chapter, we discuss some ways to help
mitigate this problem.

The target argument for these functions should be GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D, respectively. You may also specify proxy textures in the same manner in
which you used proxies in the preceding chapter, by specifying GL_PROXY_TEXTURE_1D,
GL_PROXY_TEXTURE_2D, or GL_PROXY_TEXTURE_3D and using the function
glGetTexParameter to retrieve the results of the proxy query.

The level parameter specifies the mipmap level being loaded. Mipmaps are covered in an
upcoming section called “Mipmapping,” so for nonmipmapped textures (just your plain
old ordinary texture mapping), always set this to 0 (zero) for the moment.

Next, you have to specify the internalformat parameter of the texture data. This informa-
tion tells OpenGL how many color components you want stored per texel and possibly
the storage size of the components and/or whether you want the texture compressed (see
the next chapter for information about texture compression). Table 8.1 lists the most
common values for this function. A complete listing is given in Appendix C, “API
Reference.”

TABLE 8.1 Most Common Texture Internal Formats

Constant Meaning

GL_ALPHA Store the texels as alpha values

GL_LUMINANCE Store the texels as luminance values

GL_LUMINANCE_ALPHA Store the texels with both luminance and alpha values

GL_RGB Store the texels as red, green, and blue components

GL_RGBA Store the texels as red, green, blue, and alpha components

The width, height, and depth parameters (where appropriate) specify the dimensions of
the texture being loaded. It is important to note that prior to OpenGL 2.0, these dimen-
sions must be integer powers of 2 (1, 2, 4, 8, 16, 32, 64, and so on). There is no require-
ment that texture maps be square (all dimensions equal), but a texture loaded with
non–power of 2 dimensions on older OpenGL implementations will cause texturing to be
implicitly disabled. Even though OpenGL 2.0 (and later) allows non–power of two
textures, this is no guarantee that they will necessarily be fast on the underlying hardware.
Many performance-minded developers still avoid non–power of two textures for this
reason.

The border parameter allows you to specify a border width for texture maps. Texture
borders allow you to extend the width, height, or depth of a texture map by an extra set
of texels along the borders. Texture borders play an important role in the discussion of
texture filtering to come. For the time being, always set this value to 0 (zero).

Loading Textures 305

8

CHAPTER 8 Texture Mapping: The Basics306

The last three parameters—format, type, and data—are identical to the corresponding
arguments when you used glDrawPixels to place image data into the color buffer. For the
sake of convenience, we list the valid constants for format and type in Tables 8.2 and 8.3.

TABLE 8.2 Texel Formats for glTexImage

Constant Description

GL_RGB Colors are in red, green, blue order.

GL_RGBA Colors are in red, green, blue, alpha order.

GL_BGR/GL_BGR_EXT Colors are in blue, green, red order.

GL_BGRA/GL_BGRA_EXT Colors are in blue, green, red, alpha order.

GL_RED Each pixel contains a single red component.

GL_GREEN Each pixel contains a single green component.

GL_BLUE Each pixel contains a single blue component.

GL_ALPHA Each pixel contains a single alpha component.

GL_LUMINANCE Each pixel contains a single luminance (intensity) component.

GL_LUMINANCE_ALPHA Each pixel contains a luminance followed by an alpha component.

GL_STENCIL_INDEX Each pixel contains a single stencil index.

GL_DEPTH_COMPONENT Each pixel contains a single depth component.

TABLE 8.3 Data Types for Pixel Data

Constant Description

GL_UNSIGNED_BYTE Each color component is an 8-bit unsigned integer

GL_BYTE Signed 8-bit integer

GL_BITMAP Single bits, no color data; same as glBitmap

GL_UNSIGNED_SHORT Unsigned 16-bit integer

GL_SHORT Signed 16-bit integer

GL_UNSIGNED_INT Unsigned 32-bit integer

GL_INT Signed 32-bit integer

GL_FLOAT Single-precision float

GL_UNSIGNED_BYTE_3_2_2 Packed RGB values

GL_UNSIGNED_BYTE_2_3_3_REV Packed RGB values

GL_UNSIGNED_SHORT_5_6_5 Packed RGB values

GL_UNSIGNED_SHORT_5_6_5_REV Packed RGB values

GL_UNSIGNED_SHORT_4_4_4_4 Packed RGBA values

GL_UNSIGNED_SHORT_4_4_4_4_REV Packed RGBA values

GL_UNSIGNED_SHORT_5_5_5_1 Packed RGBA values

GL_UNSIGNED_SHORT_1_5_5_5_REV Packed RGBA values

GL_UNSIGNED_INT_8_8_8_8 Packed RGBA values

GL_UNSIGNED_INT_8_8_8_8_REV Packed RGBA values

GL_UNSIGNED_INT_10_10_10_2 Packed RGBA values

GL_UNSIGNED_INT_2_10_10_10_REV Packed RGBA values

Loaded textures are not applied to geometry unless the appropriate texture state is
enabled. You can call glEnable or glDisable with GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D to turn texturing on or off for a given texture state. Only one of these
texture states may be on at a time for a given texture unit (see the next chapter for a
discussion of multitexturing).

A final word about texture loading: Texture data loaded by the glTexImage functions goes
through the same pixel and imaging pipeline covered in the preceding chapter. This
means pixel packing, pixel zoom, color tables, convolutions, and so on are applied to the
texture data when it is loaded.

Using the Color Buffer
One- and two-dimensional textures may also be loaded using data from the color buffer.
You can read an image from the color buffer and use it as a new texture by using the
following two functions:

void glCopyTexImage1D(GLenum target, GLint level, GLenum internalformat,

GLint x, GLint y,

GLsizei width, GLint border);

void glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat,

GLint x, GLint y,

GLsizei width, GLsizei height, GLint border);

These functions operate similarly to glTexImage, but in this case, x and y specify the
location in the color buffer to begin reading the texture data. The source buffer is
set using glReadBuffer and behaves just like glReadPixels. Note that there is no
glCopyTexImage3D, because you can’t get volumetric data from a 2D color buffer!

Updating Textures
Repeatedly loading new textures can become a performance bottleneck in time-sensitive
applications such as games or simulation applications. If a loaded texture map is no longer
needed, it may be replaced entirely or in part. Replacing a texture map can often be done
much more quickly than reloading a new texture directly with glTexImage. The function
you use to accomplish this is glTexSubImage, again in three variations:

void glTexSubImage1D(GLenum target, GLint level,

GLint xOffset,

GLsizei width,

GLenum format, GLenum type, const GLvoid *data);

void glTexSubImage2D(GLenum target, GLint level,

GLint xOffset, GLint yOffset,

Loading Textures 307

8

GLsizei width, GLsizei height,

GLenum format, GLenum type, const GLvoid *data);

void glTexSubImage3D(GLenum target, GLint level,

GLint xOffset, GLint yOffset, GLint zOffset,

GLsizei width, GLsizei height, GLsizei depth,

GLenum format, GLenum type, const GLvoid *data);

Most of the arguments correspond exactly to the parameters used in glTexImage. The
xOffset, yOffset, and zOffset parameters specify the offsets into the existing texture map
to begin replacing texture data. The width, height, and depth values specify the dimen-
sions of the texture being “inserted” into the existing texture.

A final set of functions allows you to combine reading from the color buffer and inserting
or replacing part of a texture. These glCopyTexSubImage variations do just that:

void glCopyTexSubImage1D(GLenum target, GLint level,

GLint xoffset,

GLint x, GLint y,

GLsizei width);

void glCopyTexSubImage2D(GLenum target, GLint level,

GLint xoffset, GLint yoffset,

GLint x, GLint y,

GLsizei width, GLsizei height);

void glCopyTexSubImage3D(GLenum target, GLint level,

GLint xoffset, GLint yoffset, Glint zoffset,

GLint x, GLint y,

GLsizei width, GLsizei height);

You may have noticed that no glCopyTexImage3D function is listed here. The reason is that
the color buffer is 2D, and there simply is no corresponding way to use a 2D color image
as a source for a 3D texture. However, you can use glCopyTexSubImage3D to use the color
buffer data to set a plane of texels in a three-dimensional texture.

Mapping Textures to Geometry
Loading a texture and enabling texturing cause OpenGL to apply the texture to any of the
OpenGL primitives. You must, however, provide OpenGL with information about how to
map the texture to the geometry. You do this by specifying a texture coordinate for each
vertex. Texels in a texture map are addressed not as a memory location (as you would for
pixmaps), but as a more abstract (usually floating-point values) texture coordinate.

CHAPTER 8 Texture Mapping: The Basics308

Typically, texture coordinates are specified as floating-point values that are in the range
0.0 to 1.0. Texture coordinates are named s, t, r, and q (similar to vertex coordinates x, y, z,
and w), supporting from one- to three-dimensional texture coordinates, and optionally a
way to scale the coordinates.

Figure 8.2 shows one-, two-, and three-dimensional textures and the way the texture coor-
dinates are laid out with respect to their texels.

Loading Textures 309

8

(0,1,1) (1,1,1)

(1,0,1)

(1,0,0)(0,0,0)

(0,1,0)

Texture s coordinate

Tex
tur

e t
 co

ord
ina

te

Texture r coordinate

(0.0) (0.5) (1.0)

Texture s coordinate

One dimensional
texture coordinate

FIGURE 8.2 How texture coordinates address texels.

Because there are no four-dimensional textures, you might ask what the q coordinate is
for. The q coordinate corresponds to the w geometric coordinate. This is a scaling factor
applied to the other texture coordinates; that is, the actual values used for the texture
coordinates are s/q, t/q, and r/q. By default, q is set to 1.0.

You specify a texture coordinate using the glTexCoord function. Much like vertex coordi-
nates, surface normals, and color values, this function comes in a variety of familiar
flavors that are all listed in the reference section. The following are three simple variations
used in the sample programs:

void glTexCoord1f(GLfloat s);

void glTexCoord2f(Glfloat s, GLfloat t);

void glTexCoord3f(GLfloat s, GLfloat t, GLfloat r);

FIGURE 8.3 Applying a two-dimensional texture to a quad.

Rarely, however, do you have such a nice fit of a square texture mapped to a square piece
of geometry. To help you better understand texture coordinates, we provide another
example in Figure 8.4. This figure also shows a square texture map, but the geometry is a
triangle. Superimposed on the texture map are the texture coordinates of the locations in
the map being extended to the vertices of the triangle.

CHAPTER 8 Texture Mapping: The Basics310

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

One texture coordinate is applied using these functions for each vertex. OpenGL then
stretches or shrinks the texture as necessary to apply the texture to the geometry as
mapped. (This stretching or shrinking is applied using the current texture filter; we’ll
discuss this issue shortly as well.) Figure 8.3 shows an example of a two-dimensional
texture being mapped to a GL_QUAD. Note that the corners of the texture correspond to the
corners of the quad. As you do with other vertex properties (materials, normals, and so
on), you must specify the texture coordinate before the vertex!

FIGURE 8.4 Applying a portion of a texture map to a triangle.

Texture Matrix
Texture coordinates are also transformed via the texture matrix. The texture matrix stack
works just like the other matrices previously discussed (modelview, projection, and color).
You make the texture matrix the target of matrix function calls by calling glMatrixMode
with the argument GL_TEXTURE:

glMatrixMode(GL_TEXTURE);

The texture matrix stack is required to be only two elements deep for the purposes of
glPushMatrix and glPopMatrix. Texture coordinates can be translated, scaled, and even
rotated. If you decide to scale your texture coordinates with a q texture coordinate value,
this is done after the texture matrix is applied.

A Simple 2D Example
Loading a texture and providing texture coordinates are the fundamental requirements for
texture mapping. There are a number of issues we have yet to address, such as coordinate
wrapping, texture filters, and the texture environment. What do they mean, and how do
we make use of them? Let’s pause here first and examine a simple example that uses a 2D
texture. In Listing 8.1, we use the functions covered so far and add several new ones. We
use this example, then, as a framework to describe these additional texture mapping
issues.

A Simple 2D Example 311

8

(0,0) (1,0)

(0.5,1.0)

(0.5,1)

(0,0) (1,0)

FIGURE 8.5 Output from the PYRAMID sample program.

LISTING 8.1 The PYRAMID Sample Program Source Code

// Pyramid.cpp

// Demonstrates Simple Texture Mapping

// OpenGL SuperBible

// Richard S. Wright Jr.

#include “../../Common/GLTools.h” // GLTools

#include “../../math3d.h” // 3D Math Library

// Rotation amounts

static GLfloat xRot = 0.0f;

static GLfloat yRot = 0.0f;

// This function does any needed initialization on the rendering

CHAPTER 8 Texture Mapping: The Basics312

Listing 8.1 shows all the pertinent code for the sample program PYRAMID. This program
draws a simple lit four-sided pyramid made up of triangles. A stone texture is applied to
each face and the bottom of the pyramid. You can spin the pyramid around with the
arrow keys much like the samples in earlier chapters. Figure 8.5 shows the output of the
PYRAMID program.

LISTING 8.1 Continued

// context. Here it sets up and initializes the lighting for

// the scene.

void SetupRC()

{

GLubyte *pBytes;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

// Light values and coordinates

. . .

. . .

// Load texture

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

pBytes = gltLoadTGA(“Stone.tga”, &iWidth, &iHeight,

&iComponents, &eFormat);

glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight,

0, eFormat, GL_UNSIGNED_BYTE, pBytes);

free(pBytes);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glEnable(GL_TEXTURE_2D);

}

// Called to draw scene

void RenderScene(void)

{

M3DVector3f vNormal;

M3DVector3f vCorners[5] = { { 0.0f, .80f, 0.0f }, // Top 0

{ -0.5f, 0.0f, -.50f }, // Back left 1

{ 0.5f, 0.0f, -0.50f }, // Back right 2

{ 0.5f, 0.0f, 0.5f }, // Front right 3

{ -0.5f, 0.0f, 0.5f }}; // Front left 4

// Clear the window with current clearing color

A Simple 2D Example 313

8

LISTING 8.1 Continued

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the matrix state and do the rotations

glPushMatrix();

// Move object back and do in-place rotation

glTranslatef(0.0f, -0.25f, -4.0f);

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Draw the Pyramid

glColor3f(1.0f, 1.0f, 1.0f);

glBegin(GL_TRIANGLES);

// Bottom section - two triangles

glNormal3f(0.0f, -1.0f, 0.0f);

glTexCoord2f(1.0f, 1.0f);

glVertex3fv(vCorners[2]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[4]);

glTexCoord2f(0.0f, 1.0f);

glVertex3fv(vCorners[1]);

glTexCoord2f(1.0f, 1.0f);

glVertex3fv(vCorners[2]);

glTexCoord2f(1.0f, 0.0f);

glVertex3fv(vCorners[3]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[4]);

// Front Face

m3dFindNormal(vNormal, vCorners[0], vCorners[4], vCorners[3]);

glNormal3fv(vNormal);

glTexCoord2f(0.5f, 1.0f);

glVertex3fv(vCorners[0]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[4]);

glTexCoord2f(1.0f, 0.0f);

glVertex3fv(vCorners[3]);

CHAPTER 8 Texture Mapping: The Basics314

LISTING 8.1 Continued

// Left Face

m3dFindNormal(vNormal, vCorners[0], vCorners[1], vCorners[4]);

glNormal3fv(vNormal);

glTexCoord2f(0.5f, 1.0f);

glVertex3fv(vCorners[0]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[1]);

glTexCoord2f(1.0f, 0.0f);

glVertex3fv(vCorners[4]);

// Back Face

m3dFindNormal(vNormal, vCorners[0], vCorners[2], vCorners[1]);

glNormal3fv(vNormal);

glTexCoord2f(0.5f, 1.0f);

glVertex3fv(vCorners[0]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[2]);

glTexCoord2f(1.0f, 0.0f);

glVertex3fv(vCorners[1]);

// Right Face

m3dFindNormal(vNormal, vCorners[0], vCorners[3], vCorners[2]);

glNormal3fv(vNormal);

glTexCoord2f(0.5f, 1.0f);

glVertex3fv(vCorners[0]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[3]);

glTexCoord2f(1.0f, 0.0f);

glVertex3fv(vCorners[2]);

glEnd();

// Restore the matrix state

glPopMatrix();

// Buffer swap

glutSwapBuffers();

}

A Simple 2D Example 315

8

The SetupRC function does all the necessary initialization for this program, including
loading the texture using the gltLoadTGA function presented in the preceding chapter and
supplying the bits to the glTexImage2D function:

// Load texture

pBytes = gltLoadTGA(“Stone.tga”, &iWidth, &iHeight,

&iComponents, &eFormat);

glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight,

0, eFormat, GL_UNSIGNED_BYTE, pBytes);

free(pBytes);

Of course, texture mapping must also be turned on:

glEnable(GL_TEXTURE_2D);

The RenderScene function draws the pyramid as a series of texture-mapped triangles. The
following excerpt shows one face being constructed as a normal (calculated using the
corner vertices) is specified for the face, followed by three texture and vertex coordinates:

// Front Face

gltGetNormalVector(vCorners[0], vCorners[4], vCorners[3], vNormal);

glNormal3fv(vNormal);

glTexCoord2f(0.5f, 1.0f);

glVertex3fv(vCorners[0]);

glTexCoord2f(0.0f, 0.0f);

glVertex3fv(vCorners[4]);

glTexCoord2f(1.0f, 0.0f);

glVertex3fv(vCorners[3]);

Texture Environment
In the PYRAMID sample program, the pyramid is drawn with white material properties,
and the texture is applied in such a way that its colors are scaled by the coloring of the lit
geometry. Figure 8.6 shows the untextured pyramid alongside the source texture and the
textured but shaded pyramid.

CHAPTER 8 Texture Mapping: The Basics316

FIGURE 8.6 Lit Geometry + Texture = Shaded Texture.

How OpenGL combines the colors from texels with the color of the underlying geometry
is controlled by the texture environment mode. You set this mode by calling the glTexEnv
function:

void glTexEnvi(GLenum target, GLenum pname, GLint param);

void glTexEnvf(GLenum target, GLenum pname, GLfloat param);

void glTexEnviv(GLenum target, GLenum pname, GLint *param);

void glTexEnvfv(GLenum target, GLenum pname, GLfloat *param);

This function comes in a variety of flavors, as shown here, and controls a number of more
advanced texturing options covered in the next chapter. In the PYRAMID sample program,
this function set the environment mode to GL_MODULATE before any texture application
was performed:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

The modulate environment mode multiplies the texel color by the geometry color (after
lighting calculations). This is why the shaded color of the pyramid comes through and
makes the texture appear to be shaded. Using this mode, you can change the color tone of
textures by using colored geometry. For example, a black-and-white brick texture applied
to red, yellow, and brown geometry would yield red, yellow, and brown bricks with only a
single texture.

If you want to simply replace the color of the underlying geometry, you can specify
GL_REPLACE for the environment mode. Doing so replaces fragment colors from the geom-
etry directly with the texel colors. Making this change eliminates any effect on the texture
from the underlying geometry. If the texture has an alpha channel, you can enable blend-
ing (or use the alpha test), and you can use this mode to create transparent geometry
patterned after the alpha channel in the texture map.

If the texture doesn’t have an alpha component, GL_DECAL behaves the same way as
GL_REPLACE. It simply “decals” the texture over the top of the geometry and any color
values that have been calculated for the fragments. However, if the texture has an alpha
component, the decal can be applied in such a way that the geometry shows through
where the alpha is blended with the underlying fragments.

Textures can also be blended with a constant blending color using the GL_BLEND texture
environment. If you set this environment mode, you must also set the texture environ-
ment color:

GLfloat fColor[4] = { 1.0f, 0.0f, 0.0f, 0.0f };

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_BLEND);

glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, fColor);

Finally, you can simply add texel color values to the underlying fragment values by setting
the environment mode to GL_ADD. Any color component values that exceed 1.0 are

Texture Environment 317

8

clamped, and you may get saturated color values (basically, white or closer to white than
you might intend).

We have not presented an exhaustive list of the texture environment constants here. See
Appendix C and the next chapter for more modes and texturing effects that are enabled
and controlled through this function. We also revisit some additional uses in coming
sections and sample programs.

Texture Parameters
More effort is involved in texture mapping than slapping an image on the side of a
triangle. Many parameters affect the rendering rules and behaviors of texture maps as
they are applied. These texture parameters are all set via variations on the function
glTexParameter:

void glTexParameterf(GLenum target, GLenum pname, GLfloat param);

void glTexParameteri(GLenum target, GLenum pname, GLint param);

void glTexParameterfv(GLenum target, GLenum pname, GLfloat *params);

void glTexParameteriv(GLenum target, GLenum pname, GLint *params);

The first argument, target, specifies which texture mode the parameter is to be applied to
and may be GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D. The second argument,
pname, specifies which texture parameter is being set, and finally, the param or params
argument sets the value of the particular texture parameter.

Basic Filtering
Unlike pixmaps being drawn to the color buffer, when a texture is applied to geometry,
there is almost never a one-to-one correspondence between texels in the texture map and
pixels on the screen. A careful programmer could achieve this result, but only by texturing
geometry that was carefully planned to appear onscreen such that the texels and pixels
lined up. Consequently, texture images are always either stretched or shrunk as they are
applied to geometric surfaces. Because of the orientation of the geometry, a given texture
could even be stretched and shrunk at the same time across the surface of some object.

The process of calculating color fragments from a stretched or shrunken texture map is
called texture filtering. Using the texture parameter function, OpenGL allows you to set
both magnification and minification filters. The parameter names for these two filters are
GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER. For now, you can select from two
basic texture filters for them, GL_NEAREST and GL_LINEAR, which correspond to nearest
neighbor and linear filtering. Make sure you always choose one of these two filters for the
GL_TEXTURE_MIN_FILTER—the default filter setting will not work without mipmaps (see the
later section, “Mipmapping”).

CHAPTER 8 Texture Mapping: The Basics318

Nearest neighbor filtering is the simplest and fastest filtering method you can choose.
Texture coordinates are evaluated and plotted against a texture’s texels, and whichever
texel the coordinate falls in, that color is used for the fragment texture color. Nearest
neighbor filtering is characterized by large blocky pixels when the texture is stretched
especially large. An example is shown in Figure 8.7. You can set the texture filter (for
GL_TEXTURE_2D) for both the minification and the magnification filter by using these two
function calls:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

Texture Parameters 319

8

FIGURE 8.7 Nearest neighbor filtering up close.

Linear filtering requires more work than nearest neighbor, but often is worth the extra
overhead. On today’s commodity hardware, the extra cost of linear filtering is negligible.
Linear filtering works by not taking the nearest texel to the texture coordinate, but by
applying the weighted average of the texels surrounding the texture coordinate (a linear
interpolation). For this interpolated fragment to match the texel color exactly, the texture
coordinate needs to fall directly in the center of the texel. Linear filtering is characterized
by “fuzzy” graphics when a texture is stretched. This fuzziness, however, often lends to a
more realistic and less artificial look than the jagged blocks of the nearest neighbor filter-
ing mode. A contrasting example to Figure 8.7 is shown in Figure 8.8. You can set linear
filtering (for GL_TEXTURE_2D) simply enough by using the following lines, which are also
included in the SetupRC function in the PYRAMID example:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

CHAPTER 8 Texture Mapping: The Basics320

FIGURE 8.8 Linear filtering up close. (Color Plate 4 in the Color insert shows nearest
neighbor and linear filtering side by side.)

Texture Wrap
Normally, you specify texture coordinates between 0.0 and 1.0 to map out the texels in a
texture map. If texture coordinates fall outside this range, OpenGL handles them accord-
ing to the current texture wrapping mode. You can set the wrap mode for each coordinate
individually by calling glTexParameteri with GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R as the parameter name. The wrap mode can then be set to one of the
following values: GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, or GL_CLAMP_TO_BORDER.

The GL_REPEAT wrap mode simply causes the texture to repeat in the direction in which
the texture coordinate has exceeded 1.0. The texture repeats again for every integer texture
coordinate. This mode is very useful for applying a small tiled texture to large geometric
surfaces. Well-done seamless textures can lend the appearance of a seemingly much larger
texture, but at the cost of a much smaller texture image. The other modes do not repeat,
but are “clamped”—thus their name.

If the only implication of the wrap mode is whether the texture repeats, you would need
only two wrap modes: repeat and clamp. However, the texture wrap mode also has a great
deal of influence on how texture filtering is done at the edges of the texture maps. For
GL_NEAREST filtering, there are no consequences to the wrap mode because the texture
coordinates are always snapped to some particular texel within the texture map. However,
the GL_LINEAR filter takes an average of the pixels surrounding the evaluated texture coor-
dinate, and this creates a problem for texels that lie along the edges of the texture map.

This problem is resolved quite neatly when the wrap mode is GL_REPEAT. The texel
samples are simply taken from the next row or column, which in repeat mode wraps back
around to the other side of the texture. This mode works perfectly for textures that wrap
around an object and meet on the other side (such as spheres).

The clamped texture wrap modes offer a number of options for the way texture edges are
handled. For GL_CLAMP, the needed texels are taken from the texture border or the
TEXTURE_BORDER_COLOR (set with glTexParameterfv). The GL_CLAMP_TO_EDGE wrap mode
forces texture coordinates out of range to be sampled along the last row or column of
valid texels. Finally, GL_CLAMP_TO_BORDER uses only border texels whenever the texture
coordinates fall outside the range 0.0 to 1.0. Border texels are loaded as an extra row and
column surrounding the base image, loaded along with the base texture map.

A typical application of the clamped modes occurs when you must texture a large area
that would require a single texture too large to fit into memory, or that may be loaded
into a single texture map. In this case, the area is chopped up into smaller “tiles” that are
then placed side by side. In such a case, not using a wrap mode such as GL_CLAMP_TO_EDGE
can sometimes cause visible filtering artifacts along the seams between tiles. Rarely, even
this is not sufficient, and you will have to resort to texture border texels.

Cartoons with Texture
The first example for this chapter used 2D textures because they are usually the simplest
and easiest to understand. Most people can quickly get an intuitive feel for putting a 2D
picture on the side of a piece of 2D geometry (such as a triangle). We will step back now
and present a one-dimensional texture mapping example that is commonly used in
computer games to render geometry that appears onscreen shaded like a cartoon.
Toon-shading, which is often referred to as cell-shading, uses a one-dimensional texture
map as a lookup table to fill in geometry with a solid color (using GL_NEAREST) from the
texture map.

The basic idea is to use a surface normal from the geometry and a vector to the light
source to find the intensity of the light striking the surface of the model. The dot product
of these two vectors gives a value between 0.0 and 1.0 and is used as a one-dimensional
texture coordinate (this is your basic diffuse lighting technique). The sample program
TOON presented in Listing 8.2 draws a green torus using this technique. The output from
TOON is shown in Figure 8.9.

Texture Parameters 321

8

FIGURE 8.9 A cell-shaded torus.

LISTING 8.2 Source Code for the TOON Sample Program

// Toon.cpp

// OpenGL SuperBible

// Demonstrates Cell/Toon shading with a 1D texture

// Program by Richard S. Wright Jr.

#include “../../shared/gltools.h” // OpenGL toolkit

#include “../../shared/math3d.h”

#include <math.h>

// Vector pointing towards the light

M3DVector3f vLightDir = { -1.0f, 1.0f, 1.0f };

// Draw a torus (doughnut), using the current 1D texture for light shading

void toonDrawTorus(GLfloat majorRadius, GLfloat minorRadius,

int numMajor, int numMinor, GLTVector3 vLightDir)

{

M3DMatrix44f mModelViewMatrix;

M3DMatrix44f mInvertedLight;

M3DVector3f vNewLight;

CHAPTER 8 Texture Mapping: The Basics322

LISTING 8.2 Continued

M3DVector3f vNormal;

double majorStep = 2.0f*M3D_PI / numMajor;

double minorStep = 2.0f*M3D_PI / numMinor;

int i, j;

// Get the modelview matrix

glGetFloatv(GL_MODELVIEW_MATRIX, mModelViewMatrix);

// Instead of transforming every normal and then dotting it with

// the light vector, we will transform the light into object

// space by multiplying it by the inverse of the modelview matrix

m3dInvertMatrix44(mInvertedLight, mModelViewMatrix);

m3dTransformVector3(vNewLight, vLightDir, mInvertedLight);

vNewLight[0] -= mInvertedLight[12];

vNewLight[1] -= mInvertedLight[13];

vNewLight[2] -= mInvertedLight[14];

m3dNormalizeVector(vNewLight);

// Draw torus as a series of triangle strips

for (i=0; i<numMajor; ++i)

{

double a0 = i * majorStep;

double a1 = a0 + majorStep;

GLfloat x0 = (GLfloat) cos(a0);

GLfloat y0 = (GLfloat) sin(a0);

GLfloat x1 = (GLfloat) cos(a1);

GLfloat y1 = (GLfloat) sin(a1);

glBegin(GL_TRIANGLE_STRIP);

for (j=0; j<=numMinor; ++j)

{

double b = j * minorStep;

GLfloat c = (GLfloat) cos(b);

GLfloat r = minorRadius * c + majorRadius;

GLfloat z = minorRadius * (GLfloat) sin(b);

// First point

vNormal[0] = x0*c;

vNormal[1] = y0*c;

vNormal[2] = z/minorRadius;

m3dNormalizeVector(vNormal);

Texture Parameters 323

8

LISTING 8.2 Continued

// Texture coordinate is set by intensity of light

glTexCoord1f(m3dDotProduct(vNewLight, vNormal));

glVertex3f(x0*r, y0*r, z);

// Second point

vNormal[0] = x1*c;

vNormal[1] = y1*c;

vNormal[2] = z/minorRadius;

m3dNormalizeVector(vNormal);

// Texture coordinate is set by intensity of light

glTexCoord1f(m3dDotProduct(vNewLight, vNormal));

glVertex3f(x1*r, y1*r, z);

}

glEnd();

}

}

// Called to draw scene

void RenderScene(void)

{

// Rotation angle

static GLfloat yRot = 0.0f;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glTranslatef(0.0f, 0.0f, -2.5f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

toonDrawTorus(0.35f, 0.15f, 50, 25, vLightDir);

glPopMatrix();

// Do the buffer Swap

glutSwapBuffers();

// Rotate 1/2 degree more each frame

yRot += 0.5f;

}

// This function does any needed initialization on the rendering

// context.

CHAPTER 8 Texture Mapping: The Basics324

LISTING 8.2 Continued

void SetupRC()

{

// Load a 1D texture with toon shaded values

// Green, greener...

GLbyte toonTable[4][3] = { { 0, 32, 0 },

{ 0, 64, 0 },

{ 0, 128, 0 },

{ 0, 192, 0 }};

// Bluish background

glClearColor(0.0f, 0.0f, .50f, 1.0f);

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, 4, 0, GL_RGB,

GL_UNSIGNED_BYTE, toonTable);

glEnable(GL_TEXTURE_1D);

}

Mipmapping
Mipmapping is a powerful texturing technique that can improve both the rendering perfor-
mance and the visual quality of a scene. It does this by addressing two common problems
with standard texture mapping. The first is an effect called scintillation (aliasing artifacts)
that appears on the surface of objects rendered very small onscreen compared to the rela-
tive size of the texture applied. Scintillation can be seen as a sort of sparkling that occurs
as the sampling area on a texture map moves disproportionately to its size on the screen.
The negative effects of scintillation are most noticeable when the camera or the objects are
in motion.

The second issue is more performance related, but is due to the same scenario that leads to
scintillation. That is, a large amount of texture memory must be loaded and processed
through filtering to display a small number of fragments onscreen. This causes texturing
performance to suffer greatly as the size of the texture increases.

Texture Parameters 325

8

The solution to both of these problems is to simply use a smaller texture map. However,
this solution then creates a new problem: When near the same object, it must be rendered
larger, and a small texture map will then be stretched to the point of creating a hopelessly
blurry or blocky textured object.

The solution to both of these issues is mipmapping. Mipmapping gets its name from the
Latin phrase multum in parvo, which means “many things in a small place.” In essence,
you load not a single image into the texture state, but a whole series of images from
largest to smallest into a single “mipmapped” texture state. OpenGL then uses a new set of
filter modes to choose the best-fitting texture or textures for the given geometry. At the
cost of some extra memory (and possibly considerably more processing work), you can
eliminate scintillation and the texture memory processing overhead for distant objects
simultaneously, while maintaining higher resolution versions of the texture available
when needed.

A mipmapped texture consists of a series of texture images, each one half the size of the
previous image. This scenario is shown in Figure 8.10. Mipmap levels do not have to be
square, but the halving of the dimensions continues until the last image is 1×1 texel.
When one of the dimensions reaches 1, further divisions occur on the other dimension
only. Using a square set of mipmaps requires about one-third more memory than not
using mipmaps.

CHAPTER 8 Texture Mapping: The Basics326

....

FIGURE 8.10 A series of mipmapped images.

Mipmap levels are loaded with glTexImage. Now the level parameter comes into play
because it specifies which mip level the image data is for. The first level is 0, then 1, 2, and
so on. If mipmapping is not being used, only level 0 is ever loaded. By default, to use
mipmaps, all mip levels must be populated. You can, however, specifically set the base and
maximum levels to be used with the GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL

texture parameters. For example, if you want to specify that only mip levels 0 through 4
need to be loaded, you call glTexParameteri twice as shown here:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 4);

Although GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL control which mip levels
are loaded, you can also specifically limit the range of loaded mip levels to be used by
using the parameters GL_TEXTURE_MIN_LOD and GL_TEXTURE_MAX_LOD instead.

Mipmap Filtering
Mipmapping adds a new twist to the two basic texture filtering modes GL_NEAREST and
GL_LINEAR by giving four permutations for mipmapped filtering modes. They are listed in
Table 8.4.

TABLE 8.4 Mipmapped Texture Filters

Constant Description

GL_NEAREST Perform nearest neighbor filtering on the base mip level

GL_LINEAR Perform linear filtering on the base mip level

GL_NEAREST_MIPMAP_NEAREST Select the nearest mip level and perform nearest neighbor filtering

GL_NEAREST_MIPMAP_LINEAR Perform a linear interpolation between mip levels and perform

nearest neighbor filtering

GL_LINEAR_MIPMAP_NEAREST Select the nearest mip level and perform linear filtering

GL_LINEAR_MIPMAP_LINEAR Perform a linear interpolation between mip levels and perform

linear filtering; also called trilinear mipmapping

Just loading the mip levels with glTexImage does not by itself enable mipmapping. If the
texture filter is set to GL_LINEAR or GL_NEAREST, only the base texture level is used, and any
mip levels loaded are ignored. You must specify one of the mipmapped filters listed for the
loaded mip levels to be used. The constants have the form GL_FILTER_MIPMAP_SELECTOR,
where FILTER specifies the texture filter to be used on the mip level selected. The SELECTOR
specifies how the mip level is selected; for example, GL_NEAREST selects the nearest match-
ing mip level. Using GL_LINEAR for the selector creates a linear interpolation between the
two nearest mip levels, which is again filtered by the chosen texture filter. Selecting one of
the mipmapped filtering modes without loading the mip levels has the effect of disabling
texture mapping.

Which filter you select varies depending on the application and the performance require-
ments at hand. GL_NEAREST_MIPMAP_NEAREST, for example, gives very good performance
and low aliasing (scintillation) artifacts, but nearest neighbor filtering is often not visually
pleasing. GL_LINEAR_MIPMAP_NEAREST is often used to speed up games because a higher
quality linear filter is used, but a fast selection (nearest) is made between the different-
sized mip levels available.

Using nearest as the mipmap selector (as in both examples in the preceding paragraph),
however, can also leave an undesirable visual artifact. For oblique views, you can often
see the transition from one mip level to another across a surface. It can be seen as a
distortion line or a sharp transition from one level of detail to another. The GL_LINEAR_

MIPMAP_LINEAR and GL_NEAREST_MIPMAP_LINEAR filters perform an additional interpolation

Texture Parameters 327

8

between mip levels to eliminate this transition zone, but at the extra cost of substantially
more processing overhead. The GL_LINEAR_MIPMAP_LINEAR filter is often referred to as
trilinear mipmapping and until recently was the gold standard (highest fidelity) of texture
filtering. More recently, anisotropic texture filtering (covered in the next chapter) has
become widely available on OpenGL hardware but even further increases the cost
(performance-wise) of texture mapping.

Generating Mip Levels
As mentioned previously, mipmapping requires approximately one-third more texture
memory than just loading the base texture image. It also requires that all the smaller
versions of the base texture image be available for loading. Sometimes this can be inconve-
nient because the lower resolution images may not necessarily be available to either the
programmer or the end user of your software. The GLU library does include a function
named gluScaleImage that you could use to repeatedly scale and load an image until all
the needed mip levels are loaded. More frequently, however, an even more convenient
function is available; it automatically creates the scaled images for you and loads them
appropriately with glTexImage. This function, gluBuildMipmaps, comes in three flavors
and supports one-, two-, and three-dimensional texture maps:

int gluBuild1DMipmaps(GLenum target, GLint internalFormat,

GLint width,

GLenum format, GLenum type, const void *data);

int gluBuild2DMipmaps(GLenum target, GLint internalFormat,

GLint width, GLint height,

GLenum format, GLenum type, const void *data);

int gluBuild3DMipmaps(GLenum target, GLint internalFormat,

GLint width, GLint height, GLint depth,

GLenum format, GLenum type, const void *data);

The use of these functions closely parallels the use of glTexImage, but they do not have a
level parameter for specifying the mip level, nor do they provide any support for a
texture border. You should also be aware that using these functions may not produce mip
level images with the same quality you can obtain with other tools such as Photoshop.
The GLU library uses a box filter to reduce images, which can lead to an undesirable loss of
fine detail as the image shrinks.

With newer versions of the GLU library, you can also obtain a finer-grained control over
which mip levels are loaded with these functions:

int gluBuild1DMipmapLevels(GLenum target, GLint internalFormat,

GLint width,

CHAPTER 8 Texture Mapping: The Basics328

GLenum format, GLenum type, GLint level,

GLint base, GLint max, const void *data);

int gluBuild2DMipmapLevels(GLenum target, GLint internalFormat,

GLint width, GLint height,

GLenum format, GLenum type, GLint level,

GLint base, GLint max, const void *data);

int gluBuild3DMipmapLevels(GLenum target, Glint internalFormat,

GLint width, GLint height, GLint depth,

GLenum format, GLenum type, GLint level,

GLint base, GLint max, const void *data);

With these functions, level is the mip level specified by the data parameter. This texture
data is used to build mip levels base through max.

Hardware Generation of Mipmaps
If you know beforehand that you want all mip levels loaded, you can also use OpenGL
hardware acceleration to quickly generate all the necessary mip levels. You do so by setting
the texture parameter GL_GENERATE_MIPMAP to GL_TRUE:

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);

When this parameter is set, all calls to glTexImage or glTexSubImage that update the base
texture map (mip level 0) automatically update all the lower mip levels. By making use of
the graphics hardware, this feature is substantially faster than using gluBuildMipmaps.
However, you should be aware that this feature was originally an extension and was
promoted to the OpenGL core API only as of version 1.4. This is definitely the fastest and
easiest way to build mipmaps on-the-fly.

LOD BIAS

When mipmapping is enabled, OpenGL uses a formula to determine which mip level
should be selected based on the size of the mipmap levels and the onscreen area the
geometry occupies. OpenGL does its best to make a close match between the mipmap
level chosen and the texture’s representation onscreen. You can tell OpenGL to move its
selection criteria back (lean toward larger mip levels) or forward (lean toward smaller mip
levels). This can have the effect of increasing performance (using smaller mip levels) or
increasing the sharpness of texture-mapped objects (using larger mip levels). This bias one
way or the other is selected with the texture environment parameter
GL_TEXTURE_LOD_BIAS, as shown here:

glTexEnvf(GL_TEXTURE_FILTER_CONTROL, GL_TEXTURE_LOD_BIAS, -1.5);

Texture Parameters 329

8

In this example, the texture level of detail is shifted slightly toward using higher levels of
detail (smaller level parameters), resulting in sharper looking textures, at the expense of
slightly more texture processing overhead.

Texture Objects
So far, you have seen how to load a texture and set texture parameters to affect how
texture maps are applied to geometry. The texture image and parameters set with
glTexParameter compose the texture state. Loading and maintaining the texture state
occupies a considerable portion of many texture-heavy OpenGL applications (games in
particular).

Especially time-consuming are function calls such as glTexImage, glTexSubImage, and
gluBuildMipmaps. These functions move a large amount of memory around and possibly
need to reformat the data to match some internal representation. Switching between
textures or reloading a different texture image would ordinarily be a costly operation.

Texture objects allow you to load up more than one texture state at a time, including
texture images, and switch between them very quickly. The texture state is maintained by
the currently bound texture object, which is identified by an unsigned integer. You allo-
cate a number of texture objects with the following function:

void glGenTextures(GLsizei n, GLuint *textures);

With this function, you specify the number of texture objects and a pointer to an array of
unsigned integers that will be populated with the texture object identifiers. You can think
of them as handles to different available texture states. To “bind” to one of these states,
you call the following function:

void glBindTexture(GLenum target, GLuint texture);

The target parameter needs to specify GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D,
and texture is the specific texture object to bind to. Hereafter, all texture loads and
texture parameter settings affect only the currently bound texture object. To delete texture
objects, you call the following function:

void glDeleteTextures(GLsizei n, GLuint *textures);

The arguments here have the same meaning as for glGenTextures. You do not need to
generate and delete all your texture objects at the same time. Multiple calls to
glGenTextures have very little overhead. Calling glDeleteTextures multiple times may
incur some delay, but only because you are deallocating possibly large amounts of texture
memory.

CHAPTER 8 Texture Mapping: The Basics330

You can test texture object names (or handles) to see whether they are valid by using the
following function:

GLboolean glIsTexture(GLuint texture);

This function returns GL_TRUE if the integer is a previously allocated texture object name
or GL_FALSE if not.

Managing Multiple Textures
Generally, texture objects are used to load up several textures at program initialization and
switch between them quickly during rendering. These texture objects are then deleted
when the program shuts down. The TUNNEL sample program loads three textures at
startup and then switches between them to render a tunnel. The tunnel has a brick wall
pattern with different materials on the floor and ceiling. The output from TUNNEL is
shown in Figure 8.11.

Texture Objects 331

8

FIGURE 8.11 A tunnel rendered with three different textures.

The TUNNEL sample program also shows off mipmapping and the different mipmapped
texture filtering modes. Pressing the up- and down-arrow keys moves the point of view
back and forth in the tunnel, and the context menu (right-click menu) allows you to
switch among six different filtering modes to see how they affect the rendered image. The
abbreviated source code is provided in Listing 8.3.

LISTING 8.3 Source Code for the TUNNEL Sample Program

// Tunnel.cpp

// Demonstrates mipmapping and using texture objects

// OpenGL SuperBible

// Richard S. Wright Jr.

#include “../../shared/glools.h” // GLTools

// Rotation amounts

static GLfloat zPos = -60.0f;

// Texture objects

#define TEXTURE_BRICK 0

#define TEXTURE_FLOOR 1

#define TEXTURE_CEILING 2

#define TEXTURE_COUNT 3

GLuint textures[TEXTURE_COUNT];

const char *szTextureFiles[TEXTURE_COUNT] =

{ “brick.tga”, “floor.tga”, “ceiling.tga” };

//

// Change texture filter for each texture object

void ProcessMenu(int value)

{

GLint iLoop;

for(iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++)

{

glBindTexture(GL_TEXTURE_2D, textures[iLoop]);

switch(value)

{

case 0:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);

break;

case 1:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);

break;

case 2:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

CHAPTER 8 Texture Mapping: The Basics332

LISTING 8.3 Continued

GL_NEAREST_MIPMAP_NEAREST);

break;

case 3:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST_MIPMAP_LINEAR);

break;

case 4:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_NEAREST);

break;

case 5:

default:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

break;

}

}

// Trigger Redraw

glutPostRedisplay();

}

//

// This function does any needed initialization on the rendering

// context. Here it sets up and initializes the texture objects.

void SetupRC()

{

GLubyte *pBytes;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

GLint iLoop;

// Black background

glClearColor(0.0f, 0.0f, 0.0f,1.0f);

// Textures applied as decals, no lighting or coloring effects

glEnable(GL_TEXTURE_2D);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

Texture Objects 333

8

LISTING 8.3 Continued

// Load textures

glGenTextures(TEXTURE_COUNT, textures);

for(iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++)

{

// Bind to next texture object

glBindTexture(GL_TEXTURE_2D, textures[iLoop]);

// Load texture, set filter and wrap modes

pBytes = gltLoadTGA(szTextureFiles[iLoop],&iWidth, &iHeight,

&iComponents, &eFormat);

gluBuild2DMipmaps(GL_TEXTURE_2D, iComponents, iWidth, iHeight, eFormat,

GL_UNSIGNED_BYTE, pBytes);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

// Don’t need original texture data any more

free(pBytes);

}

}

///

// Shut down the rendering context. Just deletes the

// texture objects

void ShutdownRC(void)

{

glDeleteTextures(TEXTURE_COUNT, textures);

}

///

// Called to draw scene

void RenderScene(void)

{

GLfloat z;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Save the matrix state and do the rotations

CHAPTER 8 Texture Mapping: The Basics334

LISTING 8.3 Continued

glPushMatrix();

// Move object back and do in-place rotation

glTranslatef(0.0f, 0.0f, zPos);

// Floor

for(z = 60.0f; z >= 0.0f; z -= 10)

{

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_FLOOR]);

glBegin(GL_QUADS);

glTexCoord2f(0.0f, 0.0f);

glVertex3f(-10.0f, -10.0f, z);

glTexCoord2f(1.0f, 0.0f);

glVertex3f(10.0f, -10.0f, z);

glTexCoord2f(1.0f, 1.0f);

glVertex3f(10.0f, -10.0f, z - 10.0f);

glTexCoord2f(0.0f, 1.0f);

glVertex3f(-10.0f, -10.0f, z - 10.0f);

glEnd();

// Ceiling

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_CEILING]);

glBegin(GL_QUADS);

. . .

. . .

glEnd();

}

// Restore the matrix state

glPopMatrix();

// Buffer swap

glutSwapBuffers();

}

//

// Program entry point

int main(int argc, char *argv[])

Texture Objects 335

8

LISTING 8.3 Continued

{

// Standard initialization stuff

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutInitWindowSize(800, 600);

glutCreateWindow(“Tunnel”);

glutReshapeFunc(ChangeSize);

glutSpecialFunc(SpecialKeys);

glutDisplayFunc(RenderScene);

// Add menu entries to change filter

glutCreateMenu(ProcessMenu);

glutAddMenuEntry(“GL_NEAREST”,0);

glutAddMenuEntry(“GL_LINEAR”,1);

glutAddMenuEntry(“GL_NEAREST_MIPMAP_NEAREST”,2);

glutAddMenuEntry(“GL_NEAREST_MIPMAP_LINEAR”, 3);

glutAddMenuEntry(“GL_LINEAR_MIPMAP_NEAREST”, 4);

glutAddMenuEntry(“GL_LINEAR_MIPMAP_LINEAR”, 5);

glutAttachMenu(GLUT_RIGHT_BUTTON);

// Start up, loop, shut down

SetupRC();

glutMainLoop();

ShutdownRC();

return 0;

}

In this example, you first create identifiers for the three texture objects. The array
textures will contain three integers, which will be addressed by using the macros
TEXTURE_BRICK, TEXTURE_FLOOR, and TEXTURE_CEILING. For added flexibility, you also create
a macro that defines the maximum number of textures that will be loaded and an array of
character strings containing the names of the texture map files:

// Texture objects

#define TEXTURE_BRICK 0

#define TEXTURE_FLOOR 1

#define TEXTURE_CEILING 2

#define TEXTURE_COUNT 3

GLuint textures[TEXTURE_COUNT];

const char *szTextureFiles[TEXTURE_COUNT] =

{ “brick.tga”, “floor.tga”, “ceiling.tga” };

CHAPTER 8 Texture Mapping: The Basics336

The texture objects are allocated in the SetupRC function:

glGenTextures(TEXTURE_COUNT, textures);

Then a simple loop binds to each texture object in turn and loads its texture state with the
texture image and texturing parameters:

for(iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++)

{

// Bind to next texture object

glBindTexture(GL_TEXTURE_2D, textures[iLoop]);

// Load texture, set filter and wrap modes

pBytes = gltLoadTGA(szTextureFiles[iLoop],&iWidth, &iHeight,

&iComponents, &eFormat);

gluBuild2DMipmaps(GL_TEXTURE_2D, iComponents, iWidth, iHeight, eFormat,

GL_UNSIGNED_BYTE, pBytes);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

// Don’t need original texture data any more

free(pBytes);

}

With each of the three texture objects initialized, you can easily switch between them
during rendering to change textures:

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_FLOOR]);

glBegin(GL_QUADS);

glTexCoord2f(0.0f, 0.0f);

glVertex3f(-10.0f, -10.0f, z);

glTexCoord2f(1.0f, 0.0f);

glVertex3f(10.0f, -10.0f, z);

...

...

Finally, when the program is terminated, you only need to delete the texture objects for
the final cleanup:

Texture Objects 337

8

///

// Shut down the rendering context. Just deletes the

// texture objects

void ShutdownRC(void)

{

glDeleteTextures(TEXTURE_COUNT, textures);

}

Also, note that when the mipmapped texture filter is set in the TUNNEL sample program,
it is selected only for the minification filter:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);

This is typically the case because after OpenGL selects the largest available mip level, no
larger levels are available to select from. Essentially, this is to say that after a certain
threshold is passed, the largest available texture image is used and there are no additional
mipmap levels to choose from.

Resident Textures
Most OpenGL implementations support a limited amount of high-performance texture
memory. Textures located in this memory are accessed very quickly, and performance is
high. Initially, any loaded texture is stored in this memory; however, only a limited
amount of memory is typically available, and at some point textures may need to be
stored in slower memory. As is often the case, this slower memory may even be located
outside the OpenGL hardware (such as in a PC’s system memory as opposed to being
stored on the graphics card or in AGP memory).

To optimize rendering performance, OpenGL automatically moves frequently accessed
textures into this high-performance memory. Textures in this high-performance memory
are called resident textures. To determine whether a bound texture is resident, you can call
glGetTexParameter and find the value associated with GL_TEXTURE_RESIDENT. Testing a
group of textures to see whether they are resident may be more useful, and you can
perform this test using the following function:

GLboolean glAreTexturesResident(GLsizei n, const GLuint *textures,

GLboolean *residences);

This function takes the number of texture objects to check, an array of the texture object
names, and finally an array of Boolean flags set to GL_TRUE or GL_FALSE to indicate the
status of each texture object. If all the textures are resident, the array is left unchanged,
and the function returns GL_TRUE. This feature is meant to save the time of having to
check through an entire array to see whether all the textures are resident.

CHAPTER 8 Texture Mapping: The Basics338

Texture Priorities
By default, most OpenGL implementations use a Most Frequently Used (MFU) algorithm
to decide which textures can stay resident. However, if several smaller textures are used
only slightly more frequently than, say, a much larger texture, texturing performance can
suffer considerably. You can provide hints to whatever mechanism an implementation
uses to decide texture residency by setting each texture’s priority with this function:

void glPrioritizeTextures(GLsizei n, const GLuint *textures,

const GLclampf *priorities);

This function takes an array of texture object names and a corresponding array of texture
object priorities that are clamped between 0 and 1.0. A low priority tells the implementa-
tion that this texture object should be left out of resident memory whenever space
becomes tight. A higher priority (such as 1.0) tells the implementation that you want
that texture object to remain resident if possible, even if the texture seems to be used
infrequently.

Bear in mind that texture priorities are only a hint to the implementation. Some OpenGL
implementations are known to ignore them completely.

Summary
In this chapter, we extended the simple image loading and display methods from the
preceding chapter to applying images as texture maps to real three-dimensional geometry.
You learned how to load a texture map and use texture coordinates to map the image
to the vertices of geometry. You also learned the different ways in which texture images
can be filtered and blended with the geometry color values and how to use mipmaps to
improve both performance and visual fidelity. Finally, we discussed how to manage
multiple textures and switch between them quickly and easily, and how to tell OpenGL
which textures should have priority if any high-performance (or local) texture memory
is available.

Summary 339

8

This page intentionally left blank

CHAPTER 9

Texture Mapping: Beyond the Basics

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Add specular highlights to textured objects glLightModel/glSecondaryColor

Use anisotropic texture filtering glTexParameterf

Load and use compressed textures glCompressedTexImage/glCompressedTexSubImage

Use points as textured quads glPointParameter

Texture mapping is perhaps one of the most exciting features of OpenGL (well, close
behind shaders anyway!) and is heavily relied on in the games and simulation industry. In
Chapter 8, “Texture Mapping: The Basics,” you learned the basics of loading and applying
texture maps to geometry. In this chapter, we’ll expand on this knowledge and cover some
of the finer points of texture mapping in OpenGL.

Secondary Color
Applying texture to geometry, in regard to how lighting works, causes a hidden and often
undesirable side effect. In general, you set the texture environment to GL_MODULATE,
causing lit geometry to be combined with the texture map in such a way that the textured
geometry also appears lit. Normally, OpenGL performs lighting calculations and calculates
the color of individual fragments according to the standard light model. These fragment
colors are then multiplied by the filtered texel colors being applied to the geometry.
However, this process has the side effect of suppressing the visibility of specular highlights
on the geometry. Basically, any texture color multiplied by ones (the white spot) is the
same texture color. You cannot, by multiplication of any number less than or equal to
one, make a color brighter than it already is!

342 CHAPTER 9 Texture Mapping: Beyond the Basics

For example, Figure 9.1 shows the original lit SPHEREWORLD sample from Chapter 5,
“Color, Materials, and Lighting: The Basics.” In this figure, you can see clearly the specular
highlights reflecting off the surface of the torus. In contrast, Figure 9.2 shows the SPHERE-
WORLD sample from Chapter 8. In this figure, you can see the effects of having the
texture applied after the lighting has been added.

FIGURE 9.1 The original SPHEREWORLD torus with specular highlights.

FIGURE 9.2 The textured torus with muted highlights.

The solution to this problem is to apply (by adding instead of multiplication) the specular
highlights after texturing. This technique, called the secondary specular color, can be manu-
ally applied or automatically calculated by the lighting model. Usually, you do this using
the normal OpenGL lighting model and simply turn it on using glLightModeli, as shown
here:

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);

You can switch back to the normal lighting model by specifying GL_SINGLE_COLOR for the
light model parameter:

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_COLOR_SINGLE);

Figure 9.3 shows the output from this chapter’s version of SPHEREWORLD with the
restored specular highlights on the torus. We do not provide a listing for this sample
because it simply contains the addition of the preceding single line of code.

Secondary Color 343

9

CHAPTER 9 Texture Mapping: Beyond the Basics344

FIGURE 9.3 Highlights restored to the textured torus.

You can also directly specify a secondary color after texturing when you are not using
lighting (lighting is disabled) using the glSecondaryColor function. This function comes
in many variations just as glColor does and is fully documented in the reference section.
You should also note that if you specify a secondary color, you must also explicitly enable
the use of the secondary color by enabling the GL_COLOR_SUM flag:

glEnable(GL_COLOR_SUM);

Manually setting the secondary color only works when lighting is disabled.

Anisotropic Filtering
Anisotropic texture filtering is not a part of the core OpenGL specification, but it is a
widely supported extension that can dramatically improve the quality of texture filtering
operations. Texture filtering is covered in the preceding chapter, where you learned about
the two basic texture filters: nearest neighbor (GL_NEAREST) and linear (GL_LINEAR). When
a texture map is filtered, OpenGL uses the texture coordinates to figure out where in the
texture map a particular fragment of geometry falls. The texels immediately around
that position are then sampled using either the GL_NEAREST or the GL_LINEAR filtering
operations.

This process works perfectly when the geometry being textured is viewed directly perpen-
dicular to the viewpoint, as shown on the left in Figure 9.4. However, when the geometry
is viewed from an angle more oblique to the point of view, a regular sampling of the
surrounding texels results in the loss of some information in the texture (it looks blurry!).
A more realistic and accurate sample would be elongated along the direction of the plane
containing the texture. This result is shown on the right in Figure 9.4. Taking this viewing
angle into account for texture filtering is called anisotropic filtering.

Anisotropic Filtering 345

9

X

Isotropic sampling

X

Anisotropic sampling

FIGURE 9.4 Normal texture sampling versus anisotropic sampling.

You can apply anisotropic filtering to any of the basic or mipmapped texture filtering
modes; applying it requires three steps. First, you must determine whether the extension
is supported. You can do this by querying for the extension string
GL_EXT_texture_filter_anisotropic. You can use the glTools function named
gltIsExtSupported for this task:

if(gltIsExtSupported(“GL_EXT_texture_filter_anisotropic”))

// Set Flag that extension is supported

After you determine that this extension is supported, you can find the maximum amount
of anisotropy supported. You can query for it using glGetFloatv and the parameter
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:

GLfloat fLargest;

. . .

. . .

glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &fLargest);

The larger the amount of anisotropy applied, the more texels are sampled along the direc-
tion of greatest change (along the strongest point of view). A value of 1.0 represents
normal texture filtering (called isotropic filtering). Bear in mind that anisotropic filtering
is not free. The extra amount of work, including other texels, can sometimes result in
substantial performance penalties. On modern hardware, this feature is getting quite fast
and is becoming a standard feature of popular games, animation, and simulation
programs.

Finally, you set the amount of anisotropy you want applied using glTexParameter and the
constant GL_TEXTURE_MAX_ANISOTROPY_EXT. For example, using the preceding code, if you
want the maximum amount of anisotropy applied, you would call glTexParameterf as
shown here:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, fLargest);

This modifier is applied per texture object just like the standard filtering parameters.

The sample program ANISOTROPIC provides a striking example of anisotropic texture
filtering in action. This program displays a tunnel with walls, a floor, and ceiling geome-
try. The arrow keys move your point of view (or the tunnel) back and forth along the
tunnel interior. A right mouse click brings up a menu that allows you to select from the
various texture filters, and turn on and off anisotropic filtering. Figure 9.5 shows the
tunnel using trilinear filtered mipmapping. Notice how blurred the patterns become in the
distance, particularly with the bricks.

CHAPTER 9 Texture Mapping: Beyond the Basics346

FIGURE 9.5 ANISOTROPIC tunnel sample with trilinear filtering.

Now compare Figure 9.5 with Figure 9.6, in which anisotropic filtering has been enabled.
The mortar between the bricks is now clearly visible all the way to the end of the tunnel.
In fact, anisotropic filtering can also greatly reduce the visible mipmap transition patterns
for the GL_LINEAR_MIPMAP_NEAREST and GL_NEAREST_MIPMAP_NEAREST mipmapped filters.

FIGURE 9.6 ANISOTROPIC tunnel sample with anisotropic filtering.

Texture Compression
Texture mapping can add incredible realism to any 3D rendered scene, with a minimal
cost in vertex processing. One drawback to using textures, however, is that they require a
lot of memory to store and process. Early attempts at texture compression were crudely
storing textures as JPG files and decompressing the textures when loaded before calling
glTexImage. These attempts saved disk space or reduced the amount of time required to
transmit the image over the network (such as the Internet), but did nothing to alleviate
the storage requirements of texture images loaded into graphics hardware memory.

Native support for texture compression was added to OpenGL with version 1.3. Earlier
versions of OpenGL may also support texture compression via extension functions of the
same name. You can test for this extension by using the GL_ARB_texture_compression
string.

Texture compression support in OpenGL hardware can go beyond simply allowing you to
load a compressed texture; in most implementations, the texture data stays compressed
even in the graphics hardware memory. This allows you to load more texture into less
memory and can significantly improve texturing performance due to fewer texture swaps
(moving textures around) and fewer memory accesses during texture filtering.

Texture Compression 347

9

Compressing Textures
Texture data does not have to be initially compressed to take advantage of OpenGL
support for compressed textures. You can request that OpenGL compress a texture image
when loaded by using one of the values in Table 9.1 for the internalFormat parameter of
any of the glTexImage functions.

TABLE 9.1 Compressed Texture Formats

Compressed Format Base Internal Format

GL_COMPRESSED_ALPHA GL_ALPHA

GL_COMPRESSED_LUMINANCE GL_LUMINANCE

GL_COMPRESSED_LUMINANCE_ALPHA GL_LUMINANCE_ALPHA

GL_COMPRESSED_INTENSITY GL_INTENSITY

GL_COMPRESSED_RGB GL_RGB

GL_COMPRESSED_RGBA GL_RGBA

Compressing images this way adds a bit of overhead to texture loads but can increase
texture performance due to the more efficient usage of texture memory. If, for some
reason, the texture cannot be compressed, OpenGL uses the base internal format listed
instead and loads the texture uncompressed.

When you attempt to load and compress a texture in this way, you can find out whether
the texture was successfully compressed by using glGetTexLevelParameteriv with
GL_TEXTURE_COMPRESSED as the parameter name:

GLint compFlag;

. . .

glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_COMPRESSED, &compFlag);

The glGetTexLevelParameteriv function accepts a number of new parameter names
pertaining to compressed textures. These parameters are listed in Table 9.2.

TABLE 9.2 Compressed Texture Parameters Retrieved with glGetTexLevelParameter

Parameter Returns

GL_TEXTURE_COMPRESSED The value 1 if the texture is compressed, 0 if not

GL_TEXTURE_COMPRESSED_IMAGE_SIZE The size in bytes of the compressed texture

GL_TEXTURE_INTERNAL_FORMAT The compression format used

GL_NUM_COMPRESSED_TEXTURE_FORMATS The number of supported compressed texture

formats

GL_COMPRESSED_TEXTURE_FORMATS An array of constant values corresponding to each

supported compressed texture format

GL_TEXTURE_COMPRESSION_HINT The value of the texture compression hint

(GL_NICEST/GL_FASTEST)

CHAPTER 9 Texture Mapping: Beyond the Basics348

When textures are compressed using the values listed in Table 9.1, OpenGL chooses the
most appropriate texture compression format. You can use glHint to specify whether you
want OpenGL to choose based on the fastest or highest quality algorithm:

glHint(GL_TEXTURE_COMPRESSION_HINT, GL_FASTEST);

glHint(GL_TEXTURE_COMPRESSION_HINT, GL_NICEST);

glHint(GL_TEXTURE_COMPRESSION_HINT, GL_DONT_CARE);

The exact compression format varies from implementation to implementation. You can
obtain a count of compression formats and a list of the values by using GL_NUM_
COMPRESSED_TEXTURE_FORMATS and GL_COMPRESSED_TEXTURE_FORMATS. To check for support
for a specific set of compressed texture formats, you need to check for a specific extension
for those formats. For example, nearly all implementations support the
GL_EXT_texture_compression_s3tc texture compression format. If this extension is
supported, the compressed texture formats listed in Table 9.3 are all supported, but only
for two-dimensional textures.

TABLE 9.3 Compression Formats for GL_EXT_texture_compression_s3tc

Format Description

GL_COMPRESSED_RGB_S3TC_DXT1 RGB data is compressed; alpha is always 1.0.

GL_COMPRESSED_RGBA_S3TC_DXT1 RGB data is compressed; alpha is either 1.0 or 0.0.

GL_COMPRESSED_RGBA_S3TC_DXT3 RGB data is compressed; alpha is stored as 4 bits.

GL_COMPRESSED_RGBA_S3TC_DXT5 RGB data is compressed; alpha is a weighted average

of 8-bit values.

Loading Compressed Textures
Using the functions in the preceding section, you can have OpenGL compress textures
in a natively supported format, retrieve the compressed data with the
glGetCompressedTexImage function (identical to the glGetTexImage function for uncom-
pressed textures), and save it to disk. On subsequent loads, the raw compressed data can
be used, resulting in substantially faster texture loads. Be advised, however, that some
vendors may cheat a little when it comes to texture loading in order to optimize texture
storage or filtering operations. This technique will work only on fully conformant hard-
ware implementations.

To load precompressed texture data, use one of the following functions:

void glCompressedTexImage1D(GLenum target, GLint level, GLenum internalFormat,

GLsizei width,

GLint border, GLsizei imageSize, void *data);

void glCompressedTexImage2D(GLenum target, GLint level, GLenum internalFormat,

GLsizei width, GLsizei height,

GLint border, GLsizei imageSize, void *data);

Texture Compression 349

9

void glCompressedTexImage3D(GLenum target, GLint level, GLenum internalFormat,

GLsizei width, GLsizei height, GLsizei depth,

GLint border, Glsizei imageSize, GLvoid *data);

These functions are virtually identical to the glTexImage functions from the preceding
chapter. The only difference is that the internalFormat parameter must specify a
supported compressed texture image. If the implementation supports the
GL_EXT_texture_compression_s3tc extension, this would be one of the values from Table
9.3. There is also a corresponding set of glCompressedTexSubImage functions for updating
a portion or all of an already-loaded texture that mirrors the glTexSubImage functionality
from the preceding chapter.

Texture compression is a very popular texture feature. Smaller textures take up less storage,
transmit faster over networks, load faster off disk, copy faster to graphics memory, allow
for substantially more texture to be loaded onto hardware, and generally texture slightly
faster to boot! Don’t forget, though, as with so many things in life, there is no such thing
as a free lunch. Something may be lost in the compression. The GL_EXT_texture_compres-
sion_s3tc method, for example, works by stripping color data out of each texel. For some
textures, this results in substantial image quality loss (particularly for textures that contain
smooth color gradients). Other times, textures with a great deal of detail are visually
nearly identical to the original uncompressed version. The choice of texture compression
method (or indeed no compression) can vary greatly depending on the nature of the
underlying image.

Texture Coordinate Generation
In Chapter 8, you learned that textures are mapped to geometry using texture coordinates.
Often, when you are loading models (see Chapter 11, “It’s All About the Pipeline: Faster
Geometry Throughput”), texture coordinates are provided for you. If necessary, you can
easily map texture coordinates manually to some surfaces such as spheres or flat planes.
Sometimes, however, you may have a complex surface for which it is not so easy to manu-
ally derive the coordinates. OpenGL can automatically generate texture coordinates for
you within certain limitations.

Texture coordinate generation is enabled on the S, T, R, and Q texture coordinates using
glEnable:

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_GEN_Q);

When texture coordinate generation is enabled, any calls to glTexCoord are ignored, and
OpenGL calculates the texture coordinates for each vertex for you. In the same manner
that texture coordinate generation is turned on, you turn it off by using glDisable:

CHAPTER 9 Texture Mapping: Beyond the Basics350

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

glDisable(GL_TEXTURE_GEN_Q);

You set the function or method used to generate texture coordinates with the following
functions:

void glTexGenf(GLenum coord, GLenum pname, GLfloat param);

void glTexGenfv(GLenum coord, GLenum pname, GLfloat *param);

The first parameter, coord, specifies which texture coordinate this function sets. It must be
GL_S, GL_T, GL_R, or GL_Q. The second parameter, pname, must be GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. The last parameter sets the values of the texture gener-
ation function or mode. Note that integer (GLint) and double (GLdouble) versions of these
functions are also used.

The pertinent portions of the sample program TEXGEN are presented in Listing 9.1. This
program displays a torus that can be manipulated (rotated around) using the arrow keys. A
right-click brings up a context menu that allows you to select from the first three texture
generation modes we will discuss: Object Linear, Eye Linear, and Sphere Mapping.

LISTING 9.1 Source Code for the TEXGEN Sample Program

#include “../../shared/gltools.h” // gltools library

// Rotation amounts

static GLfloat xRot = 0.0f;

static GLfloat yRot = 0.0f;

GLuint toTextures[2]; // Two texture objects

int iRenderMode = 3; // Sphere Mapped is default

///

// Reset flags as appropriate in response to menu selections

void ProcessMenu(int value)

{

// Projection plane

GLfloat zPlane[] = { 0.0f, 0.0f, 1.0f, 0.0f };

// Store render mode

iRenderMode = value;

// Set up textgen based on menu selection

Texture Coordinate Generation 351

9

LISTING 9.1 Continued

switch(value)

{

case 1:

// Object Linear

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGenfv(GL_S, GL_OBJECT_PLANE, zPlane);

glTexGenfv(GL_T, GL_OBJECT_PLANE, zPlane);

break;

case 2:

// Eye Linear

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGenfv(GL_S, GL_EYE_PLANE, zPlane);

glTexGenfv(GL_T, GL_EYE_PLANE, zPlane);

break;

case 3:

default:

// Sphere Map

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

break;

}

glutPostRedisplay(); // Redisplay

}

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Switch to orthographic view for background drawing

glMatrixMode(GL_PROJECTION);

glPushMatrix();

glLoadIdentity();

gluOrtho2D(0.0f, 1.0f, 0.0f, 1.0f);

CHAPTER 9 Texture Mapping: Beyond the Basics352

LISTING 9.1 Continued

glMatrixMode(GL_MODELVIEW);

glBindTexture(GL_TEXTURE_2D, toTextures[1]); // Background texture

// We will specify texture coordinates

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

// No depth buffer writes for background

glDepthMask(GL_FALSE);

// Background image

glBegin(GL_QUADS);

glTexCoord2f(0.0f, 0.0f);

glVertex2f(0.0f, 0.0f);

glTexCoord2f(1.0f, 0.0f);

glVertex2f(1.0f, 0.0f);

glTexCoord2f(1.0f, 1.0f);

glVertex2f(1.0f, 1.0f);

glTexCoord2f(0.0f, 1.0f);

glVertex2f(0.0f, 1.0f);

glEnd();

// Back to 3D land

glMatrixMode(GL_PROJECTION);

glPopMatrix();

glMatrixMode(GL_MODELVIEW);

// Turn texgen and depth writing back on

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glDepthMask(GL_TRUE);

// May need to switch to stripe texture

if(iRenderMode != 3)

glBindTexture(GL_TEXTURE_2D, toTextures[0]);

// Save the matrix state and do the rotations

glPushMatrix();

glTranslatef(0.0f, 0.0f, -2.0f);

Texture Coordinate Generation 353

9

LISTING 9.1 Continued

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Draw the torus

gltDrawTorus(0.35, 0.15, 61, 37);

// Restore the matrix state

glPopMatrix();

// Display the results

glutSwapBuffers();

}

Object Linear Mapping
When the texture generation mode is set to GL_OBJECT_LINEAR, texture coordinates are
generated using the following function:

coord = P1*X + P2*Y + P3*Z + P4*W

The X, Y, Z, and W values are the vertex coordinates from the object being textured, and
the P1–P4 values are the coefficients for a plane equation. The texture coordinates are
then projected onto the geometry from the perspective of this plane. For example, to
project texture coordinates for S and T from the plane Z = 0, we would use the following
code from the TEXGEN sample program:

// Projection plane

GLfloat zPlane[] = { 0.0f, 0.0f, 1.0f, 0.0f };

. . .

. . .

// Object Linear

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGenfv(GL_S, GL_OBJECT_PLANE, zPlane);

glTexGenfv(GL_T, GL_OBJECT_PLANE, zPlane);

Note that the texture coordinate generation function can be based on a different plane
equation for each coordinate. Here, we simply use the same one for both the S and the
T coordinates.

This technique maps the texture to the object in object coordinates, regardless of any
modelview transformation in effect. Figure 9.7 shows the output for TEXGEN when the
Object Linear mode is selected. No matter how you reorient the torus, the mapping
remains fixed to the geometry.

CHAPTER 9 Texture Mapping: Beyond the Basics354

FIGURE 9.7 Torus mapped with object linear coordinates.

Eye Linear Mapping
When the texture generation mode is set to GL_EYE_LINEAR, texture coordinates are gener-
ated in a similar manner to GL_OBJECT_LINEAR. The coordinate generation looks the same,
except that now the X, Y, Z, and W coordinates indicate the location of the point of view
(where the camera or eye is located). The plane equation coefficients are also inverted
before being applied to the equation to account for the fact that now everything is in eye
coordinates.

The texture, therefore, is basically projected from the plane onto the geometry. As the
geometry is transformed by the modelview matrix, the texture will appear to slide across
the surface. We set up this capability with the following code from the TEXGEN sample
program:

// Projection plane

GLfloat zPlane[] = { 0.0f, 0.0f, 1.0f, 0.0f };

. . .

. . .

// Eye Linear

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

Texture Coordinate Generation 355

9

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGenfv(GL_S, GL_EYE_PLANE, zPlane);

glTexGenfv(GL_T, GL_EYE_PLANE, zPlane);

The output of the TEXGEN program when the Eye Linear menu option is selected is
shown in Figure 9.8. As you move the torus around with the arrow keys, note how the
projected texture slides about on the geometry.

CHAPTER 9 Texture Mapping: Beyond the Basics356

FIGURE 9.8 An example of eye linear texture mapping.

Sphere Mapping
When the texture generation mode is set to GL_SPHERE_MAP, OpenGL calculates texture
coordinates in such a way that the object appears to be reflecting the current texture map.
This is the easiest mode to set up, with just these two lines from the TEXGEN sample
program:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

You usually can make a well-constructed texture by taking a photograph through a fish-eye
lens. This texture then lends a convincing reflective quality to the geometry. For more

realistic results, sphere mapping has largely been replaced by cube mapping (discussed next).
However, sphere mapping still has some uses because it has significantly less overhead.

In particular, sphere mapping requires only a single texture instead of six, and if true
reflectivity is not required, you can obtain adequate results from sphere mapping. Even
without a well-formed texture taken through a fish-eye lens, you can also use sphere
mapping for an approximate environment map. Many surfaces are shiny and reflect the
light from their surroundings, but are not mirror-like in their reflective qualities. In the
TEXGEN sample program, we use a suitable environment map for the background (all
modes show this background), as well as the source for the sphere map. Figure 9.9 shows
the environment-mapped torus against a similarly colored background. Moving the torus
around with the arrow keys produces a reasonable approximation of a reflective surface.

Texture Coordinate Generation 357

9

FIGURE 9.9 An environment map using a sphere map.

Cube Mapping
The last two texture generation modes, GL_REFLECTION_MAP and GL_NORMAL_MAP, require
the use of a new type of texture target: the cube map. A cube map is treated as a single
texture, but is made up of six square (yes, they must be square!) 2D images that make up
the six sides of a cube. Figure 9.10 shows the layout of six square textures composing a
cube map for the CUBEMAP sample program.

FIGURE 9.10 The layout of six cube faces in the CUBEMAP sample program.

These six 2D tiles represent the view of the world from six different directions (negative
and positive X, Y, and Z). Using the texture generation mode GL_REFLECTION_MAP, you can
then create a realistically reflective surface.

Loading Cube Maps
Cube maps add six new values that can be passed into glTexImage2D:
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and GL_TEXTURE_CUBE_MAP_NEGATIVE_Z. These
constants represent the direction in world coordinates of the cube face surrounding the
object being mapped. For example, to load the map for the positive X direction, you
might use a function that looks like this:

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA, iWidth, iHeight,

0, GL_RGBA, GL_UNSIGNED_BYTE, pImage);

To take this example further, look at the following code segment from the CUBEMAP
sample program. Here, we store the name and identifiers of the six cube maps in arrays
and then use a loop to load all six images into a single texture object:

const char *szCubeFaces[6] = { “pos_x.tga”, “neg_x.tga”, “pos_y.tga”,

“neg_y.tga”,”pos_z.tga”, “neg_z.tga” };

CHAPTER 9 Texture Mapping: Beyond the Basics358

GLenum cube[6] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X,

GL_TEXTURE_CUBE_MAP_NEGATIVE_X,

GL_TEXTURE_CUBE_MAP_POSITIVE_Y,

GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,

GL_TEXTURE_CUBE_MAP_POSITIVE_Z,

GL_TEXTURE_CUBE_MAP_NEGATIVE_Z };

. . .

. . .

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

GLbyte *pBytes;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

// Load Cube Map images

for(i = 0; i < 6; i++)

{

// Load this texture map

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_GENERATE_MIPMAP, GL_TRUE);

pBytes = gltLoadTGA(szCubeFaces[i], &iWidth, &iHeight,

&iComponents, &eFormat);

glTexImage2D(cube[i], 0, iComponents, iWidth, iHeight, 0, eFormat,

GL_UNSIGNED_BYTE, pBytes);

free(pBytes);

}

To enable the application of the cube map, we now call glEnable with
GL_TEXTURE_CUBE_MAP instead of GL_TEXTURE_2D (we also use the same value in
glBindTexture when using texture objects):

glEnable(GL_TEXTURE_CUBE_MAP);

If both GL_TEXTURE_CUBE_MAP and GL_TEXTURE_2D are enabled, GL_TEXTURE_CUBE_MAP has
precedence. Also, notice that the texture parameter values (set with glTexParameter) affect
all six images in a single cube texture.

Texture Coordinate Generation 359

9

Texture coordinates for cube maps seem a little odd at first glance. Unlike a true 3D
texture, the S, T, and R texture coordinates represent a signed vector from the center of the
texture map. This vector intersects one of the six sides of the cube map. The texels around
this intersection point are then sampled to create the filtered color value from the texture.

Using Cube Maps
The most common use of cube maps is to create an object that reflects its surroundings.
The six images used for the CUBEMAP sample program were provided courtesy of The
Game Creators, Ltd. (www.thegamecreators.com). This cube map is applied to a sphere,
creating the appearance of a mirrored surface. This same cube map is also applied to the
skybox, which creates the background being reflected.

A skybox is nothing more than a big box with a picture of the sky on it. Another way of
looking at it is as a picture of the sky on a big box! Simple enough. An effective skybox
contains six images that contain views from the center of your scene along the six direc-
tional axes. If this sounds just like a cube map, congratulations, you’re paying attention!
For our CUBEMAP sample program a large box is drawn around the scene, and the
CUBEMAP texture is applied to the six faces of the cube. The skybox is drawn as a single
batch of six GL_QUADS. Each face is then manually textured using glTexCoord3f. For each
vertex, a vector is specified that points to that corner of the sky box. The first side (in the
negative X direction) is shown here:

glBegin(GL_QUADS);

//

// Negative X

glTexCoord3f(-1.0f, -1.0f, 1.0f);

glVertex3f(-fExtent, -fExtent, fExtent);

glTexCoord3f(-1.0f, -1.0f, -1.0f);

glVertex3f(-fExtent, -fExtent, -fExtent);

glTexCoord3f(-1.0f, 1.0f, -1.0f);

glVertex3f(-fExtent, fExtent, -fExtent);

glTexCoord3f(-1.0f, 1.0f, 1.0f);

glVertex3f(-fExtent, fExtent, fExtent);

. . .

. . .

It is important to remember that in order for the manual selection of texture coordinates
via glTexCoord3f to work, you must disable the texture coordinate generation:

// Sky Box is manually textured

glDisable(GL_TEXTURE_GEN_S);

CHAPTER 9 Texture Mapping: Beyond the Basics360

www.thegamecreators.com

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

DrawSkyBox();

To draw the reflective sphere, the CUBEMAP sample sets the texture generation mode to
GL_REFLECTION_MAP for all three texture coordinates:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

We must also make sure that texture coordinate generation is enabled:

// Use texgen to apply cube map

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

To provide a true reflection, we also take the orientation of the camera into account. The
camera’s rotation matrix is extracted from the camera class, and inverted. This is then
applied to the texture matrix before the cube map is applied. Without this rotation of the
texture coordinates, the cube map will not correctly reflect the surrounding skybox. Since
the gltDrawSphere function makes no modelview matrix mode changes, we can also leave
the matrix mode as GL_TEXTURE until we are through drawing and have restored the
texture matrix to its original state (usually this will be the identity matrix):

glMatrixMode(GL_TEXTURE);

glPushMatrix();

// Invert camera matrix (rotation only) and apply to

// texture coordinates

M3DMatrix44f m, invert;

frameCamera.GetCameraOrientation(m);

m3dInvertMatrix44(invert, m);

glMultMatrixf(invert);

gltDrawSphere(0.75f, 41, 41);

glPopMatrix();

glMatrixMode(GL_MODELVIEW);

Figure 9.11 shows the output of the CUBEMAP sample program. Notice how the sky and
surrounding terrain are reflected correctly off the surface of the sphere. Moving the camera
around the sphere (by using the arrow keys) reveals the correct background and sky view
reflected accurately off the sphere as well.

Texture Coordinate Generation 361

9

FIGURE 9.11 Output from the CUBEMAP sample program. (This figure also appears in the
Color insert.)

Multitexture
Modern OpenGL hardware implementations support the capability to apply two or more
textures to geometry simultaneously. If an implementation supports more than one
texture unit, you can query with GL_MAX_TEXTURE_UNITS to see how many texture units are
available:

GLint iUnits;

glGetIntegerv(GL_MAX_TEXTURE_UNITS, &iUnits);

Textures are applied from the base texture unit (GL_TEXTURE0), up to the maximum
number of texture units in use (GL_TEXTUREn, where n is the number of texture units in
use). Each texture unit has its own texture environment that determines how fragments
are combined with the previous texture unit. Figure 9.12 shows three textures being
applied to geometry, each with its own texture environment.

In addition to its own texture environment, each texture unit has its own texture matrix
and set of texture coordinates. Each texture unit has its own texture bound to it with
different filter modes and edge clamping parameters. You can even use different texture
coordinate generation modes for each texture.

CHAPTER 9 Texture Mapping: Beyond the Basics362

FIGURE 9.12 Multitexture order of operations.

By default, the first texture unit is the active texture unit. All texture commands, with the
exception of glTexCoord, affect the currently active texture unit. You can change the
current texture unit by calling glActiveTexture with the texture unit identifier as the
argument. For example, to switch to the second texture unit and enable 2D texturing on
that unit, you would call the following:

glActiveTexture(GL_TEXTURE1);

glEnable(GL_TEXTURE_2D);

To disable texturing on the second texture unit and switch back to the first (base) texture
unit, you would make these calls:

glDisable(GL_TEXTURE_2D);

glActiveTexture(GL_TEXTURE0);

All calls to texture functions such as glTexParameter, glTexEnv, glTexGen, glTexImage,
and glBindTexture are bound only to the current texture unit. When geometry is
rendered, texture is applied from all enabled texture units using the texture environment
and parameters previously specified.

Multiple Texture Coordinates
Occasionally, you might apply all active textures using the same texture coordinates for
each texture, but this is rarely the case. When using multiple textures, you can still specify
texture coordinates with glTexCoord; however, these texture coordinates are used only for
the first texture unit (GL_TEXTURE0). To specify texture coordinates separately for each
texture unit, you need one of the new texture coordinate functions:

Multitexture 363

9

Lit or
Colored

Geometry

Texture
UNIT 0

Texture
UNIT 1

+

+

+ …

Texture
Environment + 0

Texture
Environment + 1

GlMultiTexCoord1f(GLenum texUnit, GLfloat s);

glMultiTexCoord2f(GLenum texUnit, GLfloat s, GLfloat t);

glMultiTexCoord3f(GLenum texUnit, GLfloat s, GLfloat t, Glfloat r);

The texUnit parameter is GL_TEXTURE0, GL_TEXTURE1, and so on up to the maximum
number of supported texturing units. In these functions, you specify the s, t, and r coor-
dinates of a one-, two-, or three-dimensional texture (including cube maps). You can also
use texture coordinate generation on one or more texture units.

A Multitextured Example
Listing 9.2 presents some of the code for the sample program MULTITEXTURE. This
program is similar to the CUBEMAP program, and only the important changes are listed
here. In this example, we place the CUBEMAP texture on the second texture unit, and on
the first texture unit we use a “tarnish” looking texture. When the tarnish texture is multi-
plied by the cube map texture, we get the same reflective surface as before, but now there
are fixed darker spots that appear as blemishes on the mirrored surface. Make note of the
fact that each texture unit has its own texture matrix. Therefore, we must take care to
apply the inverse of the camera matrix, only to the texture unit containing the reflected
cube map. Figure 9.13 shows the output from the MULTITEXTURE program.

CHAPTER 9 Texture Mapping: Beyond the Basics364

FIGURE 9.13 Output from the MULTITEXTURE sample program.

LISTING 9.2 Source Code for the MULTITEXTURE Sample Program

#include “../../shared/gltools.h” // OpenGL toolkit

#include “../../shared/glframe.h” // Camera class

#include <math.h>

. . .

. . .

// Storage for two texture objects

GLuint textureObjects[2];

#define CUBE_MAP 0

#define COLOR_MAP 1

. . .

. . .

//

// This function does any needed initialization on the rendering

// context.

void SetupRC()

{

GLbyte *pBytes;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

int i;

// Cull backs of polygons

glCullFace(GL_BACK);

glFrontFace(GL_CCW);

glEnable(GL_CULL_FACE);

glEnable(GL_DEPTH_TEST);

glGenTextures(2, textureObjects);

// Set up texture maps

// Cube Map

glBindTexture(GL_TEXTURE_CUBE_MAP, textureObjects[CUBE_MAP]);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

Multitexture 365

9

LISTING 9.2 Continued

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

// Load Cube Map images

for(i = 0; i < 6; i++)

{

// Load this texture map

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_GENERATE_MIPMAP, GL_TRUE);

pBytes = gltLoadTGA(szCubeFaces[i], &iWidth, &iHeight,

&iComponents, &eFormat);

glTexImage2D(cube[i], 0, iComponents, iWidth, iHeight,

0, eFormat, GL_UNSIGNED_BYTE, pBytes);

free(pBytes);

}

// Color map

glBindTexture(GL_TEXTURE_2D, textureObjects[COLOR_MAP]);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);

pBytes = gltLoadTGA(“tarnish.tga”, &iWidth, &iHeight,

&iComponents, &eFormat);

glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight,

0, eFormat, GL_UNSIGNED_BYTE, pBytes);

free(pBytes);

///

// Set up the texture units

// First texture unit contains the color map

glActiveTexture(GL_TEXTURE0);

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, textureObjects[COLOR_MAP]);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); // Decal tarnish

// Second texture unit contains the cube map

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_CUBE_MAP, textureObjects[CUBE_MAP]);

CHAPTER 9 Texture Mapping: Beyond the Basics366

LISTING 9.2 Continued

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

glEnable(GL_TEXTURE_CUBE_MAP);

// Multiply this texture by the one underneath

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

}

///

// Draw the skybox. This is just six quads, with texture

// coordinates set to the corners of the cube map

void DrawSkyBox(void)

{

GLfloat fExtent = 15.0f;

glBegin(GL_QUADS);

//

// Negative X

// Note, we must now use the multitexture version of glTexCoord

glMultiTexCoord3f(GL_TEXTURE1, -1.0f, -1.0f, 1.0f);

glVertex3f(-fExtent, -fExtent, fExtent);

glMultiTexCoord3f(GL_TEXTURE1, -1.0f, -1.0f, -1.0f);

glVertex3f(-fExtent, -fExtent, -fExtent);

glMultiTexCoord3f(GL_TEXTURE1, -1.0f, 1.0f, -1.0f);

glVertex3f(-fExtent, fExtent, -fExtent);

glMultiTexCoord3f(GL_TEXTURE1, -1.0f, 1.0f, 1.0f);

glVertex3f(-fExtent, fExtent, fExtent);

. . .

. . .

glEnd();

}

// Called to draw scene

void RenderScene(void)

Multitexture 367

9

LISTING 9.2 Continued

{

// Clear the window

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

frameCamera.ApplyCameraTransform(); // Move the camera about

// Sky Box is manually textured

glActiveTexture(GL_TEXTURE0);

glDisable(GL_TEXTURE_2D);

glActiveTexture(GL_TEXTURE1);

glEnable(GL_TEXTURE_CUBE_MAP);

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

DrawSkyBox();

// Use texgen to apply cube map

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glActiveTexture(GL_TEXTURE0);

glEnable(GL_TEXTURE_2D);

glPushMatrix();

glTranslatef(0.0f, 0.0f, -3.0f);

glActiveTexture(GL_TEXTURE1);

glMatrixMode(GL_TEXTURE);

glPushMatrix();

// Invert camera matrix (rotation only) and apply to

// texture coordinates

M3DMatrix44f m, invert;

frameCamera.GetCameraOrientation(m);

m3dInvertMatrix44(invert, m);

glMultMatrixf(invert);

CHAPTER 9 Texture Mapping: Beyond the Basics368

LISTING 9.2 Continued

glColor3f(1.0f, 1.0f, 1.0f);

gltDrawSphere(0.75f, 41, 41);

glPopMatrix();

glMatrixMode(GL_MODELVIEW);

glPopMatrix();

glPopMatrix();

// Do the buffer Swap

glutSwapBuffers();

}

Texture Combiners
In Chapter 6, “More on Colors and Materials,” you learned how to use the blending equa-
tion to control the way color fragments were blended together when multiple layers of
geometry were drawn in the color buffer (typically back to front). OpenGL’s texture
combiners allow the same sort of control (only better) for the way multiple texture frag-
ments are combined. By default, you can simply choose one of the texture environment
modes (GL_DECAL, GL_REPLACE, GL_MODULATE, or GL_ADD) for each texture unit, and the
results of each texture application are then added to the next texture unit. These texture
environments were covered in Chapter 8.

Texture combiners add a new texture environment, GL_COMBINE, that allows you to explic-
itly set the way texture fragments from each texture unit are combined. To use texture
combiners, you call glTexEnv in the following manner:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);

Texture combiners are controlled entirely through the glTexEnv function. Next, you need
to select which texture combiner function you want to use. The combiner function selec-
tor, which can be either GL_COMBINE_RGB or GL_COMBINE_ALPHA, becomes the second argu-
ment to the glTexEnv function. The third argument becomes the texture environment
function that you want to employ (for either RGB or alpha values). These functions are
listed in Table 9.4. For example, to select the GL_REPLACE combiner for RGB values, you
would call the following function:

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE);

This combiner does little more than duplicate the normal GL_REPLACE texture
environment.

Texture Combiners 369

9

TABLE 9.4 Texture Combiner Functions

Constant Function

GL_REPLACE Arg0

GL_MODULATE Arg0 * Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 – 0.5

GL_INTERPOLATE (Arg0 * Arg2) + (Arg1 * (1 – Arg2))

GL_SUBTRACT Arg0 – Arg1

GL_DOT3_RGB/GL_DOT3_RGBA 4*((Arg0r – 0.5) * (Arg1r – 0.5) + (Arg0g – 0.5) *

(Arg1g – 0.5) + (Arg0b – 0.5) * (Arg1b – 0.5))

The values of Arg0 – Arg2 are from source and operand values set with more calls to
glTexEnv. The values GL_SOURCEx_RGB and GL_SOURCEx_ALPHA are used to specify the RGB
or alpha combiner function arguments, where x is 0, 1, or 2. The values for these sources
are given in Table 9.5.

TABLE 9.5 Texture Combiner Sources

Constant Description

GL_TEXTURE The texture bound to the current active texture unit

GL_TEXTUREx The texture bound to texture unit x

GL_CONSTANT The color (or alpha) value set by the texture environ-

ment variable GL_TEXTURE_ENV_COLOR

GL_PRIMARY_COLOR The color (or alpha) value coming from the original

geometry fragment

GL_PREVIOUS The color (or alpha) value resulting from the previous

texture unit’s texture environment

For example, to select the texture from texture unit 0 for Arg0, you would make the
following function call:

glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0);

You also have some additional control over what values are used from a given source for
each argument. To set these operands, you use the constant GL_OPERANDx_RGB or
GL_OPERANDx_ALPHA, where x is 0, 1, or 2. The valid operands and their meanings are given
in Table 9.6.

CHAPTER 9 Texture Mapping: Beyond the Basics370

TABLE 9.6 Texture Combiner Operands

Constant Meaning

GL_SRC_COLOR The color values from the source. This may not be used with

GL_OPERANDx_ALPHA.

GL_ONE_MINUS_SRC_COLOR One’s complement (1-value) of the color values

from the source. This may not be used with GL_OPERANDx_ALPHA.

GL_SRC_ALPHA The alpha values of the source.

GL_ONE_MINUS_SRC_ALPHA One’s complement (1-value) of the alpha values from the source.

For example, if you have two textures loaded on the first two texture units, and you want
to multiply the color values from both textures during the texture application, you would
set it up as shown here:

// Tell OpenGL you want to use texture combiners

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);

// Tell OpenGL which combiner you want to use (GL_MODULATE for RGB values)

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);

// Tell OpenGL to use texture unit 0’s color values for Arg0

glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0);

glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);

// Tell OpenGL to use texture unit 1’s color values for Arg1

glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE1);

glTexenvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);

Finally, with texture combiners, you can also specify a constant RGB or alpha scaling
factor. The default parameters for these are as shown here:

glTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE, 1.0f);

glTexEnvf(GL_TEXTURE_ENV, GL_ALPHA_SCALE, 1.0f);

Texture combiners add a lot of flexibility to legacy OpenGL implementations. For ultimate
control over how texture layers can be combined, we will later turn to shaders.

Point Sprites
Point sprites are an exciting feature supported by OpenGL version 1.5 and later. Although
OpenGL has always supported texture mapped points, prior to version 1.5 this meant a
single texture coordinate applied to an entire point. Large textured points were simply
large versions of a single filtered texel. With point sprites you can place a 2D textured
image anywhere onscreen by drawing a single 3D point.

Point Sprites 371

9

Probably the most common application of point sprites is for particle systems. A large
number of particles moving onscreen can be represented as points to produce a number of
visual effects. However, representing these points as small overlapped 2D images can
produce dramatic streaming animated filaments. For example, Figure 9.14 shows a well-
known screensaver on the Macintosh powered by just such a particle effect.

CHAPTER 9 Texture Mapping: Beyond the Basics372

FIGURE 9.14 A particle effect in the flurry screen saver.

Before point sprites, achieving this type of effect was a matter of drawing a large number
of textured quads onscreen. This could be accomplished either by performing a costly rota-
tion to each individual quad to make sure that it faced the camera, or by drawing all parti-
cles in a 2D orthographic projection. Point sprites allow you to render a perfectly aligned
textured 2D square by sending down a single 3D vertex. At one-quarter the bandwidth of
sending down four vertices for a quad, and no client-side matrix monkey business to keep
the 3D quad aligned with the camera, point sprites are a potent and efficient feature of
OpenGL.

Using Points
Point sprites are very easy to use. Simply bind to a 2D texture, enable GL_POINT_SPRITE, set
the texture environment target GL_POINT_SPRITE’s GL_COORD_REPLACE parameter to true,
and send down 3D points:

glBindTexture(GL_TEXTURE_2D, objectID);

glEnable(GL_POINT_SPRITE);

glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glBegin(GL_POINTS);

. . .

. . .

glEnd();

Figure 9.15 shows the output of the sample program POINTSPRITES. This is an updated
version of the SMOOTHER sample program from Chapter 6 that created the star field out
of points. In POINTSPRITES, each point now contains a small star image, and the largest
point contains a picture of the full moon.

Point Sprites 373

9

FIGURE 9.15 A star field drawn with point sprites.

One serious limitation to the use of point sprites is that their size is limited by the range of
aliased point sizes (this was discussed in Chapter 3, “Drawing in Space: Geometric
Primitives and Buffers”). You can quickly determine this implementation-dependent range
with the following two lines of code:

GLfloat fSizes[2];

GLGetFloatfv(GL_ALIASED_POINT_SIZE_RANGE, fSizes);

Following this, the array fSizes will contain the minimum and maximum sizes supported
for point sprites, and regular aliased points.

Texture Application
Point sprites obey all other 2D texturing rules. The texture environment can be set to
GL_DECAL, GL_REPLACE, GL_MODULATE, and so on. They can also be mipmapped and multi-
textured. There are a number of ways, however, to get texture coordinates applied to the
corners of the points. If GL_COORD_REPLACE is set to false, as shown here

glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_FALSE);

then a single texture coordinate is specified with the vertex and applied to the entire
point, resulting in one big texel! Setting this value to GL_TRUE, however, causes OpenGL to
interpolate the texture coordinates across the face of the point. All of this assumes, of
course, that your point size is greater than 1.0!

Point Parameters
A number of features of point sprites (and points in general actually) can be fine-tuned
with the function glPointParameter. Figure 9.16 shows the two possible locations of the
origin (0,0) of the texture applied to a point sprite.

CHAPTER 9 Texture Mapping: Beyond the Basics374

GL_UPPER_LEFT GL_LOWER_LEFT

o

+Y

+X

(0,0)

(1,1)

P

o

+Y

+X

(0,0)

(1,1)

P

FIGURE 9.16 Two potential orientations of textures on a point sprite.

Setting the GL_POINT_SPRITE_COORD_ORIGIN parameter to GL_LOWER_LEFT places the origin
of the texture coordinate system at the lower-left corner of the point:

glPointParameteri(GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT);

The default orientation for point sprites is GL_UPPER_LEFT.

Other non-texture-related point parameters can also be used to set the minimum and
maximum allowable size for points, and to cause point size to be attenuated with distance
from the eye point. See the glPointParameter function entry in Appendix C, “API
Reference,” for details of these other parameters.

Summary
In this chapter, we took texture mapping beyond the simple basics of applying a texture to
geometry. You saw how to get improved filtering, obtain better performance and memory
efficiency through texture compression, and generate automatic texture coordinates for
geometry. You also saw how to add plausible environment maps with sphere mapping and
more realistic and correct reflections using cube maps.

In addition, we discussed multitexture and texture combiners. The capability to apply
more than one texture at a time is the foundation for many special effects, including
hardware support for bump mapping. Using texture combiners, you have a great deal of
flexibility in specifying how up to three textures are combined. While fragment programs
exposed through the new OpenGL shading language do give you ultimate control over
texture application, you can quickly and easily take advantage of these capabilities even
on legacy hardware.

Finally, we covered point sprites, a highly efficient means of placing 2D textures onscreen
for particle systems, and 2D effects.

Summary 375

9

This page intentionally left blank

CHAPTER 10

Curves and Surfaces

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Draw spheres, cylinders, and disks gluSphere/gluCylinder/gluDisk

Use maps to render Bézier glMap/glEvalCoord

curves and surfaces

Use evaluators to simplify glMapGrid/glEvalMesh

surface mapping

Create NURBS surfaces gluNewNurbsRenderer/gluBeginSurface/gluNurbsSurface/

gluEndSurface/gluDeleteNurbsRendererf10

Create trimming curves gluBeginTrim/gluPwlCurve/gluEndTrim

Tessellate concave and convex polygons gluTessBeginPolygon/gluTessEndPolygon

The practice of 3D graphics is little more than a computerized version of connect-the-dots.
Vertices are laid out in 3D space and connected by flat primitives. Smooth curves and
surfaces are approximated using flat polygons and shading tricks. The more polygons
used, usually the more smooth and curved a surface may appear. OpenGL, of course,
supports smooth curves and surfaces implicitly because you can specify as many vertices
as you want and set any desired or calculated values for normals and color values.

378 CHAPTER 10 Curves and Surfaces

OpenGL does provide some additional support, however, that makes the task of construct-
ing more complex surfaces a bit easier. The easiest to use are some GLU functions that
render spheres, cylinders, cones (special types of cylinders, as you will see), and flat, round
disks, optionally with holes in them. OpenGL also provides top-notch support for
complex surfaces that may be difficult to model with a simple mathematical equation:
Bézier and NURB curves and surfaces. Finally, OpenGL can take large, irregular, and
concave polygons and break them up into smaller, more manageable pieces.

Built-in Surfaces
The OpenGL Utility Library (GLU) that accompanies OpenGL contains a number of func-
tions that render three quadratic surfaces. These quadric functions render spheres, cylin-
ders, and disks. You can specify the radius of both ends of a cylinder. Setting one end’s
radius to 0 produces a cone. Disks, likewise, provide enough flexibility for you to specify a
hole in the center (producing a washer-like surface). You can see these basic shapes illus-
trated graphically in Figure 10.1.

Sphere Flat disc Disc with
hole

Cylinder Cone

FIGURE 10.1 Possible quadric shapes.

These quadric objects can be arranged to create more complex models. For example, you
could create a 3D molecular modeling program using just spheres and cylinders. Figure
10.2 shows the 3D unit axes drawn with a sphere, three cylinders, three cones, and three
disks. This model can be included in any of your own programs via the following glTools
function:

void gltDrawUnitAxes(void)

FIGURE 10.2 The x,y,z-axes drawn with quadrics.

Setting Quadric States
The quadric surfaces can be drawn with some flexibility as to whether normals, texture
coordinates, and so on are specified. Putting all these options into parameters to a sphere
drawing function, for example, would create a function with an exceedingly long list of
parameters that must be specified each time. Instead, the quadric functions use an object-
oriented model. Essentially, you create a quadric object and set its rendering state with one
or more state setting functions. Then you specify this object when drawing one of the
surfaces, and its state determines how the surface is rendered. The following code segment
shows how to create an empty quadric object and later delete it:

GLUquadricObj *pObj;

// . . .

pObj = gluNewQuadric(); // Create and initialize Quadric

// Set Quadric rendering Parameters

// Draw Quadric surfaces

// . . .

gluDeleteQuadric(pObj); // Free Quadric object

Built-in Surfaces 379

10

CHAPTER 10 Curves and Surfaces380

Note that you create a pointer to the GLUQuadricObj data type, not an instance of the
data structure itself. The reason is that the gluNewQuadric function not only allocates
space for it, but also initializes the structure members to reasonable default values. Do not
confuse these quadric objects with C++ classes; they are really just C data structures.

There are four functions you can use to modify the drawing state of the GLUQuadricObj
object and, correspondingly, to any surfaces drawn with it. The first function sets the
quadric draw style:

void gluQuadricDrawStyle(GLUquadricObj *obj, GLenum drawStyle);

The first parameter is the pointer to the quadric object to be set, and the drawStyle para-
meter is one of the values in Table 10.1.

TABLE 10.1 Quadric Draw Styles

Constant Description

GLU_FILL Quadric objects are drawn as solid objects.

GLU_LINE Quadric objects are drawn as wireframe objects.

GLU_POINT Quadric objects are drawn as a set of vertex points.

GLU_SILHOUETTE This is similar to a wireframe, except adjoining edges of polygons are not drawn.

The next function specifies whether the quadric surface geometry would be generated
with surface normals:

void gluQuadricNormals(GLUquadricObj *pbj, GLenum normals);

Quadrics may be drawn without normals (GLU_NONE), with smooth normals (GLU_SMOOTH),
or flat normals (GLU_FLAT). The primary difference between smooth and flat normals is
that for smooth normals, one normal is specified for each vertex perpendicular to the
surface being approximated, giving a smoothed-out appearance. For flat normals, all
normals are face normals, perpendicular to the actual triangle (or quad) face.

You can also specify whether the normals point out of the surface or inward. For example,
looking at a lit sphere, you would want normals pointing outward from the surface of the
sphere. However, if you were drawing the inside of a sphere—say, as part of a vaulted
ceiling—you would want the normals and lighting to be applied to the inside of the
sphere. The following function sets this parameter:

void gluQuadricOrientation(GLUquadricObj *obj, GLenum orientation);

Here, orientation can be either GLU_OUTSIDE or GLU_INSIDE. By default, quadric surfaces
are wound counterclockwise, with the front faces facing the outsides of the surfaces. The
outside of the surface is intuitive for spheres and cylinders; for disks, it is simply the side
facing the positive z-axis.

Finally, you can request that texture coordinates be generated for quadric surfaces with the
following function:

void gluQuadricTexture(GLUquadricObj *obj, GLenum textureCoords);

Here, the textureCoords parameter can be either GL_TRUE or GL_FALSE. When texture coor-
dinates are generated for quadric surfaces, they are wrapped around spheres and cylinders
evenly; they are applied to disks using the center of the texture for the center of the disk,
with the edges of the texture lining up with the edges of the disk.

Drawing Quadrics
After the quadric object state has been set satisfactorily, each surface is drawn with a single
function call. For example, to draw a sphere, you simply call the following function:

void gluSphere(GLUQuadricObj *obj, GLdouble radius, GLint slices, GLint stacks);

The first parameter, obj, is just the pointer to the quadric object that was previously set up
for the desired rendering state. The radius parameter is then the radius of the sphere,
followed by the number of slices and stacks. Spheres are drawn with rings of triangle
strips (or quad strips, depending on whose GLU library you’re using) stacked from the
bottom to the top, as shown in Figure 10.3. The number of slices specifies how many
triangle sets (or quads) are used to go all the way around the sphere. You could also think
of this as the number of lines of latitude and longitude around a globe.

Built-in Surfaces 381

10

Slices

Stacks

FIGURE 10.3 A quadric sphere’s stacks and slices.

The quadric spheres are drawn on their sides with the positive z-axis pointing out the top
of the spheres. Figure 10.4 shows a wireframe quadric sphere drawn around the unit axes.

CHAPTER 10 Curves and Surfaces382

FIGURE 10.4 A quadric sphere’s orientation.

Cylinders are also drawn along the positive z-axis and are composed of a number of
stacked strips. The following function, which is similar to the gluSphere function, draws
a cylinder:

void gluCylinder(GLUquadricObj *obj, GLdouble baseRadius,

GLdouble topRadius, GLdouble height,

GLint slices, GLint stacks);

With this function, you can specify both the base radius (near the origin) and the top
radius (out along the positive z-axis). The height parameter is simply the length of the
cylinder. The orientation of the cylinder is shown in Figure 10.5. Figure 10.6 shows the
same cylinder, but with the topRadius parameter set to 0, making a cone.

FIGURE 10.5 A quadric cylinder’s orientation.

Built-in Surfaces 383

10

FIGURE 10.6 A quadric cone made from a cylinder.

The final quadric surface is the disk. Disks are drawn with loops of quads or triangle strips,
divided into some number of slices. You use the following function to render a disk:

void gluDisk(GLUquadricObj *obj, GLdouble innerRadius,

GLdouble outerRadius, GLint slices, GLint loops);

To draw a disk, you specify both an inner radius and an outer radius. If the inner radius is
0, you get a solid disk like the one shown in Figure 10.7. A nonzero radius gives you a disk
with a hole in it, as shown in Figure 10.8. The disk is drawn in the xy plane.

CHAPTER 10 Curves and Surfaces384

FIGURE 10.7 A quadric disk showing loops and slices.

FIGURE 10.8 A quadric disk with a hole in the center.

Modeling with Quadrics
In the sample program SNOWMAN, all the quadric objects are used to piece together a
crude model of a snowman. White spheres make up the three sections of the body. Two
small black spheres make up the eyes, and an orange cone is drawn for the carrot nose.
A cylinder is used for the body of a black top hat, and two disks, one closed and one
open, provide the top and the rim of the hat. The output from SNOWMAN is shown in
Figure 10.9. Listing 10.1 shows the rendering code that draws the snowman by simply
transforming the various quadric surfaces into their respective positions.

Built-in Surfaces 385

10

FIGURE 10.9 A snowman rendered from quadric objects.

LISTING 10.1 Rendering Code for the SNOWMAN Example

void RenderScene(void)

{

GLUquadricObj *pObj; // Quadric Object

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the matrix state and do the rotations

glPushMatrix();

// Move object back and do in place rotation

glTranslatef(0.0f, -1.0f, -5.0f);

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Draw something

pObj = gluNewQuadric();

gluQuadricNormals(pObj, GLU_SMOOTH);

CHAPTER 10 Curves and Surfaces386

LISTING 10.1 Continued

// Main Body

glPushMatrix();

glColor3f(1.0f, 1.0f, 1.0f);

gluSphere(pObj, .40f, 26, 13); // Bottom

glTranslatef(0.0f, .550f, 0.0f); // Mid section

gluSphere(pObj, .3f, 26, 13);

glTranslatef(0.0f, 0.45f, 0.0f); // Head

gluSphere(pObj, 0.24f, 26, 13);

// Eyes

glColor3f(0.0f, 0.0f, 0.0f);

glTranslatef(0.1f, 0.1f, 0.21f);

gluSphere(pObj, 0.02f, 26, 13);

glTranslatef(-0.2f, 0.0f, 0.0f);

gluSphere(pObj, 0.02f, 26, 13);

// Nose

glColor3f(1.0f, 0.3f, 0.3f);

glTranslatef(0.1f, -0.12f, 0.0f);

gluCylinder(pObj, 0.04f, 0.0f, 0.3f, 26, 13);

glPopMatrix();

// Hat

glPushMatrix();

glColor3f(0.0f, 0.0f, 0.0f);

glTranslatef(0.0f, 1.17f, 0.0f);

glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);

gluCylinder(pObj, 0.17f, 0.17f, 0.4f, 26, 13);

// Hat brim

glDisable(GL_CULL_FACE);

gluDisk(pObj, 0.17f, 0.28f, 26, 13);

glEnable(GL_CULL_FACE);

glTranslatef(0.0f, 0.0f, 0.40f);

gluDisk(pObj, 0.0f, 0.17f, 26, 13);

glPopMatrix();

// Restore the matrix state

Built-in Surfaces 387

10

LISTING 10.1 Continued

glPopMatrix();

// Buffer swap

glutSwapBuffers();

}

Bézier Curves and Surfaces
Quadrics provide built-in support for some very simple surfaces easily modeled with alge-
braic equations. Suppose, however, you want to create a curve or surface, and you don’t
have an algebraic equation to start with. It’s far from a trivial task to figure out your
surface in reverse, starting from what you visualize as the result and working down to a
second- or third-order polynomial. Taking a rigorous mathematical approach is time
consuming and error-prone, even with the aid of a computer. You can also forget about
trying to do it in your head.

Recognizing this fundamental need in the art of computer-generated graphics, Pierre
Bézier, an automobile designer for Renault in the 1970s, created a set of mathematical
models that could represent curves and surfaces by specifying only a small set of control
points. In addition to simplifying the representation of curved surfaces, the models facili-
tated interactive adjustments to the shape of the curve or surface.

Other types of curves and surfaces and indeed a whole new vocabulary for computer-
generated surfaces soon evolved. The mathematics behind this magic show are no more
complex than the matrix manipulations in Chapter 4, “Geometric Transformations: The
Pipeline,” and an intuitive understanding of these curves is easy to grasp. As we did in
Chapter 4, we take the approach that you can do a lot with these functions without a
deep understanding of their mathematics.

Parametric Representation
A curve has a single starting point, a length, and an endpoint. It’s really just a line that
squiggles about in 3D space. A surface, on the other hand, has width and length and thus
a surface area. We begin by showing you how to draw some smooth curves in 3D space
and then extend this concept to surfaces. First, let’s establish some common vocabulary
and math fundamentals.

When you think of straight lines, you might think of this famous equation:

y = mx + b

CHAPTER 10 Curves and Surfaces388

Here, m equals the slope of the line, and b is the y intercept of the line (the place where
the line crosses the y-axis). This discussion might take you back to your eighth-grade
algebra class, where you also learned about the equations for parabolas, hyperbolas, expo-
nential curves, and so on. All these equations expressed y (or x) in terms of some function
of x (or y).

Another way of expressing the equation for a curve or line is as a parametric equation. A
parametric equation expresses both x and y in terms of another variable that varies across
some predefined range of values that is not explicitly a part of the geometry of the curve.
Sometimes in physics, for example, the x, y, and z coordinates of a particle might be in
terms of some functions of time, where time is expressed in seconds. In the following, f(),
g(), and h() are unique functions that vary with time (t):

x = f(t)

y = g(t)

z = h(t)

When we define a curve in OpenGL, we also define it as a parametric equation. The para-
metric parameter of the curve, which we call u, and its range of values is the domain of
that curve. Surfaces are described using two parametric parameters: u and v. Figure 10.10
shows both a curve and a surface defined in terms of u and v domains. The important
point to realize here is that the parametric parameters (u and v) represent the extents of
the equations that describe the curve; they do not reflect actual coordinate values.

Bézier Curves and Surfaces 389

10

z

y

x

z

y

x

u = 1.0

u = 0.0

x = f(u)
y = g(u)
z = h(u)

x = f(u,v)
y = f(u,v)
z = f(u,v)

v = 1.0

u = 1.0

u = 0.0
v = 0.0

FIGURE 10.10 Parametric representation of curves and surfaces.

FIGURE 10.11 How control points affect curve shape.

The order of the curve is represented by the number of control points used to describe its
shape. The degree is one less than the order of the curve. The mathematical meaning of
these terms pertains to the parametric equations that exactly describe the curve, with the
order being the number of coefficients and the degree being the highest exponent of the
parametric parameter. If you want to read more about the mathematical basis of Bézier
curves, see Appendix A, “Further Reading/References.”

The curve in Figure 10.11(b) is called a quadratic curve (degree 2), and Figure 10.11(c) is
called a cubic (degree 3). Cubic curves are the most typical. Theoretically, you could define
a curve of any order, but higher order curves start to oscillate uncontrollably and can vary
wildly with the slightest change to the control points.

Continuity
If two curves placed side by side share an endpoint (called the breakpoint), they together
form a piecewise curve. The continuity of these curves at this breakpoint describes how
smooth the transition is between them. The four categories of continuity are none, posi-
tional (C0), tangential (C1), and curvature (C2).

As you can see in Figure 10.12, no continuity occurs when the two curves don’t meet at
all. Positional continuity is achieved when the curves at least meet and share a common
endpoint. Tangential continuity occurs when the two curves have the same tangent at the
breakpoint. Finally, curvature continuity means the two curves’ tangents also have the
same rate of change at the breakpoint (thus an even smoother transition).

CHAPTER 10 Curves and Surfaces390

P2

P2

P3

P0P0

P0

P1

P1

P1

(a) (b) (c)

Control Points
A curve is represented by a number of control points that influence the shape of the curve.
For a Bézier curve, the first and last control points are actually part of the curve. The other
control points act as magnets, pulling the curve toward them. Figure 10.11 shows some
examples of this concept, with varying numbers of control points.

FIGURE 10.12 Continuity of piecewise curves.

Evaluators
OpenGL contains several functions that make it easy to draw Bézier curves and surfaces.
To draw them, you specify the control points and the range for the parametric u and v
parameters. Then, by calling the appropriate evaluation function (the evaluator), OpenGL
generates the points that make up the curve or surface. We start with a 2D example of a
Bézier curve and then extend it to three dimensions to create a Bézier surface.

A 2D Curve
The best way to start is to go through an example, explaining it line by line. Listing 10.2
shows some code from the sample program BEZIER in this chapter’s subdirectory of the
source code distribution on our Web site. This program specifies four control points for a
Bézier curve and then renders the curve using an evaluator. The output from Listing 10.2
is shown in Figure 10.13.

LISTING 10.2 Code from BEZIER That Draws a Bézier Curve with Four Control Points

// The number of control points for this curve

GLint nNumPoints = 4;

GLfloat ctrlPoints[4][3]= {{ -4.0f, 0.0f, 0.0f}, // End Point

{ -6.0f, 4.0f, 0.0f}, // Control Point

{ 6.0f, -4.0f, 0.0f}, // Control Point

{ 4.0f, 0.0f, 0.0f }}; // End Point

Bézier Curves and Surfaces 391

10

None C0-Positional

C1-Tangent

Tangent
line

C2-Curvature

When assembling complex surfaces or curves from many pieces, you usually strive for
tangential or curvature continuity. You’ll see later that some parameters for curve and
surface generation can be chosen to produce the desired continuity.

LISTING 10.2 Continued

// This function is used to superimpose the control points over the curve

void DrawPoints(void)

{

int i; // Counting variable

// Set point size larger to make more visible

glPointSize(5.0f);

// Loop through all control points for this example

glBegin(GL_POINTS);

for(i = 0; i < nNumPoints; i++)

glVertex2fv(ctrlPoints[i]);

glEnd();

}

// Called to draw scene

void RenderScene(void)

{

int i;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Sets up the bezier

// This actually only needs to be called once and could go in

// the setup function

glMap1f(GL_MAP1_VERTEX_3, // Type of data generated

0.0f, // Lower u range

100.0f, // Upper u range

3, // Distance between points in the data

nNumPoints, // number of control points

&ctrlPoints[0][0]); // array of control points

// Enable the evaluator

glEnable(GL_MAP1_VERTEX_3);

// Use a line strip to “connect the dots”

glBegin(GL_LINE_STRIP);

for(i = 0; i <= 100; i++)

{

CHAPTER 10 Curves and Surfaces392

LISTING 10.2 Continued

// Evaluate the curve at this point

glEvalCoord1f((GLfloat) i);

}

glEnd();

// Draw the Control Points

DrawPoints();

// Flush drawing commands

glutSwapBuffers();

}

///////////////////////////////////////

// Set 2D Projection - negative 10 to positive 10 in X and Y

void ChangeSize(int w, int h)

{

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set Viewport to window dimensions

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(-10.0f, 10.0f, -10.0f, 10.0f);

// Modelview matrix reset

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

Bézier Curves and Surfaces 393

10

FIGURE 10.13 Output from the BEZIER sample program.

The first thing we do in Listing 10.2 is define the control points for our curve:

// The number of control points for this curve

GLint nNumPoints = 4;

GLfloat ctrlPoints[4][3]= {{ -4.0f, 0.0f, 0.0f}, // Endpoint

{ -6.0f, 4.0f, 0.0f}, // Control point

{ 6.0f, -4.0f, 0.0f}, // Control point

{ 4.0f, 0.0f, 0.0f }}; // Endpoint

We defined global variables for the number of control points and the array of control
points. To experiment, you can change them by adding more control points or just modi-
fying the position of these points.

The DrawPoints function is reasonably straightforward. We call this function from our
rendering code to display the control points along with the curve. This capability also is
useful when you’re experimenting with control-point placement. Our standard
ChangeSize function establishes a 2D orthographic projection that spans from –10 to +10
in the x and y directions.

CHAPTER 10 Curves and Surfaces394

Finally, we get to the rendering code. The RenderScene function first calls glMap1f (after
clearing the screen) to create a mapping for our curve:

// Called to draw scene

void RenderScene(void)

{

int i;

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Sets up the Bezier

// This actually only needs to be called once and could go in

// the setup function

glMap1f(GL_MAP1_VERTEX_3, // Type of data generated

0.0f, // Lower u range

100.0f, // Upper u range

3, // Distance between points in the data

nNumPoints, // Number of control points

&ctrlPoints[0][0]); // Array of control points

...

...

The first parameter to glMap1f, GL_MAP1_VERTEX_3, sets up the evaluator to generate vertex
coordinate triplets (x, y, and z). You can also have the evaluator generate other values,
such as texture coordinates and color information. See Appendix C, “API Reference,” for
details.

The next two parameters specify the lower and upper bounds of the parametric u value for
this curve. The lower value specifies the first point on the curve, and the upper value spec-
ifies the last point on the curve. All the values in between correspond to the other points
along the curve. Here, we set the range to 0–100.

The fourth parameter to glMap1f specifies the number of floating-point values between
the vertices in the array of control points. Each vertex consists of three floating-point
values (for x, y, and z), so we set this value to 3. This flexibility allows the control points
to be placed in an arbitrary data structure, as long as they occur at regular intervals.

The last parameter is a pointer to a buffer containing the control points used to define the
curve. Here, we pass a pointer to the first element of the array. After creating the mapping
for the curve, we enable the evaluator to make use of this mapping. This capability is
maintained through a state variable, and the following function call is all that is needed to
enable the evaluator to produce points along the curve:

// Enable the evaluator

glEnable(GL_MAP1_VERTEX_3);

Bézier Curves and Surfaces 395

10

The glEvalCoord1f function takes a single argument: a parametric value along the curve.
This function then evaluates the curve at this value and calls glVertex internally for that
point. By looping through the domain of the curve and calling glEvalCoord to produce
vertices, we can draw the curve with a simple line strip:

// Use a line strip to “connect the dots”

glBegin(GL_LINE_STRIP);

for(i = 0; i <= 100; i++)

{

// Evaluate the curve at this point

glEvalCoord1f((GLfloat) i);

}

glEnd();

Finally, we want to display the control points themselves:

// Draw the control points

DrawPoints();

Evaluating a Curve
OpenGL can make things even easier than what we’ve done so far. We set up a grid with
the glMapGrid function, which tells OpenGL to create an evenly spaced grid of points over
the u domain (the parametric argument of the curve). Then we call glEvalMesh to
“connect the dots” using the primitive specified (GL_LINE or GL_POINTS). The two function
calls

// Use higher level functions to map to a grid, then evaluate the

// entire thing.

// Map a grid of 100 points from 0 to 100

glMapGrid1d(100,0.0,100.0);

// Evaluate the grid, using lines

glEvalMesh1(GL_LINE,0,100);

completely replace this code:

// Use a line strip to “connect the dots”

glBegin(GL_LINE_STRIP);

for(i = 0; i <= 100; i++)

{

// Evaluate the curve at this point

glEvalCoord1f((GLfloat) i);

}

glEnd();

CHAPTER 10 Curves and Surfaces396

As you can see, this approach is more compact and efficient, but its real benefit comes
when evaluating surfaces rather than curves.

A 3D Surface
Creating a 3D Bézier surface is much like creating the 2D version. In addition to defining
points along the u domain, we must define them along the v domain. Listing 10.3
contains code from our next sample program, BEZ3D, and displays a wire mesh of a 3D
Bézier surface. The first change from the preceding example is that we have defined three
more sets of control points for the surface along the v domain. To keep this surface simple,
we’ve kept the same control points except for the z value. This way, we create a uniform
surface, as if we simply extruded a 2D Bézier along the z-axis.

LISTING 10.3 BEZ3D Code to Create a Bézier Surface

// The number of control points for this curve

GLint nNumPoints = 3;

GLfloat ctrlPoints[3][3][3]= {{{ -4.0f, 0.0f, 4.0f},

{ -2.0f, 4.0f, 4.0f},

{ 4.0f, 0.0f, 4.0f }},

{{ -4.0f, 0.0f, 0.0f},

{ -2.0f, 4.0f, 0.0f},

{ 4.0f, 0.0f, 0.0f }},

{{ -4.0f, 0.0f, -4.0f},

{ -2.0f, 4.0f, -4.0f},

{ 4.0f, 0.0f, -4.0f }}};

// This function is used to superimpose the control points over the curve

void DrawPoints(void)

{

int i,j; // Counting variables

// Set point size larger to make more visible

glPointSize(5.0f);

// Loop through all control points for this example

glBegin(GL_POINTS);

for(i = 0; i < nNumPoints; i++)

for(j = 0; j < 3; j++)

glVertex3fv(ctrlPoints[i][j]);

Bézier Curves and Surfaces 397

10

LISTING 10.3 Continued

glEnd();

}

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

// Save the modelview matrix stack

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

// Rotate the mesh around to make it easier to see

glRotatef(45.0f, 0.0f, 1.0f, 0.0f);

glRotatef(60.0f, 1.0f, 0.0f, 0.0f);

// Sets up the Bezier

// This actually only needs to be called once and could go in

// the setup function

glMap2f(GL_MAP2_VERTEX_3, // Type of data generated

0.0f, // Lower u range

10.0f, // Upper u range

3, // Distance between points in the data

3, // Dimension in u direction (order)

0.0f, // Lower v range

10.0f, // Upper v range

9, // Distance between points in the data

3, // Dimension in v direction (order)

&ctrlPoints[0][0][0]); // array of control points

// Enable the evaluator

glEnable(GL_MAP2_VERTEX_3);

// Use higher level functions to map to a grid, then evaluate the

// entire thing.

// Map a grid of 10 points from 0 to 10

glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

// Evaluate the grid, using lines

glEvalMesh2(GL_LINE,0,10,0,10);

CHAPTER 10 Curves and Surfaces398

LISTING 10.3 Continued

// Draw the Control Points

DrawPoints();

// Restore the modelview matrix

glPopMatrix();

// Display the image

glutSwapBuffers();

}

Our rendering code is different now, too. In addition to rotating the figure for a better
visual effect, we call glMap2f instead of glMap1f. This call specifies control points along
two domains (u and v) instead of just one (u):

// Sets up the Bezier

// This actually only needs to be called once and could go in

// the setup function

glMap2f(GL_MAP2_VERTEX_3, // Type of data generated

0.0f, // Lower u range

10.0f, // Upper u range

3, // Distance between points in the data

3, // Dimension in u direction (order)

0.0f, // Lower v range

10.0f, // Upper v range

9, // Distance between points in the data

3, // Dimension in v direction (order)

&ctrlPoints[0][0][0]); // Array of control points

We must still specify the lower and upper range for u, and the distance between points in
the u domain is still three. Now, however, we must also specify the lower and upper range
in the v domain. The distance between points in the v domain is now nine values because
we have a three-dimensional array of control points, with each span in the u domain
being three points of three values each (3 × 3 = 9). Then we tell glMap2f how many points
in the v direction are specified for each u division, followed by a pointer to the control
points themselves.

The two-dimensional evaluator is enabled just like the one-dimensional version, and we
call glMapGrid2f with the number of divisions in the u and v direction:

// Enable the evaluator

glEnable(GL_MAP2_VERTEX_3);

// Use higher level functions to map to a grid, then evaluate the

Bézier Curves and Surfaces 399

10

// entire thing.

// Map a grid of 10 points from 0 to 10

glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

After the evaluator is set up, we can call the two-dimensional (meaning u and v) version
of glEvalMesh to evaluate our surface grid. Here, we evaluate using lines and specify the
u and v domains’ values to range from 0 to 10:

// Evaluate the grid, using lines

glEvalMesh2(GL_LINE,0,10,0,10);

The result is shown in Figure 10.14.

CHAPTER 10 Curves and Surfaces400

FIGURE 10.14 Output from the BEZ3D program.

Lighting and Normal Vectors
Another valuable feature of evaluators is the automatic generation of surface normals.
By simply changing this code

// Evaluate the grid, using lines

glEvalMesh2(GL_LINE,0,10,0,10);

to this

// Evaluate the grid, using polygons

glEvalMesh2(GL_FILL,0,10,0,10);

and then calling

glEnable(GL_AUTO_NORMAL);

in our initialization code, we enable easy lighting of surfaces generated by evaluators.
Figure 10.15 shows the same surface as Figure 10.14, but with lighting enabled and auto-
matic normalization turned on. The code for this program appears in the BEZLIT sample
in the subdirectory for this chapter in the source code distribution on our Web site. The
program is only slightly modified from BEZ3D.

NURBS 401

10

FIGURE 10.15 Output from the BEZLIT program.

NURBS
You can use evaluators to your heart’s content to evaluate Bézier surfaces of any degree,
but for more complex curves, you have to assemble your Béziers piecewise. As you add
more control points, creating a curve that has good continuity becomes difficult. A higher
level of control is available through the GLU library’s NURBS functions. NURBS stands for

non-uniform rational B-spline. Mathematicians out there might know immediately that this
is just a more generalized form of curves and surfaces that can produce Bézier curves and
surfaces, as well as some other kinds (mathematically speaking). These functions allow you
to tweak the influence of the control points you specified for the evaluators to produce
smoother curves and surfaces with larger numbers of control points.

From Bézier to B-Splines
A Bézier curve is defined by two points that act as endpoints and any number of other
control points that influence the shape of the curve. The three Bézier curves in Figure
10.16 have three, four, and five control points specified. The curve is tangent to a line that
connects the endpoints with their adjacent control points. For quadratic (three points)
and cubic (four points) curves, the resulting Béziers are quite smooth, usually with a conti-
nuity of C2 (curvature). For higher numbers of control points, however, the smoothness
begins to break down as the additional control points pull and tug on the curve.

CHAPTER 10 Curves and Surfaces402

Third order Fourth order Fifth order

P0P0 P0

P1 P1 P1

P2

P2 P2

P3

P3

P4

FIGURE 10.16 Bézier continuity as the order of the curve increases.

B-splines (bi-cubic splines), on the other hand, work much as the Bézier curves do, but the
curve is broken down into segments. The shape of any given segment is influenced only
by the nearest four control points, producing a piecewise assemblage of a curve with each
segment exhibiting characteristics much like a fourth-order Bézier curve. A long curve with
many control points is inherently smoother, with the junction between each segment
exhibiting C2 continuity. It also means that the curve does not necessarily have to pass
through any of the control points.

Knots
The real power of NURBS is that you can tweak the influence of the four control points for
any given segment of a curve to produce the smoothness needed. This control is handled
via a sequence of values called knots. Two knot values are defined for every control point.
The range of values for the knots matches the u or v parametric domain and must be
nondescending. The knot values determine the influence of the control points that fall

within that range in u/v space. Figure 10.17 shows a curve demonstrating the influence of
control points over a curve having four units in the u parametric domain. Points in the
middle of the u domain have a greater pull on the curve, and only points between 0 and 3
have any effect on the shape of the curve.

NURBS 403

10

Influence

u

0 1 2 3

FIGURE 10.17 Control-point influence along the u parameter.

The key here is that one of these influence curves exists at each control point along the
u/v parametric domain. The knot sequence then defines the strength of the influence of
points within this domain. If a knot value is repeated, points near this parametric value
have even greater influence. The repeating of knot values is called knot multiplicity. Higher
knot multiplicity decreases the curvature of the curve or surface within that region.

Creating a NURBS Surface
The GLU NURBS functions provide a useful high-level facility for rendering surfaces. You
don’t have to explicitly call the evaluators or establish the mappings or grids. To render a
NURBS, you first create a NURBS object that you reference whenever you call the NURBS-
related functions to modify the appearance of the surface or curve.

The gluNewNurbsRenderer function creates a renderer for the NURB, and
gluDeleteNurbsRenderer destroys it. The following code fragments demonstrate
these functions in use:

// NURBS object pointer

GLUnurbsObj *pNurb = NULL;

...

...

// Set up the NURBS object

pNurb = gluNewNurbsRenderer();

...

// Do your NURBS things...

...

...

// Delete the NURBS object if it was created

if(pNurb)

gluDeleteNurbsRenderer(pNurb);

NURBS Properties
After you have created a NURBS renderer, you can set various high-level NURBS properties
for the NURB:

// Set sampling tolerance

gluNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, 25.0f);

// Fill to make a solid surface (use GLU_OUTLINE_POLYGON to create a

// polygon mesh)

gluNurbsProperty(pNurb, GLU_DISPLAY_MODE, (GLfloat)GLU_FILL);

You typically call these functions in your setup routine rather than repeatedly in your
rendering code. In this example, GLU_SAMPLING_TOLERANCE defines the fineness of the
mesh that defines the surface, and GLU_FILL tells OpenGL to fill in the mesh instead of
generating a wireframe.

Defining the Surface
The surface definition is passed as arrays of control points and knot sequences to the
gluNurbsSurface function. As shown here, this function is also bracketed by calls to
gluBeginSurface and gluEndSurface:

// Render the NURB

// Begin the NURB definition

gluBeginSurface(pNurb);

// Evaluate the surface

gluNurbsSurface(pNurb, // Pointer to NURBS renderer

8, Knots, // No. of knots and knot array u direction

8, Knots, // No. of knots and knot array v direction

4 * 3, // Distance between control points in u dir.

3, // Distance between control points in v dir.

CHAPTER 10 Curves and Surfaces404

&ctrlPoints[0][0][0],// Control points

4, 4, // u and v order of surface

GL_MAP2_VERTEX_3); // Type of surface

// Done with surface

gluEndSurface(pNurb);

You can make more calls to gluNurbsSurface to create any number of NURBS surfaces, but
the properties you set for the NURBS renderer are still in effect. Often, this is desired; you
rarely want two surfaces (perhaps joined) to have different fill styles (one filled and one a
wire mesh).

Using the control points and knot values shown in the next code segment, we produced
the NURBS surface shown in Figure 10.18. You can find this NURBS program in this
chapter’s subdirectory in the source code distribution on our Web site:

// Mesh extends four units -6 to +6 along x and y axis

// Lies in Z plane

// u v (x,y,z)

GLfloat ctrlPoints[4][4][3]= {{{ -6.0f, -6.0f, 0.0f}, // u = 0, v = 0

{ -6.0f, -2.0f, 0.0f}, // v = 1

{ -6.0f, 2.0f, 0.0f}, // v = 2

{ -6.0f, 6.0f, 0.0f}}, // v = 3

{{ -2.0f, -6.0f, 0.0f}, // u = 1 v = 0

{ -2.0f, -2.0f, 8.0f}, // v = 1

{ -2.0f, 2.0f, 8.0f}, // v = 2

{ -2.0f, 6.0f, 0.0f}}, // v = 3

{{ 2.0f, -6.0f, 0.0f }, // u =2 v = 0

{ 2.0f, -2.0f, 8.0f }, // v = 1

{ 2.0f, 2.0f, 8.0f }, // v = 2

{ 2.0f, 6.0f, 0.0f }}, // v = 3

{{ 6.0f, -6.0f, 0.0f}, // u = 3 v = 0

{ 6.0f, -2.0f, 0.0f}, // v = 1

{ 6.0f, 2.0f, 0.0f}, // v = 2

{ 6.0f, 6.0f, 0.0f}}}; // v = 3

// Knot sequence for the NURB

GLfloat Knots[8] = {0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};

NURBS 405

10

FIGURE 10.18 Output from the NURBS program.

Trimming
Trimming means creating cutout sections from NURBS surfaces. This capability is often
used for literally trimming sharp edges of a NURBS surface. You can also create holes in
your surface just as easily. The output from the NURBT program is shown in Figure 10.19.
This is the same NURBS surface used in the preceding sample (without the control points
shown), with a triangular region removed. This program, too, is in the subdirectory for
this chapter in the source code distribution on our Web site.

CHAPTER 10 Curves and Surfaces406

FIGURE 10.19 Output from the NURBT program.

Listing 10.4 shows the code added to the NURBS sample program to produce this trim-
ming effect. Within the gluBeginSurface/gluEndSurface delimiters, we call gluBeginTrim,
specify a trimming curve with gluPwlCurve, and finish the trimming curve with
gluEndTrim.

LISTING 10.4 Modifications to NURBS to Produce Trimming

// Outside trimming points to include entire surface

GLfloat outsidePts[5][2] = /* counterclockwise */

{{0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}, {0.0f, 0.0f}};

// Inside trimming points to create triangle shaped hole in surface

GLfloat insidePts[4][2] = /* clockwise */

{{0.25f, 0.25f}, {0.5f, 0.5f}, {0.75f, 0.25f}, { 0.25f, 0.25f}};

...

...

...

// Render the NURB

// Begin the NURB definition

NURBS 407

10

LISTING 10.4 Continued

gluBeginSurface(pNurb);

// Evaluate the surface

gluNurbsSurface(pNurb, // Pointer to NURBS renderer

8, Knots, // No. of knots and knot array u direction

8, Knots, // No. of knots and knot array v direction

4 * 3, // Distance between control points in u dir.

3, // Distance between control points in v dir.

&ctrlPoints[0][0][0],// Control points

4, 4, // u and v order of surface

GL_MAP2_VERTEX_3); // Type of surface

// Outer area, include entire curve

gluBeginTrim (pNurb);

gluPwlCurve (pNurb, 5, &outsidePts[0][0], 2, GLU_MAP1_TRIM_2);

gluEndTrim (pNurb);

// Inner triangular area

gluBeginTrim (pNurb);

gluPwlCurve (pNurb, 4, &insidePts[0][0], 2, GLU_MAP1_TRIM_2);

gluEndTrim (pNurb);

// Done with surface

gluEndSurface(pNurb);

Within the gluBeginTrim/gluEndTrim delimiters, you can specify any number of curves as
long as they form a closed loop in a piecewise fashion. You can also use gluNurbsCurve to
define a trimming region or part of a trimming region. These trimming curves must,
however, be in terms of the unit parametric u and v space. This means the entire u/v
domain is scaled from 0.0 to 1.0.

gluPwlCurve defines a piecewise linear curve—nothing more than a list of points
connected end to end. In this scenario, the inner trimming curve forms a triangle, but
with many points, you could create an approximation of any curve needed.

Trimming a curve trims away surface area that is to the right of the curve’s winding. Thus,
a clockwise-wound trimming curve discards its interior. Typically, an outer trimming curve
is specified, which encloses the entire NURBS parameter space. Then smaller trimming
regions are specified within this region with clockwise winding. Figure 10.20 illustrates
this relationship.

CHAPTER 10 Curves and Surfaces408

FIGURE 10.20 An area inside clockwise-wound curves is trimmed away.

NURBS Curves
Just as you can have Bézier surfaces and curves, you can also have NURBS surfaces and
curves. You can even use gluNurbsCurve to do NURBS surface trimming. By this point, we
hope you have the basics down well enough to try trimming surfaces on your own.
However, another sample, NURBC, is included in the sample source code if you want a
starting point to play with.

Tessellation
To keep OpenGL as fast as possible, all geometric primitives must be convex. We made this
point in Chapter 3, “Drawing in Space: Geometric Primitives and Buffers.” However, many
times we have vertex data for a concave or more complex shape that we want to render
with OpenGL. These shapes fall into two basic categories, as shown in Figure 10.21. A
simple concave polygon is shown on the left, and a more complex polygon with a hole in
it is shown on the right. For the shape on the left, you might be tempted to try using
GL_POLYGON as the primitive type, but the rendering would fail because OpenGL algo-
rithms are optimized for convex polygons. As for the figure on the right…well, there is
little hope for that shape at all!

Tessellation 409

10

FIGURE 10.21 Some nonconvex polygons.

The intuitive solution to both of these problems is to break down the shape into smaller
convex polygons or triangles that can be fit together to create the final overall shape.
Figure 10.22 shows one possible solution to breaking the shapes in Figure 10.21 into more
manageable triangles.

CHAPTER 10 Curves and Surfaces410

Concave Complex

FIGURE 10.22 Complex shapes broken down into triangles.

Breaking down the shapes by hand is tedious at best and possibly error-prone. Fortunately,
the OpenGL Utility Library contains functions to help you break concave and complex
polygons into smaller, valid OpenGL primitives. The process of breaking down these poly-
gons is called tessellation.

The Tessellator
Tessellation works through a tessellator object that must be created and destroyed much in
the same way that we did for quadric state objects:

GLUtesselator *pTess;

pTess = gluNewTes();

. . .

// Do some tessellation

. . .

gluDeleteDess(pTess);

All the tessellation functions use the tessellator object as the first parameter. This allows
you to have more than one tessellation object active at a time or interact with libraries or
other code that also uses tessellation. The tessellation functions change the tessellator’s
state and behavior, and this allows you to make sure your changes affect only the object
you are currently working with. Alas, yes, GLUtesselator has only one l and is thus
misspelled!

The tessellator breaks up a polygon and renders it appropriately when you perform the
following steps:

1. Create the tessellator object.

2. Set tessellator state and callbacks.

3. Start a polygon.

4. Start a contour.

5. Feed the tessellator the vertices that specify the contour.

6. End the contour.

7. Go back to step 4 if there are more contours.

8. End the polygon.

Each polygon consists of one or more contours. The polygon to the left in Figure 10.21
contains one contour, simply the path around the outside of the polygon. The polygon on
the right, however, has two contours: the outside edge and the edge around the inner
hole. Polygons may contain any number of contours (several holes) or even nested
contours (holes within holes). The actual work of tessellating the polygon does not occur
until step 8. This task can sometimes be very time consuming, and if the geometry is
static, it may be best to store these function calls in a display list (the next chapter
discusses display lists).

Tessellation 411

10

Tessellator Callbacks
During tessellation, the tessellator calls a number of callback functions that you must
provide. You use these callbacks to actually specify the vertex information and begin and
end the primitives. The following function registers the callback functions:

void gluTessCallback(GLUTesselator *tobj, GLenum which, void (*fn)());

The first parameter is the tessellation object. The second specifies the type of callback
being registered, and the last is the pointer to the callback function itself. You can specify
various callbacks, under the function gluTessCallback. As an example, examine the
following lines of code:

// Just call glBegin at beginning of triangle batch

gluTessCallback(pTess, GLU_TESS_BEGIN, (CallBack)glBegin);

// Just call glEnd at end of triangle batch

gluTessCallback(pTess, GLU_TESS_END, (CallBack)glEnd);

// Just call glVertex3dv for each vertex

gluTessCallback(pTess, GLU_TESS_VERTEX, (CallBack)glVertex3dv);

The GLU_TESS_BEGIN callback specifies the function to call at the beginning of each new
primitive. Specifying glBegin simply tells the tessellator to call glBegin to begin a primi-
tive batch. This may seem pointless, but you can also specify your own function here to
do additional processing whenever a new primitive begins. For example, suppose you
want to find out how many triangles are used in the final tessellated polygon.

The GLU_TESS_END callback, again, simply tells the tessellator to call glEnd and that
you have no other specific code you want to inject into the process. Finally, the
GLU_TESS_VERTEX call drops in a call to glVertex3dv to specify the tessellated vertex data.
Tessellation requires that vertex data be specified as double precision, and always uses
three component vertices. Again, you could substitute your own function here to do some
additional processing (such as adding color, normal, or texture coordinate information).

If you’re wondering, CallBack is just a typedef defined in gltools.h to represent a generic
function pointer for these functions.

For an example of specifying your own callback (instead of cheating and just using exist-
ing OpenGL functions), the following code shows the registration of a function to report
any errors that may occur during tessellation:

//

// Tessellation error callback

void tessError(GLenum error)

{

// Get error message string

CHAPTER 10 Curves and Surfaces412

const char *szError = (const char *)gluErrorString(error);

// Set error message as window caption

glutSetWindowTitle(szError);

}

. . .

. . .

// Register error callback

gluTessCallback(pTess, GLU_TESS_ERROR, (CallBack)tessError);

Specifying Vertex Data
To begin a polygon (this corresponds to step 3 shown earlier), you call the following
function:

void gluTessBeginPolygon(GLUTesselator *tobj, void *data);

You first pass in the tessellator object and then a pointer to any user-defined data that you
want associated with this tessellation. This data can be sent back to you during tessellation
using the callback functions listed for gluTessCallback. Often, this is just NULL. To finish
the polygon (step 8) and begin tessellation, call this function:

void gluTessEndPolygon(GLUTesselator *tobj);

Nested within the beginning and ending of the polygon, you specify one or more
contours using the following pair of functions (steps 4 and 6):

void gluTessBeginContour(GLUTesselator *tobj);

void gluTessEndContour(GLUTesselator *tobj);

Finally, within the contour, you must add the vertices that make up that contour (step 5).
The following function feeds the vertices, one at a time, to the tessellator:

void gluTessVertex(GLUTesselator *tobj, GLdouble v[3], void *data);

The v parameter contains the actual vertex data used for tessellator calculations. The data
parameter is a pointer to the vertex data passed to the callback function specified by
GLU_VERTEX. Why two different arguments to specify the same thing? Because the pointer
to the vertex data may also point to additional information about the vertex (color,
normals, and so on). If you specify your own function for GLU_VERTEX (instead of our
cheat), you can access this additional vertex data in the callback routine.

Tessellation 413

10

Putting It All Together
Now let’s look at an example that takes a complex polygon and performs tessellation to
render a solid shape. The sample program FLORIDA contains the vertex information to
draw the crude, but recognizable, shape of the state of Florida. The program has three
modes of rendering, accessible via the context menu: Line Loops, Concave Polygon, and
Complex Polygon. The basic shape with Line Loops is shown in Figure 10.23.

CHAPTER 10 Curves and Surfaces414

FIGURE 10.23 The basic outline of Florida.

Listing 10.5 shows the vertex data and the rendering code that draws the outlines for the
state and Lake Okeechobee.

LISTING 10.5 Vertex Data and Drawing Code for State Outline

// Coast Line Data

#define COAST_POINTS 24

GLdouble vCoast[COAST_POINTS][3] = {{-70.0, 30.0, 0.0 },

{-50.0, 30.0, 0.0 },

// ... data removed to save space in text

{-70.0, 25.0, 0.0 }};

// Lake Okeechobee

#define LAKE_POINTS 4

GLdouble vLake[LAKE_POINTS][3] = {{ 10.0, -20.0, 0.0 },

{ 15.0, -25.0, 0.0 },

{ 10.0, -30.0, 0.0 },

{ 5.0, -25.0, 0.0 }};

LISTING 10.5 Continued

. . .

. . .

case DRAW_LOOPS: // Draw line loops

{

glColor3f(0.0f, 0.0f, 0.0f); // Just black outline

// Line loop with coastline shape

glBegin(GL_LINE_LOOP);

for(i = 0; i < COAST_POINTS; i++)

glVertex3dv(vCoast[i]);

glEnd();

// Line loop with shape of interior lake

glBegin(GL_LINE_LOOP);

for(i = 0; i < LAKE_POINTS; i++)

glVertex3dv(vLake[i]);

glEnd();

}

break;

For the Concave Polygon rendering mode, only the outside contour is drawn. This results
in a solid filled shape, despite the fact that the polygon is clearly concave. This result is
shown in Figure 10.24, and the tessellation code is shown in Listing 10.6.

Tessellation 415

10

FIGURE 10.24 A solid convex polygon.

LISTING 10.6 Drawing a Convex Polygon

case DRAW_CONCAVE: // Tessellate concave polygon

{

// Tessellator object

GLUtesselator *pTess;

// Green polygon

glColor3f(0.0f, 1.0f, 0.0f);

// Create the tessellator object

pTess = gluNewTess();

// Set callback functions

// Just call glBegin at beginning of triangle batch

gluTessCallback(pTess, GLU_TESS_BEGIN, (CallBack)glBegin);

// Just call glEnd at end of triangle batch

gluTessCallback(pTess, GLU_TESS_END, (CallBack)glEnd);

// Just call glVertex3dv for each vertex

gluTessCallback(pTess, GLU_TESS_VERTEX, (CallBack)glVertex3dv);

// Register error callback

gluTessCallback(pTess, GLU_TESS_ERROR, (CallBack)tessError);

// Begin the polygon

gluTessBeginPolygon(pTess, NULL);

// Begin the one and only contour

gluTessBeginContour(pTess);

// Feed in the list of vertices

for(i = 0; i < COAST_POINTS; i++)

gluTessVertex(pTess, vCoast[i], vCoast[i]); // Can’t be NULL

// Close contour and polygon

gluTessEndContour(pTess);

gluTessEndPolygon(pTess);

// All done with tessellator object

gluDeleteTess(pTess);

}

break;

CHAPTER 10 Curves and Surfaces416

Tessellation 417

10

Finally, we present a more complex polygon, one with a hole in it. The Complex Polygon
drawing mode draws the solid state, but with a hole representing Lake Okeechobee (a large
lake in south Florida, typically shown on maps). The output is shown in Figure 10.25, and
the relevant code is presented in Listing 10.7.

FIGURE 10.25 The solid polygon, but with a hole.

LISTING 10.7 Tessellating a Complex Polygon with Multiple Contours

case DRAW_COMPLEX: // Tessellate, but with hole cut out

{

// Tessellator object

GLUtesselator *pTess;

// Green polygon

glColor3f(0.0f, 1.0f, 0.0f);

// Create the tessellator object

pTess = gluNewTess();

// Set callback functions

// Just call glBegin at beginning of triangle batch

gluTessCallback(pTess, GLU_TESS_BEGIN, (CallBack)glBegin);

// Just call glEnd at end of triangle batch

gluTessCallback(pTess, GLU_TESS_END, (CallBack)glEnd);

CHAPTER 10 Curves and Surfaces418

LISTING 10.7 Continued

// Just call glVertex3dv for each vertex

gluTessCallback(pTess, GLU_TESS_VERTEX, (CallBack)glVertex3dv);

// Register error callback

gluTessCallback(pTess, GLU_TESS_ERROR, (CallBack)tessError);

// How to count filled and open areas

gluTessProperty(pTess, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_ODD);

// Begin the polygon

gluTessBeginPolygon(pTess, NULL); // No user data

// First contour, outline of state

gluTessBeginContour(pTess);

for(i = 0; i < COAST_POINTS; i++)

gluTessVertex(pTess, vCoast[i], vCoast[i]);

gluTessEndContour(pTess);

// Second contour, outline of lake

gluTessBeginContour(pTess);

for(i = 0; i < LAKE_POINTS; i++)

gluTessVertex(pTess, vLake[i], vLake[i]);

gluTessEndContour(pTess);

// All done with polygon

gluTessEndPolygon(pTess);

// No longer need tessellator object

gluDeleteTess(pTess);

}

break;

This code contained a new function call:

// How to count filled and open areas

gluTessProperty(pTess, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_ODD);

This call tells the tessellator how to decide what areas to fill in and which areas to leave
empty when there are multiple contours. The value GLU_TESS_WINDING_ODD is actually the
default, and we could have skipped this function. However, you should understand how
the tessellator handles nested contours. By specifying ODD, we are saying that any given
point inside the polygon is filled in if it is enclosed in an odd number of contours. The
area inside the lake (inner contour) is surrounded by two (an even number) contours and
is left unfilled. Points outside the lake but inside the state boundary are enclosed by only
one contour (an odd number) and are drawn filled.

Summary
The quadrics library makes creating a few simple surfaces (spheres, cylinders, disks, and
cones) child’s play. Expanding on this concept into more advanced curves and surfaces
could have made this chapter the most intimidating in the entire book. As you have seen,
however, the concepts behind these curves and surfaces are not very difficult to under-
stand. Appendix A suggests further reading if you want in-depth mathematical informa-
tion or tips on creating NURBS-based models.

Other examples from this chapter give you a good starting point for experimenting with
NURBS. Adjust the control points and knot sequences to create warped or rumpled
surfaces. Also, try some quadratic surfaces and some with higher order than the cubic
surfaces. Watch out: One pitfall to avoid as you play with these curves is trying too hard
to create one complex surface out of a single NURB. You can find greater power and flexi-
bility if you compose complex surfaces out of several smaller and easy-to-handle NURBS or
Bézier surfaces.

Finally, in this chapter, we saw OpenGL’s powerful support for automatic polygon tessella-
tion. You learned that you can draw complex surfaces, shapes, and patterns with only a
few points that specify the boundaries. You also learned that concave regions and even
regions with holes can be broken down into simpler convex primitives using the GLU
library’s tessellator object.

In the next chapter, you will learn about display lists. As you read that chapter, think
about all the work that is being done under the covers to facilitate the power of these
functions. Also think about the fact that most of the time, these functions are going to be
used to draw static (unchanging) geometry. The techniques of the next chapter will allow
you to dramatically increase the performance of what you have just learned here.

Summary 419

10

This page intentionally left blank

CHAPTER 11

It’s All About the Pipeline:
Faster Geometry Throughput

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Optimize object display with display lists glNewList/glEndList/glCallList

Store and transfer geometry more glEnableClientState/

efficiently glDisableClientState/

glVertexPointer/glNormalPointer/

glTexCoordPointer/glColorPointer/

glEdgeFlagPointer/

glFogCoordPointer/

glSecondaryColorPointer/

glArrayElement/glDrawArrays/

glInterleavedArrays

Reduce geometric bandwidth glDrawElements/

glDrawRangeElements/

glMultiDrawElements/glBufferData/glBindBuffer

In the preceding chapters, we have covered most of the basic OpenGL rendering tech-
niques and technologies. With this knowledge, there are few 3D scenes you can envision
that cannot be realized using only the first half of this book. Getting a detailed image
onscreen, however, must often be balanced with the competing goal of performance. For
some applications it may be perfectly acceptable to wait for several seconds or even
minutes for a completed image to be rendered. For most real-time applications, however,
the goal is usually to render a completed and usually dynamic scene many dozens of times
per second!

422 CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput

A common hindrance to high performance in real-time applications is geometry through-
put. Modern scenes and models are composed of many thousands of vertices, often
accompanied by normals, texture coordinates, and other attributes. This is a lot of data
that must be operated on by both the CPU and the GPU. In addition, just moving the
data from the application to the graphics hardware can be a substantial performance
bottleneck.

This chapter focuses exclusively on these issues. OpenGL contains a number of features
that allow the programmer a great deal of flexibility and convenience when dealing with
the goal of fast geometry throughput, each with its own advantages and disadvantages in
terms of speed, flexibility, and ease of use.

Display Lists
So far, all of our primitive batches have been assembled using glBegin/glEnd pairs with
individual glVertex calls between them. This is a very flexible means of assembling a
batch of primitives, and is incredibly easy to use and understand. Unfortunately, when
performance is taken into account, it is also the worst possible way to submit geometry
to graphics hardware. Consider the following pseudocode to draw a single lit textured
triangle:

glBegin(GL_TRIANGLES);

glNormal3f(x, y, z);

glTexCoord2f(s, t);

glVertex3f(x, y, z);

glNormal3f(x, y, z);

glTexCoord2f(s, t);

glVertex3f(x, y, z);

glNormal3f(x, y, z);

glTexCoord2f(s, t);

glVertex3f(x, y, z);

glEnd();

For a single triangle, that’s 11 function calls. Each of these functions contains potentially
expensive validation code in the OpenGL driver. In addition, we must pass 24 different
four byte parameters (one at a time!) pushed on the stack, and of course return to the
calling function. That’s a good bit of work for the CPU to perform to draw a single trian-
gle. Now, multiply this by a 3D scene containing 10,000 or more triangles, and it is easy
to imagine the graphics hardware sitting idle waiting on the CPU to assemble and submit
geometry batches. There are some strategies that will soften the blow, of course. You can
use vector-based functions such as glVertex3fv, you can consolidate batches, and you can
use strips and fans to reduce redundant transformations and copies. However, the basic

Display Lists 423

11

approach is flawed from a performance standpoint because it requires many thousands of
very small, potentially expensive operations to submit a batch of geometry. This method
of submitting geometry batches is often called immediate mode rendering. Let’s look at how
OpenGL processes this data and see how there is an opportunity to dramatically improve
this situation.

Batch Processing
OpenGL has been described as a software interface to graphics hardware. As such, you
might imagine that OpenGL commands are somehow converted into some specific hard-
ware commands or operators by the driver and then sent on to the graphics card for
immediate execution. If so, you would be mostly correct. Most OpenGL rendering
commands are, in fact, converted into some hardware-specific commands, but these
commands are not dispatched immediately to the hardware. Instead, they are accumulated
in a local buffer until some threshold is reached, at which point they are flushed to the
hardware.

The primary reason for this type of arrangement is that trips to the graphics hardware take
a long time, at least in terms of computer time. To a human being, this process might take
place very quickly, but to a CPU running at many billions of cycles per second, this is like
waiting for a cruise ship to sail from North America to Europe and back. You certainly
would not put a single person on a ship and wait for the ship to return before loading up
the next person. If you have many people to send to Europe, you are going to cram as
many people on the ship as you can! This analogy is very accurate: It is faster to send a
large amount of data (within some limits) over the system bus to hardware all at once
than to break it down into many bursts of smaller packages.

Keeping to the analogy, you also do not have to wait for the first cruise ship to return
before you can begin filling the next ship with passengers. Sending the buffer to the
graphics hardware (a process called flushing) is an asynchronous operation. This means that
the CPU can move on to other tasks and does not have to wait for the batch of rendering
commands just sent to be completed. You can literally have the hardware rendering a
given set of commands while the CPU is busy calling a new set of commands for the next
graphics image (typically called a frame when you’re creating an animation). This type of
parallelization between the graphics hardware and the host CPU is highly efficient and
often sought after by performance-conscious programmers.

Three events trigger a flush of the current batch of rendering commands. The first occurs
when the driver’s command buffer is full. You do not have access to this buffer, nor do
you have any control over the size of the buffer. The hardware vendors work hard to tune
the size and other characteristics of this buffer to work well with their devices. A flush also
occurs when you execute a buffer swap. The buffer swap cannot occur until all pending
commands have been executed (you want to see what you have drawn!), so the flush is
initiated, followed by the command to perform the buffer swap. A buffer swap is an
obvious indicator to the driver that you are done with a given scene and that all

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput424

commands should be rendered. However, if you are doing single-buffered rendering,
OpenGL has no real way of knowing when you’re done sending commands and thus
when to send the batch of commands to the hardware for execution. To facilitate this
process, you can call the following function to manually trigger a flush:

void glFlush(void);

Some OpenGL commands, however, are not buffered for later execution—for example,
glReadPixels and glDrawPixels. These functions directly access the framebuffer and read
or write data directly. These functions actually introduce a pipeline stall, because the
currently queued commands must be flushed and executed before you make direct
changes to the color buffer. You can forcibly flush the command buffer, and wait for the
graphics hardware to complete all its rendering tasks by calling the following function:

void glFinish(void);

This function is rarely used in practice. Typically this is for platform-specific requirements
such as multithreading or multicontext rendering.

Preprocessed Batches
The work done every time you call an OpenGL command is not inconsequential.
Commands are compiled, or converted, from OpenGL’s high-level command language into
low-level hardware commands understood by the hardware. For complex geometry, or just
large amounts of vertex data, this process is performed many thousands of times, just to
draw a single image onscreen. This is, of course, the aforementioned problem with imme-
diate mode rendering. How does our new knowledge of the command buffer help with
this situation?

Often, the geometry or other OpenGL data remains the same from frame to frame. For
example, a spinning torus is always composed of the same set of triangle strips, with the
same vertex data, recalculated with expensive trigonometric functions every frame. The
only thing changing frame to frame is the modelview matrix.

A solution to this needlessly repeated overhead is to save a chunk of precomputed data
from the command buffer that performs some repetitive rendering task, such as drawing
the torus. This chunk of data can later be copied back to the command buffer all at once,
saving the many function calls and compilation work done to create the data.

OpenGL provides a facility to create a preprocessed set of OpenGL commands (the chunk
of data) that can then be quickly copied to the command buffer for more rapid execution.
This precompiled list of commands is called a display list, and creating one or more of
them is an easy and straightforward process. Just as you delimit an OpenGL primitive with
glBegin/glEnd, you delimit a display list with glNewList/glEndList. A display list,

Display Lists 425

11

however, is named with an integer value that you supply. The following code fragment
represents a typical example of display list creation:

glNewList(<unsigned integer name>,GL_COMPILE);

...

...

// Some OpenGL Code

...

...

glEndList();

The named display list now contains all OpenGL rendering commands that occur between
the glNewList and glEndList function calls. The GL_COMPILE parameter tells OpenGL to
compile the list but not to execute it yet. You can also specify GL_COMPILE_AND_EXECUTE to
simultaneously build the display list and execute the rendering instructions. Typically,
however, display lists are built (GL_COMPILE only) during program initialization and then
executed later during rendering.

The display list name can be any unsigned integer. However, if you use the same value
twice, the second display list overwrites the previous one. For this reason, it is convenient
to have some sort of mechanism to keep you from reusing the same display list more than
once. This is especially helpful when you are incorporating libraries of code written by
someone else who may have incorporated display lists and may have chosen the same
display list names.

OpenGL provides built-in support for allocating unique display list names. The following
function returns the first of a series of display list integers that are unique:

GLuint glGenLists(GLsizei range);

The display list names are reserved sequentially, with the first name being returned by the
function. You can call this function as often as you want and for as many display list
names at a time as you may need. A corresponding function frees display list names and
releases any memory allocated for those display lists:

void glDeleteLists(GLuint list, GLsizei range);

A display list, containing any number of precompiled OpenGL commands, is then
executed with a single command:

void glCallList(GLuint list);

You can also execute a whole array of display lists with this command:

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput426

The first parameter specifies the number of display lists contained by the array lists. The
second parameter contains the data type of the array; typically, it is GL_UNSIGNED_BYTE.
Conveniently, it is used very often as an offset to address font display lists.

Display List Caveats
A few important points about display lists are worth mentioning here. Although on most
implementations, a display list should improve performance, your mileage may vary
depending on the amount of effort the vendor puts into optimizing display list creation
and execution. It is rare, however, for display lists not to offer a noticeable boost in perfor-
mance, and they are widely relied on in applications that use OpenGL.

Display lists are typically good at creating precompiled lists of OpenGL commands, espe-
cially if the list contains state changes (turning lighting on and off, for example). If you do
not create a display list name with glGenLists first, you might get a working display list
on some implementations, but not on others. Some commands simply do not make sense
in a display list. For example, reading the framebuffer into a pointer with glReadPixels
makes no sense in a display list. Likewise, calls to glTexImage2D would store the original
image data in the display list, followed by the command to load the image data as a
texture. Basically, your textures stored this way would take up twice as much memory!
Display lists excel, however, at precompiled lists of static geometry, with texture objects
bound either inside or outside the display lists. Finally, display lists cannot contain calls
that create display lists. You can have one display list call another, but you cannot put
calls to glNewLists/glEndList inside a display list.

Converting to Display Lists
To demonstrate how easy it is to use display lists, and the potential for performance
improvement, we have converted the Sphere World sample program to optionally use
display lists (see the Sphere World sample program for this chapter). You can select
with/without display lists via a context menu available via the right mouse button. We
have also added a display to the window caption that displays the frame rate achieved
using these two methods.

Converting the Sphere World sample to use display lists requires only a few additional
lines of code. First, we add three variables that contain the display list identifiers for the
three pieces of static geometry: a sphere, the ground, and the torus.

// Display list identifiers

GLuint sphereList, groundList, torusList;

Display Lists 427

11

Then, in the SetupRC function, we request three display list names and assign them to our
display list variables:

// Get Display list names

groundList = glGenLists(3);

sphereList = groundList + 1;

torusList = groundList + 2;

Next, we add the code to generate the three display lists. Each display list simply calls the
function that draws that piece of geometry:

// Prebuild the display lists

glNewList(sphereList, GL_COMPILE);

gltDrawSphere(0.1f, 40, 20);

glEndList();

// Create torus display list

glNewList(torusList, GL_COMPILE);

gltDrawTorus(0.35, 0.15, 61, 37);

glEndList();

// Create the ground display list

glNewList(groundList, GL_COMPILE);

DrawGround();

glEndList();

Finally, when drawing the objects, we select either the display list or the direct rendering
method based on a flag set by the menu handler. For example, rendering a single sphere
becomes this:

if(iMethod == 0)

gltDrawSphere(0.1f, 40, 20);

else

glCallList(sphereList);

Switching to display lists can have an amazing impact on performance. Some OpenGL
implementations even try to store display lists in memory on the graphics hardware
directly if possible, further reducing the work required to get the data to the graphics
processor. Figure 11.1 shows the new improved SPHEREWORLD sample running with
display lists activated. Without display lists on the Macintosh this was written on, the
frame rate was about 50 fps. With display lists, the frame rate shoots up to over 300!

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput428

FIGURE 11.1 SPHEREWORLD with display lists.

Why should you care about rendering performance? The faster and more efficient your
rendering code, the more visual complexity you can add to your scene without dragging
down the frame rate too much. Higher frame rates yield smoother and better-looking
animations. You can also use the extra CPU time to perform other tasks such as physics
calculations or lengthy I/O operations on a separate thread.

Vertex Arrays
Display lists are a frequently used and convenient means of precompiling sets of OpenGL
commands. In our previous example, the many spheres required a great deal of trigono-
metric calculations that were saved when we placed the geometry in display lists. You
might consider that we could just as easily have created some arrays to store the vertex
data for the models and thus saved all the computation time just as easily as with the
display lists.

You might be right about this way of thinking—to a point. Some implementations store
display lists more efficiently than others, and if all you’re really compiling is the vertex
data, you can simply place the model’s data in one or more arrays and render from the

Vertex Arrays 429

11

array of precalculated geometry. The only drawback to this approach is that you must still
loop through the entire array moving data to OpenGL one vertex at a time. Depending on
the amount of geometry involved, taking this approach could incur a substantial perfor-
mance penalty. The advantage, however, is that, unlike with display lists, the geometry
does not have to be static. Each time you prepare to render the geometry, some function
could be applied to all the geometry data and perhaps displace or modify it in some way.
For example, say a mesh used to render the surface of an ocean could have rippling waves
moving across the surface. A swimming whale or jellyfish could also be cleverly modeled
with deformable meshes in this way.

With OpenGL, you can, in fact, have the best of both scenarios by using vertex arrays. With
vertex arrays, you can precalculate or modify your geometry on the fly but do a bulk trans-
fer of all the geometry data at one time. Basic vertex arrays can be almost as fast as display
lists, but without the requirement that the geometry be static. It might also simply be more
convenient to store your data in arrays for other reasons and thus also render directly from
the same arrays (this approach could also potentially be more memory efficient).

Using vertex arrays in OpenGL involves four basic steps. First, you must assemble your
geometry data in one or more arrays. You can do this algorithmically or perhaps by
loading the data from a disk file. Second, you must tell OpenGL where the data is. When
rendering is performed, OpenGL pulls the vertex data directly from the arrays you have
specified. Third, you must explicitly tell OpenGL which arrays you are using. You can have
separate arrays for vertices, normals, colors, and so on, and you must let OpenGL know
which of these data sets you want to use. Finally, you execute the OpenGL commands to
actually perform the rendering using your vertex data.

To demonstrate these four steps, we revisit an old sample from another chapter. We’ve
rewritten the POINTSPRITE sample from Chapter 9, “Texture Mapping: Beyond the
Basics,” for the STARRYNIGHT sample in this chapter. The STARRYNIGHT sample creates
three arrays (for three different-sized stars) that contain randomly initialized positions
for stars in a starry sky. We then use vertex arrays to render directly from these arrays,
bypassing the glBegin/glEnd mechanism entirely. Figure 11.2 shows the output of the
STARRYNIGHT sample program, and Listing 11.1 shows the important portions of the
source code.

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput430

FIGURE 11.2 Output from the STARRYNIGHT program.

LISTING 11.1 Setup and Rendering Code for the STARRYNIGHT Sample

// Array of small stars

#define SMALL_STARS 100

M3DVector2f vSmallStars[SMALL_STARS];

#define MEDIUM_STARS 40

M3DVector2f vMediumStars[MEDIUM_STARS];

#define LARGE_STARS 15

M3DVector2f vLargeStars[LARGE_STARS];

. . .

. . .

///

// Called to draw scene

void RenderScene(void)

{

. . .

Vertex Arrays 431

11

LISTING 11.1 Continued

. . .

// Draw small stars

glPointSize(7.0f); // 1.0

/*

glBegin(GL_POINTS);

for(i = 0; i < SMALL_STARS; i++)

glVertex2fv(vSmallStars[i]);

glEnd();

*/

glVertexPointer(2, GL_FLOAT, 0, vSmallStars);

glDrawArrays(GL_POINTS, 0, SMALL_STARS);

// Draw medium-sized stars

glPointSize(12.0f); // 3.0

/*glBegin(GL_POINTS);

for(i = 0; i< MEDIUM_STARS; i++)

glVertex2fv(vMediumStars[i]);

glEnd();

*/

glVertexPointer(2, GL_FLOAT, 0, vMediumStars);

glDrawArrays(GL_POINTS, 0, MEDIUM_STARS);

// Draw largest stars

glPointSize(20.0f); // 5.5

/*glBegin(GL_POINTS);

for(i = 0; i < LARGE_STARS; i++)

glVertex2fv(vLargeStars[i]);

glEnd();

*/

glVertexPointer(2, GL_FLOAT, 0, vLargeStars);

glDrawArrays(GL_POINTS, 0, LARGE_STARS);

glDisableClientState(GL_VERTEX_ARRAY);

. . .

. . .

// Swap buffers

glutSwapBuffers();

}

Loading the Geometry
The first prerequisite to using vertex arrays is that your geometry must be stored in arrays.
In Listing 11.1, you see three globally accessible arrays of two-dimensional vectors. They
contain x and y coordinate locations for the three groups of stars:

// Array of small stars

#define SMALL_STARS 100

M3DVector2f vSmallStars[SMALL_STARS];

#define MEDIUM_STARS 40

M3DVector2f vMediumStars[MEDIUM_STARS];

#define LARGE_STARS 15

M3DVector2f vLargeStars[LARGE_STARS];

Recall that this sample program uses an orthographic projection and draws the stars as
points at random screen locations. Each array is populated in the SetupRC function with a
simple loop that picks random x and y values that fall within the portion of the window
we want the stars to occupy. The following few lines from the listing show how just the
small star list is populated:

// Populate star list

for(i = 0; i < SMALL_STARS; i++)

{

vSmallStars[i][0] = (GLfloat)(rand() % SCREEN_X);

vSmallStars[i][1] = (GLfloat)(rand() % (SCREEN_Y - 100))+100.0f;

}

Enabling Arrays
In the RenderScene function, we enable the use of an array of vertices with the following
code:

// Using vertex arrays

glEnableClientState(GL_VERTEX_ARRAY);

This is the first new function for using vertex arrays, and it has a corresponding disabling
function:

void glEnableClientState(GLenum array);

void glDisableClientState(GLenum array);

These functions accept the following constants, turning on and off the corresponding
array usage: GL_VERTEX_ARRAY, GL_COLOR_ARRAY, GL_SECONDARY_COLOR_ARRAY,
GL_NORMAL_ARRAY, GL_FOG_COORDINATE_ARRAY, GL_TEXURE_COORD_ARRAY, and

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput432

GL_EDGE_FLAG_ARRAY. For our STARRYNIGHT example, we are sending down only a list of
vertices. As you can see, you can also send down a corresponding array of normals, texture
coordinates, colors, and so on.

Here’s one question that commonly arises with the introduction of this function: Why did
the OpenGL designers add a new glEnableClientState function instead of just sticking
with glEnable? A good question. The reason has to do with how OpenGL is designed to
operate. OpenGL was designed using a client/server model. The server is the graphics
hardware, and the client is the host CPU and memory. On the PC, for example, the server
would be the graphics card, and the client would be the PC’s CPU and main memory.
Because this state of enabled/disabled capability specifically applies to the client side of
the picture, a new set of functions was derived.

Where’s the Data?
Before we can actually use the vertex data, we must still tell OpenGL where the data is
stored. The following single line in the STARRYNIGHT example does this:

glVertexPointer(2, GL_FLOAT, 0, vSmallStars);

Here, we find our next new function. The glVertexPointer function tells OpenGL where
the vertex data is stored. There are also corresponding functions for the other types of
vertex array data:

void glVertexPointer(GLint size, GLenum type, GLsizei stride,

const void *pointer);

void glColorPointer(GLint size, GLenum type, GLsizei stride,

const void *pointer);

void glTexCoordPointer(GLint size, GLenum type, GLsizei stride,

const void *pointer);

void glSecondaryColorPointer(GLint size, GLenum type, GLsizei stride,

const void *pointer);

void glNormalPointer(GLenum type, GLsizei stride, const void *pData);

void glFogCoordPointer(GLenum type, GLsizei stride, const void *pointer);

void glEdgeFlagPointer(GLenum type, GLsizei stride, const void *pointer);

These functions are all closely related and take nearly identical arguments. All but the
normal, fog coordinate, and edge flag functions take a size argument first. This argument
tells OpenGL the number of elements that make up the coordinate type. For example,
vertices can consist of two (x,y), three (x,y,z), or four (x,y,z,w) components. Normals,
however, are always three components, and fog coordinates and edge flags are always one
component; thus, it would be redundant to specify the argument for these functions.

The type parameter specifies the OpenGL data type for the array. Not all data types are
valid for all vertex array specifications. Table 11.1 lists the seven vertex array functions

Vertex Arrays 433

11

(index pointers are used for color index mode and are thus excluded here) and the valid
data types that can be specified for the data elements.

TABLE 11.1 Valid Vertex Array Sizes and Data Types

Command Elements Valid Data Types

glColorPointer 3, 4 GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,

GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 None specified (always GLboolean)

glFogCoordPointer 1 GL_FLOAT, GL_DOUBLE

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glSecondaryColorPointer 3 GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_INT,

GL_UNSIGNED_INT, GL_FLOAT, GL_DOUBLE

glTexCoordPointer 1, 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glVertexPointer 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

The stride parameter specifies the space in bytes between each array element. Typically,
this value is just 0, and array elements have no data gaps between values. Finally, the last
parameter is a pointer to the array of data. For arrays, this is simply the name of the array.

This leaves us a little in the dark concerning multitexture. When using the glBegin/glEnd
paradigm, we learned a new function for sending texture coordinates for each texture
unit, called glMultiTexCoord. When using vertex arrays, you can change the target texture
unit for glTexCoordPointer with this function:

glClientActiveTexture(GLenum texture);

Here the target parameter is GL_TEXTURE0, GL_TEXTURE1, and so forth.

Pull the Data and Draw
Finally, we’re ready to render using our vertex arrays. We can actually use the vertex arrays
in two different ways. For illustration, first look at the nonvertex array method that
simply loops through the array and passes a pointer to each array element to glVertex:

glBegin(GL_POINTS);

for(i = 0; i < SMALL_STARS; i++)

glVertex2fv(vSmallStars[i]);

glEnd();

Because OpenGL now knows about our vertex data, we can have OpenGL look up the
vertex values for us with the following code:

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput434

glBegin(GL_POINTS);

for(i = 0; i < SMALL_STARS; i++)

glArrayElement(i);

glEnd();

The glArrayElement function looks up the corresponding array data from any arrays that
have been enabled with glEnableClientState. If an array has been enabled, and a corre-
sponding array has not been specified (glVertexPointer, glColorPointer, and so on), an
illegal memory access will likely cause the program to crash. The advantage to using
glArrayElement is that a single function call can now replace several function calls
(glNormal, glColor, glVertex, and so forth) needed to specify all the data for a specific
vertex. Sometimes you might want to jump around in the array in nonsequential order
as well.

Most of the time, however, you will find that you are simply transferring a block of vertex
data that needs to be traversed from beginning to end. In these cases (as is the case with
the STARRYNIGHT sample), OpenGL can transfer a single block of any enabled arrays with
a single function call:

void glDrawArrays(GLenum mode, GLint first, GLint count);

In this function, mode specifies the primitive to be rendered (one primitive batch per func-
tion call). The first parameter specifies where in the enabled arrays to begin retrieving
data, and the count parameter tells how many array elements to retrieve. In the case of
the STARRYNIGHT example, we rendered the array of small stars as follows:

glDrawArrays(GL_POINTS, 0, SMALL_STARS);

OpenGL implementations can optimize these block transfers, resulting in significant
performance gains over multiple calls to the individual vertex functions such as glVertex
and glNormal.

Indexed Vertex Arrays
Indexed vertex arrays are vertex arrays that are not traversed in order from beginning to
end, but are traversed in an order that is specified by a separate array of index values. This
may seem a bit convoluted, but actually indexed vertex arrays can save memory and
reduce transformation overhead. Under ideal conditions, they can actually be faster than
display lists!

The reason for this extra efficiency is that the array of vertices can be smaller than the
array of indices. Adjoining primitives such as triangles can share vertices in ways not
possible by just using triangle strips or fans. For example, using ordinary rendering
methods or vertex arrays, there is no other mechanism to share a set of vertices between
two adjacent triangle strips. Figure 11.3 shows two triangle strips that share one edge.

Vertex Arrays 435

11

Although triangle strips make good use of shared vertices between triangles in the strip,
there is no way to avoid the overhead of transforming the vertices shared between the two
strips because each strip must be specified individually.

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput436

Strip 1

Strip 2

Shared vertices

FIGURE 11.3 Two triangle strips in which the vertices share an edge.

Now let’s look at a simple example; then we’ll look at a more complex model and examine
the potential savings of using indexed arrays.

A Simple Cube
We can save a considerable amount of memory if we can reuse a normal or vertex in a
vertex array without having to store it more than once. Not only is memory saved, but
also a good OpenGL implementation is optimized to transform these vertices only once,
saving valuable transformation time.

Instead of creating a vertex array containing all the vertices for a given geometric object,
you can create an array containing only the unique vertices for the object. Then you can
use another array of index values to specify the geometry. These indices reference the
vertex values in the first array. Figure 11.4 shows this relationship.

Index Array

Index 1

Index 2

Index 3

Index 4

Index 5

Index ?

Vertex Array

Vertex 1

Vertex 2

Vertex 3

Vertex 4

Vertex 5

Vertex ?

Index 7

Index 8

Index 9

Index 10

Index 11

Index 12

FIGURE 11.4 An index array referencing an array of unique vertices.

Each vertex consists of three floating-point values, but each index is only an integer value.
A float and an integer are 4 bytes on most machines, which means you save 8 bytes for
each reused vertex for the cost of 4 extra bytes for every vertex. For a small number of
vertices, the savings might not be great; in fact, you might even use more memory using
an indexed array than you would have by just repeating vertex information. For larger
models, however, the savings can be substantial.

Figure 11.5 shows a cube with each vertex numbered. For our next sample program,
CUBEDX, we create a cube using indexed vertex arrays.

Vertex Arrays 437

11

0 1

4 5

3 2

7 6

FIGURE 11.5 A cube containing eight unique numbered vertices.

Listing 11.2 shows the code from the CUBEDX program to render the cube using indexed
vertex arrays. The eight unique vertices are in the corners array, and the indices are in the
indexes array. In RenderScene, we set the polygon mode to GL_LINE so that the cube is
wireframed.

LISTING 11.2 Code from the CUBEDX Program to Use Indexed Vertex Arrays

// Array containing the six vertices of the cube

static GLfloat corners[] = { -25.0f, 25.0f, 25.0f, // 0 // Front of cube

25.0f, 25.0f, 25.0f, // 1

25.0f, -25.0f, 25.0f,// 2

-25.0f, -25.0f, 25.0f,// 3

-25.0f, 25.0f, -25.0f,// 4 // Back of cube

25.0f, 25.0f, -25.0f,// 5

25.0f, -25.0f, -25.0f,// 6

-25.0f, -25.0f, -25.0f };// 7

// Array of indexes to create the cube

static GLubyte indexes[] = { 0, 1, 2, 3, // Front Face

4, 5, 1, 0, // Top Face

3, 2, 6, 7, // Bottom Face

5, 4, 7, 6, // Back Face

1, 5, 6, 2, // Right Face

LISTING 11.2 Continued

4, 0, 3, 7 }; // Left Face

// Rotation amounts

static GLfloat xRot = 0.0f;

static GLfloat yRot = 0.0f;

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Make the cube wireframe

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

// Save the matrix state

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

glTranslatef(0.0f, 0.0f, -200.0f);

// Rotate about x and y axes

glRotatef(xRot, 1.0f, 0.0f, 0.0f);

glRotatef(yRot, 0.0f, 0.0f, 1.0f);

// Enable and specify the vertex array

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, corners);

// Using Drawelements

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, indexes);

glPopMatrix();

// Swap buffers

glutSwapBuffers();

}

OpenGL has native support for indexed vertex arrays, as shown in the glDrawElements
function. The key line in Listing 11.2 is

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, indexes);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput438

This line is much like the glDrawArrays function mentioned earlier, but now we are speci-
fying an index array that determines the order in which the enabled vertex arrays are
traversed. Figure 11.6 shows the output from the program CUBEDX.

Vertex Arrays 439

11

FIGURE 11.6 A wireframe cube drawn with an indexed vertex array.

A variation on glDrawElement is the glDrawRangeElements function. This function is docu-
mented in Appendix C, “API Reference,” and simply adds two parameters to specify the
range of indices that will be valid. This hint can enable some OpenGL implementations to
prefetch the vertex data, a potentially worthwhile performance optimization. A further
enhancement is glMultiDrawArrays, which allows you to send multiple arrays of indices
with a single function call.

One last vertex array function you’ll find in the reference section is glInterleavedArrays.
It allows you to combine several arrays into one aggregate array. There is no change to
your access or traversal of the arrays, but the organization in memory can possibly
enhance performance on some hardware implementations.

Getting Serious
With a few simple examples behind us, it’s time to tackle a more sophisticated model with
more vertex data. For this example, we use a model of an F-16 Thunderbird created by Ed
Womack at digitalmagician.net. We’ve used a commercial product called Deep Exploration

(version 3.4) from Right Hemisphere that has a handy feature of exporting models as
OpenGL code!

We had to modify the code output by Deep Exploration so that it would work with our
GLUT framework and run on both the Macintosh and the PC platforms. You can find the
code that renders the model in the THUNDERBIRD sample program. Note that the aircraft
is broken up into two pieces: the main body and a much smaller glass canopy. For illustra-
tional purposes, the following discussion will refer only to the larger body. We do not
include the entire program listing here because it is quite lengthy and mostly meaningless
to human beings. It consists of a number of arrays representing 3,704 individual triangles
(that’s a lot of numbers to stare at!).

The approach taken with this tool is to try to produce the smallest possible amount of
code to represent the given model. Deep Exploration has done a reasonable job of
compacting the data. There are 3,704 individual triangles, but using a clever indexing
scheme, Deep Exploration has encoded this as only 1,898 individual vertices, 2,716
normals, and 2,925 texture coordinates. The following code shows the DrawBody function,
which loops through the index set and sends OpenGL the texture, normal, and vertex
coordinates for each individual triangle:

void DrawBody(void)

{

int iFace, iPoint;

glBegin(GL_TRIANGLES);

for(iFace = 0; iFace < 3704; iFace++) // Each new triangle starts here

for(iPoint = 0; iPoint < 3; iPoint++) // Each vertex specified here

{

// Lookup the texture value

glTexCoord2fv(textures[face_indices[iFace][iPoint+6]]);

// Lookup the normal value

glNormal3fv(normals[face_indices[iFace][iPoint+3]]);

// Look up the vertex value

glVertex3fv(vertices[face_indices[iFace][iPoint]]);

}

glEnd();

}

This approach is okay when you must optimize the storage size of the model data—for
example, to save memory in an embedded application, reduce storage space, or reduce
bandwidth if the model must be transmitted over a network. However, for real-time
applications in which performance considerations can sometimes outweigh memory
constraints, this code would perform quite poorly because once again you are back to
square one, sending vertex data to OpenGL one vertex at a time.

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput440

The simplest and perhaps most obvious approach to speeding up this code is simply to
place the DrawModel function in a display list. Indeed, this is the approach we used in the
THUNDERBIRD program that renders this model. You can see the output of the model in
Figure 11.7.

Vertex Arrays 441

11

FIGURE 11.7 An F-16 Thunderbird model.

Let’s look at the cost of this approach and compare it to rendering the same model with
indexed vertex arrays. The Thunderbird model actually comes in two pieces: the main
body and a transparent glass canopy. To keep things simple, we are neglecting the cost in
these calculations of the separate and much smaller glass canopy.

Measuring the Cost First, we calculate the amount of memory required to store the
original compacted vertex data. We can do this simply by looking at the declarations of
the data arrays and knowing how large the base data type is:

short face_indices[3704][9] = { ...

GLfloat vertices [1898][3] = { ...

GLfloat normals [2716][3] = { ...

GLfloat textures [2925][2] = { ...

The memory for face_indices would be sizeof(short) × 3,704 × 9, which works out to
66,672 bytes. Similarly, we calculate the size of vertices, normals, and textures as 22,776,
32,592, and 23,400 bytes, respectively. This gives us a total memory footprint of 145,440
bytes or about 142KB.

But wait! When we draw the model into the display list, we copy all this data again into
the display list, except that now we decompress our packed data so that many vertices are
duplicated for adjacent triangles. We, in essence, undo all the work to optimize the storage
of the geometry to draw it. We can’t calculate exactly how much space the display list
takes, but we can get a good estimate by calculating just the size of the geometry. There
are 3,704 triangles. Each triangle has three vertices, each of which has a floating-point
vertex (three floats), normal (three floats), and texture coordinate (two floats). Assuming
4 bytes for a float (sizeof(float)), we calculate this as shown here:

3,704 (triangle) × 3 (vertices) = 11,112 vertices

Each vertex has three components (x, y, z):

11,112 × 3 = 33,336 floating-point values for geometry

Each vertex has a normal, meaning three more components:

11,112 × 3 = 33,336 floating-point values for normals

Each vertex has a texture, meaning two more components:

11,112 × 2 = 22,224 floating-point values for texture coordinates

This gives a total of 88,896 floats, at 4 bytes each = 355,584 bytes.

Total memory for the display list data and the original data is then 501,024 bytes, just a
tad shy of half a megabyte! But don’t forget the transformation cost—11,112 (3,704 × 3)
vertices must be transformed by the OpenGL geometry pipeline. That’s a lot of matrix
multiplies!

Creating a Suitable Indexed Array Just because the data in the THUNDERBIRD sample is
stored in arrays does not mean the data is ready to be used as any kind of OpenGL vertex
array. In OpenGL, the vertex array, normal array, texture array, and any other arrays that
you want to use must all be the same size. The reason is that all the array elements across
arrays must be shared. For ordinary vertex arrays, as you march through the set of arrays,
array element 0 from the vertex array must go with array element 0 from the normal
array, and so on. For indexed arrays, we have the same requirement. Each index must
address all the enabled arrays at the same corresponding array element.

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput442

For the sample program THUNDERGL, we have created a C++ utility class that processes
the existing array data and reindexes the triangles so that all three arrays are the same size
and all array elements correspond exactly one to another. Many 3D applications can
benefit from reprocessing an unstructured list of triangles and creating a ready-to-go
indexed vertex array. This class is easily reusable and extensible, and is placed in the
\shared source directory. Listing 11.3 shows the processing of the body and glass canopy
elements to get the indexed array ready.

LISTING 11.3 Code to Create the Indexed Vertex Arrays

CTriangleMesh thunderBirdBody;

CTriangleMesh thunderBirdGlass;

. . .

. . .

// Load Thunderbird body and canopy

// Temporary workspace

M3DVector3f vVerts[3];

M3DVector3f vNorms[3];

M3DVector2f vTex[3];

// Start assembling the body mesh, set maximum size

thunderBirdBody.BeginMesh(3704*3);

// Loop through all the faces

for(int iFace = 0; iFace < 3704; iFace++)

{

// Assemble the triangle

for(int iPoint = 0; iPoint < 3; iPoint++)

{

memcpy(&vVerts[iPoint][0],

&vertices[face_indicies[iFace][iPoint]][0], sizeof(M3DVector3f));

memcpy(&vNorms[iPoint][0],

&normals[face_indicies[iFace][iPoint+3]][0], sizeof(M3DVector3f));

memcpy(&vTex[iPoint][0],

&textures[face_indicies[iFace][iPoint+6]][0], sizeof(M3DVector2f));

}

thunderBirdBody.AddTriangle(vVerts, vNorms, vTex);

}

// Close the mesh and scale it (it’s a little BIG in its original format)

Vertex Arrays 443

11

LISTING 11.3 Continued

thunderBirdBody.EndMesh();

thunderBirdBody.Scale(fScale);

// Now do the same for the canopy

thunderBirdGlass.BeginMesh(352*3);

for(int iFace = 0; iFace < 352; iFace++)

{

// Assemble the triangle

for(int iPoint = 0; iPoint < 3; iPoint++)

{

memcpy(&vVerts[iPoint][0],

&verticesGlass[face_indiciesGlass[iFace][iPoint]][0],

sizeof(M3DVector3f));

memcpy(&vNorms[iPoint][0],

&normalsGlass[face_indiciesGlass[iFace][iPoint+3]][0],

sizeof(M3DVector3f));

memcpy(&vTex[iPoint][0],

&texturesGlass[face_indiciesGlass[iFace][iPoint+6]][0],

sizeof(M3DVector2f));

}

thunderBirdGlass.AddTriangle(vVerts, vNorms, vTex);

}

thunderBirdGlass.EndMesh();

thunderBirdGlass.Scale(fScale);

First, we need to declare storage for our two new triangle meshes:

CTriangleMesh thunderBirdBody;

CTriangleMesh thunderBirdGlass;

Then in the SetupRC function, we populate these triangle meshes with triangles. Because
we don’t know ahead of time what our savings will be, when we start the mesh, we must
tell the class the maximum amount of storage to allocate for workspace. We know that the
face array (each containing three vertices) is 3,704 elements long, so the worst possible
scenario is 3,704 × 3 unique vertices. As we will see, we will actually do much better than
this.

thunderBirdBody.BeginMesh(3704*3);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput444

Finally, we loop through all the faces, assemble each triangle individually, and send it the
AddTriangle method. When all the triangles are added, we scale them using the member
function Scale. We did this only because the original model data was bigger than we’d
prefer.

// Loop through all the faces

for(int iFace = 0; iFace < 3704; iFace++)

{

// Assemble the triangle

for(int iPoint = 0; iPoint < 3; iPoint++)

{

memcpy(&vVerts[iPoint][0],

&vertices[face_indicies[iFace][iPoint]][0], sizeof(M3DVector3f));

memcpy(&vNorms[iPoint][0],

&normals[face_indicies[iFace][iPoint+3]][0], sizeof(M3DVector3f));

memcpy(&vTex[iPoint][0],

&textures[face_indicies[iFace][iPoint+6]][0], sizeof(M3DVector2f));

}

thunderBirdBody.AddTriangle(vVerts, vNorms, vTex);

}

// Close the mesh and scale it (it’s a little BIG in its original format)

thunderBirdBody.EndMesh();

thunderBirdBody.Scale(fScale);

We must do this for both the Thunderbird body and the glass canopy.

Comparing the Cost Now let’s compare the cost of our three methods of rendering this
model. The CTriangleMesh class reports that the processed body of the Thunderbird
consists of 3,265 unique vertices (including matching normals and texture coordinates),
and 11,112 indexes (which is the total number of vertices when rendered as triangles).
Each vertex and normal has three components (x,y,z), and each texture coordinate has
two components. The total number of floating-point values in the mesh data is then
calculated this way:

3,265 vertices × 8 = 26,120 floats

Multiplying each float by 4 bytes yields a memory overhead of 104,480 bytes. We still
need to add in the index array of unsigned shorts. That’s another 11,112 elements times
2 bytes each = 22,224. This gives a grand total storage overhead of 126,704 bytes. Table
11.2 shows these values side by side. Remember, a kilobyte is 1,024 bytes.

Vertex Arrays 445

11

TABLE 11.2 Memory and Transformation Overhead for Three Rendering Methods

Rendering Mode Memory Vertices Transformed

Immediate Mode 142KB 11,112

Display List 489KB 11,112

Indexed Vertex Array 123KB 3,265

As it turns out in this case, the Indexed Vertex Array approach wins hands down in terms
of memory footprint, and requires less than one-third of the transformation work on the
vertices!

In a production program, you might have tools that take this calculated indexed array and
write it out to disk with a header that describes the required array dimensions. Reading
this mesh or a collection of meshes back into the program then is a simple implementa-
tion of a basic model loader. The loaded model’s meshes are then exactly in the format
required by OpenGL.

Models with sharp edges and corners often have fewer vertices that are candidates for
sharing. However, models with large smooth surface areas can stand to gain even more in
terms of memory and transformation savings. With the added savings of less geometry to
move through memory, and the corresponding savings in matrix operations, indexed
vertex arrays can sometimes outperform display lists. For many real-time applications,
indexed vertex arrays are often the method of choice for geometric rendering. As you’ll
soon see, we can take still one more step forward with our vertex arrays and achieve the
fastest possible performance, leaving even display lists in the dust!

Back to the point
With all this multiplication and addition going on, we almost forgot that we were trying
to render something! The THUNDERGL sample program is a good opportunity to show-
case all we have learned so far in this book. Rather than simply render the model against a
blank background, we are going to adapt this model to Chapter 9’s CUBEMAP sample
program. In addition to a nice skybox for the background, we will make use of cube
mapping and multitexture to make the glass canopy really look like a glass canopy.

As in the CUBEMAP sample program, we begin by rendering the skybox using the cube
map texture. To render the Thunderbird body, we call the function shown in Listing 11.4.

LISTING 11.4 Code to the Entire Thunderbird Model

///

// Draw the ThunderBird

void DrawThunderBird(void)

{

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_NORMAL_ARRAY);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput446

LISTING 11.4 Continued

glActiveTexture(GL_TEXTURE1);

glDisable(GL_TEXTURE_CUBE_MAP);

glActiveTexture(GL_TEXTURE0);

glPushMatrix();

glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);

glTexEnvi(GL_TEXTURE_2D, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glBindTexture(GL_TEXTURE_2D, textureObjects[BODY_TEXTURE]);

thunderBirdBody.Draw();

glPopMatrix();

glActiveTexture(GL_TEXTURE1);

glEnable(GL_TEXTURE_CUBE_MAP);

glActiveTexture(GL_TEXTURE0);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glBindTexture(GL_TEXTURE_2D, textureObjects[GLASS_TEXTURE]);

glTranslatef(0.0f, 0.132f, 0.555f);

glColor4f(1.0f, 1.0f, 1.0f, 0.25f);

glFrontFace(GL_CW);

thunderBirdGlass.Draw();

glFrontFace(GL_CCW);

thunderBirdGlass.Draw();

glDisable(GL_BLEND);

glDisableClientState(GL_VERTEX_ARRAY);

glDisableClientState(GL_NORMAL_ARRAY);

glDisableClientState(GL_TEXTURE_COORD_ARRAY);

}

The model this time is rendered as an indexed vertex array. Just like non-indexed arrays,
we must enable the vertex arrays we want to use:

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_NORMAL_ARRAY);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

To render the body, we turn off the cube map that is bound to the second texture unit,
and just draw the body, using a modulated texture environment so that the shading of the

Vertex Arrays 447

11

geometry shows through the texture. We will need to do a small rotation to orient the
model the way we want it presented:

glActiveTexture(GL_TEXTURE1);

glDisable(GL_TEXTURE_CUBE_MAP);

glActiveTexture(GL_TEXTURE0);

glPushMatrix();

glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);

glTexEnvi(GL_TEXTURE_2D, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glBindTexture(GL_TEXTURE_2D, textureObjects[BODY_TEXTURE]);

thunderBirdBody.Draw();

glPopMatrix();

The Draw method of the CTriangleMesh class instance thunderBirdBody simply sets the
vertex pointers, and calls glDrawElements.

// Draw - make sure you call glEnableClientState for these arrays

void CTriangleMesh::Draw(void) {

// Here’s where the data is now

glVertexPointer(3, GL_FLOAT,0, pVerts);

glNormalPointer(GL_FLOAT, 0, pNorms);

glTexCoordPointer(2, GL_FLOAT, 0, pTexCoords);

// Draw them

glDrawElements(GL_TRIANGLES, nNumIndexes, GL_UNSIGNED_INT, pIndexes);

}

The glass canopy is a real showcase item here. First we turn cube mapping back on, but on
the second texture unit. We have also previously (not shown here) enabled a reflective
texture coordinate generation mode for the cube map on this texture unit.

glActiveTexture(GL_TEXTURE1);

glEnable(GL_TEXTURE_CUBE_MAP);

glActiveTexture(GL_TEXTURE0);

To draw the canopy transparently, we turn on blending and use the standard transparency
blending mode. The alpha value for the material is turned way down to make the glass
mostly clear:

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glColor4f(1.0f, 1.0f, 1.0f, 0.25f);

glBindTexture(GL_TEXTURE_2D, textureObjects[GLASS_TEXTURE]);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput448

Then we make a minor position tweak to the canopy and draw it twice:

glTranslatef(0.0f, 0.132f, 0.555f);

glFrontFace(GL_CW);

thunderBirdGlass.Draw();

glFrontFace(GL_CCW);

thunderBirdGlass.Draw();

glDisable(GL_BLEND);

Why did we draw the canopy twice? If you recall from Chapter 6, “More on Colors and
Materials,” the trick to transparency is to draw the background object first. This is the
reason we rendered the plane body first, and the canopy second. Regardless of orientation,
the canopy either will be hidden via the depth test behind the plane body, or will be
drawn second but in front of the body. But the canopy itself has an inside and an outside
visible when you look through it from the outside. The simple trick here is to flip front-
facing polygons to GL_CW temporarily and draw the object. This draws the back side of the
object first, which is also the part of the object farthest away. Restoring front-facing poly-
gons to GL_CCW and drawing the object again draws just the front side of the object, neatly
on top of the just-rendered back side. With blending on during this entire operation, you
get a nice transparent piece of glass. With the cube map added in as well, you get a very
believable glassy reflective surface. The result is shown in Figure 11.8, and in Color Plate 6.
Neither image, however, matches the effect of seeing the animation onscreen.

Vertex Arrays 449

11

FIGURE 11.8 The final Thunderbird model. (This figure also appears in the Color insert.)

Vertex Buffer Objects
Display lists are a quick and easy way to optimize immediate mode code (code using
glBegin/glEnd). At the very worst, a display list will contain a precompiled set of OpenGL
data, ready to be copied quickly to the command buffer, and destined for the graphics
hardware. At best, an implementation may copy a display list to the graphics hardware,
reducing bandwidth to the hardware to essentially nil. This last scenario is highly desir-
able, but is a bit of a luck-of-the-draw performance optimization. Display lists are also not
terribly flexible after they are created!

Vertex arrays, on the other hand, give us all the flexibility we want, and at worst result in
block copies (still much faster than immediate mode) to the hardware. Indexed vertex
arrays further up the ante by providing a means of reducing the amount of vertex data
that must be transferred to the hardware, and reducing the transformation overhead. For
dynamic geometry such as cloth, water, or just trees swaying in the wind, vertex arrays are
an obvious choice.

There is one more feature of OpenGL that provides the ultimate control over geometric
throughput. When you’re using vertex arrays, it is possible to transfer individual arrays
from your client (CPU-accessible) memory to the graphics hardware. This feature, vertex
buffer objects, allow you to use and manage vertex array data in a similar manner to how
we load and manage textures. Vertex buffer objects, however, are far more flexible than
texture objects.

Managing and Using Buffer Objects
The first step to using vertex buffer objects is to use vertex arrays. We have that well
covered at this point. The second step is to create the buffer objects in a manner similar to
creating texture objects. To do this, we use the function glGenBuffers:

void glGenBuffers(GLsizei n, GLuint *buffers);

This function works just like the glGenTextures function covered in Chapter 8, “Texture
Mapping: The Basics.” The first parameter is the number of buffer objects desired, and the
second is an array that is filled with new vertex buffer object names. In an identical way,
buffers are released with glDeleteBuffers.

Vertex buffer objects are “bound,” again reminding us of the use of texture objects. The
function glBindBuffer binds the current state to a particular buffer object:

void glBindBuffer(GLenum target, GLuint buffer);

Here, target refers to the kind of array being bound (again, similar to texture targets).
This may be either GL_ARRAY_BUFFER for vertex data (including normals, texture coordi-
nates, etc.) or GL_ELEMENT_ARRAY_BUFFER for array indexes to be used with glDrawElements
and the other index-based rendering functions.

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput450

Loading the Buffer Objects
To copy your vertex data to the graphics hardware, you first bind to the buffer object in
question, then call glBufferData:

void glBufferData(GLenum target, GLsizeiptr size, GLvoid *data, GLenum usage);

Again target refers to either GL_ARRAY_BUFFER or GL_ELEMENT_ARRAY_BUFFER, and size
refers to the size in bytes of the vertex array. The final parameter is a performance usage
hint. This can be any one of the values listed in Table 11.3.

TABLE 11.3 Buffer Object Usage Hints

Usage Hint Description

GL_DYNAMIC_DRAW The data stored in the buffer object is likely to change frequently but is likely

to be used as a source for drawing several times in between changes. This hint

tells the implementation to put the data somewhere it won’t be too painful to

update once in a while.

GL_STATIC_DRAW The data stored in the buffer object is unlikely to change and will be used

possibly many times as a source for drawing. This hint tells the implementation

to put the data somewhere it’s quick to draw from, but probably not quick to

update.

GL_STREAM_DRAW The data store in the buffer object is likely to change frequently and will be

used only once (or at least very few times) in between changes. This hint tells

the implementation that you have time-sensitive data such as animated geom-

etry that will be used once and then replaced. It is crucial that the data be

placed somewhere quick to update, even at the expense of faster rendering.

Rendering from VBOs
Two things change when rendering from vertex array objects. First, you must bind to the
specific vertex array before calling one of the vertex pointer functions. Second, the actual
pointer to the array now becomes an offset into the vertex buffer object. For example,

glVertexPointer(3, GL_FLOAT,0, pVerts);

now becomes this:

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[0]);

glVertexPointer(3, GL_FLOAT,0, 0);

This goes for the rendering call as well; for example:

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bufferObjects[3]);

glDrawElements(GL_TRIANGLES, nNumIndexes, GL_UNSIGNED_SHORT, 0);

Vertex Buffer Objects 451

11

This offset into the buffer object is technically an offset based on the native architecture’s
NULL pointer. On most systems, this is just zero.

Back to the Thunderbird!
Let’s apply what we have learned to our Thunderbird model so that we can see all of this
in a real context. The sample program VBO from this chapter’s sample source code is
adapted from the THUNDERGL sample program, but it has been retrofitted to use
vertex buffer objects. The only change to the main program’s source code is that the
CTriangleMesh objects have been replaced with CVBOMesh objects. The CVBOMesh class is
nothing more than the CTriangleMesh class revved up to use VBOs. Two small changes
were made to the header. We defined four values to represent each of our four arrays:

#define VERTEX_DATA 0

#define NORMAL_DATA 1

#define TEXTURE_DATA 2

#define INDEX_DATA 3

And we need storage for the four buffer objects:

GLuint bufferObjects[4];

Initializing the Arrays
The biggest change to the original code is in the EndMesh method, shown in Listing 11.5.

LISTING 11.5 The New End Mesh Method

void CVBOMesh::EndMesh(void)

{

// Create the buffer objects

glGenBuffers(4, bufferObjects);

// Copy data to video memory

// Vertex data

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[VERTEX_DATA]);

glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*nNumVerts*3,

pVerts, GL_STATIC_DRAW);

// Normal data

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[NORMAL_DATA]);

glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*nNumVerts*3,

pNorms, GL_STATIC_DRAW);

// Texture coordinates

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[TEXTURE_DATA]);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput452

LISTING 11.5 Continued

glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*nNumVerts*2,

pTexCoords, GL_STATIC_DRAW);

// Indexes

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bufferObjects[INDEX_DATA]);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLushort)*nNumIndexes,

pIndexes, GL_STATIC_DRAW);

// Free older, larger arrays

delete [] pIndexes;

delete [] pVerts;

delete [] pNorms;

delete [] pTexCoords;

// Reassign pointers so they are marked as unused

pIndexes = NULL;

pVerts = NULL;

pNorms = NULL;

pTexCoords = NULL;

}

As outlined in the previous section, each array is loaded individually into its own buffer
object. Notice that after the data is copied to the buffer object, the original pointer is no
longer needed, and all the working space buffers are deleted. This has three implications.
First, it frees up client memory, which you can never have enough of. Second, it consumes
memory on the graphics hardware, which you never seem to have enough of! Third, you
can no longer make changes to the data, because you no longer have access to it. What
about dynamic geometry?

Mixing static and dynamic data
There are two methods of handling dynamic or regularly changing geometry. The first is
to simply not use VBOs for the arrays that are being regularly updated. For example, if you
have a cloth animation, the texture coordinates on your mesh are unlikely to change
frame to frame, whereas the vertices are constantly being updated. You can put the texture
coordinates in a VBO, and keep the vertex data in a regular vertex array. After you call
glBindBuffer, though, you are bound to a particular VBO. Calling glBindBuffer again
switches to another VBO. How then do we “unbind” and go back to regular vertex arrays?
Simple, just bind to a NULL buffer:

glBindBuffer(GL_ARRAY_BUFFER, 0);

Vertex Buffer Objects 453

11

If the data doesn’t need to be updated all that often, another alternative is to map the
buffer back into client memory. This actually comes up in the CVBOMesh class Scale func-
tion as shown here:

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[VERTEX_DATA]);

M3DVector3f *pVertexData = (M3DVector3f *)glMapBuffer(GL_ARRAY_BUFFER,

GL_READ_WRITE);

if(pVertexData != NULL)

{

for(int i = 0; i < nNumVerts; i++)

m3dScaleVector3(pVertexData[i], fScaleValue);

glUnmapBuffer(GL_ARRAY_BUFFER);

}

The glMapBuffer function returns a pointer that you can use to access the vertex data
directly. The second parameter to this function is the access permissions and may be
GL_READ_WRITE, GL_WRITE_ONLY, or GL_READ_ONLY. When you do this, you must unmap the
buffer with glUnmapBuffer before you can use the buffer object again.

Render!
Finally, we are ready to render our model using vertex buffer objects. Listing 11.6 shows
the new and improved Draw method. Now, when you run the sample program VBO
(which looks just like THUNDERGL!), both the textures and all the geometry are being
rendered on the graphics card from local memory. This is the best possible scenario,
because the bandwidth to the hardware is virtually nonexistent compared to using vertex
arrays, or using worst-case optimized display lists.

LISTING 11.6 The New and Improved Draw Method

void CVBOMesh::Draw(void) {

// Here’s where the data is now

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[VERTEX_DATA]);

glVertexPointer(3, GL_FLOAT,0, 0);

// Normal data

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[NORMAL_DATA]);

glNormalPointer(GL_FLOAT, 0, 0);

// Texture coordinates

glBindBuffer(GL_ARRAY_BUFFER, bufferObjects[TEXTURE_DATA]);

glTexCoordPointer(2, GL_FLOAT, 0, 0);

CHAPTER 11 It’s All About the Pipeline: Faster Geometry Throughput454

LISTING 11.6 Continued

// Indexes

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bufferObjects[INDEX_DATA]);

glDrawElements(GL_TRIANGLES, nNumIndexes, GL_UNSIGNED_SHORT, 0);

}

Summary
In this chapter, we focused on different methods of improving geometric throughput. We
began with display lists, which are an excellent way to quickly optimize legacy immediate
mode rendering code. Display lists, however, can also be used conveniently to store many
other OpenGL commands such as state changes, lighting setup, and any other frequently
repeated tasks.

By packing all the vertex data together in a single data structure (an array), you enable the
OpenGL implementation to make potentially valuable performance optimizations. In
addition, you can stream the data to disk and back, thus storing the geometry in a format
that is ready for use in OpenGL. Although OpenGL does not have a “model format” as
some higher level APIs do, the vertex array construct is certainly a good place to start if
you want to build your own.

Generally, you can significantly speed up static geometry by using display lists, and you
can use vertex arrays whenever you want dynamic geometry. Index vertex arrays, on the
other hand, can potentially (but not always) give you the best of both worlds—flexible
geometry data and highly efficient memory transfer and geometric processing. For many
applications, vertex arrays are used almost exclusively. However, the old glBegin/glEnd
construct still has many uses, besides allowing you to create display lists—anytime the
amount of geometry fluctuates dynamically from frame to frame, for example. There is
little benefit to continually rebuilding a small vertex array from scratch rather than letting
the driver do the work with glBegin/glEnd.

Finally, we learned to use vertex buffer objects to get the best possible optimization we
can hope for with display lists (storing the geometry on the hardware) yet have the great
flexibility of using vertex arrays. We’ve seen that the best possible way to render static
geometry is to represent it as an indexed vertex array, and store it on your graphics card
via VBOs. Still, we have only scratched the surface of OpenGL’s rich buffer object feature
set. In Chapter 18, “Advanced Buffers,” you’ll learn some more powerful optimizations
and whole new capabilities made possible by the ideas introduced in this chapter.

Summary 455

11

This page intentionally left blank

CHAPTER 12

Interactive Graphics

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Assign OpenGL selection names glInitNames/glPushName/glPopName

to primitives or groups

of primitives

Use selection to determine glSelectBuffer/glRenderMode

which objects are under

the mouse

Use feedback to get information glFeedbackBuffer/gluPickMatrix

about where objects are drawn

Thus far, you have learned to create some sophisticated 3D graphics using OpenGL, and
many applications do no more than generate these scenes. But many graphics applications
(notably, games, CAD, 3D modeling, and so on) require more interaction with the scene
itself. In addition to menus and dialog boxes, often you need to provide a way for the user
to interact with a graphical scene. Typically, this interaction usually happens with a
mouse.

Selection, a powerful feature of OpenGL, allows you to take a mouse click at some position
over a window and determine which of your objects are beneath it. The act of selecting a
specific object on the screen is called picking. With OpenGL’s selection feature, you can
specify a viewing volume and determine which objects fall within that viewing volume.
A powerful utility function, gluPickMatrix, produces a matrix for you, based purely on
screen coordinates and the pixel dimensions you specify; you use this matrix to create a
smaller viewing volume placed beneath the mouse cursor. Then you use selection to test
this viewing volume to see which objects are contained by it.

458 CHAPTER 12 Interactive Graphics

Feedback allows you to get information from OpenGL about how your vertices are trans-
formed and illuminated when they are drawn to the frame buffer. You can use this infor-
mation to transmit rendering results over a network, send them to a plotter, or add other
graphics (say, with GDI, for Windows programmers) to your OpenGL scene that appear to
interact with the OpenGL objects. Feedback does not serve the same purpose as selection,
but the mode of operation is similar and they can work productively together. You’ll see
this teamwork later in the SELECT sample program.

Selection
Selection is actually a rendering mode, but in selection mode, no pixels are actually copied
to the frame buffer. Instead, primitives that are drawn within the viewing volume (and
thus would normally appear in the frame buffer) produce hit records in a selection buffer.
This buffer, unlike other OpenGL buffers, is just an array of integer values.

You must set up this selection buffer in advance and name your primitives or groups of
primitives (your objects or models) so they can be identified in the selection buffer. You
then parse the selection buffer to determine which objects intersected the viewing
volume. Named objects that do not appear in the selection buffer fell outside the viewing
volume and would not have been drawn in render mode. Although selection mode is fast
enough for object picking, using it for general-purpose frustum-culling performs signifi-
cantly slower than any of the techniques we discussed in Chapter 11, “It’s All About the
Pipeline: Faster Geometry Throughput.” For picking, you specify a viewing volume that
corresponds to a small space beneath the mouse pointer and then check which named
objects are rendered within that space.

Naming Your Primitives
You can name every single primitive used to render your scene of objects, but doing so is
rarely useful. More often, you name groups of primitives, thus creating names for the
specific objects or pieces of objects in your scene. Object names, like display list names,
are nothing more than unsigned integers.

The names list is maintained on the name stack. After you initialize the name stack, you
can push names on the stack or simply replace the name currently on top of the stack.
When a hit occurs during selection, all the names currently on the name stack are
appended to the end of the selection buffer. Thus, a single hit can return more than one
name if needed.

For our first example, we keep things simple. We create a simplified (and not-to-scale)
model of the inner planets of the solar system. When the left mouse button is down, we
display a message in the window caption naming which planet was clicked. Listing 12.1
shows some of the rendering code for our sample program PLANETS. We have created
macro definitions for the sun, Mercury, Venus, Earth, and Mars.

LISTING 12.1 Naming the Sun and Planets in the PLANETS Program

///////////////////////////////

// Define object names

#define SUN 1

#define MERCURY 2

#define VENUS 3

#define EARTH 4

#define MARS 5

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the matrix state and do the rotations

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

// Translate the whole scene out and into view

glTranslatef(0.0f, 0.0f, -300.0f);

// Initialize the names stack

glInitNames();

glPushName(0);

// Name and draw the sun

glColor3f(1.0f, 1.0f, 0.0f);

glLoadName(SUN);

DrawSphere(15.0f);

// Draw Mercury

glColor3f(0.5f, 0.0f, 0.0f);

glPushMatrix();

glTranslatef(24.0f, 0.0f, 0.0f);

glLoadName(MERCURY);

DrawSphere(2.0f);

glPopMatrix();

// Draw Venus

glColor3f(0.5f, 0.5f, 1.0f);

Selection 459

12

CHAPTER 12 Interactive Graphics460

LISTING 12.1 Continued

glPushMatrix();

glTranslatef(60.0f, 0.0f, 0.0f);

glLoadName(VENUS);

DrawSphere(4.0f);

glPopMatrix();

// Draw the earth

glColor3f(0.0f, 0.0f, 1.0f);

glPushMatrix();

glTranslatef(100.0f,0.0f,0.0f);

glLoadName(EARTH);

DrawSphere(8.0f);

glPopMatrix();

// Draw Mars

glColor3f(1.0f, 0.0f, 0.0f);

glPushMatrix();

glTranslatef(150.0f, 0.0f, 0.0f);

glLoadName(MARS);

DrawSphere(4.0f);

glPopMatrix();

// Restore the matrix state

glPopMatrix(); // Modelview matrix

glutSwapBuffers();

}

In PLANETS, the glInitNames function initializes and clears the name stack, and
glPushName pushes 0 on the stack to put at least one entry on the stack. For the sun and
each planet, we call glLoadName to name the object or objects about to be drawn. This
name, in the form of an unsigned integer, is not pushed on the name stack but rather
replaces the current name on top of the stack. Later, we discuss keeping an actual stack of
names. For now, we just replace the top name of the name stack each time we draw an
object (the sun or a particular planet).

Working with Selection Mode
As mentioned previously, OpenGL can operate in three different rendering modes. The
default mode is GL_RENDER, in which all the drawing actually occurs onscreen. To use selec-
tion, we must change the rendering mode to selection by calling the OpenGL function:

glRenderMode(GL_SELECTION);

When we actually want to draw again, we use the following call to place OpenGL back in
rendering mode:

glRenderMode(GL_RENDER);

The third rendering mode is GL_FEEDBACK, discussed later in this chapter.

The naming code in Listing 12.1 has no effect unless we first switch the rendering mode
to selection mode. Conveniently, you call the same function to render the scene in both
GL_RENDER mode and GL_SELECTION mode, as we have done here.

Listing 12.2 provides the GLUT callback code triggered by the clicking of the left mouse
button. This code checks for a left button click and then forwards the mouse coordinates
to ProcessSelection, which processes the mouse click for this example.

LISTING 12.2 Code That Responds to the Left Mouse Button Click

///

// Process the mouse click

void MouseCallback(int button, int state, int x, int y)

{

if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)

ProcessSelection(x, y);

}

The Selection Buffer
The selection buffer is filled with hit records during the rendering process. A hit record is
generated whenever a primitive or collection of primitives is rendered that would have
been contained in the viewing volume. Under normal conditions, this is simply anything
that would have appeared onscreen.

The selection buffer is an array of unsigned integers, and each hit record occupies at least
four elements of the array. The first array index contains the number of names that are on
the name stack when the hit occurs. For the PLANETS example (Listing 12.1), this is
always 1, because we never really push anything else on top of the name stack. The next
two entries contain the minimum and maximum window z coordinates of all the vertices
contained by the viewing volume since the last hit record. This value, which ranges [0,1],
is scaled to the maximum size of an unsigned integer for storage in the selection buffer.
The fourth entry is the bottom of the name stack. If more than one name appears on the
name stack (indicated by the first index element), they follow the fourth element. This
pattern, illustrated in Figure 12.1, is then repeated for all the hit records contained in the
selection buffer. We explain why this pattern can be useful when we discuss picking.

Selection 461

12

FIGURE 12.1 Hit record for the selection buffer.

The format of the selection buffer gives you no way of knowing how many hit records you
need to parse. The selection buffer is not actually filled until you switch the rendering
mode back to GL_RENDER. When you do this with the glRenderMode function, the return
value is the number of hit records copied.

Listing 12.3 shows the processing function called when a mouse click occurs for the
PLANETS sample program. It shows the selection buffer being allocated and specified with
glSelectBuffer. This function takes two arguments: the length of the buffer and a pointer
to the buffer itself. You must make sure that you allocate enough elements ahead of time
to contain all your hit records. If you do not, the call to glRenderMode will return –1 and
the buffer contents will be invalid.

LISTING 12.3 Function to Process the Mouse Click

///

// Process the selection, which is triggered by a right mouse

// click at (xPos, yPos).

#define BUFFER_LENGTH 64

void ProcessSelection(int xPos, int yPos)

{

GLfloat fAspect;

// Space for selection buffer

static GLuint selectBuff[BUFFER_LENGTH];

// Hit counter and viewport storage

GLint hits, viewport[4];

CHAPTER 12 Interactive Graphics462

Selection buffer [0] Number of names on names stack at
time of hit = n0

Minimum z value[1]

Next hit record Number of names on names stack for
this record = n1

Minimum z value

Maximum z value[2]

Bottom of names stack[n0+2]

[n0+3]

•
•
•

•
•
•

[n0+4]

LISTING 12.3 Continued

// Set up selection buffer

glSelectBuffer(BUFFER_LENGTH, selectBuff);

// Get the viewport

glGetIntegerv(GL_VIEWPORT, viewport);

// Switch to projection and save the matrix

glMatrixMode(GL_PROJECTION);

glPushMatrix();

// Change render mode

glRenderMode(GL_SELECT);

// Establish new clipping volume to be unit cube around

// mouse cursor point (xPos, yPos) and extending two pixels

// in the vertical and horizontal direction

glLoadIdentity();

gluPickMatrix(xPos, viewport[3] - yPos + viewport[1], 2,2, viewport);

// Apply perspective matrix

fAspect = (float)viewport[2] / (float)viewport[3];

gluPerspective(45.0f, fAspect, 1.0, 425.0);

// Draw the scene

RenderScene();

// Collect the hits

hits = glRenderMode(GL_RENDER);

// If a single hit occurred, display the info.

if(hits == 1)

ProcessPlanet(selectBuff[3]);

// Restore the projection matrix

glMatrixMode(GL_PROJECTION);

glPopMatrix();

// Go back to modelview for normal rendering

glMatrixMode(GL_MODELVIEW);

}

Selection 463

12

Picking
Picking occurs when you use the mouse position to create and use a modified viewing
volume during selection. When you create a smaller viewing volume positioned in your
scene under the mouse position, only objects that would be drawn within that viewing
volume generate hit records. By examining the selection buffer, you can then see which
objects, if any, were clicked on by the mouse.

The gluPickMatrix function is a handy utility that creates a matrix describing the new
viewing volume:

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width,

GLdouble height, GLint viewport[4]);

The x and y parameters are the center of the desired viewing volume in OpenGL window
coordinates. You can plug in the mouse position here, and the viewing volume will be
centered directly underneath the mouse. The width and height parameters then specify
the dimensions of the viewing volume in window pixels. For clicks near an object, use a
large value; for clicks next to the object or directly on the object, use a smaller value. The
viewport array contains the window coordinates of the currently defined viewport. You
can easily obtain this information by calling

glGetIntegerv(GL_VIEWPORT, viewport);

Remember, as discussed in Chapter 2, “Using OpenGL,” that OpenGL window coordinates
are the opposite of most systems’ window coordinates with respect to the way pixels are
counted vertically. Note in Listing 12.3, we subtract the mouse y coordinate from the
viewport’s height. This yields the proper vertical window coordinate for OpenGL:

gluPickMatrix(xPos, viewport[3] – yPos + viewport[1], 2,2, viewport);

To use gluPickMatrix, you should first save the current projection matrix state (thus
saving the current viewing volume). Then call glLoadIdentity to create a unit-viewing
volume. Calling gluPickMatrix then translates this viewing volume to the correct loca-
tion. Finally, you must apply any further perspective projections you may have applied to
your original scene; otherwise, you won’t get a true mapping. Here’s how it’s done for the
PLANETS example (from Listing 12.3):

// Switch to projection and save the matrix

glMatrixMode(GL_PROJECTION);

glPushMatrix();

// Change render mode

glRenderMode(GL_SELECT);

// Establish new clipping volume to be unit cube around

// mouse cursor point (xPos, yPos) and extending two pixels

CHAPTER 12 Interactive Graphics464

// in the vertical and horizontal direction

glLoadIdentity();

gluPickMatrix(xPos, viewport[3] – yPos + viewport[1], 2,2, viewport);

// Apply perspective matrix (this must MATCH the same call when used

// to set up the scene).

fAspect = (float)viewport[2] / (float)viewport[3];

gluPerspective(45.0f, fAspect, 1.0, 425.0);

// Draw the scene

RenderScene();

// Collect the hits

hits = glRenderMode(GL_RENDER);

In this segment, the viewing volume is saved first. Then the selection mode is entered, the
viewing volume is modified to include only the area beneath the mouse cursor, and the
scene is redrawn via a call to RenderScene. After the scene is rendered, we call
glRenderMode again to place OpenGL back into normal rendering mode and get a count of
generated hit records.

In the next segment, if a hit occurred (for this example, there is either one hit or none),
we pass the entry in the selection buffer that contains the name of the object selected
or our ProcessPlanet function. Finally, we restore the projection matrix (thus, the old
viewing volume is restored) and switch the active matrix stack back to the modelview
matrix, which is usually the default:

// If a single hit occurred, display the info.

if(hits == 1)

ProcessPlanet(selectBuff[3]);

// Restore the projection matrix

glMatrixMode(GL_PROJECTION);

glPopMatrix();

// Go back to modelview for normal rendering

glMatrixMode(GL_MODELVIEW);

The ProcessPlanet function simply displays a message in the window’s caption telling
which planet was clicked. This code is not shown because it is fairly trivial, consisting of
no more than a switch statement and some glutSetWindowTitle function calls.

The output from PLANETS is shown in Figure 12.2, where you can see the result of click-
ing the second planet from the sun.

Selection 465

12

FIGURE 12.2 Output from PLANETS after a planet is clicked.

Although we don’t go into any great detail here, it is worth discussing briefly the z values
from the selection buffer. In the PLANETS example, each object or model was distinct and
off alone in its own space. What if you apply this same method to several objects or
models that perhaps overlap? You get multiple hit records! How do you know which one
the user clicked? This situation can be tricky and requires some forethought. You can use
the z values to determine which object was closest to the user in viewspace, which is the
most likely object that was clicked. Still, for some shapes and geometry, if you aren’t
careful, it can be difficult to sort out precisely what the user intended to pick.

Hierarchical Picking
For the PLANETS example, we didn’t push any names on the stack, but rather just
replaced the existing one whenever a new object was to be rendered. This single name
residing on the name stack was the only name returned in the selection buffer. We can
also get multiple names when a selection hit occurs, by placing more than one name on
the name stack. This capability is useful, for instance, in drill-down situations when you
need to know not only that a particular bolt was selected, but also that it belonged to a
particular wheel, on a particular car, and so forth.

To demonstrate multiple names being returned on the name stack, we stick with the
astronomy theme of our previous example. Figure 12.3 shows two planets (okay, so use a
little imagination)—a large blue planet with a single moon and a smaller red planet with
two moons.

CHAPTER 12 Interactive Graphics466

FIGURE 12.3 Two planets with their respective moons.

Rather than just identify the planet or moon that is clicked, we want to also identify the
planet that is associated with the particular moon. The code in Listing 12.4 shows our new
rendering code for this scene. We push the names of the moons onto the name stack so
that it contains the name of the planet as well as the name of the moon when selected.

LISTING 12.4 Rendering Code for the MOONS Sample Program

///////////////////////////////

// Define object names

#define EARTH 1

#define MARS 2

#define MOON1 3

#define MOON2 4

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the matrix state and do the rotations

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

// Translate the whole scene out and into view

glTranslatef(0.0f, 0.0f, -300.0f);

// Initialize the names stack

Selection 467

12

LISTING 12.4 Continued

glInitNames();

glPushName(0);

// Draw the earth

glPushMatrix();

glColor3f(0.0f, 0.0f, 1.0f);

glTranslatef(-100.0f,0.0f,0.0f);

glLoadName(EARTH);

DrawSphere(30.0f);

// Draw the moon

glTranslatef(45.0f, 0.0f, 0.0f);

glColor3f(0.85f, 0.85f, 0.85f);

glPushName(MOON1);

DrawSphere(5.0f);

glPopName();

glPopMatrix();

// Draw Mars

glPushMatrix();

glColor3f(1.0f, 0.0f, 0.0f);

glTranslatef(100.0f, 0.0f, 0.0f);

glLoadName(MARS);

DrawSphere(20.0f);

// Draw Moon1

glTranslatef(-40.0f, 40.0f, 0.0f);

glColor3f(0.85f, 0.85f, 0.85f);

glPushName(MOON1);

DrawSphere(5.0f);

glPopName();

// Draw Moon2

glTranslatef(0.0f, -80.0f, 0.0f);

glPushName(MOON2);

DrawSphere(5.0f);

glPopName();

glPopMatrix();

CHAPTER 12 Interactive Graphics468

LISTING 12.4 Continued

// Restore the matrix state

glPopMatrix(); // Modelview matrix

glutSwapBuffers();

}

Now in our ProcessSelection function, we still call the ProcessPlanet function that we
wrote, but this time, we pass the entire selection buffer:

// If a single hit occurred, display the info.

if(hits == 1)

ProcessPlanet(selectBuff);

Listing 12.5 shows the more substantial ProcessPlanet function for this example. In this
instance, the bottom name on the name stack is always the name of the planet because it
was pushed on first. If a moon is clicked, it is also on the name stack. This function
displays the name of the planet selected, and if it was a moon, that information is also
displayed. Sample output is shown in Figure 12.4.

Selection 469

12

FIGURE 12.4 Sample output from the MOONS sample program.

LISTING 12.5 Code That Parses the Selection Buffer for the MOONS Sample Program

///

// Parse the selection buffer to see which

// planet/moon was selected

void ProcessPlanet(GLuint *pSelectBuff)

{

int id,count;

char cMessage[64];

strcpy(cMessage,”Error, no selection detected”);

// How many names on the name stack

count = pSelectBuff[0];

// Bottom of the name stack

id = pSelectBuff[3];

// Select on Earth or Mars, whichever was picked

switch(id)

{

case EARTH:

strcpy(cMessage,”You clicked Earth.”);

// If there is another name on the name stack,

// then it must be the moon that was selected

// This is what was actually clicked on

if(count == 2)

strcat(cMessage,” - Specifically the moon.”);

break;

case MARS:

strcpy(cMessage,”You clicked Mars.”);

// We know the name stack is only two deep. The precise

// moon that was selected will be here.

if(count == 2)

{

if(pSelectBuff[4] == MOON1)

strcat(cMessage,” - Specifically Moon #1.”);

else

strcat(cMessage,” - Specifically Moon #2.”);

}

break;

CHAPTER 12 Interactive Graphics470

LISTING 12.5 Continued

}

// Display the message about planet and moon selection

glutSetWindowTitle(cMessage);

}

Feedback
Feedback, like selection, is a rendering mode that does not produce output in the form of
pixels on the screen. Instead, information is written to a feedback buffer indicating how
the scene would have been rendered. This information includes transformed vertex data in
window coordinates, color data resulting from lighting calculations, and texture data—
essentially everything needed to rasterize the primitives.

You enter feedback mode the same way you enter selection mode, by calling glRenderMode
with a GL_FEEDBACK argument. You must reset the rendering mode to GL_RENDER to fill the
feedback buffer and return to normal rendering mode.

The Feedback Buffer
The feedback buffer is an array of floating-point values specified with the
glFeedbackBuffer function:

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

This function takes the size of the feedback buffer, the type and amount of drawing infor-
mation wanted, and a pointer to the buffer itself.

Valid values for type appear in Table 12.1. The type of data specifies how much data is
placed in the feedback buffer for each vertex. Color data is represented by a single value in
color index mode or four values for RGBA color mode.

TABLE 12.1 Feedback Buffer Types

Color Data Vertex Texture Total Type Coordinates
Data Values

GL_2D x, y N/A N/A 2

GL_3D x, y, z N/A N/A 3

GL_3D_COLOR x, y, z C N/A 3 + C

GL_3D_COLOR_TEXTURE x, y, z C 4 7 + C

GL_4D_COLOR_TEXTURE x, y, z, w C 4 8 + C

Selection 471

12

Feedback Data
The feedback buffer contains a list of tokens followed by vertex data and possibly color and
texture data. You can parse for these tokens (see Table 12.2) to determine the types of primi-
tives that would have been rendered. One limitation of feedback occurs when using multiple
texture units. In this case, only texture coordinates from the first texture unit are returned.

TABLE 12.2 Feedback Buffer Tokens

Token Primitive

GL_POINT_TOKEN Points

GL_LINE_TOKEN Line

GL_LINE_RESET_TOKEN Line segment when line stipple is reset

GL_POLYGON_TOKEN Polygon

GL_BITMAP_TOKEN Bitmap

GL_DRAW_PIXEL_TOKEN Pixel rectangle drawn

GL_COPY_PIXEL_TOKEN Pixel rectangle copied

GL_PASS_THROUGH_TOKEN User-defined marker

The point, bitmap, and pixel tokens are followed by data for a single vertex and possibly
color and texture data. This depends on the data type from Table 12.1 specified in the call
to glFeedbackBuffer. The line tokens return two sets of vertex data, and the polygon token
is immediately followed by the number of vertices that follow. The user-defined marker
(GL_PASS_THROUGH_TOKEN) is followed by a single floating-point value that is user defined.
Figure 12.5 shows an example of a feedback buffer’s memory layout if a GL_3D type were
specified. Here, we see the data for a point, token, and polygon rendered in that order.

CHAPTER 12 Interactive Graphics472

– GL_POINT_TOKENFeedback buffer [0]
– x coordinate[1]
– y coordinate[2]
– x coordinate[3]
– GL_PASS_THROUGH_TOKEN[4]
– User-defined value[5]
– GL_POLYGON_TOKEN[6]
– Number of vertices[7]
– x coordinate of first vertex[8]
– y coordinate of first vertex[9]
– z coordinate of first vertex[10]
– x coordinate of second vertex[11]

…
…

z coordinate of last vertex[n]

FIGURE 12.5 A sample memory layout for a feedback buffer.

Passthrough Markers
When your rendering code is executing, the feedback buffer is filled with tokens and
vertex data as each primitive is specified. Just as you can in selection mode, you can flag
certain primitives by naming them. In feedback mode, you can set markers between your
primitives, as well. You do so by calling glPassThrough:

void glPassThrough(GLfloat token);

This function places a GL_PASS_THROUGH_TOKEN in the feedback buffer, followed by the
value you specify when calling the function. This process is somewhat similar to naming
primitives in selection mode. It’s the only way of labeling objects in the feedback buffer.

A Feedback Example
An excellent use of feedback is to obtain window coordinate information regarding any
objects you render. You can then use this information to place controls or labels near the
objects in the window or other windows around them.

To demonstrate feedback, we use selection to determine which of two objects on the
screen has been clicked by the user. Then we enter feedback mode and render the scene
again to obtain the vertex information in window coordinates. Using this data, we deter-
mine the minimum and maximum x and y values for the object and use those values to
draw a focus rectangle around the object. The result is graphical selection and deselection
of one or both objects.

Label the Objects for Feedback
Listing 12.6 shows the rendering code for our sample program SELECT. Don’t confuse this
example with a demonstration of selection mode! Even though selection mode is
employed in our example to select an object on the screen, we are demonstrating the
process of getting enough information about that object—using feedback—to draw a
rectangle around it using OpenGL lines in a 2D orthographic projection. Notice the use
of glPassThrough to label the objects in the feedback buffer, right after the calls to
glLoadName to label the objects in the selection buffer. Because these functions are ignored
when the render mode is GL_RENDER, they have an effect only when rendering for selection
or feedback.

LISTING 12.6 Rendering Code for the SELECT Sample Program

///////////////////////////

// Object Names

#define TORUS 1

#define SPHERE 2

///

A Feedback Example 473

12

LISTING 12.6 Continued

// Render the torus and sphere

void DrawObjects(void)

{

// Save the matrix state and do the rotations

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

// Translate the whole scene out and into view

glTranslatef(-0.75f, 0.0f, -2.5f);

// Initialize the names stack

glInitNames();

glPushName(0);

// Set material color, Yellow

// torus

glColor3f(1.0f, 1.0f, 0.0f);

glLoadName(TORUS);

glPassThrough((GLfloat)TORUS);

DrawTorus(40, 20);

// Draw Sphere

glColor3f(0.5f, 0.0f, 0.0f);

glTranslatef(1.5f, 0.0f, 0.0f);

glLoadName(SPHERE);

glPassThrough((GLfloat)SPHERE);

DrawSphere(0.5f);

// Restore the matrix state

glPopMatrix(); // Modelview matrix

}

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Draw the objects in the scene

DrawObjects();

CHAPTER 12 Interactive Graphics474

LISTING 12.6 Continued

// If something is selected, draw a bounding box around it

if(selectedObject != 0)

{

int viewport[4];

// Get the viewport

glGetIntegerv(GL_VIEWPORT, viewport);

// Remap the viewing volume to match window coordinates (approximately)

glMatrixMode(GL_PROJECTION);

glPushMatrix();

glLoadIdentity();

// Establish clipping volume (left, right, bottom, top, near, far)

glOrtho(viewport[0], viewport[2], viewport[3], viewport[1], -1, 1);

glMatrixMode(GL_MODELVIEW);

glDisable(GL_LIGHTING);

glColor3f(1.0f, 0.0f, 0.0f);

glBegin(GL_LINE_LOOP);

glVertex2i(boundingRect.left, boundingRect.top);

glVertex2i(boundingRect.left, boundingRect.bottom);

glVertex2i(boundingRect.right, boundingRect.bottom);

glVertex2i(boundingRect.right, boundingRect.top);

glEnd();

glEnable(GL_LIGHTING);

}

glMatrixMode(GL_PROJECTION);

glPopMatrix();

glMatrixMode(GL_MODELVIEW);

glutSwapBuffers();

}

For this example, the rendering code is broken into two functions: RenderScene and
DrawObjects. RenderScene is our normal top-level rendering function, but we have moved
the actual drawing of the objects that we may select to outside this function. The
RenderScene function draws the objects, but it also draws the bounding rectangle around
an object if it is selected. selectedObject is a variable we will use in a moment to indicate
which object is currently selected.

A Feedback Example 475

12

Step 1: Select the Object
Figure 12.6 shows the output from this rendering code, displaying a torus and sphere. When
the user clicks one of the objects, the function ProcessSelection is called (see Listing 12.7).
This is similar to the selection code in the previous two examples (in Listings 12.3 and 12.5).

CHAPTER 12 Interactive Graphics476

FIGURE 12.6 Output from the SELECT program after the sphere has been clicked.

LISTING 12.7 Selection Processing for the SELECT Sample Program

///

// Process the selection, which is triggered by a right mouse

// click at (xPos, yPos).

#define BUFFER_LENGTH 64

void ProcessSelection(int xPos, int yPos)

{

// Space for selection buffer

static GLuint selectBuff[BUFFER_LENGTH];

// Hit counter and viewport storage

GLint hits, viewport[4];

// Set up selection buffer

glSelectBuffer(BUFFER_LENGTH, selectBuff);

// Get the viewport

LISTING 12.7 Continued

glGetIntegerv(GL_VIEWPORT, viewport);

// Switch to projection and save the matrix

glMatrixMode(GL_PROJECTION);

glPushMatrix();

// Change render mode

glRenderMode(GL_SELECT);

// Establish new clipping volume to be unit cube around

// mouse cursor point (xPos, yPos) and extending two pixels

// in the vertical and horizontal direction

glLoadIdentity();

gluPickMatrix(xPos, viewport[3] - yPos + viewport[1], 2,2, viewport);

// Apply perspective matrix

gluPerspective(60.0f, fAspect, 1.0, 425.0);

// Draw the scene

DrawObjects();

// Collect the hits

hits = glRenderMode(GL_RENDER);

// Restore the projection matrix

glMatrixMode(GL_PROJECTION);

glPopMatrix();

// Go back to modelview for normal rendering

glMatrixMode(GL_MODELVIEW);

// If a single hit occurred, display the info.

if(hits == 1)

{

MakeSelection(selectBuff[3]);

if(selectedObject == selectBuff[3])

selectedObject = 0;

else

selectedObject = selectBuff[3];

}

glutPostRedisplay();

}

A Feedback Example 477

12

Step 2: Get Feedback on the Object
Now that we have determined which object was clicked (we saved this in the
selectedObject variable), we set up the feedback buffer and render again in feedback
mode. Listing 12.8 shows the code that sets up feedback mode for this example and
calls DrawObjects to redraw just the torus and sphere scene. This time, however, the
glPassThrough functions put markers for the objects in the feedback buffer. Similar to the
case of the selection buffer, if you do not allocate enough space for all the data when you
call glFeedbackBuffer, glRenderMode will return –1 indicating an error.

LISTING 12.8 Load and Parse the Feedback Buffer

///

// Go into feedback mode and draw a rectangle around the object

// We need a large buffer to hold all the vertex data!

#define FEED_BUFF_SIZE 32768

void MakeSelection(int nChoice)

{

// Space for the feedback buffer

static GLfloat feedBackBuff[FEED_BUFF_SIZE];

// Storage for counters, etc.

int size,i,j,count;

// Initial minimum and maximum values

boundingRect.right = boundingRect.bottom = -999999.0f;

boundingRect.left = boundingRect.top = 999999.0f;

// Set the feedback buffer

glFeedbackBuffer(FEED_BUFF_SIZE,GL_2D, feedBackBuff);

// Enter feedback mode

glRenderMode(GL_FEEDBACK);

// Redraw the scene

DrawObjects();

// Leave feedback mode

size = glRenderMode(GL_RENDER);

// Parse the feedback buffer and get the

// min and max X and Y window coordinates

i = 0;

while(i < size)

{

CHAPTER 12 Interactive Graphics478

LISTING 12.8 Continued

// Search for appropriate token

if(feedBackBuff[i] == GL_PASS_THROUGH_TOKEN)

if(feedBackBuff[i+1] == (GLfloat)nChoice)

{

i+= 2;

// Loop until next token is reached

while(i < size && feedBackBuff[i] != GL_PASS_THROUGH_TOKEN)

{

// Just get the polygons

if(feedBackBuff[i] == GL_POLYGON_TOKEN)

{

// Get all the values for this polygon

count = (int)feedBackBuff[++i]; // How many vertices

i++;

for(j = 0; j < count; j++) // Loop for each vertex

{

// Min and Max X

if(feedBackBuff[i] > boundingRect.right)

boundingRect.right = feedBackBuff[i];

if(feedBackBuff[i] < boundingRect.left)

boundingRect.left = feedBackBuff[i];

i++;

// Min and Max Y

if(feedBackBuff[i] > boundingRect.bottom)

boundingRect.bottom = feedBackBuff[i];

if(feedBackBuff[i] < boundingRect.top)

boundingRect.top = feedBackBuff[i];

i++;

}

}

else

i++; // Get next index and keep looking

}

break;

}

i++;

}

}

A Feedback Example 479

12

When the feedback buffer is filled, we search it for GL_PASS_THROUGH_TOKEN. When we find
one, we get the next value and determine whether it is the one we are looking for. If so,
the only task that remains is to loop through all the polygons for this object and get the
minimum and maximum window x and y values. These values are stored in the
boundingRect structure and then used by the RenderScene function to draw a focus
rectangle around the selected object.

Summary
Selection and feedback are two powerful features of OpenGL that enable you to facilitate
the user’s active interaction with a scene. Selection and picking are used to identify an
object or region of a scene in OpenGL coordinates rather than just window coordinates.
Feedback returns valuable information about how an object or a primitive is actually
drawn in the window. You can use this information to implement features such as annota-
tions or bounding boxes in your scene.

The reader should note that the features in this chapter are typically implemented in soft-
ware (the driver), even for hardware accelerated OpenGL implementations. This means
that rendering in selection mode, for example, will be very slow compared to hardware
rendering. A common means of accounting for this is to render lower resolution “proxies,”
and render only objects that can be clicked on when performing selection. There are more
advanced means of determining object selection that may be preferable for real-time
picking. Some of the 3D math books in Appendix A would be a good place to start. Using
the techniques in this chapter makes adding this kind of functionality to your application
fairly straightforward. You may also find that even with software rendering, the response
time from mouse click may be more than fast enough for most purposes.

CHAPTER 12 Interactive Graphics480

CHAPTER 13

Occlusion Queries: Why Do More
Work Than You Need To?

by Benjamin Lipchak

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Create and delete query objects glGenQueries/glDeleteQueries

Define bounding box occlusion queries glBeginQuery/glEndQuery

Retrieve the results from an occlusion query glGetQueryObjectiv

Complex scenes contain hundreds of objects and thousands upon thousands of polygons.
Consider the room you’re in now, reading this book. Look at all the furniture, objects, and
other people or pets, and think of the rendering power needed to accurately represent
their complexity. Several readers will find themselves happily sitting on a crate near a
computer in an empty studio apartment, but the rest will envision a significant rendering
workload around them.

Now think of all the things you can’t see: objects hidden behind other objects, in drawers,
or even in the next room. From most viewpoints, these objects are invisible to the viewer.
If you rendered the scene, the objects would be drawn, but eventually something would
draw over the top of them. Why bother doing all that work for nothing?

Enter occlusion queries. In this chapter, we describe a powerful new feature included in
OpenGL 1.5 that can save a tremendous amount of vertex and pixel processing at the
expense of a bit of extra nontextured fill rate. Often this trade-off is a very favorable one.
We explore the use of occlusion detection and witness the dramatic increase in frame rates
this technique affords.

482 CHAPTER 13 Occlusion Queries: Why Do More Work Than You Need To?

The World Before Occlusion Queries
To show off the improved performance possible through the use of occlusion queries, we
need an experimental control group. We’ll draw a scene without any fancy occlusion
detection. The scene is contrived so that there are plenty of objects both visible and
hidden at any given time.

First, we’ll draw the “main occluder.” An occluder is a large object in a scene that tends to
occlude, or hide, other objects in the scene. An occluder is often low in detail, whereas the
objects it occludes may be much higher in detail. Good examples are walls, floors, and
ceilings. The main occluder in this scene is a grid made out of six walls, as illustrated in
Figure 13.1. Listing 13.1 shows how the walls are actually just scaled cubes.

FIGURE 13.1 Our main occluder is a grid constructed out of six walls.

LISTING 13.1 Main Occluder with Six Scaled and Translated Solid Cubes

// Called to draw the occluding grid

void DrawOccluder(void)

{

glColor3f(0.5f, 0.25f, 0.0f);

LISTING 13.1 Continued

glPushMatrix();

glScalef(30.0f, 30.0f, 1.0f);

glTranslatef(0.0f, 0.0f, 50.0f);

glutSolidCube(10.0f);

glTranslatef(0.0f, 0.0f, -100.0f);

glutSolidCube(10.0f);

glPopMatrix();

glPushMatrix();

glScalef(1.0f, 30.0f, 30.0f);

glTranslatef(50.0f, 0.0f, 0.0f);

glutSolidCube(10.0f);

glTranslatef(-100.0f, 0.0f, 0.0f);

glutSolidCube(10.0f);

glPopMatrix();

glPushMatrix();

glScalef(30.0f, 1.0f, 30.0f);

glTranslatef(0.0f, 50.0f, 0.0f);

glutSolidCube(10.0f);

glTranslatef(0.0f, -100.0f, 0.0f);

glutSolidCube(10.0f);

glPopMatrix();

}

In each grid compartment, we’re going to put a highly tessellated textured sphere. These
spheres are our “occludees,” objects possibly hidden by the occluder. We need the high
vertex count and texturing to accentuate the rendering burden so that we can subse-
quently relieve that burden courtesy of occlusion queries.

Figure 13.2 shows the picture resulting from Listing 13.2. If you find this workload too
heavy, feel free to reduce the tessellation in glutSolidSphere from the 100s to smaller
numbers. Or if your OpenGL implementation is still hungry for more, go ahead and
increase the tessellation, introduce more detailed textures, or consider using shaders as
described in subsequent chapters.

The World Before Occlusion Queries 483

13

CHAPTER 13 Occlusion Queries: Why Do More Work Than You Need To?484

FIGURE 13.2 Twenty-seven high-detail spheres will act as our occludees.

LISTING 13.2 Drawing 27 Highly Tessellated Spheres in a Color Cube

// Called to draw sphere

void DrawSphere(GLint sphereNum)

{

...

glutSolidSphere(50.0f, 100, 100);

...

}

void DrawModels(void)

{

...

// Turn on texturing just for spheres

glEnable(GL_TEXTURE_2D);

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

// Draw 27 spheres in a color cube

for (r = 0; r < 3; r++)

{

LISTING 13.2 Continued

for (g = 0; g < 3; g++)

{

for (b = 0; b < 3; b++)

{

glColor3f(r * 0.5f, g * 0.5f, b * 0.5f);

glPushMatrix();

glTranslatef(100.0f * r - 100.0f,

100.0f * g - 100.0f,

100.0f * b - 100.0f);

DrawSphere((r*9)+(g*3)+b);

glPopMatrix();

}

}

}

glDisable(GL_TEXTURE_2D);

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

}

Listing 13.2 marks the completion of our picture. If we were happy with the rendering
performance, we could end the chapter right here. But if the sphere tessellation or texture
detail is cranked up high enough, frame rates should be unacceptable. So read on!

Bounding Boxes
The theory behind occlusion detection is that if an object’s bounding volume is not visible,
neither is the object. A bounding volume is any volume that completely contains the
object. The whole point of occlusion detection is to cheaply draw a simple bounding
volume to find out whether you can avoid drawing the actual complex object. So the
more complex our bounding volume is, the more it negates the purpose of the optimiza-
tion we’re trying to create.

The simplest bounding volume is a cube, also called a bounding box. Eight vertices, six
faces. You can easily create a bounding box for any object just by scanning for its
minimum and maximum coordinates on each of the x-, y-, and z-axes. For our spheres
with a 50-unit radius, a bounding box with sides of length 100 units will fit perfectly.

Be aware of the trade-off when using such a simple and arbitrary bounding volume. The
bounding volume may have very few vertices, but it will touch many more pixels than the
original object would have touched. With a few additional strategically placed vertices,
you can turn your bounding box into a more useful shape and significantly reduce the fill-

Bounding Boxes 485

13

rate overhead. Fortunately, the bounding box is drawn without any fancy texturing or
shading, so its overall fill-rate cost will most often be less than the original object anyway.
Figure 13.3 shows an example of how different bounding volume shapes affect pixel count
and vertex count using a sphere as the occludee. The choice of bounding volume depends
entirely on your object shape, since you are no doubt drawing objects more interesting
than spheres.

CHAPTER 13 Occlusion Queries: Why Do More Work Than You Need To?486

Bounding volume

Name

faces

vertices

% of pixels overkill

tetrahedron

4

4

136%

box

6

8

120%

octahedron

8

6

81%

dodecahedron

12

20

58%

icosahedron

20

12

34%

FIGURE 13.3 Various bounding volumes around a sphere with their pros and cons.

When we draw our bounding volumes, we’re going to enable an occlusion query that will
count the number of fragments that pass the depth test. Therefore, we don’t care how the
bounding volumes look. In fact, we don’t even need to draw them to the screen at all. So
we’ll shut off all the bells and whistles before rendering the bounding volume, including
writes to the depth and color buffers:

glShadeModel(GL_FLAT);

// Texturing is already disabled

...

glDisable(GL_LIGHTING);

glDisable(GL_COLOR_MATERIAL);

glDisable(GL_NORMALIZE);

glDepthMask(GL_FALSE);

glColorMask(0, 0, 0, 0);

After all this talk about occlusion queries, we’re finally going to create some. But first, we
need to come up with names for them. Here, we request 27 names, one for each sphere’s
query, and we provide a pointer to the array of GLuint data where the new names should
be stored:

// Generate occlusion query names

glGenQueries(27, queryIDs);

When we’re done with them, we delete the query objects, indicating that there are 27
names to be deleted in the provided GLuint array:

glDeleteQueries(27, queryIDs);

Occlusion query objects are not bound like other OpenGL objects, such as texture objects
and buffer objects. Instead, they’re created by a call to glBeginQuery. This marks the
beginning of our query. The query object has an internal counter that keeps track of the
number of fragments that would make it to the framebuffer—if we hadn’t shut off the
color buffer’s write mask. Beginning the query resets this counter to zero to start a fresh
query.

Then we draw our bounding volume. The query object’s internal counter is incremented
every time a fragment passes the depth test, and thus is not hidden by our main occluder,
the grid which we’ve already drawn. For some algorithms, it’s useful to know exactly how
many fragments were drawn, but for our purposes here, all we care about is whether the
counter is zero or nonzero. This value corresponds to whether any part of the bounding
volume is visible or whether all fragments were discarded by the depth test.

When we’re finished drawing the bounding volume, we mark the end of the query by
calling glEndQuery. This tells OpenGL we’re done with this query and lets us continue
with another query or ask for the result back. Because we’re drawing 27 spheres, we can
improve the performance by using 27 different query objects. This way, we can queue up
the drawing of all 27 bounding volumes without disrupting the pipeline by waiting to
read back the query results in between.

Listing 13.3 illustrates the rendering of the bounding volumes, bracketed by the beginning
and ending of the query. Then we proceed to possibly draw the actual spheres. Notice the
code for visualizing the bounding volume whereby we leave the color buffer’s write mask
enabled. This way, we can see and compare the different bounding volume shapes.

LISTING 13.3 Beginning the Query, Drawing the Bounding Volume, Ending the Query,
Then Moving on to Redraw the Actual Scene

// Called to draw scene objects

void DrawModels(void)

{

GLint r, g, b;

// Draw main occluder first

DrawOccluder();

if (occlusionDetection || showBoundingVolume)

{

// All we care about for bounding box is resulting depth values

glShadeModel(GL_FLAT);

Bounding Boxes 487

13

LISTING 13.3 Continued

// Texturing is already disabled

if (showBoundingVolume)

{

glEnable(GL_POLYGON_STIPPLE);

}

else

{

glDisable(GL_LIGHTING);

glDisable(GL_COLOR_MATERIAL);

glDisable(GL_NORMALIZE);

glDepthMask(GL_FALSE);

glColorMask(0, 0, 0, 0);

}

// Draw 27 spheres in a color cube

for (r = 0; r < 3; r++)

{

for (g = 0; g < 3; g++)

{

for (b = 0; b < 3; b++)

{

if (showBoundingVolume)

glColor3f(r * 0.5f, g * 0.5f, b * 0.5f);

glPushMatrix();

glTranslatef(100.0f * r - 100.0f,

100.0f * g - 100.0f,

100.0f * b - 100.0f);

glBeginQuery(GL_SAMPLES_PASSED, queryIDs[(r*9)+(g*3)+b]);

switch (boundingVolume)

{

case 0:

glutSolidCube(100.0f);

break;

case 1:

glScalef(150.0f, 150.0f, 150.0f);

glutSolidTetrahedron();

break;

case 2:

glScalef(90.0f, 90.0f, 90.0f);

glutSolidOctahedron();

break;

CHAPTER 13 Occlusion Queries: Why Do More Work Than You Need To?488

LISTING 13.3 Continued

case 3:

glScalef(40.0f, 40.0f, 40.0f);

glutSolidDodecahedron();

break;

case 4:

glScalef(65.0f, 65.0f, 65.0f);

glutSolidIcosahedron();

break;

}

glEndQuery(GL_SAMPLES_PASSED);

glPopMatrix();

}

}

}

// Restore normal drawing state

glDisable(GL_POLYGON_STIPPLE);

glShadeModel(GL_SMOOTH);

glEnable(GL_LIGHTING);

glEnable(GL_COLOR_MATERIAL);

glEnable(GL_NORMALIZE);

glColorMask(1, 1, 1, 1);

glDepthMask(GL_TRUE);

}

// Turn on texturing just for spheres

glEnable(GL_TEXTURE_2D);

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

// Draw 27 spheres in a color cube

for (r = 0; r < 3; r++)

{

for (g = 0; g < 3; g++)

{

for (b = 0; b < 3; b++)

{

glColor3f(r * 0.5f, g * 0.5f, b * 0.5f);

glPushMatrix();

glTranslatef(100.0f * r - 100.0f,

100.0f * g - 100.0f,

Bounding Boxes 489

13

LISTING 13.3 Continued

100.0f * b - 100.0f);

DrawSphere((r*9)+(g*3)+b);

glPopMatrix();

}

}

}

glDisable(GL_TEXTURE_2D);

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

}

DrawSphere contains the magic where we decide whether to actually draw the sphere. Our
query results are waiting for us inside the 27 query objects. Let’s find out which are
hidden and which we have to draw.

Querying the Query Object
The moment of truth is here. The jury is back with its verdict. We want to draw as little as
possible, so we’re hoping each and every one of our queries resulted in no fragments being
touched. But if you think about this grid of spheres, you know that’s not going to happen.

No matter from what angle we’re looking at our grid, unless we zoom way in, there will
always be at least 9 spheres in view. Worst case is you’ll see all the spheres on three faces
of our grid: 19 spheres. Still, in that worst case, we save ourselves from drawing 8 spheres.
That’s almost a 30% savings in rendering costs. Best case, we save 66%, skipping 18
spheres. If we zoom in on a single sphere, we could conceivably avoid drawing 26 spheres!

So how do you determine your luck? You simply query the query object. That sounds
confusing, but this is a regular old query for OpenGL state. It just happens to be from
something called a query object. In Listing 13.4, we call glGetQueryObjectiv to see whether
the pass counter is zero, in which case we won’t draw the sphere.

LISTING 13.4 Checking the Query Results and Drawing the Sphere Only If We Have To

// Called to draw sphere

void DrawSphere(GLint sphereNum)

{

GLboolean occluded = GL_FALSE;

if (occlusionDetection)

{

GLint passingSamples;

CHAPTER 13 Occlusion Queries: Why Do More Work Than You Need To?490

LISTING 13.4 Continued

// Check if this sphere would be occluded

glGetQueryObjectiv(queryIDs[sphereNum], GL_QUERY_RESULT,

&passingSamples);

if (passingSamples == 0)

occluded = GL_TRUE;

}

if (!occluded)

{

glutSolidSphere(50.0f, 100, 100);

}

}

That’s all there is to it. Each sphere’s query is checked in turn, and we decide whether to
draw the sphere. We’ve included a mode in which we can disable the occlusion detection
to see how badly our performance suffers. Depending on how many spheres are visible,
you may see a boost of two times or more thanks to occlusion detection.

In addition to the query result, you can also query to find out whether the result is
immediately available. If we didn’t render the 27 bounding volumes back to back, and
instead asked for each result immediately, the bounding box rendering might still have
been in the pipeline and the result may not have been ready yet. You can query
GL_QUERY_RESULT_AVAILABLE to find out whether the result is ready. If it’s not, querying
GL_QUERY_RESULT will stall until the result is available. So instead of stalling, you could
find something useful for your application to do while you wait for the results to be ready.
In our case, we planned ahead to do a bunch of work in between to be certain our first
query result would be ready by the time we finished our 27th bounding volume query.

Other state queries include the currently active query name (which query is in the middle
of a glBeginQuery/glEndQuery, if any) and the number of bits in the implementation’s
pass counter. An implementation is allowed to advertise a 0-bit counter, in which case
occlusion queries are useless and shouldn’t be used. In Listing 13.5, we check for that case
during an application’s initialization right after checking for extension availability cour-
tesy of GLee.

LISTING 13.5 Ensuring That Occlusion Queries Are Truly Supported

GLint queryCounterBits;

// Make sure required functionality is available!

if (!GLEE_VERSION_1_5 && !GLEE_ARB_occlusion_query)

{

fprintf(stderr, “Neither OpenGL 1.5 nor GL_ARB_occlusion_query”

“ extension is available!\n”);

Querying the Query Object 491

13

LISTING 13.5 Continued

Sleep(2000);

exit(0);

}

// Make sure query counter bits are nonzero

glGetQueryiv(GL_SAMPLES_PASSED, GL_QUERY_COUNTER_BITS, &queryCounterBits);

if (queryCounterBits == 0)

{

fprintf(stderr, “Occlusion queries not really supported!\n”);

fprintf(stderr, “Available query counter bits: 0\n”);

Sleep(2000);

exit(0);

}

The only other query to be aware of is glIsQuery. This command just checks whether the
specified name is the name of an existing query object, in which case it returns GL_TRUE.
Otherwise, it returns GL_FALSE.

Best Practices
To maximize this optimization and avoid the most rendering, you should draw the
occluders first. This includes any objects inexpensive enough to render that you will
always draw them unconditionally. Then conditionally draw the remaining objects in the
scene, the occludees, sorted from front to back if your application is designed in a way
that permits it. This will increase the chance that objects further from the eye will be
occluded, if not by an occluder, then perhaps by a previously drawn fellow occludee.

Requesting the result of a query will stall the pipeline if the corresponding bounding
volume hasn’t finished rendering yet. We avoided this situation in our example by filling
the pipeline with 27 of these bounding volumes, virtually guaranteeing that the result
from the first one would be ready by the time we finished issuing the last one. On some
implementations, however, the very act of reading back the result may cause the rendering
pipeline to drain. This could effectively negate the performance boost you were hoping to
achieve. For this reason, applications often wait until a frame of rendering is complete
before querying the occlusion results. The cost of reading the result can be hidden in the
time spent waiting for a vertical retrace in order to swap buffers, for example. But isn’t it
too late at that point to make any rendering decisions? This is where you can start making
trade-offs between image fidelity and performance: You can use the last frame’s occlusion
results to educate the next frame’s rendering decisions. In the worst case scenario, you fail
to render an object that should have just barely become visible in this frame. But that will
probably go unnoticed at 60fps, and the very next frame will remedy the situation.

CHAPTER 13 Occlusion Queries: Why Do More Work Than You Need To?492

In the same spirit of aggressive optimization, you may choose to skip rendering an object
not only when the query result comes back with a zero, but when it is arbitrarily close to
zero. You decide how close. Again, you may miss out on a sliver of an object that really
should have been rendered, peeking out from behind an occluder. But will anyone notice,
or will they just be appreciative of the higher framerates? It depends on how aggressive
your threshold is. Beware. If you go too high, then the occludee will visibly pop in and
out of the scene as you cross that threshold.

Summary
When rendering complex scenes, sometimes we waste hardware resources by rendering
objects that will never be seen. We can try to avoid the extra work by testing whether an
object will show up in the final image. By drawing a bounding box, or some other simple
bounding volume, around the object, we can cheaply approximate the object in the scene.
If occluders in the scene hide the bounding box, they would also hide the actual object.
By wrapping the bounding box rendering with a query, we can count the number of pixels
that would be hit. If the bounding box hits no pixels, we can guarantee that the original
object would also not be drawn, so we can skip rendering it. Performance improvements
can be dramatic, depending on the complexity of the objects in the scene and how often
they are occluded.

Summary 493

13

This page intentionally left blank

CHAPTER 14

Depth Textures and Shadows

by Benjamin Lipchak

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Draw your scene from the gluLookAt/gluPerspective

light’s perspective

Copy texels from the depth glCopyTexSubImage2D

buffer into a depth texture

Use eye linear texture glTexGen

coordinate generation

Set up shadow comparison glTexParameter

Shadows are an important visual cue, both in reality and in rendered scenes. At a very
basic level, shadows give us information about the location of objects in relation to each
other and to light sources, even if the light sources are not visible in the scene. When it
comes to games, shadows can make an already immersive environment downright spooky.
Imagine turning the corner in a torch-lit dungeon and stepping into the shadow of your
worst nightmare. Peter Pan had it easy.

In Chapter 5, “Color, Materials, and Lighting: The Basics,” we described a low-tech way of
projecting an object onto a flat plane, in effect “squishing” it to appear as a shadow.
Another technique utilizing the stencil buffer, known as shadow volumes, has been widely
used, but it tends to require significant preprocessing of geometry and high fill rates to the
stencil buffer. OpenGL 1.4 introduced a more elegant approach to shadow generation:
shadow mapping.

The theory behind shadow mapping is simple. What parts of your scene would fall in
shadow? Answer: The parts that light doesn’t directly hit. Think of yourself in the light’s
position in your virtual scene. What would the light see if it were the camera? Everything
the light sees would be lit. Everything else falls in shadow. Figure 14.1 will help you visu-
alize the difference between the camera’s viewpoint and the light’s viewpoint.

496 CHAPTER 14 Depth Textures and Shadows

FIGURE 14.1 The camera and the light have different perspectives on the scene.

When the scene is rendered from the light’s perspective, the side effect is a depth buffer
full of useful information. At every pixel in the resulting depth buffer, we know the rela-
tive distance from the light to the nearest surface. These surfaces are lit by the light
source. Every other surface farther away from the light source remains in shadow.

What we’ll do is take that depth buffer, copy it into a texture, and project it back on the
scene, now rendered again from the normal camera angle. We’ll use that projected texture
to automatically determine which parts of what objects are in light, and which remain in
shadow. Sounds easy, but each step of this technique requires careful attention.

Be That Light
Our first step is to draw the scene from the light’s perspective. We’ll use several built-in
GLUT objects to show off how well this technique works, even when casting shadows on
nonplanar surfaces, such as other objects in the scene. You can change the viewpoint by
manually setting the modelview matrix, but for this example, we use the gluLookAt helper
function to facilitate the change:

gluLookAt(lightPos[0], lightPos[1], lightPos[2],

0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);

Fit the Scene to the Window
In addition to this modelview matrix, we also need to set up the projection matrix to
maximize the scene’s size in the window. Even if the light is far away from the objects in

Light source

Camera

the scene, to achieve the best utilization of the space in our shadow map, we would still
like the scene to fill the available space. We’ll set up the near and far clipping planes based
on the distance from the light to the nearest and farthest objects in the scene. Also, we’ll
estimate the field of view to contain the entire scene as closely as possible:

GLfloat sceneBoundingRadius = 95.0f; // based on objects in scene

// Save the depth precision for where it’s useful

lightToSceneDistance = sqrt(lightPos[0] * lightPos[0] +

lightPos[1] * lightPos[1] +

lightPos[2] * lightPos[2]);

nearPlane = lightToSceneDistance - sceneBoundingRadius;

// Keep the scene filling the depth texture

fieldOfView = (GLfloat)m3dRadToDeg(2.0f * atan(sceneBoundingRadius /

lightToSceneDistance));

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(fieldOfView, 1.0f, nearPlane, nearPlane + (2.0f *

sceneBoundingRadius));

Given our knowledge of the scene, we can determine a rough bounding radius for all
objects. Our scene is centered around the origin at (0,0,0) with objects no more than 95
units away in any direction. Note that since the base plane won’t cast shadows on any of
our other objects, we don’t need to render it into our shadow map. It was therefore not
considered when choosing our bounding radius, either. Knowing the position of the light,
which will be our eye position when rendering the light’s view of the scene, we choose
near and far planes to be the distance in eye space from the light to the front and back of
the scene’s bounding radius, respectively. Finally, the field of view can be estimated by
taking twice the inverse tangent of the ratio between the scene’s bounding radius and the
light-to-scene distance. For a thorough treatment of how to position and orient your
shadow frustum to get best shadow map utilization, check out Robust Shadow Mapping with
Light Space Perspective Shadow Maps by Michael Wimmer and Daniel Scherzer, which can be
found in Section 4 of Shader X4, edited by Wolfgang Engel.

No Bells or Whistles, Please
When we draw the first pass of the scene, the light’s viewpoint, we don’t actually want to
see it. We just want to tap into the resulting depth buffer. So we’ll draw to the back buffer
and never bother swapping. We can further accelerate this pass by masking writes to the
color buffer. And because all we care about is the depth values, we obviously don’t care
about lighting, smooth shading, or anything else that isn’t going to affect the result.
Shut it all off. In this sample, we don’t have any fixed functionality texture mapping or

Be That Light 497

14

CHAPTER 14 Depth Textures and Shadows498

fragment shading in use. If we did, we would disable those as well for this depth pass. All
we need to render is the raw geometry:

glShadeModel(GL_FLAT);

glDisable(GL_LIGHTING);

glDisable(GL_COLOR_MATERIAL);

glDisable(GL_NORMALIZE);

glColorMask(0, 0, 0, 0);

The output from drawing the scene from the light’s perspective is invisible, but Figure
14.2 illustrates via grayscale what the depth buffer contains.

FIGURE 14.2 If we could see the depth buffer, this is what it would look like.

A New Kind of Texture
We want to copy the depth values from the depth buffer into a texture for use as the
shadow map. OpenGL allows you to copy color values directly into textures via
glCopyTexImage2D. Until OpenGL 1.4, this capability was possible only for color values.
But now depth textures are available.

Depth textures simply add a new type of texture data. We’ve had base formats with red,
green, and blue color data and/or alpha, luminosity, or intensity. To this list, we now add a
depth base format. The internal formats that can be requested include GL_DEPTH_COMPO-
NENT16, GL_DEPTH_COMPONENT24, and GL_DEPTH_COMPONENT32, each reflecting the number of

bits per texel. Typically, you’ll want a format that matches the precision of your depth
buffer. OpenGL makes it easy by letting you use the generic GL_DEPTH_COMPONENT internal
format that usually adopts whichever specific format matches your depth buffer.

After drawing the light’s view into the depth buffer, we want to copy that data directly
into a depth texture. This saves us the trouble, and potential performance reduction, of
using both glReadPixels and glTexImage2D:

glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT,

0, 0, shadowWidth, shadowHeight, 0);

Note that drawing the light’s view and regenerating the shadow map needs to be done
only when objects in the scene move or the light source moves. If the only thing moving
is the camera angle, you can keep using the same depth texture. Remember, when only
the camera moves, the light’s view of the scene isn’t affected. (The camera is invisible.) We
can reuse the existing shadow map in this case. The only other time we regenerate the
depth texture is when the window size changes, affording us the opportunity to generate a
larger depth texture.

Size Matters
When it comes to depth textures, size matters. Earlier we discussed the importance of
choosing a projection matrix that maximizes the scene’s size in the depth texture. A
higher resolution depth texture will also yield more precise shadow results. Because we’re
rendering the light’s viewpoint to our window’s back buffer as the basis for our depth
texture, that limits its size. With a 1024×768 window, the biggest power-of-two size texture
we can create is 1024×512:

void ChangeSize(int w, int h)

{

GLint i;

windowWidth = shadowWidth = w;

windowHeight = shadowHeight = h;

if (!npotTexturesAvailable)

{

// Find the largest power of two that will fit in window.

// Try each width until we get one that’s too big

i = 0;

while ((1 << i) <= shadowWidth)

i++;

shadowWidth = (1 << (i-1));

A New Kind of Texture 499

14

// Now for height

i = 0;

while ((1 << i) <= shadowHeight)

i++;

shadowHeight = (1 << (i-1));

}

RegenerateShadowMap();

}

However, if GL_ARB_texture_non_power_of_two is supported (or OpenGL 2.0 is supported,
which includes this extension), then we can create a texture that is the same size as the
window. To generate a depth texture larger than the window size, an offscreen drawable,
such as a Frame Buffer Object (FBO), is required. See Chapter 18, “Advanced Buffers,”
where we add FBO support to our shadow mapping sample code. Adding FBO support to
our sample code is left as an exercise for the reader!

Draw the Shadows First?!
Yes, we will draw the shadows first. But, you ask, if a shadow is defined as the lack of light,
why do we need to draw shadows at all? Strictly speaking, you don’t need to draw them if
you have a single spotlight. If you leave the shadows black, you’ll achieve a stark effect
that may suit your purposes well. But if you don’t want pitch-black shadows and still want
to make out details inside the shadowed regions, you’ll need to simulate some ambient
lighting in your scene:

GLfloat lowAmbient[4] = {0.1f, 0.1f, 0.1f, 1.0f};

GLfloat lowDiffuse[4] = {0.35f, 0.35f, 0.35f, 1.0f};

glLightfv(GL_LIGHT0, GL_AMBIENT, lowAmbient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, lowDiffuse);

// Draw objects in the scene, including base plane

DrawModels(GL_TRUE);

We’ve added a bit of diffuse lighting as well to help convey shape information. If you use
only ambient lighting, you end up with ambiguously shaped solid-colored regions. Figure
14.3 shows the scene so far, entirely in shadow. Note that you won’t see this intermediate
stage because we won’t swap buffers yet.

CHAPTER 14 Depth Textures and Shadows500

FIGURE 14.3 The entire scene is in shadow before the lit areas are drawn.

Some OpenGL implementations support an extension, GL_ARB_shadow_ambient, which
makes this first shadow drawing pass unnecessary. In this case, both the shadowed regions
and the lit regions are drawn simultaneously. More on that optimization later.

And Then There Was Light
Right now, we just have a very dimly lit scene. To make shadows, we need some brightly
lit areas to contrast the existing dimly lit areas, turning them into shadows. But how do
we determine which areas to light? This is key to the shadow mapping technique. After
we’ve decided where to draw, we’ll draw brighter simply by using greater lighting coeffi-
cients, twice as bright as the shadowed areas:

GLfloat ambientLight[] = { 0.2f, 0.2f, 0.2f, 1.0f};

GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f};

...

glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);

Projecting Your Shadow Map: The “Why”
The goal here is to project the shadow map (the light’s viewpoint) of the scene back onto
the scene as if emitted from the light, but viewed from the camera’s position. We’re
projecting those depth values, which represent the distance from the light to the first

And Then There Was Light 501

14

object hit by the light’s rays. Reorienting the texture coordinates into the right coordinate
space is going to take a bit of math. If you care only about the “how” and not the “why,”
you can safely skip over this section. We don’t blame you. Math is hard.

In Chapter 4, “Geometric Transformations: The Pipeline,” we explained the process of
transforming vertices from object space to eye space, then to clip space, on to normalized
device coordinates, and finally to window space. We have two different sets of matrices in
play performing these transformations: one for the light view and the other for the regular
camera view. Figure 14.4 shows the two sets of transformations in use.

CHAPTER 14 Depth Textures and Shadows502

Camera’s
eye space

Camera’s
clip space

*Pcamera*MVcamera

Light’s
eye space

Light’s
clip space

*Plight*MVlight

World space

FIGURE 14.4 The large arrow in the center shows the transformations we need to apply to
our eye linear texture coordinates.

Any texture projection usually begins with eye linear texture coordinate generation. This
process will automatically generate the texture coordinates. Unlike object linear texture
coordinate generation, the eye linear coordinates aren’t tied to the geometry. Instead, it’s
as if there is a film projector casting the texture onto the scene. But it doesn’t just project
onto flat surfaces like a movie screen. Think about what happens when you walk in front
of a projector. The movie is projected onto your irregularly shaped body. The same thing
happens here.

We need to end up with texture coordinates that will index into our shadow map in the
light’s clip space. We start off with our projected eye linear texture coordinates in the
camera’s eye space. So we need to first backtrack to world space and then transform to the
light’s eye space and finally to the light’s clip space. This transformation can be summa-
rized by the following series of matrix multiplications:

M = P
light

* MV
light

* MV
camera

-1

But wait, there’s more. The light’s clip space doesn’t quite bring us home free. Remember
that clip space is in the range [–1,1] for each of the x, y, and z coordinates. The shadow
map depth texture, like all standard 2D textures, needs to be indexed in the range [0,1].
Also, the depth texture values against which we’re going to be comparing are in the range
[0,1], so we’ll also need our z texture coordinate in that range. A simple scale by one-half
(S) and bias by one-half (B) will do the trick:

M = B * S * P
light

* MV
light

* MV
camera

-1

If you’re unfamiliar with OpenGL matrix notation, you’re probably asking why these
matrices are in reverse order. After all, we need to apply the inverse of the camera’s
modelview first, and the bias by one-half translation is the last transformation we need.
What’s the deal? It’s really simple, actually. OpenGL applies a matrix (M) to a coordinate
(T) in a seemingly backward way, too. So you want to read everything right to left when
thinking about the order of transformations being applied to your coordinate:

T’ = M * T

= B * S * P
light

* MV
light

* MV
camera

-1 * T

This is standard representation. Nothing to see here. Move along.

Projecting Your Shadow Map: The “How”
We understand what matrix transformations need to be applied to our eye linear-gener-
ated texture coordinate to have something useful to index into our shadow map texture.
But how do we apply these transformations?

We’ll set up a texture matrix responsible for achieving the necessary texture coordinate
manipulation. Then we’ll use the plane equations associated with eye linear texture coor-
dinate generation to put that texture matrix to work. An alternative would be to establish
a true texture matrix by calling glMatrixMode(GL_TEXTURE) followed by glLoadIdentity,
glTranslatef, glScalef, glMultMatrixf, and so on; but that would incur an extra matrix
multiply, whereas the eye linear plane equations will get applied regardless, so we may as
well make full use of them!

To set up the texture matrix, we’ll start with an identity matrix and multiply in each of
our required transformations discussed in the preceding section:

glGetFloatv(GL_PROJECTION_MATRIX, lightProjection);

...

glGetFloatv(GL_MODELVIEW_MATRIX, lightModelview);

...

// Set up texture matrix for shadow map projection,

// which will be rolled into the eye linear

// texture coordinate generation plane equations

And Then There Was Light 503

14

M3DMatrix44f tempMatrix;

m3dLoadIdentity44(tempMatrix);

m3dTranslateMatrix44(tempMatrix, 0.5f, 0.5f, 0.5f);

m3dScaleMatrix44(tempMatrix, 0.5f, 0.5f, 0.5f);

m3dMatrixMultiply44(textureMatrix, tempMatrix, lightProjection);

m3dMatrixMultiply44(tempMatrix, textureMatrix, lightModelview);

// transpose to get the s, t, r, and q rows for plane equations

m3dTransposeMatrix44(textureMatrix, tempMatrix);

When setting our light’s projection and modelview matrices before drawing the light’s
view, we conveniently queried and saved off these matrices so we could apply them later
to the texture matrix. Our scale and bias operations to map [–1,1] to [0,1] are easily
expressed as scales and translations.

But where’s the multiplication by the inverse of the camera’s modelview matrix? Glad you
asked. OpenGL anticipated the need for this transformation when using eye linear texture
coordinate generation. A post-multiply by the inverse of the current modelview matrix is
applied automatically to the eye plane equations we provided. All you have to do is make
sure your camera’s modelview is installed at the time you call glTexGenfv:

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(cameraPos[0], cameraPos[1], cameraPos[2],

0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);

...

// Set up the eye plane for projecting the shadow map on the scene

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_GEN_Q);

glTexGenfv(GL_S, GL_EYE_PLANE, &textureMatrix[0]);

glTexGenfv(GL_T, GL_EYE_PLANE, &textureMatrix[4]);

glTexGenfv(GL_R, GL_EYE_PLANE, &textureMatrix[8]);

glTexGenfv(GL_Q, GL_EYE_PLANE, &textureMatrix[12]);

...

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

CHAPTER 14 Depth Textures and Shadows504

The Shadow Comparison
We have rendered our light view and copied it into a shadow map. We have our texture
coordinates for indexing into the projected shadow map. The scene is dimly lit, ready for
the real lights. The moment is near for completing our scene. We just need to combine the
ingredients. First, there’s some important state we can “set and forget” during initialization.

// Hidden surface removal

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LEQUAL);

We set the depth test to less than or equal so that we can draw the lit pass on top of the
dim pass. Otherwise, because the geometry is identical, the lit pass would always fail the
depth test, and nothing would show up after the dimly lit shadow pass.

// Set up some texture state that never changes

glGenTextures(1, &shadowTextureID);

glBindTexture(GL_TEXTURE_2D, shadowTextureID);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

Then we generate and bind to our shadow map, which is the only texture used in this
demo. We set our texture coordinate wrap modes to clamp to edge texels. It makes no
sense to repeat the projection. For example, if the light affects only a portion of the scene,
but the camera is zoomed out to reveal other unlit parts of the scene, you don’t want your
shadow map to be repeated infinitely across the scene. You want your texture coordinates
clamped so that only the lit portion of the scene has the shadow map projected onto it.

Depth textures contain only a single source component representing the depth value. But
texture environments expect four components to be returned from a texture lookup: red,
green, blue, and alpha. OpenGL gives you flexibility in how you want the single depth
component mapped. Choices for the depth texture mode include GL_ALPHA (0,0,0,D),
GL_LUMINANCE (D,D,D,1), and GL_INTENSITY (D,D,D,D). We’re going to need the depth
broadcast to all four channels, so we choose the intensity mode:

glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_INTENSITY);

Obviously, we need to enable texturing to put the shadow map into effect. We set the
compare mode to GL_COMPARE_R_TO_TEXTURE. If we don’t set this, all we’ll get is the depth
value in the texture. But we want more than that. We want the depth value compared to
our texture coordinate’s R component:

// Set up shadow comparison

glEnable(GL_TEXTURE_2D);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_R_TO_TEXTURE);

And Then There Was Light 505

14

The R component of the texture coordinate represents the distance from the light source
to the surface of the object being rendered. The shadow map’s depth value represents the
previously determined distance from the light to the first surface it hits. By comparing one
to the other, we can tell whether the surface we are rendering is the first to be hit by a ray
of light, or whether that surface is farther away from the light, and hence is in the shadow
cast by the first, lit, surface:

D’ = (R <= D) ? 1 : 0

Other comparison functions are also available. In fact, OpenGL 1.5 enables you to use all
the same relational operators that you can use for depth test comparisons. GL_LEQUAL is
the default, so we don’t need to change it.

Another two settings we need to consider are the minification and magnification filters.
Some implementations may be able to smooth the edges of your shadows if you enable
bilinear filtering. On such an implementation, multiple comparisons are performed and
the results are averaged. This is called percentage-closer filtering.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Great. We have a bunch of 0s and 1s. But we don’t want to draw black and white. Now
what? Easy. We just need to set up a texture environment mode, GL_MODULATE, that multi-
plies the 0s and 1s by the incoming color resulting from lighting:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

Finally, we’re done, right? We have drawn our lit areas now. But wait. Where shadows
appear, we just drew black over our previous ambient lighting pass. How do we preserve
the ambient lighting for shadowed regions? Alpha testing will do the trick. We asked for
intensity depth texture mode. Therefore, our 0s and 1s are present in the alpha compo-
nent as well as the color components. Using an alpha test, we can tell OpenGL to discard
any fragments in which we didn’t get a 1:

// Enable alpha test so that shadowed fragments are discarded

glAlphaFunc(GL_GREATER, 0.9f);

glEnable(GL_ALPHA_TEST);

Okay. Now we’re done. Figure 14.5 shows the output from Listing 14.1, shadows and all.

CHAPTER 14 Depth Textures and Shadows506

FIGURE 14.5 A brightly lit pass is added to the previous ambient shadow pass.

LISTING 14.1 Drawing the Ambient Shadow and Lit Passes of the Scene

// Called to draw scene

void RenderScene(void)

{

...

// Track light position

glLightfv(GL_LIGHT0, GL_POSITION, lightPos);

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

if (showShadowMap)

{

// Display shadow map for educational purposes

...

}

else if (noShadows)

{

// Set up some simple lighting

And Then There Was Light 507

14

LISTING 14.1 Continued

glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);

// Draw objects in the scene, including base plane

DrawModels(GL_TRUE);

}

else

{

if (!ambientShadowAvailable)

{

GLfloat lowAmbient[4] = {0.1f, 0.1f, 0.1f, 1.0f};

GLfloat lowDiffuse[4] = {0.35f, 0.35f, 0.35f, 1.0f};

// Because there is no support for an “ambient”

// shadow compare fail value, we’ll have to

// draw an ambient pass first...

glLightfv(GL_LIGHT0, GL_AMBIENT, lowAmbient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, lowDiffuse);

// Draw objects in the scene, including base plane

DrawModels(GL_TRUE);

// Enable alpha test so that shadowed fragments are discarded

glAlphaFunc(GL_GREATER, 0.9f);

glEnable(GL_ALPHA_TEST);

}

glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);

// Set up shadow comparison

glEnable(GL_TEXTURE_2D);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_R_TO_TEXTURE);

// Set up the eye plane for projecting the shadow map on the scene

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_GEN_Q);

CHAPTER 14 Depth Textures and Shadows508

LISTING 14.1 Continued

glTexGenfv(GL_S, GL_EYE_PLANE, &textureMatrix[0]);

glTexGenfv(GL_T, GL_EYE_PLANE, &textureMatrix[4]);

glTexGenfv(GL_R, GL_EYE_PLANE, &textureMatrix[8]);

glTexGenfv(GL_Q, GL_EYE_PLANE, &textureMatrix[12]);

// Draw objects in the scene, including base plane

DrawModels(GL_TRUE);

glDisable(GL_ALPHA_TEST);

glDisable(GL_TEXTURE_2D);

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

glDisable(GL_TEXTURE_GEN_Q);

}

...

}

Two Out of Three Ain’t Bad
In Listing 14.1, you’ll notice code hinging on the ambientShadowAvailable variable. The
minimum requirement for the rest of this example is OpenGL 1.4 support, or at least
support for the GL_ARB_shadow extension. If, however, your implementation supports the
GL_ARB_shadow_ambient extension, you can cut down on the amount of work significantly.

Currently, we’ve described three rendering passes: one to draw the light’s perspective into
the shadow map, one to draw the dimly lit ambient pass, and one to draw the shadow-
compared lighting. Remember, the shadow map needs to be regenerated only when the
light position or objects in the scene change. So sometimes there are three passes, and
other times just two. With GL_ARB_shadow_ambient, we can eliminate the ambient pass
entirely.

Instead of 0s and 1s resulting from the shadow comparison, this extension allows us to
replace another value for the 0s when the comparison fails. So if we set the fail value to
one-half, the shadowed regions are still halfway lit, the same amount of lighting we were
previously achieving in our ambient pass:

if (ambientShadowAvailable)

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FAIL_VALUE_ARB,

0.5f);

This way, we also don’t need to enable the alpha test.

Two Out of Three Ain’t Bad 509

14

A Few Words About Polygon Offset
Even on a surface closest to the light source, you will always discover minor differences in
the values associated with the R texture coordinate, representing the surface to light
distance, and the shadow map’s depth value. This can result in “surface acne,” whereby
the projection of a discretely sampled shadow map onto a continuous surface leads to the
surface shadowing itself. You can mitigate this problem by applying a depth offset (a.k.a.
polygon offset) when rendering into the shadow map:

// Overcome imprecision

glEnable(GL_POLYGON_OFFSET_FILL);

...

glPolygonOffset(factor, 0.0f);

Although the polygon offset will help guarantee that surfaces that shouldn’t be shadowed
won’t be, it also artificially shifts the position of shadows. A balance needs to be struck
when it comes to polygon offset usage. Figure 14.6 illustrates what you’ll see if you don’t
use enough polygon offset.

CHAPTER 14 Depth Textures and Shadows510

FIGURE 14.6 ”Shadow acne” can be cleared up with liberal application of polygon offset.

For an in depth discussion of shadow acne, refer to Eliminate Surface Acne with Gradient
Shadow Mapping by Christian Schüler, published in Shader X4, edited by Wolfgang Engel.

Summary
Shadow mapping is a useful technique for achieving realistic lighting without a lot of
additional processing. The light’s viewpoint can be used to determine which objects are lit
and which remain in shadow. Depth textures are special textures designed to store the
contents of your depth buffer for use as a shadow map. Eye linear texture coordinate
generation is the basis for projected textures. A texture matrix encoded into the eye linear
plane equations can be used to reorient the texture coordinates back into the light’s clip
space. Shadow comparison can be used to make the distinction between shadowed and lit
regions. The GL_ARB_shadow_ambient extension can be used to reduce the number of
passes that must be rendered.

Summary 511

14

This page intentionally left blank

PART II

The New Testament

For many years the fixed pipeline reigned supreme as
the model for hardware-accelerated 3D graphics. In
comparison, the transition to programmable hardware
was virtually overnight. In a single generation of
consumer graphics hardware, we went from barely
configurable texture units and some meager vertex
programmability to fully programmable graphics
pipelines.

Now, it is possible to dramatically increase realism by
writing code that gets executed on the GPU (graphics
processing unit). This code can add tremendous
flexibility to how vertices and individual fragments
onscreen are processed. In addition, these tasks are
almost embarrassingly parallel in nature. Multiple
execution units designed solely for graphics processing
type tasks are getting faster every generation at a rate
that far outpaces the increases in regular CPU
performance.

Programmable hardware is not the future of graphics
hardware, it is the current state of the art. Building on
the foundation and concepts of the fixed pipeline,
shaders usher in a new era of graphics programming
and real-time visual effects. Much of the last part of
the book is still vital to using OpenGL. For example,
we must still load and bind textures, we must still
modify and maintain our matrix stacks, and we must
still submit batches of vertex data. As you’ll soon
discover in the following chapters, however, there is
a whole lot that can be done after your application
turns loose of those vertices!

This page intentionally left blank

CHAPTER 15

Programmable Pipeline:
This Isn’t Your Father’s OpenGL

by Benjamin Lipchak

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Create shader/program objects glCreateShader/glCreateProgram

Specify shaders and compile glShaderSource/glCompileShader

Attach/detach shaders and link glAttachShader/glDetachShader/glLinkProgram

Switch between programs glUseProgram

Specify a uniform glUniform*

Get error and warning information glGetShaderInfoLog/glGetProgramInfoLog

Graphics hardware has traditionally been designed to quickly perform the same rigid set of
hard-coded computations. Different steps of the computation can be skipped, and parame-
ters can be adjusted; but the computations themselves remain fixed. That’s why this old
paradigm of GPU design is called fixed functionality.

516 CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL

There has been a trend toward designing general-purpose graphics processors. Just like
CPUs, these GPUs can be programmed with arbitrary sequences of instructions to perform
virtually any imaginable computation. The biggest difference is that GPUs are tuned for
the floating-point operations most common in the world of graphics.

Think of it this way: Fixed functionality is like a cookie recipe. Prior to OpenGL 2.0 you
could change the recipe a bit here and there. Change the amount of each ingredient,
change the temperature of the oven. You don’t want chocolate chips? Fine. Disable them.
But one way or another, you end up with cookies.

Enter programmability with OpenGL 2.0. Want to pick your own ingredients? No
problem. Want to cook in a microwave or in a frying pan or on the grill? Have it your
way. Instead of cookies, you can bake a cake or grill sirloin or heat up leftovers. The possi-
bilities are endless. The entire kitchen and all its ingredients, appliances, pots, and pans
are at your disposal. These are the inputs and outputs, instruction set, and temporary
register storage of a programmable pipeline stage.

In this chapter, we cover the conventional OpenGL pipeline and then describe how to
replace the programmable portions of it with OpenGL Shading Language shaders.

Out with the Old
Before we talk about replacing it, let’s consider the conventional OpenGL rendering
pipeline. The first several stages operate per-vertex. Then the primitive is rasterized to
produce fragments. Finally, fragments are textured and fogged, and other per-fragment
operations are applied before each fragment is written to the framebuffer. Figure 15.1
diagrams the fixed functionality pipeline.

The per-vertex and per-fragment stages of the pipeline are discussed separately in the
following sections.

FIGURE 15.1 This fixed functionality rendering pipeline represents the old way of doing
things.

Out with the Old 517

15

vertices and their
associated attributes

Clipping

Transformation

Lighting

Texture
coordinate

generation and
transformation

Texturing

Color Sum

Fog

Rasterization of
points, lines,

polygons, bitmaps,
and pixel rectangles

including smooth, wide,
culled, and depth offset

primitives

fragments and their
associated data

Antialiasing

Per-fragment
operations

pixel ownership,
scissor test, alpha
test, stencil test,

depth test, blending,
dithering, logic op,
framebuffer writes

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL518

Fixed Vertex Processing
The per-vertex stages start with a set of vertex attributes as input. These attributes include
object-space position, normal, primary and secondary colors, and texture coordinates. The
final result of per-vertex processing is clip-space position, front-facing and back-facing
primary and secondary colors, a fog coordinate, texture coordinates, and point size. What
happens in between is broken into four stages, discussed next.

Vertex Transformation
In fixed functionality, the vertex position is transformed from object space to clip space.
This is achieved by multiplying the object-space coordinate first by the modelview matrix
to put it into eye space. Then it’s multiplied by the projection matrix to reach clip space.

The application has control over the contents of the two matrices, but these matrix multi-
plications always occur. The only way to “skip” this stage would be to load identity matri-
ces so that you end up with the same position you started with.

Each vertex’s normal is also transformed, this time from object space to eye space for use
during lighting. The normal is multiplied by the inverse transpose of the modelview
matrix, after which it is optionally rescaled or normalized. Lighting wants the normal to
be a unit vector, so unless you’re passing in unit-length normal vectors and have a
modelview matrix that leaves them unit length, you’ll need to either rescale them (if your
modelview introduced only uniform scaling) or fully normalize them.

Chapter 4, “Geometric Transformations: The Pipeline,” and Chapter 5, “Color, Materials,
and Lighting: The Basics,” covered transformations and normals.

Lighting
Lighting takes the vertex color, normal, and position as its raw data inputs. Its output is
two colors, primary and secondary, and in some cases a different set of colors for front and
back faces. Controlling this stage are the color material properties, light properties, and a
variety of glEnable/glDisable toggles.

Lighting is highly configurable; you can enable some number of lights (up to eight or
more), each with myriad parameters such as position, color, and type. You can specify
material properties to simulate different surface appearances. You also can enable two-
sided lighting to generate different colors for front- and back-facing polygons.

You can skip lighting entirely by disabling it. However, when it is enabled, the same hard-
coded equations are always used. See Chapter 5, “Color, Materials, and Lighting: The
Basics,” and Chapter 6, “More on Color and Materials,” for a refresher on fixed functional-
ity lighting details.

Texture Coordinate Generation and Transformation
The final per-vertex stage of the fixed functionality pipeline involves processing the
texture coordinates. Each texture coordinate can optionally be generated automatically by
OpenGL. There are several choices of generation equations to use. In fact, a different mode
can be chosen for each component of each texture coordinate. Or, if generation is
disabled, the current texture coordinate associated with the vertex is used instead.

Whether or not texture generation is enabled, each texture coordinate is always trans-
formed by its texture matrix. If it’s an identity matrix, the texture coordinate is not
affected.

This texture coordinate processing stage is covered in Chapter 8, “Texture Mapping: The
Basics,” and Chapter 9, “Texture Mapping: Beyond the Basics.”

Clipping
If any of the vertices transformed in the preceding sections happens to fall outside the
view volume, clipping must occur. Clipped vertices are discarded, and depending on the
type of primitive being drawn, new vertices may be generated at the intersection of the
primitive and the view volume. Colors, texture coordinates, and other vertex attributes are
assigned to the newly generated vertices by interpolating their values along the clipped
edge. Figure 15.2 illustrates a clipped primitive.

Out with the Old 519

15

FIGURE 15.2 All three of this triangle’s vertices are clipped out, but six new vertices are
introduced.

The application may also enable user clip planes. These clip planes further restrict the clip
volume so that even primitives within the view volume can be clipped. This technique is
often used in medical imaging to “cut” into a volume of, for example, MRI data to inspect
tissues deep within the body.

Fixed Fragment Processing
The per-fragment stages start out with a fragment and its associated data as input. This
associated data is comprised of various values interpolated across the line or triangle,
including one or more texture coordinates, primary and secondary colors, and a fog coor-
dinate. The result of per-fragment processing is a single color that will be passed along to
subsequent per-fragment operations, including depth test and blending. Again, four stages
of processing are applied, as covered next.

Texture Application and Environment
Texture application is the most important per-fragment stage. Here, you take all the frag-
ment’s texture coordinates and its primary color as input. The output will be a new
primary color. How this happens is influenced by which texture units are enabled for
texturing, which texture images are bound to those units, and what texture function is set
up by the texture environment.

For each enabled texture unit, the 1D, 2D, 3D, or cube map texture bound to that unit is
used as the source for a lookup. Depending on the format of the texture and the texture
function specified on that unit, the result of the texture lookup will either replace or be
blended with the fragment’s primary color. The resulting color from each enabled texture
unit is then fed in as a color input to the next enabled texture unit. The result from the
last enabled texture unit is the final output for the texturing stage.

Many configurable parameters affect the texture lookup, including texture coordinate
wrap modes, border colors, minification and magnification filters, level-of-detail clamps
and biases, depth texture and shadow compare state, and whether mipmap chains are
automatically generated. Fixed functionality texturing was covered in detail in Chapters 8
and 9.

Color Sum
The color sum stage starts with two inputs: a primary and a secondary color. The output is
a single color. There’s not a lot of magic here. If color sum is enabled, or if lighting is
enabled, the primary and secondary colors’ red, green, and blue channels are added
together and then clamped back into the range [0,1]. If color sum is not enabled, the

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL520

primary color is passed through as the result. The alpha channel of the result always
comes from the primary color’s alpha. The secondary color’s alpha is never used by the
fixed functionality pipeline.

Fog Application
If fog is enabled, the fragment’s color is blended with a constant fog color based on a
computed fog factor. That factor is computed according to one of three hard-coded equa-
tions: linear, exponential, or second-order exponential. These equations base the fog factor
on the current fog coordinate, which may be the approximate distance from the vertex to
the eye, or an arbitrary value set per-vertex by the application.

For more details on fixed functionality fog, see Chapter 6.

Antialiasing Application
Finally, if the fragment belongs to a primitive that has smoothing enabled, one piece of
associated data is a coverage value. That value is 1.0 in most cases; but for fragments on
the edge of a smooth point, line, or polygon, the coverage is somewhere between 0.0 and
1.0. The fragment’s alpha value is multiplied by this coverage value, which, with subse-
quent blending will produce smooth edges for these primitives. Chapter 6 discusses this
behavior.

In with the New
That trip down memory lane was intended to both refresh your memory on the various
stages of the current pipeline and give you an appreciation of the configurable but hard-
coded computations that happen each step of the way. Now forget everything you just
read. We’re going to replace the majority of it and roll in the new world order: shaders.

Shaders are also sometimes called programs, and the terms are usually interchangeable. And
that’s what shaders are—application-defined customized programs that take over the
responsibilities of fixed functionality pipeline stages. I prefer the term shader because
it avoids confusion with the typical definition of program, which can mean any old
application.

Figure 15.3 illustrates the simplified pipeline where previously hard-coded stages are
subsumed by custom programmable shaders.

In with the New 521

15

FIGURE 15.3 The block diagram looks simpler, but in reality these shaders can do everything
the original fixed stages could do, plus more.

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL522

vertices and their
associated attributes

Vertex shader

Clipping

Rasterization of
points, lines,

polygons, bitmaps,
and pixel rectangles

including smooth, wide,
culled, and depth offset

primitives

fragments and their
associated data

Fragment shader

Antialiasing

Per-fragment
operations

pixel ownership,
scissor test, alpha
test, stencil test,

depth test, blending,
dithering, logic op,
framebuffer writes

Programmable Vertex Shaders
As suggested by Figure 15.3, the inputs and outputs of a vertex shader remain the same as
those of the fixed functionality stages being replaced. The raw vertices and all their attrib-
utes are fed into the vertex shader, rather than the fixed transformation stage. Out the
other side, the vertex shader spits texture coordinates, colors, point size, and a fog coordi-
nate, which are passed along to the clipper. A vertex shader is a drop-in replacement for
the fixed transformation, lighting, and texture coordinate processing per-vertex stages.

Replacing Vertex Transformation
What you do in your vertex shader is entirely up to you. The absolute minimum (if you
want anything to draw) would be to output a clip-space vertex position. Every other
output is optional and at your sole discretion. How you generate your clip-space vertex
position is your call. Traditionally, and to emulate fixed functionality transformation, you
would want to multiply your input position by the modelview and projection matrices to
get your clip-space output.

But say you have a fixed projection and you’re sending in your vertices already in clip
space. In that case, you don’t need to do any transformation. Just copy the input position
to the output position. Or, on the other hand, maybe you want to turn your Cartesian
coordinates into polar coordinates. You could add extra instructions to your vertex shader
to perform those computations.

Replacing Lighting
If you don’t care what the vertex’s colors are, you don’t have to perform any lighting
computations. You can just copy the color inputs to the color outputs; or if you know the
colors will never be used later, you don’t have to output them at all, and they will become
undefined. Beware, if you do try to use them later after not outputting them from the
vertex shader, undefined usually means garbage!

If you do want to generate more interesting colors, you have limitless ways of going about
it. You could emulate fixed functionality lighting by adding instructions that perform
these conventional computations, maybe customizing them here or there. You could also
color your vertices based on their positions, their surface normals, or any other input
parameter.

Replacing Texture Coordinate Processing
If you don’t need texture coordinate generation, you don’t need to code it into your
vertex shader. The same goes for texture coordinate transformation. If you don’t need it,
don’t waste precious shader cycles implementing it. You can just copy your input texture
coordinates to their output counterparts. Or, as with colors, if you won’t use the texture
coordinate later, don’t waste your time outputting it at all. For example, if your GPU
supports eight texture coordinates, but you’re going to use only three of them for textur-
ing later in the pipeline, there’s no point in outputting the other five. Doing so would just
consume resources unnecessarily.

In with the New 523

15

After reading the preceding sections, you should have a sufficient understanding of the
input and output interfaces of vertex shaders; they are largely the same as their fixed func-
tionality counterparts. But there’s been a lot of hand waving about adding code to perform
the desired computations within the shader. This would be a great place for an example of
a vertex shader, wouldn’t it? Alas, this section covers only the what, where, and why of
shaders. The second half of this chapter, and the following two chapters for that matter,
are devoted to the how, so you’ll have to be patient and use your imagination. Consider
this the calm before the storm. In a few pages, you’ll be staring at more shaders than you
ever hoped to see.

Fixed Functionality Glue
In between the vertex shader and the fragment shader, there remain a couple of fixed
functionality stages that act as glue between the two shaders. One of them is the clipping
stage described previously, which clips the current primitive against the view volume and
in so doing possibly adds or removes vertices. After clipping, the perspective divide by W
occurs, yielding normalized device coordinates. These coordinates are subjected to view-
port transformation and depth range transformation, which yield the final window-space
coordinates. Then it’s on to rasterization.

Rasterization is the fixed functionality stage responsible for taking the processed vertices of
a primitive and turning them into fragments. Whether a point, line, or polygon primitive,
this stage produces the fragments to “fill in” the primitive and interpolates all the colors
and texture coordinates so that the appropriate value is assigned to each fragment. Figure
15.4 illustrates this process.

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL524

Point rasterization Line rasterization Polygon rasterization

FIGURE 15.4 Rasterization turns vertices into fragments.

Depending on how far apart the vertices of a primitive are, the ratio of fragments to
vertices tends to be relatively high. For a highly tessellated or distant object, though, you
might find all three vertices of a triangle mapping to the same single fragment. As a
general rule, significantly more fragments than vertices are processed, but as with all rules,
there are exceptions.

Rasterization is also responsible for making lines the desired width and points the desired
size. It may apply stipple patterns to lines and polygons. It generates partial coverage

values at the edges of smooth points, lines, and polygons, which later are multiplied into
the fragment’s alpha value during antialiasing application. If requested, rasterization culls
out front- or back-facing polygons and applies depth offsets.

In addition to points, lines, and polygons, rasterization also generates the fragments for
bitmaps and pixel rectangles (drawn with glDrawPixels). But these primitives don’t origi-
nate from normal vertices. Instead, where interpolated data is usually assigned to frag-
ments, those values are adopted from the current raster position. See Chapter 7, “Imaging
with OpenGL,” for more details on this subject.

Programmable Fragment Shaders
The same texture coordinates and colors are available to the fragment shader as were
previously available to the fixed functionality texturing stage. The same single-color
output is expected out of the fragment shader that was previously expected from the fixed
functionality fog stage. Just as with vertex shaders, you may choose your own adventure
in between the input interface and the output interface.

Replacing Texturing
The single most important capability of a fragment shader is performing texture lookups.
For the most part, these texture lookups are unchanged from fixed functionality in that
most of the texture state is set up outside the fragment shader. The texture image is speci-
fied and all its parameters are set the same as though you weren’t using a fragment shader.
The main difference is that you decide within the shader when and whether to perform a
lookup and what to use as the texture coordinate.

You’re not limited to using texture coordinate 0 to index into texture image 0. You can
mix and match coordinates with different textures, using the same texture with different
coordinates or the same coordinate with different textures. Or you can even compute a
texture coordinate on the fly within the shader. This flexibility was impossible with fixed
functionality.

The texture environment previously included a texture function that determined how the
incoming fragment color was mixed with the texture lookup results. That function is now
ignored, and it’s up to the shader to combine colors with texture results. In fact, you
might choose to perform no texture lookups at all and rely only on other computations to
generate the final color result. A fragment shader could simply copy its primary color
input to its color output and call it a day. Not very interesting, but such a “passthrough”
shader might be all you need when combined with a fancy vertex shader.

Replacing Color Sum
Replacing the color sum is simple. This stage just adds together the primary and secondary
colors. If that’s what you want to happen, you just add an instruction to do that. If you’re
not using the secondary color for anything, ignore it.

In with the New 525

15

Replacing Fog
Fog application is not as easy to emulate as color sum, but it’s still reasonably easy. First,
you need to calculate the fog factor with an equation based on the fragment’s fog coordi-
nate and some constant value such as density. Fixed functionality dictated the use of
linear, exponential, or second-order exponential equations, but with shaders you can
make up your own equation. Then you blend in a constant fog color with the fragment’s
unfogged color, using the fog factor to determine how much of each goes into the blend.
You can achieve all this in just a handful of instructions. Or you can not add any instruc-
tions and forget about fog. The choice is yours.

OpenGL Shading Language: A First Glimpse
Enough with the hypotheticals. If you’ve made it this far, you must have worked up an
appetite for some real shaders by now. Programming GPUs in a high-level language
instead of an assembly language means compact and readable code, and thus higher
productivity. The OpenGL Shading Language (GLSL) is the name of this language. It looks
a lot like C, but with built-in data types and functions that are useful to vertex and frag-
ment shaders.

Listings 15.1 and 15.2 are your first exposure to GLSL shaders. Consider them to be “Hello
World” shaders, even though technically they don’t say hello at all.

LISTING 15.1 A Simple GLSL Vertex Shader

void main(void)

{

// This is our Hello World vertex shader

// notice how comments are preceded by ‘//’

// normal MVP transform

vec4 clipCoord = gl_ModelViewProjectionMatrix * gl_Vertex;

gl_Position = clipCoord;

// Copy the primary color

gl_FrontColor = gl_Color;

// Calculate NDC

vec3 ndc = clipCoord.xyz / clipCoord.w;

// Map from [-1,1] to [0,1] before outputting

gl_SecondaryColor = (ndc * 0.5) + 0.5;

}

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL526

LISTING 15.2 A Simple GLSL Fragment Shader

// This is our Hello World fragment shader

void main(void)

{

// Mix primary and secondary colors, 50/50

gl_FragColor = mix(gl_Color, vec4(vec3(gl_SecondaryColor), 1.0), 0.5);

}

If these shaders are not self-explanatory, don’t despair! The rest of this chapter will make
sense of it all. Basically, the vertex shader emulates fixed functionality vertex transforma-
tion by multiplying the object-space vertex position by the modelview/projection matrix.
Then it copies its primary color unchanged. Finally, it generates a secondary color based
on the post-perspective divide normalized device coordinates. Because they will be in the
range [–1,1], you also have to divide by 2 and add 0.5 to map colors to the range [0,1].
The fragment shader is left with the simple task of mixing the primary and secondary
colors together. Figure 15.5 shows a sample scene rendered with these shaders.

OpenGL Shading Language: A First Glimpse 527

15

FIGURE 15.5 Notice how the colors are pastel tinted by the objects’ positions in the scene.

Managing GLSL Shaders
The new GLSL commands are quite a departure from prior core OpenGL API. There’s no
more of the Gen/Bind/Delete that you’re used to; GLSL gets all newly styled entry points.

Shader Objects
GLSL uses two types of objects: shader objects and program objects. The first objects we
will look at, shader objects, are loaded with shader text and compiled.

Creating and Deleting
You create shader objects by calling glCreateShader and passing it the type of shader you
want, either vertex or fragment. This function returns a handle to the shader object used
to reference it in subsequent calls:

GLuint myVertexShader = glCreateShader(GL_VERTEX_SHADER);

GLuint myFragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

Beware that object creation may fail, in which case 0 (zero) will be returned. (If this
happens, it’s probably due to a simple error in how you called it.) When you’re done with
your shader objects, you should clean up after yourself:

glDeleteShader(myVertexShader);

glDeleteShader(myFragmentShader);

Some other OpenGL objects, including texture objects, unbind an object during deletion if
it’s currently in use. GLSL objects are different. glDeleteShader simply marks the object
for future deletion, which will occur as soon as the object is no longer being used.

Specifying Shader Text
Unlike some other shading language APIs out there, GLSL is designed to accept shader text
rather than precompiled binaries. This makes it possible for the application to provide a
single universal shader regardless of the underlying OpenGL implementation. The
OpenGL device driver can then proceed to compile and optimize for the underlying hard-
ware. Another benefit is that the driver can be updated with improved optimization
methods, making shaders run faster over time, without any burden on application vendors
to patch their applications.

A shader object’s goal is simply to accept shader text and compile it. Your shader text can
be hard-coded as a string-literal, read from a file on disk, or generated on the fly. One way
or another, it needs to be in a string so you can load it into your shader object:

GLchar *myStringPtrs[1];

myStringPtrs[0] = vertexShaderText;

glShaderSource(myVertexShader, 1, myStringPtrs, NULL);

myStringPtrs[0] = fragmentShaderText;

glShaderSource(myFragmentShader, 1, myStringPtrs, NULL);

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL528

glShaderSource is set up to accept multiple individual strings. The second argument is a
count that indicates how many string pointers to look for. The strings are strung together
into a single long string before being compiled. This capability can be useful if you’re
loading reusable subroutines from a library of functions:

GLchar *myStringPtrs[3];

myStringPtrs[0] = vsMainText;

myStringPtrs[1] = myNoiseFuncText;

myStringPtrs[2] = myBlendFuncText;

glShaderSource(myVertexShader, 3, myStringPtrs, NULL);

If all your strings are null-terminated, you don’t need to specify string lengths in the
fourth argument and can pass in NULL instead. But for shader text that is not null-termi-
nated, you need to provide the length; lengths do not include the null terminator if
present. You can use –1 for strings that are null-terminated. The following code passes in a
pointer to an array of lengths along with the array of string pointers:

GLint fsLength = strlen(fragmentShaderText);

myStringPtrs[0] = fragmentShaderText;

glShaderSource(myFragmentShader, 1, myStringPtrs, &fsLength);

Compiling Shaders
After your shader text is loaded into a shader object, you need to compile it. Compiling
parses your shader and makes sure there are no errors:

glCompileShader(myVertexShader);

glCompileShader(myFragmentShader);

You can query a flag in each shader object to see whether the compile was successful. Each
shader object also has an information log that contains error messages if the compilation
failed. It might also contain warnings or other useful information even if your compila-
tion was successful. These logs are primarily intended for use as a tool while you are devel-
oping your GLSL application:

glCompileShader(myVertexShader);

glGetShaderiv(myVertexShader, GL_COMPILE_STATUS, &success);

if (!success)

{

GLchar infoLog[MAX_INFO_LOG_SIZE];

glGetShaderInfoLog(myVertexShader, MAX_INFO_LOG_SIZE, NULL, infoLog);

fprintf(stderr, “Error in vertex shader compilation!\n”);

fprintf(stderr, “Info log: %s\n”, infoLog);

}

Managing GLSL Shaders 529

15

The returned info log string is always null-terminated. If you don’t want to allocate a large
static array to store the info log, you can find out the exact size of the info log before
querying it:

glGetShaderiv(myVertexShader, GL_INFO_LOG_LENGTH, &infoLogSize);

Program Objects
The second type of object GLSL uses is a program object. This object acts as a container for
shader objects, linking them together into a single executable. You can specify a GLSL
shader for each replaceable section of the conventional OpenGL pipeline. Currently, only
vertex and fragment stages are replaceable, but that list could be extended in the future to
include additional stages.

Creating and Deleting
Program objects are created and deleted the same way as shader objects. The difference is
that there’s only one kind of program object, so its creation command doesn’t take an
argument:

GLuint myProgram = glCreateProgram();

...

glDeleteProgram(myProgram);

Attaching and Detaching
A program object is a container. You need to attach your shader objects to it if you want
GLSL instead of fixed functionality:

glAttachShader(myProgram, myVertexShader);

glAttachShader(myProgram, myFragmentShader);

You can even attach multiple shader objects of the same type to your program object.
Similar to loading multiple shader source strings into a single shader object, this makes it
possible to include function libraries shared by more than one of your program objects.

You can choose to replace only part of the pipeline with GLSL and leave the rest to fixed
functionality. Just don’t attach shaders for the parts you want to leave alone. Or if you’re
switching between GLSL and fixed functionality for part of the pipeline, you can detach a
previously attached shader object. You can even detach both shaders, in which case you’re
back to full fixed functionality:

glDetachShader(myProgram, myVertexShader);

glDetachShader(myProgram, myFragmentShader);

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL530

Linking Programs
Before you can use GLSL for rendering, you have to link your program object. This process
takes each of the previously compiled shader objects and links them into a single
executable:

glLinkProgram(myProgram);

You can query a flag in the program object to see whether the link was successful. The
object also has an information log that contains error messages if the link failed. The log
might also contain warnings or other useful information even if your link was successful:

glLinkProgram(myProgram);

glGetProgramiv(myProgram, GL_LINK_STATUS, &success);

if (!success)

{

GLchar infoLog[MAX_INFO_LOG_SIZE];

glGetProgramInfoLog(myProgram, MAX_INFO_LOG_SIZE, NULL, infoLog);

fprintf(stderr, “Error in program linkage!\n”);

fprintf(stderr, “Info log: %s\n”, infoLog);

}

Validating Programs
If your link was successful, odds are good that your shaders will be executable when it
comes time to render. But some things aren’t known at link time, such as the values
assigned to texture samplers, described in subsequent sections. A sampler may be set to an
invalid value, or multiple samplers of different types may be illegally set to the same
value. At link time, you don’t know what the state is going to be when you render, so
errors cannot be thrown at that time. When you validate, however, it looks at the current
state so you can find out once and for all whether your GLSL shaders are going to execute
when you draw that first triangle:

glValidateProgram(myProgram);

glGetProgramiv(myProgram, GL_VALIDATE_STATUS, &success);

if (!success)

{

GLchar infoLog[MAX_INFO_LOG_SIZE];

glGetProgramInfoLog(myProgram, MAX_INFO_LOG_SIZE, NULL, infoLog);

fprintf(stderr, “Error in program validation!\n”);

fprintf(stderr, “Info log: %s\n”, infoLog);

}

Managing GLSL Shaders 531

15

Again, if the validation fails, an explanation and possibly tips for avoiding the failure are
included in the program object’s info log. Note that validating your program object before
rendering with it is not a requirement, but if you do try to use a program object that
would have failed validation, your rendering commands will fail and throw OpenGL
errors.

Using Programs
Finally, you’re ready to turn on your program. Unlike other OpenGL features, GLSL mode
is not toggled with glEnable/glDisable. Instead, use this:

glUseProgram(myProgram);

You can use this function to enable GLSL with a particular program object and also to
switch between different program objects. To disable GLSL and switch back to fixed func-
tionality, you also use this function, passing in 0:

glUseProgram(0);

You can query for the current program object handle at any time:

currentProgObj = glGetIntegerv(GL_CURRENT_PROGRAM);

Now that you know how to manage your shaders, you can focus on their contents. The
syntax of GLSL is largely the same as that of C/C++, so you should be able to dive right in.
It should be noted that the latest version of the GLSL specification at the time of publish-
ing is v1.20.

Variables
Variables and functions must be declared in advance. Your variable name can use any
letters (case-sensitive), numbers, or an underscore, but it can’t begin with a number. Also,
your variable cannot begin with the prefix gl_, which is reserved for built-in variables and
functions. A list of reserved keywords available in the OpenGL Shading Language specifi-
cation contains a list of reserved keywords, which are also off-limits.

Basic Types
In addition to the Boolean, integer, and floating-point types found in C, GLSL introduces
some data types commonly used in shaders. Table 15.1 lists these basic data types.

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL532

TABLE 15.1 Basic Data Types

Type Description

void A data type required for functions that don’t return a value. Functions

that take no arguments can optionally use void as well.

bool A Boolean variable used primarily for conditionals and loops. It can be

assigned to keywords true and false, or any expression that evaluates

to a Boolean.

int A variable represented by a signed integer with at least 16 bits. It can be

expressed in decimal, octal, or hexadecimal. It is primarily used for loop

counters and array indexing.

float A floating-point variable approximating IEEE single-precision. It can be

expressed in scientific notation (for example, 0.0001 = 1e–4).

bvec2 A two-component Boolean vector.

bvec3 A three-component Boolean vector.

bvec4 A four-component Boolean vector.

ivec2 A two-component integer vector.

ivec3 A three-component integer vector.

ivec4 A four-component integer vector.

vec2 A two-component floating-point vector.

vec3 A three-component floating-point vector.

vec4 A four-component floating-point vector.

mat2 or mat2x2 A 2×2 floating-point matrix. Matrices are accessed in column-major

order.

mat3 or mat3x3 A 3×3 floating-point matrix.

mat4 or mat4x4 A 4×4 floating-point matrix.

mat2x3 A 2-column × 3-row floating-point matrix.

mat2x4 A 2-column × 4-row floating-point matrix.

mat3x2 A 3-column × 2-row floating-point matrix.

mat3x4 A 3-column × 4-row floating-point matrix.

mat4x2 A 4-column × 2-row floating-point matrix.

mat4x3 A 4-column × 3-row floating-point matrix.

sampler1D A special-purpose constant used by built-in texture functions to reference

a specific 1D texture. It can be declared only as a uniform or function

argument.

sampler2D A constant used for referencing a 2D texture.

sampler3D A constant used for referencing a 3D texture.

samplerCube A constant used for referencing a cube map texture.

sampler1DShadow A constant used for referencing a 1D depth texture with shadow

comparison.

sampler2DShadow A constant used for referencing a 2D depth texture with shadow

comparison.

Variables 533

15

Structures
Structures can be used to group basic data types into a user-defined data type. When defin-
ing the structure, you can declare instances of the structure at the same time, or you can
declare them later:

struct surface {

float indexOfRefraction;

float reflectivity;

vec3 color;

float turbulence;

} myFirstSurf;

surface mySecondSurf;

You can assign one structure to another (=) or compare two structures (==, !=). For both of
these operations, the structures must be of the same declared type. Two structures are
considered equal if each of their member fields is component-wise equal. To access a single
field of a structure, you use the selector (.):

vec3 totalColor = myFirstSurf.color + mySecondSurf.color;

Structure definitions must contain at least one member. Arrays, discussed next, may be
included in structures, but only when a specific array size is provided. Unlike C language
structures, GLSL does not allow bit fields. Structures within structures are also not allowed.

struct superSurface {

vec3 points[30]; // Sized arrays are okay

surface surf; // Okay, as surface was defined earlier

struct velocity { // ILLEGAL!! Embedded struct

float speed;

vec3 direction;

} velo;

subSurface sub; // ILLEGAL!! Forward declaration

};

struct subSurface {

int id;

};

Arrays
One-dimensional arrays of any type (including structures) can be declared. You don’t need
to declare the size of the array as long as it is always indexed with a constant integer
expression. Otherwise, you must declare its size up front. All the following are acceptable:

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL534

surface mySurfaces[];

vec4 lightPositions[8];

vec4 moreLightPositions[] = lightPositions;

const int numSurfaces = 5;

surface myFiveSurfaces[numSurfaces];

float[5] values; // another way to size the array

You also must declare an explicit size for your array when the array is declared as a para-
meter or return type in a function declaration or as a member of a structure.

The length() method can be used to return the length of an array:

lightPositions.length(); // returns array size, in this case 8

One last thing: You cannot declare an array of arrays!

Qualifiers
Variables can be declared with an optional type qualifier. Table 15.2 lists the available
qualifiers.

TABLE 15.2 Type Qualifiers

Qualifier Description

const Constant value initialized during declaration. It is read-only during shader execution.

It is also used with a function call argument to indicate that it’s a constant that can’t

be written within the function.

attribute Read-only per-vertex data, available only within vertex shaders. This data comes from

current vertex state or from vertex arrays. It must be declared globally (outside all

functions). An attribute must be a floating-point scalar, vector, or matrix, and may

not be an array or a structure.

uniform Another value that remains constant during each shader execution; but unlike a

const, a uniform’s value is not known at compile time and is initialized outside the

shader. A uniform is shared by the currently active vertex and fragment shaders and

must be declared globally.

varying Output of the vertex shader, such as colors or texture coordinates, that corresponds

to read-only interpolated input of the fragment shader. A varying must be declared

globally; must be a floating-point scalar, vector, or matrix; and may be an array but

not a structure.

centroid Identical to a varying when not multisampling, in which case the interpolated value

varying is evaluated at the fragment center. When multisampling, a centroid varying is

evaluated at a location that falls within the interior of the primitive being rasterized

instead of a fixed location such as the fragment center.

Variables 535

15

TABLE 15.2 Continued

Qualifier Description

invariant Used with vertex shader outputs (i.e., varyings and built-ins) and any matching frag-

ment shader varying inputs to indicate that computed values must be consistent

across different shaders. If all data flow and control flow are identical leading up to

writing an invariant variable, the compiler will guarantee the results to be identical

across shaders. This often requires the compiler to sacrifice potential optimizations

that might yield slightly different results, so it should not be used unless necessary,

such as to avoid Z-fighting artifacts in multipass rendering.

in A qualifier used with a function call argument to indicate that it’s only an input, and

any changes to the variable within the called function shouldn’t affect the value in

the calling function. This is the default behavior for function arguments if no qualifier

is present.

out A qualifier used with a function call argument to indicate that it’s only an output, so

no value needs to be actually passed into the function.

inout A qualifier used with a function call argument to indicate that it’s both an input and

an output. A value is passed in from the calling function, and that value is replaced

by the called function.

Built-In Variables
Built-in variables allow interaction with fixed functionality. They don’t need to be
declared before use. Tables 15.3 and 15.4 list most of the built-in variables. Refer to the
GLSL specification for built-in uniforms and constants.

TABLE 15.3 Built-in Vertex Shader Variables

Name Type Description

gl_Color vec4 Input attribute corresponding to per-vertex primary color.

gl_SecondaryColor vec4 Input attribute corresponding to per-vertex secondary color.

gl_Normal vec3 Input attribute corresponding to per-vertex normal.

gl_Vertex vec4 Input attribute corresponding to object-space vertex

position.

gl_MultiTexCoordn vec4 Input attribute corresponding to per-vertex texture

coordinate n.

gl_FogCoord float Input attribute corresponding to per-vertex fog coordinate.

gl_Position vec4 Output for transformed vertex position that will be used by

fixed functionality primitive assembly, clipping, and culling;

all vertex shaders must write to this variable.

gl_ClipVertex vec4 Output for the coordinate to use for user clip plane clipping.

gl_PointSize float Output for the size of the point to be rasterized, measured

in pixels.

gl_FrontColor vec4 Varying output for front primary color.

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL536

TABLE 15.3 Continued

Name Type Description

gl_BackColor vec4 Varying output for back primary color.

gl_FrontSecondaryColor vec4 Varying output for front secondary color.

gl_BackSecondaryColor vec4 Varying output for back secondary color.

gl_TexCoord[] vec4 Array of varying outputs for texture coordinates.

gl_FogFragCoord float Varying output for the fog coordinate.

TABLE 15.4 Built-in Fragment Shader Variables

Name Type Description

gl_Color vec4 Interpolated read-only input containing the primary color.

gl_SecondaryColor vec4 Interpolated read-only input containing the secondary color.

gl_TexCoord[] vec4 Array of interpolated read-only inputs containing texture

coordinates.

gl_FogFragCoord float Interpolated read-only input containing the fog coordinate.

gl_FragCoord vec4 Read-only input containing the window-space x, y, z, and

1/w.

gl_FrontFacing bool Read-only input whose value is true if part of a front-facing

primitive.

gl_PointCoord vec2 Two-dimensional coordinates ranging from (0.0, 0.0) to

(1.0, 1.0) across a point sprite, defined only for point

primitives and when GL_POINT_SPRITE is enabled.

gl_FragColor vec4 Output for the color to use for subsequent per-pixel

operations.

gl_FragData[] vec4 Array of arbitrary data output to be used with

glDrawBuffers (see Chapter 18); cannot to be used in

combination with gl_FragColor.

gl_FragDepth float Output for the depth to use for subsequent per-pixel

operations; if unwritten, the fixed functionality depth is

used instead.

Expressions
The following sections describe various operators and expressions found in GLSL.

Operators
All the familiar C operators are available in GLSL with few exceptions. See Table 15.5 for a
complete list.

Expressions 537

15

TABLE 15.5 Operators in Order of Precedence (From Highest to Lowest)

Operator Description

() Parenthetical grouping, function call, or constructor

[] Array subscript, vector, or matrix selector

. Structure field selector, vector component selector

++ — Prefix or postfix increment and decrement

+ - ! Unary addition, subtraction, logical NOT

* / Multiplication and division

+ - Binary addition and subtraction

< > <= >= == != Less than, greater than, less than or equal to, greater than or equal to, equal to,

not equal to

&& || ^^ Logical AND, OR, XOR

?: Conditional

= += -= *= /= Assignment, arithmetic assignments

, Sequence

A few operators are missing from GLSL. Because there are no pointers to worry about, you
don’t need an address-of operator (&) or a dereference operator (*). A typecast operator is
not needed because typecasting is not allowed. Bitwise operators (&, |, ^, ~, <<, >>, &=, |=,
^=, <<=, >>=) are reserved for future use, as are modulus operators (%, %=).

Array Access
Arrays are indexed using integer expressions, with the first array element at index 0:

vec4 myFifthColor, ambient, diffuse[6], specular[6];

...

myFifthColor = ambient + diffuse[5] + specular[5];

Shader execution is undefined if an attempt is made to access an array with an index less
than zero or greater than or equal to the size of the array. If the compiler can determine
this at compile time (e.g., the array is indexed by an out-of-range constant expression), the
shader will fail to compile entirely.

Constructors
Constructors are special functions primarily used to initialize variables, especially of multi-
component data types, including structures and arrays. They take the form of a function
call with the name of the function being the same as the name of the type:

vec3 myNormal = vec3(0.0, 1.0, 0.0);

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL538

Constructors are not limited to declaration initializers; they can be used as expressions
anywhere in your shader:

greenTint = myColor + vec3(0.0, 1.0, 0.0);

A single scalar value is assigned to all elements of a vector:

ivec4 myColor = ivec4(255); // all 4 components get 255

You can mix and match scalars, vectors, and matrices in your constructor, as long as you
end up with enough components to initialize the entire data type. Any extra components
are dropped:

vec4 myVector1 = vec4(x, vec2(y, z), w);

vec2 myVector2 = vec2(myVector1); // z, w are dropped

float myFloat = float(myVector2); // y dropped

Matrices are constructed in column-major order. If you provide a single scalar value, that
value is used for the diagonal matrix elements, and all other elements are set to 0:

// all of these are same 2x2 identity matrix

mat2 myMatrix1 = mat2(1.0, 0.0, 0.0, 1.0);

mat2 myMatrix2 = mat2(vec2(1.0, 0.0), vec2(0.0, 1.0));

mat2 myMatrix3 = mat2(1.0);

mat2 myMatrix4 = mat2(mat4(1.0)); // takes upper 2x2 of the 4x4

You can also use constructors to convert between the different scalar types. This is the
only way to perform type conversions. No implicit or explicit typecasts or promotions are
possible.

The conversion from int to float is obvious. When you are converting from float to int,
the fractional part is dropped. When you are converting from int or float to bool, values
of 0 or 0.0 are converted to false, and anything else is converted to true. When you are
converting from bool to int or float, true is converted to 1 or 1.0, and false is
converted to 0 or 0.0:

float myFloat = 4.7;

int myInt = int(myFloat); // myInt = 4

Arrays can be initialized by providing in the constructor a value for every element of the
array. Either of the following is acceptable:

ivec2 cursorPositions[3] = ivec2[3]((0, 0), (10, 20), (15, 40));

ivec2 morePositions[3] = ivec2[]((0, 0), (10, 20), (15, 40));

Expressions 539

15

Finally, you can initialize structures by providing arguments in the same order and of the
same type as the structure definition:

struct surface {

float indexOfRefraction;

float reflectivity;

vec3 color;

float turbulence;

};

surface mySurf = surface(ior, refl, vec3(red, green, blue), turb);

Component Selectors
Individual components of a vector can be accessed by using dot notation along with
{x,y,z,w}, {r,g,b,a}, or {s,t,p,q}. These different notations are useful for positions and
normals, colors, and texture coordinates, respectively. You cannot mix and match selectors
from the different notations. Notice the p in place of the usual r texture coordinate. This
component has been renamed to avoid ambiguity with the r color component. Here are
some examples of component selectors:

vec3 myVector = {0.25, 0.5, 0.75};

float myR = myVector.r; // 0.25

vec2 myYZ = myVector.yz; // 0.5, 0.75

float myQ = myVector.q; // ILLEGAL!! accesses component beyond vec3

float myRY = myVector.ry; // ILLEGAL!! mixes two notations

You can use the component selectors to rearrange the order of components or replicate
them:

vec3 myZYX = myVector.zyx; // reverse order

vec4 mySSTT = myVector.sstt; // replicate s and t twice each

You can also use them as write masks on the left side of an assignment to select which
components are modified. In this case, you cannot use component selectors more than
once:

vec4 myColor = vec4(0.0, 1.0, 2.0, 3.0);

myColor.x = -1.0; // -1.0, 1.0, 2.0, 3.0

myColor.yz = vec2(-2.0, -3.0); // -1.0, -2.0, -3.0, 3.0

myColor.wx = vec2(0.0, 1.0); // 1.0, -2.0, -3.0, 0.0

myColor.zz = vec2(2.0, 3.0); // ILLEGAL!!

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL540

Another way to get at individual vector components or matrix components is to use array
subscript notation. This way, you can use an arbitrarily computed integer index to access
your vector or matrix as if it were an array. Shader execution is undefined if an attempt is
made to access a component outside the bounds of the vector or matrix.

float myY = myVector[1];

For matrices, providing a single array index accesses the corresponding matrix column as a
vector. Providing a second array index accesses the corresponding vector component:

mat3 myMatrix = mat3(1.0);

vec3 myFirstColumn = myMatrix[0]; // first column: 1.0, 0.0, 0.0

float element21 = myMatrix[2][1]; // last column, middle row: 0.0

Control Flow
GLSL offers a variety of familiar nonlinear flow mechanisms that reduce code size, make
more complex algorithms possible, and make shaders more readable.

Loops
for, while, and do/while loops are all supported with the same syntax as in C/C++. Loops
can be nested. You can use continue and break to prematurely move on to the next itera-
tion or break out of the loop:

for (l = 0; l < numLights; l++)

{

if (!lightExists[l])

continue;

color += light[l];

}

while (lightNum >= 0)

{

color += light[lightNum];

lightNum—;

}

do

{

color += light[lightNum];

lightNum—;

} while (lightNum > 0);

Control Flow 541

15

if/else
You can use if and if/else clauses to select between multiple blocks of code. These condi-
tionals can also be nested:

color = unlitColor;

if (numLights > 0)

{

color = litColor;

}

if (numLights > 0)

{

color = litColor;

}

else

{

color = unlitColor;

}

discard
Fragment shaders have a special control flow mechanism called discard. It terminates
execution of the current fragment’s shader. All subsequent per-fragment pipeline stages are
skipped, and the fragment is not written to the framebuffer:

// e.g., perform an alpha test within your fragment shader

if (color.a < 0.9)

discard;

Functions
Functions are used to modularize shader code. All shaders must define a main function,
which is the place where execution begins. The void parameter list here is optional, but
not the void return:

void main(void)

{

...

}

Functions must be either defined or declared with a prototype before use. These defini-
tions or declarations should occur globally, outside any function. Return types are
required, as are types for each function argument. Also, arguments can have an optional
qualifier in, out, inout, or const (see Table 15.2):

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL542

// function declaration

bool isAnyComponentNegative(const vec4 v);

// function use

void main()

{

bool someNeg = isAnyComponentNegative(gl_MultiTexCoord0);

...

}

// function definition

bool isAnyComponentNegative(const vec4 v)

{

if ((v.x < 0.0) || (v.y < 0.0) ||

(v.z < 0.0) || (v.w < 0.0))

return true;

else

return false;

}

Structures are allowed as arguments and return types. Arrays are also allowed as arguments
and return types, in which case the declaration and definition would include the array
name with size, whereas the function call would just use the array name without brackets
or size:

vec4 sumMyVectors(int howManyToSum, vec4 v[10]);

void main()

{

vec4 myColors[10];

...

gl_FragColor = sumMyVectors(6, myColors);

}

You can give more than one function the same name, as long as the return type or argu-
ment types are different. This is called function name overloading and is useful if you want
to perform the same type of operation on, for example, different-sized vectors:

float multiplyAccumulate(float a, float b, float c)

{

return (a * b) + c; // scalar definition

}

vec4 multiplyAccumulate(vec4 a, vec4 b, vec4 c)

Control Flow 543

15

{

return (a * b) + c; // 4-vector definition

}

Recursive functions are not allowed. In other words, the same function cannot be present
more than once in the current call stack. Some compilers may be able to catch this and
throw an error, but in any case, shader execution will be undefined.

Approximately 50 built-in functions provide all sorts of useful calculations, ranging from
simple arithmetic to trigonometry. You can consult the GLSL specification for the
complete list and descriptions.

Texture Lookup Functions
Texture lookup built-in functions deserve special mention. Whereas some of the other
built-in functions are provided as a convenience because you could code your own
versions relatively easily, texture lookup built-in functions (shown in the following list) are
crucial to perform even the most basic texturing.

Texture Lookup Built-in Functions

vec4 texture1D(sampler1D sampler, float coord [, float bias])

vec4 texture1DProj(sampler1D sampler, vec2 coord [, float bias])

vec4 texture1DProj(sampler1D sampler, vec4 coord [, float bias])

vec4 texture1DLod(sampler1D sampler, float coord, float lod)

vec4 texture1DProjLod(sampler1D sampler, vec2 coord, float lod)

vec4 texture1DProjLod(sampler1D sampler, vec4 coord, float lod)

vec4 texture2D(sampler2D sampler, vec2 coord [, float bias])

vec4 texture2DProj(sampler2D sampler, vec3 coord [, float bias])

vec4 texture2DProj(sampler2D sampler, vec4 coord [, float bias])

vec4 texture2DLod(sampler2D sampler, vec2 coord, float lod)

vec4 texture2DProjLod(sampler2D sampler, vec3 coord, float lod)

vec4 texture2DProjLod(sampler2D sampler, vec4 coord, float lod)

vec4 texture3D(sampler3D sampler, vec3 coord [, float bias])

vec4 texture3DProj(sampler3D sampler, vec4 coord [, float bias])

vec4 texture3DLod(sampler3D sampler, vec3 coord, float lod)

vec4 texture3DProjLod(sampler3D sampler, vec4 coord, float lod)

vec4 textureCube(samplerCube sampler, vec3 coord [, float bias])

vec4 textureCubeLod(samplerCube sampler, vec3 coord, float lod)

vec4 shadow1D(sampler1DShadow sampler, vec3 coord [, float bias])

CHAPTER 15 Programmable Pipeline: This Isn’t Your Father’s OpenGL544

vec4 shadow2D(sampler2DShadow sampler, vec3 coord [, float bias])

vec4 shadow1DProj(sampler1DShadow sampler, vec4 coord, [, float bias])

vec4 shadow2DProj(sampler2DShadow sampler, vec4 coord, [, float bias])

vec4 shadow1DLod(sampler1DShadow sampler, vec3 coord, float lod)

vec4 shadow2DLod(sampler2DShadow sampler, vec3 coord, float lod)

vec4 shadow1DProjLod(sampler1DShadow sampler, vec4 coord, float lod)

vec4 shadow2DProjLod(sampler2DShadow sampler, vec4 coord, float lod)

The lookup is performed on the texture of the type encoded in the function name (1D,
2D, 3D, Cube) currently bound to the sampler represented by the sampler parameter. The
“Proj” versions perform a perspective divide on the texture coordinate before lookup. The
divisor is the last component of the coordinate vector.

The “Lod” versions, available only in a vertex shader, specify the mipmap level-of-detail
(LOD) from which to sample. The non-“Lod” versions sample from the base LOD when
used by a vertex shader. Fragment shaders can use only the non-“Lod” versions, where the
mipmap LOD is computed as usual based on texture coordinate derivatives. However, frag-
ment shaders can supply an optional bias that will be added to the computed LOD. This
bias parameter is not allowed in a vertex shader.

The “shadow” versions perform a depth texture comparison as part of the lookup (see
Chapter 14, “Depth Textures and Shadows”).

Summary
In this chapter, we outlined the conventional per-vertex and per-fragment pipeline stages,
setting the stage for their wholesale replacement by programmable stages. You learned all
the nuts and bolts of the OpenGL Shading Language (GLSL). We discussed all the variable
types, operators, and flow control mechanisms. We also described how to use the
commands for loading and compiling shader objects and linking and using program
objects. There was a lot of ground to cover here, but we made it through at a record pace.

This concludes the boring lecture portion of our shader coverage. You now have a solid
conceptual foundation for the next two chapters, which will provide practical examples of
vertex and fragment shader applications using GLSL. The following chapters will prove
much more enjoyable with all the textbook learning behind you.

Summary 545

15

This page intentionally left blank

CHAPTER 16

Vertex Shading: Do-It-Yourself
Transform, Lighting, and Texgen

by Benjamin Lipchak

WHAT YOU’LL LEARN IN THIS CHAPTER:

• How to perform per-vertex lighting

• How to generate texture coordinates

• How to calculate per-vertex fog

• How to calculate per-vertex point size

• How to squash and stretch objects

• How to make realistic skin with vertex blending

This chapter is devoted to the application of vertex shaders. We covered the basic mechan-
ics of OpenGL Shading Language (GLSL) shaders in the preceding chapter, but at some
point you have to put the textbook down and start learning by doing. Here, we introduce
a handful of shaders that perform various real-world tasks. You are encouraged to use these
shaders as a starting point for your own experimentation.

548 CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen

Getting Your Feet Wet
Every shader should at the very least output a clip-space vertex coordinate. Lighting and
texture coordinate generation (texgen), the other operations typically performed in vertex
shaders, may not be necessary. For example, if you’re creating a depth texture and all you
care about are the final depth values, you wouldn’t waste instructions in your shader to
output a color or texture coordinates. But one way or another, you always need to output
a clip-space position for subsequent primitive assembly and rasterization to occur.

For your first sample shader, you’ll perform the bare-bones vertex transformation that
would occur automatically by fixed functionality if you weren’t using a vertex shader. As
an added bonus, you’ll copy the incoming color into the outgoing color. Remember,
anything that isn’t output remains undefined. If you want that color to be available later
in the pipeline, you have to copy it from input to output, even if the vertex shader
doesn’t need to change it in any way.

Figure 16.1 shows the result of the simple shader in Listing 16.1.

FIGURE 16.1 This vertex shader transforms the position to clip space and copies the vertex’s
color from input to output.

LISTING 16.1 Simple Vertex Shader

// simple.vs

//

// Generic vertex transformation,

LISTING 16.1 Continued

// copy primary color

void main(void)

{

// multiply object-space position by MVP matrix

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

// Copy the primary color

gl_FrontColor = gl_Color;

}

The modelview and projection matrices are traditionally two separate matrices against
which the incoming object-space vertex position is multiplied. GLSL conveniently
provides a shortcut called gl_ModelViewProjectionMatrix, a concatenation of the two
matrices, which we refer to as the MVP matrix. This way we need only perform one matrix
multiply in order to transform the vertex position.

An alternative to performing the transform yourself is using the ftransform built-in func-
tion, which emulates fixed functionality vertex transformation on the incoming vertex
position. Not only is it convenient, but it also guarantees that the result is identical to that
achieved by fixed functionality, which is especially useful when rendering in multiple
passes. Otherwise, if you mix fixed functionality and your own vertex shader (without
ftransform) and draw the same geometry, the subtle floating-point differences in the
resulting Z values may result in “Z-fighting” artifacts. The invariant qualifier, described in
Chapter 15, “Programmable Pipeline: This Isn’t Your Father’s OpenGL,” can be used when
declaring vertex shader outputs to achieve a similar effect. Unlike ftransform, however,
invariant is not limited to clip-space position.

Diffuse Lighting
Diffuse lighting takes into account the orientation of a surface relative to the direction of
incoming light. The following is the equation for diffuse lighting:

Cdiff = max{N • L, 0} * Cmat * Cli

N is the vertex’s unit normal, and L is the unit vector representing the direction from the
vertex to the light source. Cmat is the color of the surface material, and Cli is the color of
the light. Cdiff is the resulting diffuse color. Because the light in the example is white, you
can omit that term, as it would be the same as multiplying by {1,1,1,1}. Figure 16.2 shows
the result from Listing 16.2, which implements the diffuse lighting equation.

Diffuse Lighting 549

16

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen550

FIGURE 16.2 This vertex shader computes diffuse lighting. (This figure also appears in the
Color insert.)

LISTING 16.2 Diffuse Lighting Vertex Shader

// diffuse.vs

//

// Generic vertex transformation,

// diffuse lighting based on one

// white light

uniform vec3 lightPos[1];

void main(void)

{

// normal MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec3 N = normalize(gl_NormalMatrix * gl_Normal);

vec4 V = gl_ModelViewMatrix * gl_Vertex;

vec3 L = normalize(lightPos[0] - V.xyz);

// output the diffuse color

float NdotL = dot(N, L);

gl_FrontColor = gl_Color * vec4(max(0.0, NdotL));

}

The light position is a uniform vector passed into the shader from the application. This
allows you to easily change the light position interactively without having to alter the
shader. You can do this using the left- and right-arrow keys while running the
VertexShaders sample program. It could have been referenced instead using the built-in
uniform variable gl_LightSource[n].position to achieve the same effect, in which case
the sample program would call glLight* instead of glUniform* to update the position.

After computing the clip-space position as you did in the “simple” shader, the “diffuse”
shader proceeds to transform the vertex position to eye space, too. All the lighting calcula-
tions are performed in eye space, so you need to transform the normal vector from object
space to eye space as well. GLSL provides the gl_NormalMatrix built-in uniform matrix as
a convenience for this purpose. It is simply the inverse transpose of the modelview
matrix’s upper-left 3×3 elements. The last vector you need to compute is the light vector,
which is the direction from the vertex position to the light position, so you just subtract
one from the other. Note that we’re modeling a point light here rather than a directional
light.

Both the normal and the light vectors must be unit vectors, so you normalize them before
continuing. GLSL supplies a built-in function, normalize, to perform this common task.

The dot product of the two unit vectors, N and L, will be in the range [–1,1]. But because
you’re interested in the amount of diffuse lighting bouncing off the surface, having a
negative contribution doesn’t make sense. This is why you clamp the result of the dot
product to the range [0,1] by using the max function. The diffuse lighting contribution can
then be multiplied by the vertex’s diffuse material color to obtain the final lit color.

Specular Lighting
Specular lighting takes into account the orientation of a surface relative to both the direc-
tion of incoming light and the view vector. The following is the equation for specular
lighting:

Cspec = max{N • H, 0}Sexp * Cmat * Cli

H is the unit vector representing the direction halfway between the light vector and the
view vector, known as the half-angle vector. Sexp is the specular exponent, controlling the
tightness of the specular highlight. Cspec is the resulting specular color. N, L, Cmat, and Cli

represent the same values as in diffuse lighting, although you’re free to use different spec-
ular and diffuse colors. Because the light in the example is white, you can again omit that
term. Figure 16.3 illustrates the output of Listing 16.3, which implements both diffuse and
specular lighting equations. Note that the specular term is included only when N • L is
also greater than zero—a subtlety not captured in the above equation, but one that’s part
of the fixed functionality lighting definition.

Specular Lighting 551

16

FIGURE 16.3 This vertex shader computes diffuse and specular lighting. (This figure also
appears in the Color insert.)

LISTING 16.3 Diffuse and Specular Lighting Vertex Shader

// specular.vs

//

// Generic vertex transformation,

// diffuse and specular lighting

// based on one white light

uniform vec3 lightPos[1];

void main(void)

{

// normal MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec3 N = normalize(gl_NormalMatrix * gl_Normal);

vec4 V = gl_ModelViewMatrix * gl_Vertex;

vec3 L = normalize(lightPos[0] - V.xyz);

vec3 H = normalize(L + vec3(0.0, 0.0, 1.0));

const float specularExp = 128.0;

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen552

LISTING 16.3 Continued

// calculate diffuse lighting

float NdotL = max(0.0, dot(N, L));

vec4 diffuse = gl_Color * vec4(NdotL);

// calculate specular lighting

float NdotH = max(0.0, dot(N, H));

vec4 specular = vec4(0.0);

if (NdotL > 0.0)

specular = vec4(pow(NdotH, specularExp));

// sum the diffuse and specular components

gl_FrontColor = diffuse + specular;

}

We used a hard-coded constant specular exponent of 128, which provides a nice, tight
specular highlight. You can experiment with different values to find one you may prefer.
Practice your GLSL skills by turning this scalar value into another uniform that you can
control from the application.

Improved Specular Lighting
Specular highlights change rapidly over the surface of an object. Trying to compute them
per-vertex and then interpolating the result across a triangle gives relatively poor results.
Instead of a nice circular highlight, you end up with a muddy polygonal-shaped highlight.

One way you can improve the situation is to separate the diffuse lighting result from the
specular lighting result, outputting one as the vertex’s primary color and the other as the
secondary color. By adding the diffuse and specular colors together, you effectively satu-
rate the color (that is, exceed a value of 1.0) wherever a specular highlight appears. If you
try to interpolate the sum of these colors, the saturation will more broadly affect the
entire triangle. However, if you interpolate the two colors separately and then sum them
per-fragment, the saturation will occur only where desired, cleaning up some of the
muddiness. When using fixed functionality fragment processing, this sum per-fragment is
achieved by simply enabling GL_COLOR_SUM. Here is the altered shader code for separating
the two lit colors:

// put diffuse into primary color

float NdotL = max(0.0, dot(N, L));

gl_FrontColor = gl_Color * vec4(NdotL);

// put specular into secondary color

float NdotH = max(0.0, dot(N, H));

gl_FrontSecondaryColor = (NdotL > 0.0) ?

Improved Specular Lighting 553

16

vec4(pow(NdotH, specularExp)) :

vec4(0.0);

Separating the colors improves things a bit, but the root of the problem is the specular
exponent. By raising the specular coefficient to a power, you have a value that wants to
change much more rapidly than per-vertex interpolation allows. In fact, if your geometry
is not tessellated finely enough, you may lose a specular highlight altogether.

An effective way to avoid this problem is to output just the specular coefficient (N • H),
but wait and raise it to a power per-fragment. This way, you can safely interpolate the
more slowly changing (N • H). You’re not employing fragment shaders until the next
chapter, so how do you perform this power computation per-fragment? All you have to do
is set up a 1D texture with a table of s128 values and send (N • H) out of the vertex shader
on a texture coordinate. This is considered custom texgen. Then you will use fixed func-
tionality texture environment to add the specular color from the texture lookup to the
interpolated diffuse color from the vertex shader.

The following is the shader code, again altered from the original specular lighting shader:

// put diffuse lighting result in primary color

float NdotL = max(0.0, dot(N, L));

gl_FrontColor = gl_Color * vec4(NdotL);

// copy (N.H)*8-7 into texcoord if N.L is positive

float NdotH = 0.0;

if (NdotL > 0.0)

NdotH = max(0.0, dot(N, H) * 8.0 - 7.0);

gl_TexCoord[0] = vec4(NdotH, 0.0, 0.0, 1.0);

Here, the (N • H) has been clamped to the range [0,1]. But if you try raising most of that
range to the power of 128, you’ll get results so close to zero that they will correspond to
texel values of zero. Only the upper 1/8 of (N • H) values will begin mapping to measur-
able texel values. To make economical use of the 1D texture, you can focus in on this
upper 1/8 and fill the entire texture with values from this range, improving the resulting
precision. This requires that you scale (N • H) by 8 and bias by –7 so that [0,1] maps to
[–7,1]. By using the GL_CLAMP_TO_EDGE wrap mode, values in the range [–7,0] will be
clamped to 0. Values in the range of interest, [0,1], will receive texel values between
(7/8)128 and 1.

The specular contribution resulting from the texture lookup is added to the diffuse color
output from the vertex shader using the GL_ADD texture environment function.

Figure 16.4 compares the three specular shaders to show the differences in quality. An even
more precise method would be to output only the normal vector from the vertex shader
and to encode a cube map texture so that at every N coordinate the resulting texel value is
(N • H)128. We’ve left this as another exercise for you.

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen554

FIGURE 16.4 The per-vertex specular highlight is improved by using separate specular or a
specular exponent texture. (This figure also appears in the Color insert.)

Now that you have a decent specular highlight, you can get a little fancier and take the
one white light and replicate it into three colored lights. This activity involves performing
the same computations, except now you have three different light positions and you have
to take the light color into consideration.

As has been the case with all the lighting shaders, you can change the light positions in
the sample by using the left- and right-arrow keys. Figure 16.5 shows the three lights in
action, produced by Listing 16.4.

Improved Specular Lighting 555

16

FIGURE 16.5 Three lights are better than one. (This figure also appears in the Color insert.)

LISTING 16.4 Three Colored Lights Vertex Shader

// 3lights.vs

//

// Generic vertex transformation,

// 3 colored lights

uniform vec3 lightPos[3];

varying vec4 gl_TexCoord[4];

void main(void)

{

vec3 L[3], H[3];

// normal MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec3 N = normalize(gl_NormalMatrix * gl_Normal);

vec4 V = gl_ModelViewMatrix * gl_Vertex;

// Light colors

vec4 lightCol[3];

lightCol[0] = vec4(1.0, 0.25, 0.25, 1.0);

lightCol[1] = vec4(0.25, 1.0, 0.25, 1.0);

lightCol[2] = vec4(0.25, 0.25, 1.0, 1.0);

gl_FrontColor = vec4(0.0);

for (int i = 0; i < 3; i++)

{

// Light vectors

L[i] = normalize(lightPos[i] - V.xyz);

// Half-angles

H[i] = normalize(L[i] + vec3(0.0, 0.0, 1.0));

float NdotL = max(0.0, dot(N, L[i]));

// Accumulate the diffuse contributions

gl_FrontColor += gl_Color * lightCol[i] *

vec4(NdotL);

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen556

LISTING 16.4 Continued

// Put N.H specular coefficients into texcoords

gl_TexCoord[1+i] = (NdotL > 0.0) ?

vec4(max(0.0, dot(N, H[i]) * 8.0 - 7.0), 0.0, 0.0, 1.0) :

vec4(0.0, 0.0, 0.0, 1.0);

}

}

Interesting to note in this sample is the use of a loop construct. Even though GLSL
permits them, some older OpenGL implementations may not support loops in hardware.
So if your shader is running really slowly, it may be emulating the shader execution in
software. “Unrolling” the loop—that is, replicating the code within the loop multiple
times into a long linear sequence—could alleviate the problem, but at the expense of
making your code less readable.

Per-Vertex Fog
Though fog is specified as a per-fragment rasterization stage that follows texturing, often
implementations perform most of the necessary computation per-vertex and then interpo-
late the results across the primitive. This shortcut is sanctioned by the OpenGL specifica-
tion because it improves performance with very little loss of image fidelity. The following
is the equation for a second-order exponential fog factor, which controls the blending
between the fog color and the unfogged fragment color:

ff = e–(d*fc)2

In this equation, ff is the computed fog factor. d is the density constant that controls the
“thickness” of the fog. fc is the fog coordinate, which is usually the distance from the
vertex to the eye, or is approximated by the absolute value of the vertex position’s Z
component in eye space. In this chapter’s sample shaders, you’ll compute the actual
distance.

In the first sample fog shader, you’ll compute only the fog coordinate and leave it to fixed
functionality to compute the fog factor and perform the blend. In the second sample,
you’ll compute the fog factor yourself within the vertex shader and also perform the
blending per-vertex. Performing all these operations per-vertex instead of per-fragment is
more efficient and provides acceptable results for most uses. Figure 16.6 illustrates the
fogged scene, which is nearly identical for the two sample fog shaders, the first of which is
shown in Listing 16.5.

Per-Vertex Fog 557

16

FIGURE 16.6 Applying per-vertex fog using a vertex shader. (This figure also appears in the
Color insert.)

LISTING 16.5 Fog Coordinate Generating Vertex Shader

// fogcoord.vs

//

// Generic vertex transformation,

// diffuse and specular lighting,

// per-vertex fogcoord

uniform vec3 lightPos[1];

void main(void)

{

// normal MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec3 N = normalize(gl_NormalMatrix * gl_Normal);

vec4 V = gl_ModelViewMatrix * gl_Vertex;

vec3 L = normalize(lightPos[0] - V.xyz);

vec3 H = normalize(L + vec3(0.0, 0.0, 1.0));

const float specularExp = 128.0;

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen558

LISTING 16.5 Continued

// calculate diffuse lighting

float NdotL = max(0.0, dot(N, L));

vec4 diffuse = gl_Color * vec4(NdotL);

// calculate specular lighting

float NdotH = max(0.0, dot(N, H));

vec4 specular = vec4(0.0);

if (NdotL > 0.0)

specular = vec4(pow(NdotH, specularExp));

// calculate fog coordinate: distance from eye

gl_FogFragCoord = length(V);

// sum the diffuse and specular components

gl_FrontColor = diffuse + specular;

}

The calculation to find the distance from the eye (0,0,0,1) to the vertex in eye space is
trivial. You need only call the built-in length() function, passing in the vertex position
vector as an argument.

The following is the altered GLSL code for performing the fog blend within the shader
instead of in fixed functionality fragment processing:

uniform float density;

...

// calculate 2nd order exponential fog factor

const float e = 2.71828;

float fogFactor = (density * length(V));

fogFactor *= fogFactor;

fogFactor = clamp(pow(e, -fogFactor), 0.0, 1.0);

// sum the diffuse and specular components, then

// blend with the fog color based on fog factor

const vec4 fogColor = vec4(0.5, 0.8, 0.5, 1.0);

gl_FrontColor = mix(fogColor, clamp(diffuse + specular, 0.0, 1.0),

fogFactor);

Per-Vertex Fog 559

16

Per-Vertex Point Size
Applying fog attenuates object colors the farther away they are from the viewpoint.
Similarly, you can attenuate point sizes so that points rendered close to the viewpoint are
relatively large and points farther away diminish into nothing. Like fog, point attenuation
is a useful visual cue for conveying perspective. The computation required is similar as
well.

You compute the distance from the vertex to the eye exactly the same as you did for the
fog coordinate. Then, to get a point size that falls off exponentially with distance, you
square the distance, take its reciprocal, and multiply it by the constant 100,000. This
constant is chosen specifically for this scene’s geometry so that objects toward the back of
the scene, as rendered from the initial camera position, are assigned point sizes of approxi-
mately 1, whereas points near the front are assigned point sizes of approximately 10.

In this sample application, you’ll set the polygon mode for front- and back-facing poly-
gons to GL_POINT so that all the objects in the scene are drawn with points. Also, you must
enable GL_VERTEX_PROGRAM_POINT_SIZE_ARB so that the point sizes output from the vertex
shader are substituted in place of the usual OpenGL point size. Figure 16.7 shows the
result of Listing 16.6.

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen560

FIGURE 16.7 Per-vertex point size makes distant points smaller. (This figure also appears in
the Color insert.)

LISTING 16.6 Point Size Generating Vertex Shader

// ptsize.vs

//

// Generic vertex transformation,

// attenuated point size

void main(void)

{

// normal MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec4 V = gl_ModelViewMatrix * gl_Vertex;

gl_FrontColor = gl_Color;

// calculate point size based on distance from eye

float ptSize = length(V);

ptSize *= ptSize;

gl_PointSize = 100000.0 / ptSize;

}

Customized Vertex Transformation
You’ve already customized lighting, texture coordinate generation, and fog coordinate
generation. But what about the vertex positions themselves? The next sample shader
applies an additional transformation before transforming by the usual modelview/projec-
tion matrix.

Figure 16.8 shows the effects of scaling the object-space vertex position by a squash and
stretch factor, which can be set independently for each axis as in Listing 16.7.

Customized Vertex Transformation 561

16

FIGURE 16.8 Squash and stretch effects customize the vertex transformation.

LISTING 16.7 Squash and Stretch Vertex Shader

// stretch.vs

//

// Generic vertex transformation,

// followed by squash/stretch

uniform vec3 lightPos[1];

uniform vec3 squashStretch;

void main(void)

{

// squash/stretch, followed by normal MVP transform

vec4 stretchedCoord = gl_Vertex;

stretchedCoord.xyz *= squashStretch;

gl_Position = gl_ModelViewProjectionMatrix * stretchedCoord;

vec3 stretchedNormal = gl_Normal;

stretchedNormal *= squashStretch;

vec3 N = normalize(gl_NormalMatrix * stretchedNormal);

vec4 V = gl_ModelViewMatrix * stretchedCoord;

vec3 L = normalize(lightPos[0] - V.xyz);

vec3 H = normalize(L + vec3(0.0, 0.0, 1.0));

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen562

LISTING 16.7 Continued

// put diffuse lighting result in primary color

float NdotL = max(0.0, dot(N, L));

gl_FrontColor = gl_Color * vec4(NdotL);

// copy (N.H)*8-7 into texcoord if N.L is positive

float NdotH = 0.0;

if (NdotL > 0.0)

NdotH = max(0.0, dot(N, H) * 8.0 - 7.0);

gl_TexCoord[0] = vec4(NdotH, 0.0, 0.0, 1.0);

}

Vertex Blending
Vertex blending is an interesting technique used for skeletal animation. Consider a simple
model of an arm with an elbow joint. The forearm and biceps are each represented by a
cylinder. When the arm is completely straight, all the “skin” is nicely connected together.
But as soon as you bend the arm, as in Figure 16.9, the skin is disconnected and the
realism is gone.

Vertex Blending 563

16

FIGURE 16.9 This simple elbow joint without vertex blending just begs for skin. (This figure
also appears in the Color insert.)

The way to fix this problem is to employ multiple modelview matrices when transforming
each vertex. Both the forearm and the biceps have their own modelview matrix already.
The biceps’s matrix would orient it relative to the torso if it were attached to a body, or in
this case relative to the origin in object-space. The forearm’s matrix orients it relative to
the biceps. The key to vertex blending is to use a little of each matrix when transforming
vertices close to a joint.

You can choose how close to the joint you want the multiple modelview matrices to have
influence. We call this the region of influence. Vertices outside the region of influence do
not require blending. For such a vertex, only the original modelview matrix associated
with the object is used. However, vertices that do fall within the region of influence must
transform the vertex twice: once with its own modelview matrix and once with the matrix
belonging to the object on the other side of the joint. For our example, you blend these
two eye-space positions together to achieve the final eye-space position.

The amount of one eye-space position going into the mix versus the other is based on the
vertex’s blend weight. When drawing the glBegin/glEnd primitives, in addition to the
usual normals, colors, and positions, you also specify a weight for each vertex. You use the
glVertexAttrib1f function for specifying the weight. Vertices right at the edge of the
joint receive weights of 0.5, effectively resulting in a 50% influence by each matrix. On
the other extreme, vertices on the edge of the region of influence receive weights of 1.0,
whereby the object’s own matrix has 100% influence. Within the region of influence,
weights vary from 1.0 to 0.5, and they can be assigned linearly with respect to the
distance from the joint, or based on some higher-order function.

Any other computations dependent on the modelview matrix must also be blended. In the
case of the sample shader, you also perform diffuse and specular lighting. This means the
normal vector, which usually is transformed by the inverse transpose of the modelview
matrix, now must also be transformed twice just like the vertex position. The two results
are blended based on the same weights used for vertex position blending.

By using vertex blending, you can create lifelike flexible skin on a skeleton structure that
is easy to animate. Figure 16.10 shows the arm in its new Elastic Man form, thanks to a
region of influence covering the entire arm. Listing 16.8 contains the vertex blending
shader source.

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen564

FIGURE 16.10 The stiff two-cylinder arm is now a fun, curvy, flexible object. (This figure also
appears in the Color insert.)

LISTING 16.8 Vertex Blending Vertex Shader

// skinning.vs

//

// Perform vertex skinning by

// blending between two MV

// matrices

uniform vec3 lightPos;

uniform mat4 mv2;

uniform mat3 mv2IT;

attribute float weight;

void main(void)

{

// compute each vertex influence

vec4 V1 = gl_ModelViewMatrix * gl_Vertex;

vec4 V2 = mv2 * gl_Vertex;

vec4 V = (V1 * weight) + (V2 * (1.0 - weight));

gl_Position = gl_ProjectionMatrix * V;

Vertex Blending 565

16

LISTING 16.8 Continued

// compute each normal influence

vec3 N1 = gl_NormalMatrix * gl_Normal;

vec3 N2 = mv2IT * gl_Normal;

vec3 N = normalize((N1 * weight) + (N2 * (1.0 - weight)));

vec3 L = normalize(lightPos - V.xyz);

vec3 H = normalize(L + vec3(0.0, 0.0, 1.0));

// put diffuse lighting result in primary color

float NdotL = max(0.0, dot(N, L));

gl_FrontColor = 0.1 + gl_Color * vec4(NdotL);

// copy (N.H)*8-7 into texcoord

float NdotH = 0.0;

if (NdotL > 0.0)

NdotH = max(0.0, dot(N, H) * 8.0 - 7.0);

gl_TexCoord[0] = vec4(NdotH, 0.0, 0.0, 1.0);

}

In this example, you use built-in modelview matrix uniforms to access the primary blend
matrix. For the secondary matrix, you employ a user-defined uniform matrix.

For normal transformation, you need the inverse transpose of each blend matrix. Shaders
do not provide a simple way to access the inverse transpose of a matrix. You continue to
use the built-in gl_NormalMatrix for accessing the primary modelview matrix’s inverse
transpose, but for the secondary matrix’s inverse transpose, there is no shortcut.
Instead, you must manually compute the inverse of the second modelview matrix
within the application and transpose it on the way into OpenGL when calling
glUniformMatrix3fv.

Summary
This chapter provided various sample shaders as a jumping-off point for your own explo-
ration of vertex shaders. Specifically, we provided examples of customized lighting, texture
coordinate generation, fog, point size, and vertex transformation.

It is refreshing to give vertex shaders their moment in the spotlight. In reality, vertex
shaders often play only supporting roles to their fragment shader counterparts, performing
menial tasks such as preparing texture coordinates. Fragment shaders end up stealing the
show. In the next chapter, we’ll start by focusing solely on fragment shaders. Then in the
stunning conclusion, we will see our vertex shader friends once again when we combine
the two shaders and say goodbye to fixed functionality once and for all.

CHAPTER 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen566

CHAPTER 17

Fragment Shading:
Empower Your Pixel Processing

by Benjamin Lipchak

WHAT YOU’LL LEARN IN THIS CHAPTER:

• How to alter colors

• How to post-process images

• How to light an object per-fragment

• How to perform procedural texture mapping

As you may recall from Chapter 15, “Programmable Pipeline: This Isn’t Your Father’s
OpenGL,” fragment shaders replace the texturing, color sum, and fog stages of the fixed
functionality pipeline. This is the section of the pipeline where the party is happening.
Instead of marching along like a mindless herd of cattle, applying each enabled texture
based on its preordained texture coordinate, your fragments are free to choose their own
adventure. Mix and match textures and texture coordinates. Or calculate your own texture
coordinates. Or don’t do any texturing, and just compute your own colors. It’s all good.

In their natural habitat, vertex shaders and fragment shaders are most often mated for life.
Fragment shaders are the dominant partner, directly producing the eye candy you see
displayed on the screen, and thus they receive the most attention. However, vertex
shaders play an important supporting role. Because they tend to be executed much less
frequently (except for the smallest of triangles), as much of the grunt work as possible is
pushed into the vertex shader in the name of performance. The results are then placed
into interpolants for use as input by the fragment shader. The vertex shader is a selfless
producer, the fragment shader a greedy consumer.

In this chapter, we continue the learning by example we began in the preceding chapter.
We present many fragment shaders, both as further exposure to the OpenGL Shading

568 CHAPTER 17 Fragment Shading: Empower Your Pixel Processing

Language (GLSL) and as a launch pad for your own future dabbling. Because you rarely see
fragment shaders alone, after you get the hang of fragment shaders in isolation, we will
move on to discuss several examples of vertex shaders and fragment shaders working
together in peaceful harmony.

Color Conversion
We almost have to contrive some examples illustrating where fragment shaders are used
without vertex shader assistance. But we can easily separate them where we simply want
to alter the existing color. For these examples, we use fixed functionality lighting to
provide a starting color. Then we go to town on it.

Grayscale
One thing you might want to do in your own work is simulate black-and-white film.
Given the incoming red, green, and blue color channel intensities, we would like to calcu-
late a single grayscale intensity to output to all three channels. Red, green, and blue each
reflect light differently, which we represent by their different contributions to the final
intensity. The weights used in our shader derive from the NTSC standard for converting
color television signals for viewing on black and white televisions.

Figure 17.1 shows the vertex shader corresponding to Listing 17.1. This may be the only
black-and-white figure in the book that is truly supposed to be black-and-white!

FIGURE 17.1 This fragment shader converts the RGB color into a single grayscale value.

LISTING 17.1 Grayscale Conversion Fragment Shader

// grayscale.fs

//

// convert RGB to grayscale

void main(void)

{

// Convert to grayscale using NTSC conversion weights

float gray = dot(gl_Color.rgb, vec3(0.299, 0.587, 0.114));

// replicate grayscale to RGB components

gl_FragColor = vec4(gray, gray, gray, 1.0);

}

The key to all these fragment shaders is that what you write to the color output,
gl_FragColor, is what is passed along down the rest of the OpenGL pipeline, eventually to
the framebuffer. The primary color input is gl_Color.

Try playing with the contributions of each color channel. Notice how they add up to 1.
You can simulate overexposure by making them add up to more than 1, and less than 1
will simulate underexposure.

Sepia Tone
In this next example, we recolorize the grayscale picture with a sepia tone. This tone gives
the picture the tint of an Old West photograph. To do this, we first convert to grayscale as
before. Then we multiply the gray value by a color vector, which accentuates some color
channels and reduces others. Listing 17.2 illustrates this sepia-tone conversion, and the
result is as shown in Color Plate 15.

LISTING 17.2 Sepia-Tone Conversion Fragment Shader

// sepia.fs

//

// convert RGB to sepia tone

void main(void)

{

// Convert RGB to grayscale using NTSC conversion weights

float gray = dot(gl_Color.rgb, vec3(0.299, 0.587, 0.114));

// convert grayscale to sepia

gl_FragColor = vec4(gray * vec3(1.2, 1.0, 0.8), 1.0);

}

Color Conversion 569

17

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing570

You can choose to colorize with any tint you like. Go ahead and play with the tint factors.
Here, we’ve hard-coded one for sepia. If you’re truly ambitious, you could substitute exter-
nal application-defined uniform constants to make the tint color user-selectable so that
you don’t have to write a different shader for every tint color.

Inversion
For this next example, we’re going for the film negative effect. These shaders are almost
too simple to mention. All you have to do is take whatever color you were otherwise going
to draw and subtract that color from 1. Black becomes white, and white becomes black.
Red becomes cyan. Purple becomes chartreuse. You get the picture.

Figure 17.2 illustrates the color inversion performed in Listing 17.3. Use your imagination
or consult the sample code for the grayscale inversion, which is just as straightforward.

FIGURE 17.2 This fragment shader inverts the RGB color, yielding a film negative effect.

LISTING 17.3 Color Inversion Fragment Shader

// colorinvert.fs

//

// invert like a color negative

void main(void)

{

LISTING 17.3 Continued

// invert color components

gl_FragColor.rgb = 1.0 - gl_Color.rgb;

gl_FragColor.a = 1.0;

}

Heat Signature
Now, we attempt our first texture lookup. In this sample shader, we simulate a heat signa-
ture effect like the one in the movie Predator. Heat is represented by a color spectrum
ranging from black to blue to green to yellow to red.

We again use the grayscale conversion, this time as our scalar heat value. This is a cheap
trick for demonstration purposes, as the color intensity does not necessarily have any rela-
tionship to heat. In reality, the heat value would be passed in as a separate vertex attribute
or uniform. We use this value as a texture coordinate to index into a 1D texture populated
with the color gradients from black to red. Figure 17.3 shows the results of the heat signa-
ture shader in Listing 17.4.

Color Conversion 571

17

FIGURE 17.3 This fragment shader simulates a heat signature by looking up a color from
a 1D texture. (This figure also appears in the Color insert.)

LISTING 17.4 Heat Signature Fragment Shader

// heatsig.fs

//

// map grayscale to heat signature

uniform sampler1D sampler0;

void main(void)

{

// Convert to grayscale using NTSC conversion weights

float gray = dot(gl_Color.rgb, vec3(0.299, 0.587, 0.114));

// look up heatsig value

gl_FragColor = texture1D(sampler0, gray);

}

Dependent Texture Lookups
Fixed functionality texture mapping was very strict, requiring all texture lookups to use an
interpolated per-vertex texture coordinate. One of the powerful new capabilities made
possible by fragment shaders is that you can calculate your own texture coordinates per-
fragment. You can even use the result of one texture lookup as the coordinate for another
lookup. All these cases are considered dependent texture lookups. They’re named that
because the lookups are dependent on other preceding operations in the fragment shader.

You may not have noticed, but we just performed a dependent texture lookup in the heat
signature shader. First, we had to compute our texture coordinate by doing the grayscale
conversion. Then we used that value as a texture coordinate to perform a dependent
texture lookup into the 1D heat signature texture.

The dependency chain can continue: You could, for example, take the color from the heat
signature shader and use that as a texture coordinate to perform a lookup from a cube
map texture, perhaps to gamma-correct your color. Beware, however, that some OpenGL
implementations have a hardware limit as to the length of dependency chains, so keep
this point in mind if you want to avoid falling into a non-hardware-accelerated driver
path!

Per-Fragment Fog
Instead of performing fog blending per-vertex, or calculating the fog factor per-vertex and
using fixed functionality fog blending, we compute the fog factor and perform the blend
ourselves within the fragment shader in the following example. This example emulates
GL_EXP2 fog mode except that it will be more accurate than most fixed functionality
implementations, which apply the exponentiation per-vertex instead of per-fragment.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing572

This is most noticeable on low-tessellation geometry that extends from the foreground to
the background, such as the floor upon which all the objects in the scene rest. Compare
the results of this shader with the fog shaders in the preceding chapter, and you can
readily see the difference.

Figure 17.4 illustrates the output of the fog shader in Listing 17.5.

Color Conversion 573

17FIGURE 17.4 This fragment shader performs per-fragment fog computation.

LISTING 17.5 Per-Fragment Fog Fragment Shader

// fog.fs

//

// per-pixel fog

uniform float density;

void main(void)

{

const vec4 fogColor = vec4(0.5, 0.8, 0.5, 1.0);

// calculate 2nd order exponential fog factor

// based on fragment’s Z distance

const float e = 2.71828;

float fogFactor = (density * gl_FragCoord.z);

LISTING 17.5 Continued

fogFactor *= fogFactor;

fogFactor = clamp(pow(e, -fogFactor), 0.0, 1.0);

// Blend fog color with incoming color

gl_FragColor = mix(fogColor, gl_Color, fogFactor);

}

We need to comment on a few things here. One is the built-in function used to blend:
mix. This function blends two variables of any type, in this case four-component vectors,
based on the third argument, which should be in the range [0,1].

Another thing to notice is how we have chosen to make the density an externally set
uniform constant rather than a hard-coded inline constant. This way, we can tie the
density to keystrokes. When the user hits the left or right arrows, we update the density
shader constant with a new value without having to change the shader text at all. As a
general rule, constant values that you may want to change at some point should not be
hard-coded, but all others should be. By hard-coding a value, you give the OpenGL imple-
mentation’s optimizing compiler an early opportunity to use this information to possibly
make your shader run even faster.

Image Processing
Image processing is another application of fragment shaders that doesn’t depend on vertex
shader assistance. After drawing the scene without fragment shaders, we can apply convo-
lution kernels to post-process the image in various ways.

To keep the shaders concise and improve the probability of their being hardware-acceler-
ated on a wider range of hardware, we’ve limited the kernel size to 3×3. Feel free to experi-
ment with larger kernel sizes.

Within the sample application, glCopyTexImage2D is called to copy the contents of the
framebuffer into a texture. The texture size is chosen to be the largest power-of-two size
smaller than the window. (If OpenGL 2.0 or the ARB_texture_non_power_of_two extension
is supported, the texture can be the same size as the window.) A fragment-shaded quad is
then drawn centered within the window with the same dimensions as the texture, with a
base texture coordinate ranging from (0,0) in the lower left to (1,1) in the upper right.

The fragment shader takes its base texture coordinate and performs a texture lookup to
obtain the center sample of the 3×3 kernel neighborhood. It then proceeds to apply eight
different offsets to look up samples for the other eight spots in the neighborhood. Finally,
the shader applies some filter to the neighborhood to yield a new color for the center of
the neighborhood. Each sample shader provides a different filter commonly used for
image-processing tasks.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing574

Blur
Blurring may be the most commonly applied filter in everyday use. It smoothes out high-
frequency features, such as the jaggies along object edges. It is also called a low-pass filter
because it lets low-frequency features pass through while filtering out high-frequency
features.

Because we’re using only a 3×3 kernel, the blur is not overly dramatic in a single pass. We
could make it more blurry by using a larger kernel or by applying the blur filter multiple
times in successive passes. Figure 17.5 shows the results of the blur filter in Listing 17.6
after five passes.

Image Processing 575

17

FIGURE 17.5 This fragment shader blurs the scene. (This figure also appears in the Color
insert.)

LISTING 17.6 Post-Process Blur Fragment Shader

// blur.fs

//

// blur (low-pass) 3x3 kernel

uniform sampler2D sampler0;

uniform vec2 tc_offset[9];

void main(void)

LISTING 17.6 Continued

{

vec4 sample[9];

for (int i = 0; i < 9; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

}

// 1 2 1

// 2 1 2 / 13

// 1 2 1

gl_FragColor = (sample[0] + (2.0*sample[1]) + sample[2] +

(2.0*sample[3]) + sample[4] + (2.0*sample[5]) +

sample[6] + (2.0*sample[7]) + sample[8]) / 13.0;

}

The first thing we do in the blur shader is generate our nine texture coordinates. This is
accomplished by adding precomputed constant offsets to the interpolated base texture
coordinate. The offsets were computed taking into account the size of the texture such
that the neighboring texels to the north, south, east, west, northeast, southeast, north-
west, and southwest could be obtained by a simple 2D texture lookup.

This neighborhood is obtained the same way in all our image processing shaders. It is the
filter applied to the neighborhood that differs in each shader. In the case of the blur filter,
the texel neighborhood is multiplied by a 3×3 kernel of coefficients (1s and 2s), which add
up to 13. The resulting values are all summed and averaged by dividing by 13, resulting in
the new color for the texel. Note that we could have made the kernel coefficient values
1/13 and 2/13 instead of 1 and 2, but that would have required many extra multiplies. It
is simpler and cheaper for us to factor out the 1/13 and just apply it at the end.

Try experimenting with the filter coefficients. What if, for example, you put a weight of 1
at each corner and then divide by 4? Notice what happens when you divide by more or
less than the sum of the coefficients: The scene grows darker or lighter. That makes sense.
If your scene was all white, you would be effectively multiplying the filter coefficients by 1
and adding them up. If you don’t divide by the sum of the coefficients, you’ll end up with
a color other than white.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing576

Sharpen
Sharpening is the opposite of blurring. Some examples of its use include making edges
more pronounced and making text more readable. Figure 17.6 illustrates the use of sharp-
ening, applying the filter in two passes.

Image Processing 577

17

FIGURE 17.6 This fragment shader sharpens the scene. (This figure also appears in the Color
insert.)

Here is the shader code for applying the sharpen filter:

// sharpen.fs

//

// 3x3 sharpen kernel

uniform sampler2D sampler0;

uniform vec2 tc_offset[9];

void main(void)

{

vec4 sample[9];

for (int i = 0; i < 9; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

}

// -1 -1 -1

// -1 9 -1

// -1 -1 -1

gl_FragColor = (sample[4] * 9.0) -

(sample[0] + sample[1] + sample[2] +

sample[3] + sample[5] +

sample[6] + sample[7] + sample[8]);

}

Notice how this kernel also sums to 1, as did the blur filter. This operation guarantees
that, on average, the filter is not increasing or decreasing the brightness. It’s just sharpen-
ing the brightness, as desired.

Dilation and Erosion
Dilation and erosion are morphological filters, meaning they alter the shape of objects.
Dilation grows the size of bright objects, whereas erosion shrinks the size of bright objects.
(They each have the reverse effect on dark objects.) Figures 17.7 and 17.8 show the effects
of three passes of dilation and erosion, respectively.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing578

FIGURE 17.7 This fragment shader dilates objects.

Dilation simply finds the maximum value in the neighborhood:

// dilation.fs

//

// maximum of 3x3 kernel

uniform sampler2D sampler0;

uniform vec2 tc_offset[9];

void main(void)

{

vec4 sample[9];

vec4 maxValue = vec4(0.0);

for (int i = 0; i < 9; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

maxValue = max(sample[i], maxValue);

}

gl_FragColor = maxValue;

}

Image Processing 579

17

FIGURE 17.8 This fragment shader erodes objects.

Erosion conversely finds the minimum value in the neighborhood:

// erosion.fs

//

// minimum of 3x3 kernel

uniform sampler2D sampler0;

uniform vec2 tc_offset[9];

void main(void)

{

vec4 sample[9];

vec4 minValue = vec4(1.0);

for (int i = 0; i < 9; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

minValue = min(sample[i], minValue);

}

gl_FragColor = minValue;

}

Edge Detection
One last filter class worthy of mention here is edge detectors. They do just what you
would expect—detect edges. Edges are simply places in an image where the color changes
rapidly, and edge detection filters pick up on these rapid changes and highlight them.

Three widely used edge detectors are Laplacian, Sobel, and Prewitt. Sobel and Prewitt are
gradient filters that detect changes in the first derivative of each color channel’s intensity,
but only in a single direction. Laplacian, on the other hand, detects zero-crossings of the
second derivative, where the intensity gradient suddenly changes from getting darker to
getting lighter, or vice versa. It works for edges of any orientation.

Because the differences in their results are subtle, Figure 17.9 shows the results from only
one of them, the Laplacian filter. Try out the others and examine their shaders at your
leisure in the accompanying sample code.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing580

FIGURE 17.9 This fragment shader implements Laplacian edge detection. (This figure also
appears in the Color insert.)

The Laplacian filter code is almost identical to the sharpen code we just looked at:

// laplacian.fs

//

// Laplacian edge detection

uniform sampler2D sampler0;

uniform vec2 tc_offset[9];

void main(void)

{

vec4 sample[9];

for (int i = 0; i < 9; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

}

// -1 -1 -1

// -1 8 -1

// -1 -1 -1

Image Processing 581

17

gl_FragColor = (sample[4] * 8.0) -

(sample[0] + sample[1] + sample[2] +

sample[3] + sample[5] +

sample[6] + sample[7] + sample[8]);

}

The difference, of course, is that the center kernel value is 8 rather than the 9 present in
the sharpen kernel. The coefficients sum up to 0 rather than 1. This explains the blackness
of the image. Instead of, on average, retaining its original brightness, the edge detection
kernel will produce 0 in areas of the image with no color change.

Lighting
Welcome back to another discussion of lighting shaders. In the preceding chapter, we
covered per-vertex lighting. We also described a couple of per-fragment fixed functionality
tricks to improve the per-vertex results: separate specular with color sum and power func-
tion texture for specular exponent. In this chapter, we perform all our lighting calculations
in the fragment shader to obtain the greatest accuracy.

The shaders here will look very familiar. The same lighting equations are implemented, so
the code is virtually identical. One new thing is the use of vertex shaders and fragment
shaders together. The vertex shader sets up the data that needs to be interpolated across
the line or triangle, such as normals and light vectors. The fragment shader then proceeds
to do most of the work, resulting in a final color.

Diffuse Lighting
As a refresher, the equation for diffuse lighting follows:

Cdiff = max{N • L, 0} * Cmat * Cli

You need a vertex shader that generates both normal and light vectors. Listing 17.7
contains the vertex shader source to generate these necessary interpolants for diffuse
lighting.

LISTING 17.7 Diffuse Lighting Interpolant Generating Vertex Shader

// diffuse.vs

//

// set up interpolants for diffuse lighting

uniform vec3 lightPos0;

varying vec3 N, L;

void main(void)

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing582

LISTING 17.7 Continued

{

// vertex MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

// eye-space normal

N = gl_NormalMatrix * gl_Normal;

// eye-space light vector

vec4 V = gl_ModelViewMatrix * gl_Vertex;

L = lightPos0 - V.xyz;

// Copy the primary color

gl_FrontColor = gl_Color;

}

Notice how we are able to give descriptive names N and L to our interpolants, known as
varyings. They have to match the names used in the fragment shader. All in all, this feature
makes the shaders much more readable and less error prone than if we were using generic
texture coordinate interpolants. For example, if we weren’t careful, we might accidentally
output L into texture coordinate 0, whereas the fragment shader is expecting it in texture
coordinate 1. No compile error would be thrown. GLSL matches up our custom varyings
automatically by name, keeping us out of trouble and at the same time avoiding the need
for tedious comments in code explaining the contents of each interpolant.

The diffuse lighting fragment shaders resulting in Figure 17.10 follow in Listing 17.8.
Unlike colors produced by specular lighting, diffuse lit colors do not change rapidly across
a line or triangle, so you will probably not be able to distinguish between per-vertex and
per-fragment diffuse lighting. For this reason, in general, it would be more efficient to
perform diffuse lighting in the vertex shader, as we did in the preceding chapter. We
perform it here per-fragment simply as a learning exercise.

Lighting 583

17

FIGURE 17.10 Per-fragment diffuse lighting.

LISTING 17.8 Diffuse Lighting Fragment Shader

// diffuse.fs

//

// per-pixel diffuse lighting

varying vec3 N, L;

void main(void)

{

// output the diffuse color

float intensity = max(0.0,

dot(normalize(N), normalize(L)));

gl_FragColor = gl_Color;

gl_FragColor.rgb *= intensity;

}

First, we normalize the interpolated normal and light vectors. Then one more dot product,
a clamp, and a multiply, and we’re finished. Because we want a white light, we can save
ourselves the additional multiply by Cli = {1,1,1,1}.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing584

Multiple Specular Lights
Rather than covering specular lighting and multiple light samples independently, we’ll
cover both at the same time. As a refresher, the specular lighting equation is

Cspec = max{N • H, 0}Sexp * Cmat * Cli

The vertex shader needs to generate light vector interpolants for all three lights, in addi-
tion to the normal vector. We’ll calculate the half-angle vector in the fragment shader.
Listing 17.9 shows the vertex shader for the three diffuse and specular lights.

LISTING 17.9 Three Lights Vertex Shader

// 3lights.vs

//

// set up interpolants for 3 specular lights

uniform vec3 lightPos[3];

varying vec3 N, L[3];

void main(void)

{

// vertex MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec4 V = gl_ModelViewMatrix * gl_Vertex;

// eye-space normal

N = gl_NormalMatrix * gl_Normal;

// Light vectors

for (int i = 0; i < 3; i++)

L[i] = lightPos[i] - V.xyz;

// Copy the primary color

gl_FrontColor = gl_Color;

}

The fragment shaders will be doing most of the heavy lifting. Figure 17.11 shows the
result of Listing 17.10.

Lighting 585

17

FIGURE 17.11 Per-fragment diffuse and specular lighting with three lights.

LISTING 17.10 Three Diffuse and Specular Lights Fragment Shader

// 3lights.fs

//

// 3 specular lights

varying vec3 N, L[3];

void main(void)

{

const float specularExp = 128.0;

vec3 NN = normalize(N);

// Light colors

vec3 lightCol[3];

lightCol[0] = vec3(1.0, 0.25, 0.25);

lightCol[1] = vec3(0.25, 1.0, 0.25);

lightCol[2] = vec3(0.25, 0.25, 1.0);

gl_FragColor = vec4(0.0);

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing586

LISTING 17.10 Continued

for (int i = 0; i < 3; i++)

{

vec3 NL = normalize(L[i]);

vec3 NH = normalize(NL + vec3(0.0, 0.0, 1.0));

float NdotL = max(0.0, dot(NN, NL));

// Accumulate the diffuse contributions

gl_FragColor.rgb += gl_Color.rgb * lightCol[i] *

NdotL;

// Accumulate the specular contributions

if (NdotL > 0.0)

gl_FragColor.rgb += lightCol[i] *

pow(max(0.0, dot(NN, NH)), specularExp);

}

gl_FragColor.a = gl_Color.a;

}

This time, we made each of the three lights a different color instead of white, necessitating
an additional multiply by lightCol[n] (Cli).

Procedural Texture Mapping
When can you texture map an object without using any textures? When you’re using
procedural texture maps. This technique enables you to apply colors or other surface prop-
erties to an object, just like using conventional texture maps. With conventional texture
maps, you load a texture image into OpenGL with glTexImage; then you perform a texture
lookup within your fragment shader. However, with procedural texture mapping, you skip
the texture loading and texture lookup and instead describe algorithmically what the
texture looks like.

Procedural texture mapping has advantages and disadvantages. One advantage is that its
storage requirements are measured in terms of a few shader instructions rather than
megabytes of texture cache and/or system memory consumed by conventional textures.
This frees your storage for other uses, such as vertex buffer objects, discussed in Chapter
11, “It’s All About the Pipeline: Faster Geometry Throughput,” or some of the advanced
buffers discussed in the next chapter.

Another benefit is its virtually limitless resolution. Like vector drawing versus raster
drawing, procedural textures scale to any size without loss of quality. Conventional

Procedural Texture Mapping 587

17

textures require you to increase texture image sizes to improve quality when greatly
magnified. Eventually, you’ll hit a hardware limit. The only hardware limit affecting
procedural texture quality is the floating-point precision of the shader processors, which
are required to be at least 24-bit for OpenGL.

A disadvantage of procedural texture maps, and the reason they’re not used more
frequently, is that the complexity of the texture you want to represent requires an equally
complex fragment shader. Everything from simple shapes and colors all the way to
complex plasma, fire, smoke, marble, or wood grain can be achieved with procedural
textures, given enough shader instructions to work with. But sometimes you just want the
company logo or a satellite map or someone’s face textured onto your scene. Certainly,
conventional textures will always serve a purpose!

Checkerboard Texture
Enough discussion. Let’s warm up with our first procedural texture: a 3D checkerboard.
Our object will appear to be cut out of a block of alternating white and black cubes.
Sounds simple enough, right?

We’ll use the object-space position at each fragment to decide what color to make that
fragment. So we need a vertex shader that, in addition to transforming the object-space
position to clip-space as usual, also copies that object-space position into an interpolant so
that it becomes available to the fragment shader. While we’re at it, we might as well add
diffuse and specular lighting, so our vertex shader needs to output the normal and light
vector as well.

Listing 17.11 shows the vertex shader. We’ll use it for all three of our procedural texture
mapping examples.

LISTING 17.11 Procedural Texture Mapping Vertex Shader

// checkerboard.vs

//

// Generic vertex transformation,

// copy object-space position and

// lighting vectors out to interpolants

uniform vec3 lightPos;

varying vec3 N, L, V;

void main(void)

{

// normal MVP transform

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing588

LISTING 17.11 Continued

// map object-space position onto unit sphere

V = gl_Vertex.xyz;

// eye-space normal

N = gl_NormalMatrix * gl_Normal;

// eye-space light vector

vec4 Veye = gl_ModelViewMatrix * gl_Vertex;

L = lightPos - Veye.xyz;

}

The object we’re using for our examples is a sphere. The size of the sphere doesn’t matter
because we normalize the object-space position at the beginning of the fragment shader.
This means that all the positions we deal with in the fragment shader will be in the range
[–1,1].

Our strategy for the fragment shader will be to break up the range [–1,1] into eight alter-
nating blocks along each axis. Each block will be assigned an alternating value of 0 or 1
for each axis, as illustrated in Figure 17.12. If the total of the three values is even, we paint
it black; otherwise, we paint it white.

Procedural Texture Mapping 589

17

X
Z

Y

1 2 1 2

0
1

0
1

0 1 0 1

1 2 1 2

0

1

0

1

0 1 0 1

0 1 0 1

FIGURE 17.12 This diagram illustrates how we assign alternating colors to blocks of
fragments.

Figure 17.13 shows the result of Listing 17.12, which implements our checkerboard
procedural texture mapping algorithm.

FIGURE 17.13 This 3D checkerboard is generated without using any texture images.

LISTING 17.12 Checkerboard Fragment Shader

// checkerboard.fs

//

// 3D solid checker grid

varying vec3 V; // object-space position

varying vec3 N; // eye-space normal

varying vec3 L; // eye-space light vector

const vec3 onColor = vec3(1.0, 1.0, 1.0);

const vec3 offColor = vec3(0.0, 0.0, 0.0);

const float ambientLighting = 0.2;

const float specularExp = 60.0;

const float specularIntensity = 0.75;

const int numSquaresPerSide = 8;

void main (void)

{

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing590

LISTING 17.12 Continued

// Normalize vectors

vec3 NN = normalize(N);

vec3 NL = normalize(L);

vec3 NV = normalize(V);

vec3 NH = normalize(NL + vec3(0.0, 0.0, 1.0));

// Map -1,1 to 0,numSquaresPerSide

vec3 onOrOff = ((NV + 1.0) * float(numSquaresPerSide)) / 2.0;

// mod 2 >= 1

onOrOff = step(1.0, mod(onOrOff, 2.0));

// 3-way xor

onOrOff.x = step(0.5,

mod(onOrOff.x + onOrOff.y + onOrOff.z, 2.0));

// checkerboard grid

vec3 surfColor = mix(offColor, onColor, onOrOff.x);

// calculate diffuse lighting + 20% ambient

surfColor *= (ambientLighting + vec3(max(0.0, dot(NN, NL))));

// calculate specular lighting w/ 75% intensity

surfColor += (specularIntensity *

vec3(pow(max(0.0, dot(NN, NH)), specularExp)));

gl_FragColor = vec4(surfColor, 1.0);

}

GLSL has a built-in modulo function, mod, which is used to achieve the alternating blocks.
Next, we must determine whether the value is within [0,1] or [1,2]. We do this using the
step function, which returns 1 if the second argument is greater than or equal to the first,
and 0 otherwise.

Now that we have a value of 0 or 1 on each axis, we sum those three values and again
perform modulo 2 and a greater-than-or-equal-to comparison. That way, we can assign
colors of black or white based on whether the final sum is even or odd. We accomplish
this with mix.

You can very easily alter the shaders to change the checkerboard colors or to adjust the
number of blocks per row. Give it a try!

Procedural Texture Mapping 591

17

Beach Ball Texture
In this next sample, we’re going to turn our sphere into a beach ball. The ball will have
eight longitudinal stripes with alternating primary colors. The north and south poles of
the ball will be painted white. Let’s get started!

Look at the ball from above. We’ll be slicing it up into three half spaces: north-south,
northeast-southwest, and northwest-southeast. See Figure 17.14 for a visual depiction. The
north slices are assigned full red values, and south slices are assigned no red. The two
slices that are both in the southeast half space and the northeast half space are assigned
full green, and all other slices receive no green. Notice how the overlapping red and green
slice becomes yellow. Finally, all slices in the southwest half space are assigned the color
blue.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing592

NE

NE

N N

NW

NW

FIGURE 17.14 An overhead view showing how the beach ball colors are assigned. (This
figure also appears in the Color insert.)

The east slices nicely alternate from red to yellow to green to blue. But what about the
west slices? The easiest way to address them is to effectively copy the east slices and rotate
them 180 degrees. We’re looking down at the ball from the positive y-axis. If the object-
space position’s x coordinate is greater than or equal to 0, the position is used as-is.
However, if the coordinate is less than 0, we negate both the x-axis and z-axis positions,
which maps the original position to its mirror on the opposite side of the beach ball.

The white caps at the poles are simple to add in. After coloring the rest of the ball with
stripes, we replace that color with white whenever the absolute value of the y-axis position
is close to 1. Figure 17.15 shows the result of the beach ball shaders in Listing 17.13.

FIGURE 17.15 You have built your own beach ball from scratch! (This figure also appears in
the Color insert.)

LISTING 17.13 Beach Ball Fragment Shader

// beachball.fs

//

// Longitudinal stripes, end caps

varying vec3 V; // object-space position

varying vec3 N; // eye-space normal

varying vec3 L; // eye-space light vector

const vec3 myRed = vec3(1.0, 0.0, 0.0);

const vec3 myYellow = vec3(1.0, 1.0, 0.0);

const vec3 myGreen = vec3(0.0, 1.0, 0.0);

const vec3 myBlue = vec3(0.0, 0.0, 1.0);

const vec3 myWhite = vec3(1.0, 1.0, 1.0);

const vec3 myBlack = vec3(0.0, 0.0, 0.0);

const vec3 northHalfSpace = vec3(0.0, 0.0, 1.0);

const vec3 northeastHalfSpace = vec3(0.707, 0.0, 0.707);

Procedural Texture Mapping 593

17

LISTING 17.13 Continued

const vec3 northwestHalfSpace = vec3(-0.707, 0.0, 0.707);

const float capSize = 0.03; // 0 to 1

const float smoothEdgeTol = 0.005;

const float ambientLighting = 0.2;

const float specularExp = 60.0;

const float specularIntensity = 0.75;

void main (void)

{

// Normalize vectors

vec3 NN = normalize(N);

vec3 NL = normalize(L);

vec3 NH = normalize(NL + vec3(0.0, 0.0, 1.0));

vec3 NV = normalize(V);

// Mirror half of ball across X and Z axes

float mirror = (NV.x >= 0.0) ? 1.0 : -1.0;

NV.xz *= mirror;

// Check for north/south, east/west,

// northeast/southwest, northwest/southeast

vec4 distance;

distance.x = dot(NV, northHalfSpace);

distance.y = dot(NV, northeastHalfSpace);

distance.z = dot(NV, northwestHalfSpace);

// set up for white caps on top and bottom

distance.w = abs(NV.y) - 1.0 + capSize;

distance = smoothstep(vec4(0.0), vec4(smoothEdgeTol), distance);

// red, green, red+green=yellow, and blue stripes

vec3 surfColor = mix(myBlack, myRed, distance.x);

surfColor += mix(myBlack, myGreen, distance.y*(1.0-distance.z));

surfColor = mix(surfColor, myBlue, 1.0-distance.y);

// white caps on top and bottom

surfColor = mix(surfColor, myWhite, distance.w);

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing594

LISTING 17.13 Continued

// calculate diffuse lighting + 20% ambient

surfColor *= (ambientLighting + vec3(max(0.0, dot(NN, NL))));

// calculate specular lighting w/ 75% intensity

surfColor += (specularIntensity *

vec3(pow(max(0.0, dot(NN, NH)), specularExp)));

gl_FragColor = vec4(surfColor, 1.0);

}

After remapping all negative x positions as described earlier, we use dot products to deter-
mine on which side of each half space the current object-space coordinate falls. The sign
of the dot product tells us which side of the half space is in play.

Notice we don’t use the built-in step function this time. Instead, we introduce a new and
improved version: smoothstep. Instead of transitioning directly from 0 to 1 at the edge of
a half space, smoothstep allows for a smooth transition near the edge where values
between 0 and 1 are returned. Switch back and forth between step and smoothstep and
you’ll see how it helps reduce the aliasing jaggies.

Toy Ball Texture
For our final procedural texture mapping feat, we’ll transform our sphere into a familiar
toy ball, again using no conventional texture images. This ball will have a red star on a
yellow background circumscribed by a blue stripe. We will describe all this inside a frag-
ment shader.

The tricky part is obviously the star shape. For each fragment, the shader must determine
whether the fragment is within the star, in which case it’s painted red, or whether it
remains outside the star, in which case it’s painted yellow. To make this determination, we
first detect whether the fragment is inside or outside five different half spaces, as shown in
Figure 17.16.

Procedural Texture Mapping 595

17

FIGURE 17.16 This diagram illustrates the determination of whether a fragment is inside or
outside the star.

Any fragment that is inside at least four of the five half spaces is inside the star. We’ll start
a counter at –3 and increment it for every half space that the fragment falls within. Then
we’ll clamp it to the range [0,1]. A 0 indicates that we’re outside the star and should paint
the fragment yellow. A 1 indicates that we’re inside the star and should paint the fragment
red.

Adding the blue stripe, like the white caps on the beach ball, is an easy last step. Instead
of repainting fragments close to the ends of the ball, we repaint them close to the center,
this time along the z-axis. Figure 17.17 illustrates the result of the toy ball shader in
Listing 17.14.

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing596

3

32

4

5
44

4 4

2

2

22

3

33

FIGURE 17.17 The toy ball shader describes a relatively complex shape. (This figure also
appears in the Color insert.)

LISTING 17.14 Toy Ball Fragment Shader

// toyball.fs

//

// Based on shader by Bill Licea-Kane

varying vec3 V; // object-space position

varying vec3 N; // eye-space normal

varying vec3 L; // eye-space light vector

const vec3 myRed = vec3(0.6, 0.0, 0.0);

const vec3 myYellow = vec3(0.6, 0.5, 0.0);

const vec3 myBlue = vec3(0.0, 0.3, 0.6);

const vec3 myHalfSpace0 = vec3(0.31, 0.95, 0.0);

const vec3 myHalfSpace1 = vec3(-0.81, 0.59, 0.0);

const vec3 myHalfSpace2 = vec3(-0.81, -0.59, 0.0);

const vec3 myHalfSpace3 = vec3(0.31, -0.95, 0.0);

const vec3 myHalfSpace4 = vec3(1.0, 0.0, 0.0);

Procedural Texture Mapping 597

17

LISTING 17.14 Continued

const float stripeThickness = 0.4; // 0 to 1

const float starSize = 0.2; // 0 to ~0.3

const float smoothEdgeTol = 0.005;

const float ambientLighting = 0.2;

const float specularExp = 60.0;

const float specularIntensity = 0.5;

void main (void)

{

vec4 distVector;

float distScalar;

// Normalize vectors

vec3 NN = normalize(N);

vec3 NL = normalize(L);

vec3 NH = normalize(NL + vec3(0.0, 0.0, 1.0));

vec3 NV = normalize(V);

// Each flat edge of the star defines a half space. The interior

// of the star is any point within at least 4 out of 5 of them.

// Start with -3 so that it takes adding 4 ins to equal 1.

float myInOut = -3.0;

// We need to perform 5 dot products, one for each edge of

// the star. Perform first 4 in vector, 5th in scalar.

distVector.x = dot(NV, myHalfSpace0);

distVector.y = dot(NV, myHalfSpace1);

distVector.z = dot(NV, myHalfSpace2);

distVector.w = dot(NV, myHalfSpace3);

distScalar = dot(NV, myHalfSpace4);

// The half-space planes all intersect the origin. We must

// offset them in order to give the star some size.

distVector += starSize;

distScalar += starSize;

distVector = smoothstep(0.0, smoothEdgeTol, distVector);

distScalar = smoothstep(0.0, smoothEdgeTol, distScalar);

myInOut += dot(distVector, vec4(1.0));

myInOut += distScalar;

myInOut = clamp(myInOut, 0.0, 1.0);

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing598

LISTING 17.14 Continued

// red star on yellow background

vec3 surfColor = mix(myYellow, myRed, myInOut);

// blue stripe down middle

myInOut = smoothstep(0.0, smoothEdgeTol,

abs(NV.z) - stripeThickness);

surfColor = mix(myBlue, surfColor, myInOut);

// calculate diffuse lighting + 20% ambient

surfColor *= (ambientLighting + vec3(max(0.0, dot(NN, NL))));

// calculate specular lighting w/ 50% intensity

surfColor += (specularIntensity *

vec3(pow(max(0.0, dot(NN, NH)), specularExp)));

gl_FragColor = vec4(surfColor, 1.0);

}

The half spaces cut through the center of the sphere. This is what we wanted for the beach
ball, but for the star we need them offset from the center slightly. This is why we add an
extra constant distance to the result of the half-space dot products. The larger you make
this constant, the larger your star will be.

Again, we use smoothstep when picking between inside and outside. For efficiency, we put
the inside/outside results of the first four half spaces into a four-component vector. This
way, we can sum the four components with a single four-component dot product against
the vector {1,1,1,1}. The fifth half space’s inside/outside value goes into a lonely float and
is added to the other four separately because no five-component vector type is available.
You could create such a type yourself out of a structure, but you would likely sacrifice
performance on most implementations, which natively favor four-component vectors.

If you want to toy with this shader, try this exercise: Convert the star into a six-pointed
star by adding another half space and adjusting the existing half-space planes. Prove to
yourself how many half spaces your fragments must fall within now to fall within the star,
and adjust the myInOut counter’s initial value accordingly.

Procedural Texture Mapping 599

17

Summary
The possible applications of vertex and fragment shaders are limited only by your imagi-
nation. We’ve introduced a few just to spark your creativity and to provide you with some
basic building blocks so that you can easily jump right in and start creating your own
shaders. Feel free to take these shaders, hack and slash them beyond recognition, and
invent and discover better ways of doing things while you’re at it. Don’t forget the main
objective of this book: Make pretty pictures. So get to it!

CHAPTER 17 Fragment Shading: Empower Your Pixel Processing600

CHAPTER 18

Advanced Buffers

by Benjamin Lipchak

WHAT YOU’LL LEARN IN THIS CHAPTER:

• How to improve performance with pixel buffer objects (PBOs)

• How to perform offscreen rendering with framebuffer objects (FBOs)

• How to use floating-point textures and color buffers

• How to put it all together and render with high dynamic range

Shaders by now are old hat. Been there, done that. Yawn. The most exciting new advances
in OpenGL over the past several years involve buffers. In particular, the flexibility with
which you can designate blocks of GPU memory for a variety of purposes enables render-
ing techniques which were before impossible or too slow to consider using. No longer are
vertex arrays, textures, and framebuffers individual and segregated entities. Today you can
mix-and-match this data—read it, write it, and render with it from different stages of the
OpenGL pipeline. And with new single-precision floating-point data formats, the sky is
the limit. Or in deference to IEEE 754, 3.4×1038 is the limit.

This chapter covers the OpenGL APIs making this new-found flexibility possible: pixel
buffer objects, framebuffer objects, and floating-point internal formats for textures and
renderbuffers. Each feature will be explored in isolation with one or two samples. Then
they will all join hands on stage for a final curtain call where they team up to provide
high dynamic range bloom and afterglow effects.

Pixel Buffer Objects
Pixel buffer objects, commonly referred to as PBOs, are a new class of buffer objects avail-
able in OpenGL 2.1. You may remember the original class of buffer objects, vertex buffer
objects (VBOs), described in Chapter 11, “It’s All About the Pipeline: Faster Geometry
Throughput.” Although the mechanics are the same, their intended usage is different.

602 CHAPTER 18 Advanced Buffers

Hint: PBOs are intended to contain pixels instead of vertices.

Like VBOs, PBOs are considered server-side objects. This allows the OpenGL driver to place
them in video memory next to the GPU, or wherever else it thinks performance will be
optimal. And like VBOs, the same usage hints (what the app plans to do with the data,
and how frequently) can influence the decision as to where to place the PBO in memory.
If the data will be written once and then used for rendering repeatedly, local video
memory may be fastest, whereas if the data is constantly being read back or replaced by
the CPU, the PBO may be better situated in host-readable system memory.

By binding a PBO to one of two new buffer object targets, described next, any OpenGL
command that traditionally expects a pointer to client memory (that is, memory allocated
by your application) to send in or read back blocks of pixel data will now use the PBO as
the source or destination for that pixel data. Fear not: When we say pixels, we mean texels
too!

How to Use PBOs
The commands are identical to those used for VBOs. In fact, the
GL_ARB_pixel_buffer_object extension from which this feature originated introduced no
new entrypoints. All it brought to the table were two new tokens for buffer object binding
targets, and two new tokens to query back the current bindings. GL_PIXEL_PACK_BUFFER
and GL_PIXEL_UNPACK_BUFFER are the new targets. GL_PIXEL_PACK_BUFFER_BINDING and
GL_PIXEL_UNPACK_BUFFER_BINDING are used with glGet* to query the current bindings. If
no PBO is bound, these return 0.

Here’s a refresher on buffer object commands. We generate a name, bind it to create the
PBO, initialize its data store, map it to allow direct CPU access and then unmap it, modify
a subset of the data store, draw from it, and then delete it:

glGenBuffers(1, &pboName);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pboName);

glBufferData(GL_PIXEL_UNPACK_BUFFER, width * height,

myPixelPtr, GL_STATIC_DRAW);

glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY);

glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);

glBufferSubData(GL_PIXEL_UNPACK_BUFFER, width * 5, width, ptrToNewRow5Data);

glDrawPixels(width, height, GL_LUMINANCE, GL_UNSIGNED_BYTE, (GLvoid*)0);

glDeleteBuffers(1, &pboName);

Unpacking refers to taking data from the app and unpacking it for use by the OpenGL
driver, as in glDrawPixels or glTexImage2D. Packing, on the other hand, is when pixel
data is packaged up and returned to the application, such as via glReadPixels or
glGetTexImage.

Notice that the call to glDrawPixels in the preceding code snippet is passed a pointer
value of 0. Just as for vertex array pointers when a VBO is bound, the pointer is treated as
an offset into the currently bound buffer object. The 0 means the driver should start
unpacking at the very beginning of the buffer object’s data store. A nonzero value would
indicate that the unpacking should start some number of bytes past the beginning.

You can use glBindBuffer to switch between different PBOs. Binding buffer name 0 to a
target will effectively unbind the currently bound PBO, if any, returning to traditional
usage of client memory for the associated binding point. Another interesting thing to note
is that a buffer object can be simultaneously bound to multiple targets, those for both
PBOs and VBOs!

The Benefits of PBOs
There are several specific benefits that summoned PBOs into existence. All of them are
performance-related. An application has always been able to send pixels and texels from
client memory into the driver, and read them back into client memory, copy them
around, and use the data for different purposes. PBOs simply allow the driver to take some
shortcuts that can improve performance. These are the specific performance benefits:

• Caching frequently used data close to the GPU

• Avoiding an extra copy from client memory to the driver

• Allowing reads from the framebuffer to be pipelined

• Data repurposing without explicit copies to and from client memory

The first benefit is identical to that achieved with VBOs. Just as frequently used geometry
data can be placed into a VBO that the driver might decide to cache in video memory for
fast access during rendering, the same can be done for frequently used pixel data. For
example, if you redraw the same GUI components, cursor, or other 2D element over and
over again, that pixel data has to be unpacked from client memory and sent to the GPU
every time. This is because the driver has no way of knowing if the client data has
changed in between calls, so it has to assume that the data is different each time. Putting
the data into a PBO, where the application can touch it only by calling OpenGL
commands like glBufferData or glMapBuffer, gives the driver an assurance that it can
safely relocate your data and reuse it with lower per-draw costs.

The second benefit stems from the typical usage pattern for applications loading textures
from disk. Consider your favorite OpenGL game. As you complete one level and move on
to the next, don’t you hate waiting for that progress bar to advance from one side of the
screen to the next? Much of this time is spent loading textures from disk and sending
them into the driver. Traditionally, the application allocates client memory, loads the
texture data from disk into the client memory, and hands the pointer to the driver with a
call like glTexImage2D. The driver then needs to copy that data from the client memory

Pixel Buffer Objects 603

18

CHAPTER 18 Advanced Buffers604

into its own memory before returning from the call. Remember, as soon as glTexImage2D
is complete, the application is allowed to modify that memory and use it again for its next
texture if it so chooses! If, instead of allocating its own client memory for the texture, the
application calls glMapBuffer on a buffer object, the application could load the texture
straight from disk into the driver, avoiding an extra explicit copy into client memory
along the way. Considering the gigabytes of texture data used by games these days,
copying more often than you need to is just a waste!

The third benefit shifts attention away from sending data into the driver, and instead
focuses on reading data back out of the driver. In particular, calling glReadPixels tradi-
tionally reads pixels from the framebuffer and packs them into client memory. Upon
return from glReadPixels, the data must be ready because the application might start
using it immediately. And for that data to be ready, the contents of the framebuffer would
first have to be finalized. This means all rendering in the pipeline has to drain out and
have its impact on the framebuffer before the pixels can be safely read back. This is why
your mother warned you against hanging out with glReadPixels. Now you can tell your
mother about PBOs. An application can bind a PBO to the GL_PIXEL_PACK_BUFFER target
before making the call. Because the application has to then use an explicit command,
either glGetBufferSubData or glMapBuffer, to access the results, the driver no longer has
to drain the pipeline to ensure that the results are immediately available. If the application
can issue the glReadPixels, go off and do some other useful work, and then come back
later to get the result when it is available, no pipeline stalls are needed!

Finally, we can benefit performance-wise by the flexibility of buffer objects. Looking just at
PBOs, we can bind the same buffer object to both the GL_PIXEL_PACK_BUFFER and
GL_PIXEL_UNPACK_BUFFER targets and effectively grab texel data from one place and send it
back in as pixel data, or vice versa. (Note that glCopyTexImage* already exists to optimize
the latter case.) The more interesting combination may be the capability to bind a PBO as
a VBO, also known as render to vertex array. Using floating-point formats, you can use the
GPU’s shader hardware to generate vertex data that can be read back to a PBO, bound as a
VBO, and used for subsequent rendering. Though different OpenGL implementations will
have different internal gymnastics they need to perform to make this work, from the
application’s perspective, it can do all this without ever copying data into or out of a client
memory buffer.

PBOs in Action
The first sample of the chapter is one that is contrived to demonstrate a couple of the
more tricky performance benefits of PBOs, the second and third in the earlier list. For
every frame that is drawn, we’re going to blend together three textures: (1) an album cover
at 50%, incrementally rotated in each new frame, (2) a snapshot of the frame we rendered
two frames ago at 25%, and (3) a snapshot of the frame we rendered three frames ago at
25%. The end result is a motion-blurred spinning album cover.

We’re going to read back old frames via glReadPixels and send them back in as textures
via glTexImage2D for use as the ghost images for motion blur. To improve performance,
we’ll bind PBOs so that our reads from the framebuffer are pipelined. Also, we’ll map the
PBO in order to perform the CPU scaling down to 25% without having to introduce a
client memory copy. Clearly there are more optimal ways to achieve this effect, such as
using fragment shaders to blend the ghost images at the desired ratios. We’re going retro
in a number of ways in order to focus on the PBO lessons.

Figure 18.1 shows how three textures are added together per frame to obtain the motion-
blurred result. The original album cover at 50% is always contributing, rotated a bit each
time. The previous frame does not contribute, because we want to give the glReadPixels a
chance to finish without draining the pipeline. The frame before that, which has finished
being read back, is mapped so that the CPU can scale its values by 25%. And finally, the
frame before that, already scaled by 25%, makes its final appearance as a ghost image
before being recycled as the recipient for the next glReadPixels.

Pixel Buffer Objects 605

18

Original texture
dimmed to 50%
rotated each frame

Current frame
being read back,
out of play until
next frame

Last frame, mapped
for CPU access,
dimmed to 25%,
unmapped, then
used as texture

The oldest frame,
already dimmed to
25%, soon to be
recycled as recipient
of next glReadPixels

FIGURE 18.1 Three textures contributing to each final frame.

Figure 18.2 shows the results of the main rendering loop in Listing 18.1. The main render-
ing loop draws the current frame, starts to read back from it, maps the previous frame for
dimming, and sends it back in as a texture.

FIGURE 18.2 PBOs improve the performance of our motion blur sample. (This figure also
appears in the Color insert.)

LISTING 18.1 The Main Rendering Loop of the PBO Motion Blur Sample

void RenderScene(void)

{

// Advance old frame

currentFrame = (currentFrame + 1) % 3;

int lastFrame = (currentFrame + 2) % 3;

int frameBeforeThat = (currentFrame + 1) % 3;

// Rotate the texture matrix for unit 0 (current frame)

glActiveTexture(GL_TEXTURE0);

glTranslatef(0.5f, 0.5f, 0.0f);

glRotatef(angleIncrement, 0.0f, 0.0f, 1.0f);

glTranslatef(-0.5f, -0.5f, 0.0f);

// Draw objects in the scene

int i;

glBegin(GL_QUADS);

for (i = 0; i < 3; i++)

glMultiTexCoord2f(GL_TEXTURE0 + i, 0.0f, 0.0f);

CHAPTER 18 Advanced Buffers606

LISTING 18.1 Continued

glVertex2f(-1.0f, -1.0f);

for (i = 0; i < 3; i++)

glMultiTexCoord2f(GL_TEXTURE0 + i, 0.0f, 1.0f);

glVertex2f(-1.0f, 1.0f);

for (i = 0; i < 3; i++)

glMultiTexCoord2f(GL_TEXTURE0 + i, 1.0f, 1.0f);

glVertex2f(1.0f, 1.0f);

for (i = 0; i < 3; i++)

glMultiTexCoord2f(GL_TEXTURE0 + i, 1.0f, 0.0f);

glVertex2f(1.0f, -1.0f);

glEnd();

// Now read back result

glBindBuffer(GL_PIXEL_PACK_BUFFER, currentFrame + 1);

glReadPixels(dataOffsetX, dataOffsetY, dataWidth, dataHeight,

GL_RGB, GL_UNSIGNED_BYTE, (GLvoid*)0);

glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

frameGood[currentFrame] = GL_TRUE;

// Prepare the last frame by dividing colors by 4

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, lastFrame + 1);

pixels[lastFrame] = (GLubyte*)glMapBuffer(GL_PIXEL_UNPACK_BUFFER,

GL_READ_WRITE);

for (int y = 0; y < dataHeight; y++)

{

for (int x = 0; x < dataWidth; x++)

{

GLubyte *ptr = (GLubyte *)pixels[lastFrame] +

(y*dataPitch) + (x*3);

*(ptr + 0) >>= 2;

*(ptr + 1) >>= 2;

*(ptr + 2) >>= 2;

}

}

glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);

pixels[lastFrame] = NULL;

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D, 2+lastFrame);

Pixel Buffer Objects 607

18

LISTING 18.1 Continued

if (frameGood[lastFrame])

{

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, dataWidth, dataHeight,

0, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid*)0);

}

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);

glActiveTexture(GL_TEXTURE2);

glBindTexture(GL_TEXTURE_2D, 2+frameBeforeThat);

// Flush drawing commands

glutSwapBuffers();

}

Oh, Where Is the Home Where the PBOs Roam?
You have seen PBOs used in conjunction with basic commands like glTexImage2D and
glReadPixels. But what is the full list of commands where GL_PIXEL_PACK_BUFFER and
GL_PIXEL_UNPACK_BUFFER come into play? I’m glad you asked.

GL_PIXEL_PACK_BUFFER affects glGetCompressedTexImage, glGetConvolutionFilter,
glGetHistogram, glGetMinmax, glGetPixelMap, glGetPolygonStipple,
glGetSeparableFilter, glGetTexImage, and glReadPixels.

GL_PIXEL_UNPACK_BUFFER affects glBitmap, glColorSubTable, glColorTable,
glCompressedTexImage*, glCompressedTexSubImage*, glConvolutionFilter*,
glDrawPixels, glPixelMap, glPolygonStipple, glSeparableFilter2D, glTexImage*, and
glTexSubImage*.

The OpenGL 2.1 specification requires that any of these commands be usable with PBOs.
Many of them are rarely used, so your mileage may vary!

Framebuffer Objects
Framebuffer objects, known as FBOs, allow you to divert your rendering away from your
window’s framebuffer to one or more offscreen framebuffers that you create. Offscreen
simply means that the content of the framebuffers is not visible until it is first copied back
to the original window. This is similar to rendering to your back buffer, which isn’t visible
until swapped.

Why would you want to do this, especially if rendering to an FBO doesn’t show up on the
screen?! My answer is threefold, with more details following in subsequent sections:

CHAPTER 18 Advanced Buffers608

• FBOs aren’t limited to the size of your window.

• Textures can be attached to FBOs, allowing direct rendering to textures without an
explicit glCopyTexImage.

• FBOs can contain multiple color buffers, which can be written to simultaneously
from a fragment shader.

FBOs are new enough that they are not yet part of the core OpenGL API. You need to
check for the GL_EXT_framebuffer_object extension before using them.

How to Use FBOs
The first thing to understand is that an FBO is just a container for images. Consider the
traditional framebuffer that comes with your window. It is also a container of images. At
minimum you always have a front buffer, which holds the colors you see on the screen.
Almost always you have a back buffer, which is the staging area for your in-progress
rendering. Often you have a depth buffer, and sometimes a stencil buffer too. These indi-
vidual 2D surfaces compose the framebuffer.

Creating and Destroying
You create and destroy your FBO container using familiar commands:

glGenFramebuffersEXT(1, &fboName);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboName);

glDeleteFramebuffersEXT(1, &fboName);

In addition to creating new FBOs, glBindFramebufferEXT is also used for switching
between FBOs. Binding to name 0 will effectively unbind the current FBO, if any, and redi-
rect rendering to your window’s framebuffer.

Now, with what shall we fill our initially empty container? There are two types of images
that can be attached to the FBO. The first you’re already familiar with: textures. Since this
book is nearing its end, I trust that by now you’re an expert at creating textures. The
second type of image is called a renderbuffer. Both textures and renderbuffers will serve as
the targets for rendering. The main difference is that renderbuffers cannot be used for
subsequent texturing. Also, whereas you can create depth textures (see Chapter 14), stencil
textures don’t exist. So, if you need a stencil buffer attachment, or if you don’t intend to
turn around and use your FBO attachment as a texture, renderbuffers are for you.

Renderbuffers again use a familiar interface:

glGenRenderbuffersEXT(1, &rbName);

glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, rbName);

glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_RGBA8, width, height);

glDeleteRenderbuffersEXT(1, &rbName);

Framebuffer Objects 609

18

glRenderbufferStorageEXT establishes the size and internal format of your renderbuffer.
Accepted formats are the same as those accepted by glTexImage*, with the addition of
GL_STENCIL_INDEX{1|4|8|16}_EXT formats. You can find the maximum dimensions
supported by your OpenGL implementation by calling glGetIntegerv with the parameter
GL_MAX_RENDERBUFFER_SIZE_EXT.

Attaching Images
Now to attach our images to our FBO. One requirement is that all attached images have to
be the same size. This is a very reasonable requirement. Imagine if the color buffers and
depth buffer in your traditional framebuffer were different sizes. What would that even
mean? It would be chaos! Another requirement is that all attached color buffers must be
the same format. This time I could make arguments for wanting to render simultaneously
to different color formats, but alas this is a restriction we’re currently stuck with. Here are
examples of the four commands for attaching images to our FBO:

glFramebufferTexture1DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_1D, my1DTexName, mipLevel);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_2D, my2DTexName, mipLevel);

glFramebufferTexture3DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_3D, my3DTexName, mipLevel, zOffset);

glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_RENDERBUFFER_EXT, rbName);

The second argument in each command is the name of the attachment point. This can be
GL_DEPTH_ATTACHMENT_EXT, GL_STENCIL_ATTACHMENT_EXT, or GL_COLOR_ATTACHMENTn_EXT
where n is 0 through 15. However, today’s implementations tend to support fewer than 16
simultaneous color attachments. You can find the limit of an OpenGL implementation by
calling glGetIntegerv with parameter GL_MAX_COLOR_ATTACHMENTS_EXT.

When attaching textures, you need to specify which mipmap level you’re targeting.
Remember that a texture is actually an array of images representing the mipmap chain. If
your texture isn’t mipmapped, or you’ll be using mipmap generation (more on this later),
specifying level 0 is appropriate to target the texture’s base level.

All attached images must be 2D. Renderbuffers and 2D textures naturally fall into this
category. Any 1D textures are treated as 2D images with height 1. You can attach one or
more individual cube map faces by specifying the face as the texture target. When attach-
ing a 3D texture, you need to indicate which layer of the 3D texture is being attached via
the zOffset parameter.

You may at this point have already asked yourself, “What happens if I have a texture
attached to the current FBO and also bound to a texture unit that’s currently in use? Isn’t
there a paradox in which I’m currently rendering from the same surface I’m rendering

CHAPTER 18 Advanced Buffers610

to?” The answer is, “Yes, there’s a paradox, and you’ll tear apart the very fabric of space
and time, causing the universe to cease existence.” Or your rendering will be undefined.
Either way, don’t do it, I implore you.

Draw Buffers
There’s been a lot of talk about multiple color attachments, but how do we address them?
For starters, let’s look at the output from OpenGL Shading Language (GLSL) fragment
shaders. Most often the fragment shader will output a single color to the built-in variable
gl_FragColor. However, it may choose instead to output multiple colors to the
gl_FragData[n] array. A fragment shader will fail to compile if it tries to do both!

The single or multiple color outputs still need to be mapped to the FBO’s color attach-
ments. The default behavior is for a single color output to be sent down to color attach-
ment 0. However, this can be altered by a call to either glDrawBuffer or glDrawBuffers,
the latter new in OpenGL 2.0 to go along with gl_FragData[n].

When no FBO is bound, glDrawBuffer will behave as it always has, meaning that a single
color is mapped to one or more color buffers associated with the window, most popularly
GL_BACK_LEFT. However, when an FBO is bound, glDrawBuffer no longer accepts the
traditional values of front/back/left/right color buffers. Instead it will accept
GL_COLOR_ATTACHMENTn_EXT or GL_NONE, causing a single color output to be sent to the
designated color attachment of the FBO or nowhere, respectively.

glDrawBuffers handles the mapping of multiple color outputs from the fragment shader
to multiple color attachments of the FBO. In the rare case in which no FBO is bound, you
can still direct the multiple colors to individual color buffers of the traditional framebuffer.
For example, if you have double-buffering and stereo support in your window, you can
target each buffer individually:

GLenum bufs[4] = {GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT};

glDrawBuffers(4, bufs);

However, the common case is going to entail using these multiple color outputs while an
FBO is bound, as such:

GLenum bufs[4] = {GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT};

glDrawBuffers(4, bufs);

Of course, there’s no reason you need to map the color outputs from gl_FragData[0] to
GL_COLOR_ATTACHMENT0_EXT. You can mix it up however you like, or set an entry in the
draw buffers list to GL_NONE if you don’t need one of the outputs from the fragment
shader. There is a limit to how long a list of draw buffers you can pass in to
glDrawBuffers. You can discover the limit by calling glGetIntegerv with parameter
GL_MAX_DRAW_BUFFERS.

Framebuffer Objects 611

18

Framebuffer Completeness
Framebuffer completeness is similar in concept to texture completeness. If a texture
doesn’t have all required mipmap levels specified with the right size and consistent
format, that texture is incomplete. Here are the rules for framebuffer completeness, each
preceded by its associated error condition:

• GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT: All attachment points are framebuffer
attachment complete. That is, either each attachment point has no image attached,
or the image has nonzero width and height, a valid zOffset if a 3D texture, and an
appropriate internal format depending on whether it is attached to a color, depth, or
stencil attachment point.

• GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT: There is at least one image
attached to the FBO.

• GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: All attached images have the same
dimensions.

• GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT: All color attachments have the same
internal format.

• GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT: All non-GL_NONE color attachments
referenced by the most recent call to glDrawBuffer or glDrawBuffers against the
FBO must have corresponding images attached to the FBO.

• GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT: The color attachment referenced by
the most recent call to glReadBuffer against the FBO, if non-GL_NONE, must have a
corresponding image attached to the FBO.

• GL_FRAMEBUFFER_UNSUPPORTED_EXT: The combination of internal formats of the
attached images does not violate an implementation-dependent set of restrictions.

The last one in the list is essentially an implementation’s ejection seat, allowing it to bail
out for any reason. So even if you’re vigilantly obeying all the listed rules, you still need to
check for framebuffer completeness in case you hit one of the undocumented implemen-
tation-dependent limitations.

To make it easier to determine the cause of framebuffer incompleteness, there is a
command for this purpose that will return the offending problem from the preceding list,
or GL_FRAMEBUFFER_COMPLETE_EXT if all is well with your FBO:

GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);

switch (status)

{

case GL_FRAMEBUFFER_COMPLETE_EXT:

break;

CHAPTER 18 Advanced Buffers612

case GL_FRAMEBUFFER_UNSUPPORTED_EXT:

/* choose different formats */

break;

default:

/* programming error; will fail on all hardware */

assert(0);

}

If you attempt to perform any command that reads from or writes to the framebuffer
while an FBO is bound and the FBO is incomplete, the command will simply return after
throwing a new kind of error, GL_INVALID_FRAMEBUFFER_OPERATION_EXT, which is retriev-
able with glGetError.

Mipmap Generation
There’s one last consideration before moving on to practical applications of FBOs.
Automatic mipmap generation can work efficiently only when it is fully aware when the
application is making changes to the texture. If the texture is altered as a side effect of
being attached to an FBO, automatic mipmap generation does not take place! For this
reason, a new command is added to request manual mipmap generation. You just supply
the texture target on the currently active texture unit:

glGenerateMipmapEXT(GL_TEXTURE_2D);

I like to consider it semiautomatic on-demand mipmap generation. It still beats doing it
yourself in the application!

Offscreen Rendering
For our first FBO sample we’ll revisit shadow mapping from Chapter 14, “Depth Textures
and Shadows.” Recall how the size of our shadow map was limited to the size of our
window because the depth texture was being copied from the window framebuffer’s depth
buffer. The size of the shadow map is directly related to the resulting image quality. “But
my desktop is small and I can’t make my window bigger!” you say. Or “I don’t like big
windows.” Fear not. Your misery will be short-lived.

We’ll create an FBO, attach a nice big renderbuffer to the depth attachment point, and
proceed to reap the image quality rewards. Figure 18.3 compares the original shadow map
results with those obtained with FBOs, as set up in Listing 18.2. FBO shadow map results
are also included in the color insert.

Framebuffer Objects 613

18

FIGURE 18.3 Notice the jagged edges of the shadows in the original shadow mapping
sample from Chapter 14 compared to the updated sample that uses a large depth renderbuffer
attached to an FBO.

LISTING 18.2 FBO Setup Code Added to the Shadow Mapping Sample

void SetupRC()

{

...

// Set up some renderbuffer state

glGenFramebuffersEXT(1, &framebufferID);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID);

glGenRenderbuffersEXT(1, &renderbufferID);

glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, renderbufferID);

glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT32,

maxTexSize, maxTexSize);

glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT,

GL_RENDERBUFFER_EXT, renderbufferID);

glDrawBuffer(GL_NONE);

glReadBuffer(GL_NONE);

GLenum fboStatus = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);

if (fboStatus != GL_FRAMEBUFFER_COMPLETE_EXT)

{

fprintf(stderr, “FBO Error!\n”);

}

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

RegenerateShadowMap();

}

CHAPTER 18 Advanced Buffers614

Notice how the draw buffer and read buffer are both set to GL_NONE. This is because our
FBO doesn’t have any color attachments. All we need is a depth attachment.

The only other difference in this version of the sample is that we bind the FBO right
before rendering the shadow pass, then unbind it after copying the result into a depth
texture.

Rendering to Textures
By attaching textures to an FBO, you can render directly to a texture. Without FBOs, you
have to render to the back buffer and copy it to a texture, not to mention that you’re
limited to the window size as emphasized in the previous sample. If you’re generating a
static texture once and then using it repeatedly, saving the one extra copy won’t gain you
anything. But if you’re regenerating the texture every frame, as in the next sample, avoid-
ing that extra copy can mean a substantial performance boost—especially because our
cube map environment map is actually six 2D textures in one! Figure 18.4 shows the six
views of our scene that compose the environment map.

Framebuffer Objects 615

18

FIGURE 18.4 Six views of the scene. And, yes, they’re supposed to appear upside down.

In Listing 18.3, we set up an FBO with a renderbuffer attached for depth. Then one at a
time we attach a different cube map face and render each of the six views. Using standard
GL_REFLECTION_MAP texture coordinate generation, the teapot’s normals are used as a basis
for accessing the environment map, causing the teapot to appear to reflect the rest of the
scene.

LISTING 18.3 FBO Setup and Use During Environment Map Generation

void SetupRC()

{

...

// Set up some renderbuffer state

glGenFramebuffersEXT(1, &framebufferID);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID);

glGenRenderbuffersEXT(1, &renderbufferID);

glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, renderbufferID);

glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT32,

envMapSize, envMapSize);

glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT,

GL_RENDERBUFFER_EXT, renderbufferID);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

}

// Called to regenerate the envmap

void RegenerateEnvMap(void)

{

// generate 6 views from origin of teapot (0,0,0)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(90.0f, 1.0f, 1.0f, 125.0f);

glViewport(0, 0, envMapSize, envMapSize);

if (useFBO)

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID);

for (GLenum i = GL_TEXTURE_CUBE_MAP_POSITIVE_X;

i < GL_TEXTURE_CUBE_MAP_POSITIVE_X+6; i++)

{

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

switch (i)

{

case GL_TEXTURE_CUBE_MAP_POSITIVE_X:

// +X

gluLookAt(0.0f, 0.0f, 0.0f,

1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f);

break;

CHAPTER 18 Advanced Buffers616

LISTING 18.3 Continued

case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:

// -X

gluLookAt(0.0f, 0.0f, 0.0f,

-1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f);

break;

case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:

// +Y

gluLookAt(0.0f, 0.0f, 0.0f,

0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);

break;

case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:

// -Y

gluLookAt(0.0f, 0.0f, 0.0f,

0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -1.0f);

break;

case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:

// +Z

gluLookAt(0.0f, 0.0f, 0.0f,

0.0f, 0.0f, 1.0f, 0.0f, -1.0f, 0.0f);

break;

case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:

// -Z

gluLookAt(0.0f, 0.0f, 0.0f,

0.0f, 0.0f, -1.0f, 0.0f, -1.0f, 0.0f);

break;

default:

assert(0);

break;

}

if (useFBO)

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT, i,

envMapTextureID, 0);

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Draw objects in the scene except for the teapot

DrawModels(GL_FALSE);

if (!useFBO)

Framebuffer Objects 617

18

LISTING 18.3 Continued

glCopyTexImage2D(i, 0, GL_RGBA8, 0, 0, envMapSize, envMapSize, 0);

}

if (useFBO)

{

glGenerateMipmapEXT(GL_TEXTURE_CUBE_MAP);

GLenum fboStatus = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);

if (fboStatus != GL_FRAMEBUFFER_COMPLETE_EXT)

{

fprintf(stderr, “FBO Error!\n”);

}

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

}

}

Notice the glCopyTexImage2D call in the listing, which we can avoid entirely when FBOs
are enabled. That’s six copies we’re avoiding every time we regenerate the environment
map. And because objects in the scene are moving every frame, our environment map has
to be regenerated with every frame, too. Also notice the call to glGenerateMipmapEXT,
which semiautomatically generates the mipmap chain. Using mipmapping significantly
improves image quality by reducing aliasing. See the resulting image in Figure 18.5.

CHAPTER 18 Advanced Buffers618

FIGURE 18.5 Dynamic environment mapping benefits from FBOs. (This figure also appears in
the Color insert.)

Multiple Render Targets
To demonstrate the capability to render to multiple color buffers simultaneously, we’ll
render our scene to an FBO-attached texture, then run that texture through a fragment
shader that applies four different image transformations simultaneously: edge detection,
color inversion, blur, and grayscale. See Listing 18.4.

LISTING 18.4 A GLSL Fragment Shader Outputting Four Different Colors

// multirender.fs

//

// 4 different outputs!

uniform sampler2D sampler0;

uniform vec2 tc_offset[9];

void main(void)

{

vec4 sample[9];

// enhance the blur by adding an LOD bias

for (int i = 0; i < 9; i++)

Framebuffer Objects 619

18

LISTING 18.4 Continued

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + (tc_offset[i] * 3.0), 3.0);

}

// output 0 is a blur

gl_FragData[0] = (sample[0] + (2.0*sample[1]) + sample[2] +

(2.0*sample[3]) + (2.0*sample[5]) +

sample[6] + (2.0*sample[7]) + sample[8]) / 12.0;

// now grab the unbiased samples again

for (int i = 0; i < 9; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

}

// output 1 is a Laplacian edge-detect

gl_FragData[1] = (sample[4] * 8.0) -

(sample[0] + sample[1] + sample[2] +

sample[3] + sample[5] +

sample[6] + sample[7] + sample[8]);

// output 2 is grayscale

gl_FragData[2] = vec4(vec3(dot(sample[4].rgb, vec3(0.3, 0.59, 0.11))), 1.0);

// output 3 is an inverse

gl_FragData[3] = vec4(vec3(1.0) - sample[4].rgb, 1.0);

}

The four color outputs from the fragment shader are mapped to an FBO with four color
attachments, again textures. The four textures with four different framebuffer effects are
then tiled in a final pass to the window after unbinding the FBO. See Listing 18.5 for the
relevant FBO setup code, and Figure 18.6 for the end result.

LISTING 18.5 Set Up Two FBOs with Different Attachments

// Set up some renderbuffer state

glGenRenderbuffersEXT(1, &renderbufferID);

glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, renderbufferID);

glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT32,

fboWidth, fboHeight);

CHAPTER 18 Advanced Buffers620

LISTING 18.5 Continued

glGenFramebuffersEXT(2, framebufferID);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID[0]);

glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT,

GL_RENDERBUFFER_EXT, renderbufferID);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_2D, renderTextureID[0], 0);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID[1]);

for (int i = 0; i < maxDrawBuffers; i++)

{

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT + i,

GL_TEXTURE_2D, renderTextureID[i+1], 0);

}

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

...

GLenum buf[4] = {GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT};

glDrawBuffers(maxDrawBuffers, buf);

Framebuffer Objects 621

18

FIGURE 18.6 These four postprocessing effects were generated in parallel, saving three extra
passes! (This figure also appears in the Color insert.)

Floating-Point Textures
The GL_ARB_texture_float extension makes available 12 new internal formats for
textures, each of the six base color formats in both 16-bit and 32-bit floating-point flavors:

GL_RGBA16F_ARB GL_RGBA32F_ARB

GL_RGB16F_ARB GL_RGB32F_ARB

GL_ALPHA16F_ARB GL_ALPHA32F_ARB

GL_INTENSITY16F_ARB GL_INTENSITY32F_ARB

GL_LUMINANCE16F_ARB GL_LUMINANCE32F_ARB

GL_LUMINANCE_ALPHA16F_ARB GL_LUMINANCE_ALPHA32F_ARB

For nonfloat internal formats, when you call glTexImage* with an integer data type (e.g.,
GL_UNSIGNED_BYTE), the values are normalized to the range [0,1]. GL_FLOAT type data
passed in for use with a nonfloat internal format gets clamped to [0,1]. With the new
floating-point internal formats, no normalization or clamping takes place. What you
specify is what will be stored, and with the precision and range associated with your
choice of 16-bit or 32-bit floats.

Older-generation hardware may not have full support for some functionality when used in
conjunction with floating-point textures, such as mipmapping or wrap modes that might
sample from the border color (e.g., GL_CLAMP and GL_CLAMP_TO_BORDER). When targeting
older hardware, you may witness unexpected rendering or the rendering may be emulated
in software with abysmal performance. Beware!

Not only can you render from textures with these new formats, but courtesy of FBO’s
render-to-texture capabilities, you can also attach floating-point textures to an FBO and
render to them. In fact, even renderbuffers can have floating-point internal formats.
However, due to implementation-dependent restrictions, always remember to check the
completeness of your FBOs with glCheckFramebufferStatusEXT before assuming that
anything will work!

Note that there is also an extension, GL_ARB_color_buffer_float, that in coordination
with window system-specific extensions (WGL_ARB_pixel_format_float and
GLX_ARB_fbconfig_float) allow floating-point rendering directly to the window’s frame-
buffer. However, FBOs cover 99% of interesting cases and are easier to use and more
portable. That’s probably why the GL_ARB_texture_float extension is the one most widely
adopted, and the one we’ll be using here.

High Dynamic Range
Now that we have floating-point textures, what are we going to use them for? The short
answer is anything you want. No longer limited to capturing 256 shades of colors
between 0.0 and 1.0, you can put any arbitrary data into these floating-point buffers.

CHAPTER 18 Advanced Buffers622

This high-precision data combined with shader programmability is ushering in a new trend
in computing called GPGPU (General-Purpose Graphics Processing Units). Essentially, you
can use your GPU as a generic math coprocessor! Considering that some users have a GPU
more powerful (and expensive) than their CPU, it would be a shame to tap into it only
when drawing pretty pictures on the screen.

Since pretty pictures are our specialty, let’s look at an application of floating-point textures
that falls into that category: High Dynamic Range (HDR). Take a quick look around.
Maybe you have a light bulb in sight. Look out the window, and perhaps you’ll see the
sun or the moon. (I apologize to those readers outside the Earth’s solar system—you’ll
have to bear with me.) Each light source on its own looks bright. But they’re not all
equally bright, are they? Staring at a light bulb may leave temporary marks on your retina,
but staring at the sun could blind you. Don’t try this, just take my word for it.

You might want to model a 60-watt light bulb in your virtual scene. What color do you
assign it? Well, it’s totally bright white, so that would be (1,1,1,1), right? Now you’re in a
bit of a pickle when you want to add a 120-watt light bulb, or the sun, which might be
approximated by a 1000-watt light bulb. Something can be white, but there’s always some-
thing brighter white. (To quote the wisdom of Nigel Tufnel in This Is Spinal Tap, “These go
to eleven.”)

In the realm of HDR, we want to remove the artificial limits in which colors are always
represented in the range [0,1]. We can work with them as floating-point values with
dynamic ranges as high as +/– 3.4×1038. Since there is no common display hardware capable
of outputting such a high range (film comes only slightly closer than CRTs or LCDs), this
representation will only help us while making intermediate calculations. Eventually we’ll
have to map back into the [0,1] low dynamic range, but only when we’re ready.

OpenEXR File Format
Industrial Light and Magic has made our demonstration of floating-point textures easier
by creating an open standard format for storing HDR images. They also make available
open-source sample code for working with the format. And to top it off, they provide a
number of interesting sample images that we’re free to use as we please.

Incorporating the code for loading images was a breeze, as evident in Listing 18.6.

LISTING 18.6 Loading OpenEXR Images into Floating-Point Textures

void SetupTextures(int whichEXR)

{

Array2D<Rgba> pixels;

char name[256];

switch (whichEXR)

{

Floating-Point Textures 623

18

LISTING 18.6 Continued

case 0:

strcpy(name, “openexr-images/Blobbies.exr”);

break;

...

default:

assert(0);

break;

}

RgbaInputFile file(name);

Box2i dw = file.dataWindow();

npotTextureWidth = dw.max.x - dw.min.x + 1;

npotTextureHeight = dw.max.y - dw.min.y + 1;

pixels.resizeErase(npotTextureHeight, npotTextureWidth);

file.setFrameBuffer(&pixels[0][0] - dw.min.x - dw.min.y * npotTextureWidth,

1, npotTextureWidth);

file.readPixels(dw.min.y, dw.max.y);

// Stick the texels into a GL formatted buffer

potTextureWidth = npotTextureWidth;

potTextureHeight = npotTextureHeight;

if (!npotTexturesAvailable)

{

while (potTextureWidth & (potTextureWidth-1))

potTextureWidth++;

while (potTextureHeight & (potTextureHeight-1))

potTextureHeight++;

}

if ((potTextureWidth > maxTexSize) || (potTextureHeight > maxTexSize))

{

fprintf(stderr, “Texture is too big!\n”);

Sleep(2000);

exit(0);

}

if (fTexels)

free(fTexels);

CHAPTER 18 Advanced Buffers624

LISTING 18.6 Continued

fTexels = (GLfloat*)malloc(potTextureWidth * potTextureHeight *

3 * sizeof(GLfloat));

GLfloat *ptr = fTexels;

for (int v = 0; v < potTextureHeight; v++)

{

for (int u = 0; u < potTextureWidth; u++)

{

if ((v >= npotTextureHeight) || (u >= npotTextureWidth))

{

ptr[0] = 0.0f;

ptr[1] = 0.0f;

ptr[2] = 0.0f;

}

else

{

// invert texture vertically

Rgba texel = pixels[npotTextureHeight - v - 1][u];

ptr[0] = texel.r;

ptr[1] = texel.g;

ptr[2] = texel.b;

}

ptr += 3;

}

}

// pick up new aspect ratio

AlterAspect();

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, 1);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F_ARB, potTextureWidth,

potTextureHeight, 0, GL_RGB, GL_FLOAT, fTexels);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

}

We create an RGBAInputFile instance, passing in a string with the path to the EXR file.
We check the image’s width and height via RGBAInputFile::dataWindow, and then
establish an Array2D<Rgba> of RGBA pixels of the appropriate size via

Floating-Point Textures 625

18

Array2D::resizeErase. We extract the texels from the file by first pointing at
our array via RGBAInputFile::setFrameBuffer and then kicking off the transfer via
RGBAInputFile::readPixels. So far this has all been performed using the OpenEXR library.

To dump the data into the OpenGL driver, we first ensure that the texture isn’t too big to
be supported. Also, we may need to bump up our texture size to the next power-of-two in
case the underlying OpenGL implementation doesn’t handle NPOT textures. In this case,
we’ll just frame the texture with black. Then we signal the aspect ratio elsewhere so that
the proper viewport and mouse mapping can be established. Finally, we make the OpenGL
calls to send in our texels to be stored as 16-bit floats with GL_RGB16F_ARB.

Tone Mapping
We have one final hurdle to cross. We need to map our high dynamic range floating-point
data back to the range [0,1], which will then be displayed on a low dynamic range
computer display. Doing this range reduction, while attempting to maintain important
visual characteristics, is known as tone mapping. One very simple way of tone mapping is
to simply clamp any value greater than 1.0. In other circles, this is known as saturating or
clipping a color. It’s a bit of a cop-out, but for educational purposes it’s useful to look at
the results of this. See Listing 18.7 and Figure 18.7, where we lose all detail in the bright
portions of the image, which become a uniform white.

LISTING 18.7 This Tone Mapping Shader Drops the Ball and Just Clamps

// clamped.fs

//

// No tone mapping: clamp [0,oo) -> [0,1]

uniform sampler2D sampler0;

void main(void)

{

vec4 sample = texture2D(sampler0,

gl_TexCoord[0].st);

// clamp color

gl_FragColor.rgb = clamp(sample.rgb, 0.0, 1.0);

gl_FragColor.a = 1.0;

}

CHAPTER 18 Advanced Buffers626

FIGURE 18.7 Clamping does not make for good tone mapping!

A very simple but often adequate tone mapping technique manages to map the entire
range of positive floats down to the range [0,1] using the equation X = Y/(Y+1). Right off
the bat, values of 1.0 get cut in half to 0.5. But you can be assured that no matter how
bright your scene gets, there will always be a home for every wattage of light bulb, as it
were. See Listing 18.8 and Figure 18.8, where suddenly the details in the bright regions
pop out.

LISTING 18.8 General-Purpose Tone Mapping Shader

// trival.fs

//

// Trivial tone mapping: map [0,oo) -> [0,1)

uniform sampler2D sampler0;

void main(void)

{

vec4 sample = texture2D(sampler0,

gl_TexCoord[0].st);

// invert color components

Floating-Point Textures 627

18

LISTING 18.8 Continued

gl_FragColor.rgb = sample.rgb / (sample.rgb + 1.0);

gl_FragColor.a = 1.0;

}

CHAPTER 18 Advanced Buffers628

FIGURE 18.8 Every brightness level gets mapped now, but those that used to be in the
range [0,1] have been further diminished.

If you go into a movie theatre after being in the bright sun, you’ll see a whole lot of black.
But over time, you’ll start to be able to make out details in your surroundings. Believe it or
not, pirates wore a patch over one eye not because of disfigurement or fashion trends, but so
that one eye would always be sensitive in darkness, for example, when going below deck on
a sunny day. To pick out detail in the extra bright areas or extra dark areas of an HDR image,
we can use a tone mapping method that works sort of like our eyes do. Using the cursor to
choose which part of the image our eyes are accustomed to, we’ll take the local maximum
brightness from that area and scale it down to 1.0. See Listing 18.9 and Figure 18.9.

LISTING 18.9 Custom Auto-Exposure Tone Mapping

// iris.fs

//

// Iris tone mapping: map [0,max] -> [0,1]

// for a local maximum “max” set externally

LISTING 18.9 Continued

uniform sampler2D sampler0;

uniform vec3 max;

void main(void)

{

vec4 sample = texture2D(sampler0,

gl_TexCoord[0].st);

// scale all color channels evenly

float maxMax = (max.r > max.g) ? max.r : max.g;

maxMax = (maxMax > max.b) ? maxMax : max.b;

gl_FragColor.rgb = sample.rgb / maxMax;

gl_FragColor.a = 1.0;

}

Floating-Point Textures 629

18

FIGURE 18.9 Who knew there was this much detail in the foreground trees?

One last variation of the tone mapping implemented for the floating-point textures
sample scales each color channel independently, no longer maintaining the original hue.
This is not unlike white balancing. In the color insert (Color Plate 29), you can see how it

turns an otherwise warm orange candle glow into true white. Cameras often perform this
function to compensate for the discoloration caused by artificial lighting.

There are more complex methods of compressing HDR images so that details in both the
lightest and the darkest regions are presented simultaneously. I encourage you to pursue
HDR compression further if you’re interested.

Making Your Whites Whiter and Your Brights Brighter
Sorry, Clorox. I couldn’t resist. For our last sample, I’ll show how to make good old
(1,1,1,1) white look brighter than ever using a bloom effect. This gives the appearance of
film overexposure with saturated surfaces bleeding past their edges. If you’ve played any
recent games with the eye candy cranked up, you probably know what I’m talking about.

Even if you don’t have support for floating-point textures, you can still take advantage of
the bloom effect. It may look a little muted because bright areas will quickly lose their
brightness as they’re blurred. But you may find second-rate bloom to be better than no
bloom at all, so give it a try.

Drawing the Scene
In the first pass, we draw our scene. We’ll borrow the toy ball procedural texture shader
from Chapter 17, “Fragment Shading: Empower Your Pixel Processing.” This time,
however, instead of painting the star with a red diffuse material color, we will make the
star emit a red glow. The intensity of the glow will be based on how quickly the ball is
spinning. See Listing 18.10. Figure 18.10 illustrates the result of this first pass.

LISTING 18.10 Toy Ball Makes a Reappearance Now with a Healthy Glow

// hdrball.fs

//

// Based on toy ball shader by Bill Licea-Kane

// with HDR additions from Benj Lipchak

varying vec3 V; // object-space position

varying vec3 N; // eye-space normal

varying vec3 L; // eye-space light vector

uniform float bloomLimit; // minimum brightness for bloom

uniform float starIntensity; // how bright is the star?

const vec3 myRed = vec3(1.1, 0.2, 0.2);

const vec3 myYellow = vec3(0.6, 0.5, 0.0);

const vec3 myBlue = vec3(0.0, 0.3, 0.6);

CHAPTER 18 Advanced Buffers630

LISTING 18.10 Continued

const vec3 myHalfSpace0 = vec3(0.31, 0.95, 0.0);

const vec3 myHalfSpace1 = vec3(-0.81, 0.59, 0.0);

const vec3 myHalfSpace2 = vec3(-0.81, -0.59, 0.0);

const vec3 myHalfSpace3 = vec3(0.31, -0.95, 0.0);

const vec3 myHalfSpace4 = vec3(1.0, 0.0, 0.0);

const float stripeThickness = 0.4; // 0 to 1

const float starSize = 0.2; // 0 to ~0.3

const float smoothEdgeTol = 0.005;

const float ambientLighting = 0.2;

const float specularExp = 60.0;

const float specularIntensity = 0.5;

void main (void)

{

vec4 distVector;

float distScalar;

// Normalize vectors

vec3 NN = normalize(N);

vec3 NL = normalize(L);

vec3 NH = normalize(NL + vec3(0.0, 0.0, 1.0));

vec3 NV = normalize(V);

// Each flat edge of the star defines a half-space. The interior

// of the star is any point within at least 4 out of 5 of them.

// Start with -3 so that it takes adding 4 ins to equal 1.

float myInOut = -3.0;

// We need to perform 5 dot products, one for each edge of

// the star. Perform first 4 in vector, 5th in scalar.

distVector.x = dot(NV, myHalfSpace0);

distVector.y = dot(NV, myHalfSpace1);

distVector.z = dot(NV, myHalfSpace2);

distVector.w = dot(NV, myHalfSpace3);

distScalar = dot(NV, myHalfSpace4);

// The half-space planes all intersect the origin. We must

// offset them in order to give the star some size.

distVector += starSize;

distScalar += starSize;

Making Your Whites Whiter and Your Brights Brighter 631

18

LISTING 18.10 Continued

distVector = smoothstep(0.0, smoothEdgeTol, distVector);

distScalar = smoothstep(0.0, smoothEdgeTol, distScalar);

myInOut += dot(distVector, vec4(1.0));

myInOut += distScalar;

myInOut = clamp(myInOut, 0.0, 1.0);

// calculate diffuse lighting + 20% ambient

vec3 diffuse = (ambientLighting + vec3(max(0.0, dot(NN, NL))));

// colors

vec3 yellow = myYellow * diffuse;

vec3 blue = myBlue * diffuse;

vec3 red = myRed * starIntensity;

// red star on yellow background

vec3 surfColor = mix(yellow, red, myInOut);

// blue stripe down middle

myInOut = smoothstep(0.0, smoothEdgeTol,

abs(NV.z) - stripeThickness);

surfColor = mix(blue, surfColor, myInOut);

// calculate specular lighting w/ 50% intensity

surfColor += (specularIntensity *

vec3(pow(max(0.0, dot(NN, NH)), specularExp)));

gl_FragData[0] = vec4(surfColor, 1.0);

// bright pass: only output colors with some component >= bloomLimit

vec3 brightColor = max(surfColor - vec3(bloomLimit), vec3(0.0));

float bright = dot(brightColor, vec3(1.0));

bright = smoothstep(0.0, 0.5, bright);

gl_FragData[1] = vec4(mix(vec3(0.0), surfColor, bright), 1.0);

}

CHAPTER 18 Advanced Buffers632

FIGURE 18.10 Our glowing toy ball after the first pass. The red tinted glow appears white
due to floating-point clamping because all color channels exceed 1.0.

One important difference between this new version of the toy ball and the old one is the
calculation of the red star color, which is no longer dependent on the lighting equation.
Instead, it is multiplied by an externally set uniform, starIntensity. The other key differ-
ence is that it’s outputting two colors to the gl_FragData array. More on that next.

Bright Pass
While rendering the entire toy ball during the first pass, we’ll also render a modified
version to a second FBO color attachment. This version will contain only the brightest
parts of the scene, those brighter than 1.0. (This threshold is adjustable via the bloomLimit
uniform in the shader.) All dimmer parts of the scene are drawn black. We use the smooth-
step built-in function so there’s a gentle transition from bright to black. See Figure 18.11
for a look at the intermediate results from the bright pass.

Making Your Whites Whiter and Your Brights Brighter 633

18

FIGURE 18.11 The bright pass will be the foundation for our bloom generation.

Gaussian Blur with a Little Help
Bloom needs some serious blurring to achieve a decent effect. We’ll use a 5×5 kernel,
which already pushes the limits of interactivity, especially on older hardware. So how can
we get a more bountiful blur than this? The answer lies in some filtering that is always at
our fingertips: mipmap generation.

By calling glGenerateMipmapsEXT on the FBO-attached texture containing the bright pass
results, we get access to an array of images, each of which is more blurred than the last
courtesy of downsampling, as shown in Figure 18.12. It isn’t a beautiful Gaussian blur, but
after we apply our 5×5 kernel in Listing 18.11, the results are quite nice, as shown in
Figure 18.13. We apply the blur filter to the first four levels of the texture by setting both
GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL to 0, then 1, then 2, and finally 3.

CHAPTER 18 Advanced Buffers634

FIGURE 18.12 The bright pass is progressively downsampled.

LISTING 18.11 5×5 Gaussian Blur Kernel

// gaussian.fs

//

// gaussian 5x5 kernel

uniform sampler2D sampler0;

uniform vec2 tc_offset[25];

void main(void)

{

vec4 sample[25];

for (int i = 0; i < 25; i++)

{

sample[i] = texture2D(sampler0,

gl_TexCoord[0].st + tc_offset[i]);

}

// 1 4 7 4 1

// 4 16 26 16 4

// 7 26 41 26 7 / 273

// 4 16 26 16 4

// 1 4 7 4 1

Making Your Whites Whiter and Your Brights Brighter 635

18

LISTING 18.11 Continued

gl_FragColor =

((1.0 * (sample[0] + sample[4] + sample[20] + sample[24])) +

(4.0 * (sample[1] + sample[3] + sample[5] + sample[9] +

sample[15] + sample[19] + sample[21] + sample[23])) +

(7.0 * (sample[2] + sample[10] + sample[14] + sample[22])) +

(16.0 * (sample[6] + sample[8] + sample[16] + sample[18])) +

(26.0 * (sample[7] + sample[11] + sample[13] + sample[17])) +

(41.0 * sample[12])

) / 273.0;

}

CHAPTER 18 Advanced Buffers636

FIGURE 18.13 The downsampled levels are now blurred.

Notice the red halo around the bloom most evident with the coarsest blur. This is a pleas-
ant side effect of the blurring. Remember that the original star color is tinted red. Whereas
in the middle of the bloom the colors are too bright to escape pure saturated whiteness, at
the fringes where they are mixed with dimmer colors, the true redness of the glow has a
chance to come through.

The Sum Is Greater Than Its Parts
All that’s left is to add everything up in the window’s framebuffer. We have the original
scene and four levels worth of blur. This is not a difficult step. Figure 18.14 shows the
results of Listing 18.12.

FIGURE 18.14 Our toy ball is finally in full bloom.

LISTING 18.12 Math Is Hard, Especially Addition

// combine.fs

//

// take incoming textures and

// add them together

uniform bool afterGlow;

uniform sampler2D sampler0;

uniform sampler2D sampler1;

uniform sampler2D sampler2;

uniform sampler2D sampler3;

uniform sampler2D sampler4;

uniform sampler2D sampler5;

void main(void)

{

vec4 temp;

temp = texture2D(sampler0, gl_TexCoord[0].st);

temp += texture2D(sampler1, gl_TexCoord[0].st);

temp += texture2D(sampler2, gl_TexCoord[0].st);

Making Your Whites Whiter and Your Brights Brighter 637

18

LISTING 18.12 Continued

temp += texture2D(sampler3, gl_TexCoord[0].st);

temp += texture2D(sampler4, gl_TexCoord[0].st);

if (afterGlow)

{

temp *= 0.6;

temp += 0.4 * texture2D(sampler5, gl_TexCoord[0].st);

}

gl_FragColor = temp;

}

PBOs Make a Comeback
What’s that last texture we’re blending into the final frame? Afterglow is just a ghost
image simulating retinal burn-in. This is reminiscent of our first PBO sample, and again
we’ll use a PBO to read back the window’s framebuffer contents and send it back in as a
texture, all without touching client memory. See Color Plate 30 in the color insert for the
final toy ball image with both bloom and afterglow.

This could also be achieved by rendering the last pass to an FBO, saving the attached
texture for use as the next frame’s afterglow, and then adding one more pass to get the
result into the window. Or you could use a simple call to glCopyTexImage. But then we
wouldn’t be able to exercise our new friend, the PBO. Where’s the fun in that?

Summary
PBOs, FBOs, and floating-point textures, when teamed up with shader programmability,
open up a universe of possibilities. Squeezing this much potential into one chapter is
certainly overambitious. I hope you at least have a sense for the immense GPU power at
your disposal. Please go forth and use this power for good, not evil.

CHAPTER 18 Advanced Buffers638

PART III

The Apocrypha

Now we come to some important material that lies
outside the true canon of pure OpenGL. Although
OpenGL itself remains purely a platform-independent
abstraction of graphics hardware, there is always the
need to interface OpenGL with native OSs and
windowing systems. On each platform, there are
families of nonportable binding functions that glue
OpenGL to the native window or display system.
This part of the book is about those interfaces.

The three most popular platforms for OpenGL today
are undoubtedly Windows, Mac OS X, and UNIX.
You’ll find here specific chapters that will take you
through the peculiarities of using OpenGL on these
platforms. Finally, we will strip OpenGL down to its
bare essentials for use on hand-held and embedded
systems. OpenGL is by far the most popular 3D
graphics API today, used in nearly every application
category, on nearly every platform where 3D hardware
can be found.

OpenGL. It’s everywhere. Do the math.

This page intentionally left blank

CHAPTER 19

Wiggle: OpenGL on Windows

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Request and select an ChoosePixelFormat/

OpenGL pixel format DescribePixelFormat/

SetPixelFormat

Create and use OpenGL wglCreateContext/

rendering contexts wglDeleteContext/

wglMakeCurrent

Respond to window WM_PAINT/WM_CREATE/

messages WM_DESTROY/WM_SIZE

Use double buffering in Windows SwapBuffers

OpenGL is purely a low-level graphics API, with user interaction and the screen or window
handled by the host environment. To facilitate this partnership, each environment usually
has some extensions that “glue” OpenGL to its own window management and user inter-
face functions. This glue is code that associates OpenGL drawing commands with a partic-
ular window. It is also necessary to provide functions for setting buffer modes, color
depths, and other drawing characteristics.

For Microsoft Windows, this glue code is embodied in a set of functions added to the
Windows API. They are called the wiggle functions because they are prefixed with wgl
rather than gl. These gluing functions are explained in this chapter, where we dispense
with using the GLUT library for our OpenGL framework and build full-fledged Windows
applications that can take advantage of all the operating system’s features. You will see
what characteristics a Windows window must have to support OpenGL graphics. You will
learn which messages a well-behaved OpenGL window should handle and how. The
concepts of this chapter are introduced gradually, as we build a model OpenGL program
that provides a framework for Windows-specific OpenGL support.

642 CHAPTER 19 Wiggle: OpenGL on Windows

So far in this book, you’ve needed no prior knowledge of 3D graphics and only a rudimen-
tary knowledge of C programming. For this chapter, however, we assume you have at least
an entry-level knowledge of Windows programming. Otherwise, we would have wound up
writing a book twice the size of this one, and we would have spent more time on the
details of Windows programming and less on OpenGL programming.

OpenGL Implementations on Windows
OpenGL became available for the Win32 platform with the release of Windows NT version
3.5. It was later released as an add-on for Windows 95 and then became a shipping part of
the Windows 95 operating system (OSR2). OpenGL is now a native API on any Win32
platform (Windows 95/98/ME, Windows NT/2000/XP, and Vista), with its functions
exported from opengl32.dll. You need to be aware of four flavors of OpenGL on
Windows: Generic, ICD, MCD, and the Extended. Each has its pros and cons from both
the user and the developer point of view. You should at least have a high-level under-
standing of how these implementations work and what their drawbacks might be.

Generic OpenGL
A generic implementation of OpenGL is simply a software implementation that does not
use specific 3D hardware. The Microsoft implementation bundled with all versions of
Windows is a generic implementation. The Silicon Graphics Incorporated (SGI) OpenGL
for Windows implementation (no longer widely available) optionally made use of MMX
instructions, but because it was not considered dedicated 3D hardware, it was still
considered a generic software implementation. Another implementation called MESA
(www.mesa3d.org) is not strictly a “real” OpenGL implementation—it’s a “work-a-like”—
but for most purposes, you can consider it to be so. MESA can also be hooked to hardware,
but this should be considered a special case of the mini-driver (discussed shortly).

Although the MESA implementation has kept up with OpenGL’s advancing feature set
over the years, the Microsoft generic implementation has not been updated since OpenGL
version 1.1. Not to worry, we will soon show you how to get to all the OpenGL function-
ality your graphics card supports.

Installable Client Driver
The Installable Client Driver (ICD) was the original hardware driver interface provided for
Windows NT. The ICD must implement the entire OpenGL pipeline using a combination
of software and the specific hardware for which it was written. Creating an ICD from
scratch is a considerable amount of work for a vendor to undertake.

The ICD drops in and works with Microsoft’s OpenGL implementation. Applications
linked to opengl32.dll are automatically dispatched to the ICD driver code for OpenGL
calls. This mechanism is ideal because applications do not have to be recompiled to take
advantage of OpenGL hardware should it become available. The ICD is actually a part of

www.mesa3d.org

the display driver and does not affect the existing openGL32.dll system DLL. This driver
model provides the vendor with the most opportunities to optimize its driver and hard-
ware combination.

Mini-Client Driver
The Mini-Client Driver (MCD) was a compromise between a software and a hardware
implementation. Most early PC 3D hardware provided hardware-accelerated rasterization
only. (See “The Pipeline” section in Chapter 2, “Using OpenGL.”) The MCD driver model
allowed applications to use Microsoft’s generic implementation for features that were not
available in hardware. For example, transform and lighting could come from Microsoft’s
OpenGL software, but the actual rasterizing of lit shaded triangles would be handled by
the hardware.

The MCD driver implementation made it easy for hardware vendors to create OpenGL
drivers for their hardware. Most of the work was done by Microsoft, and whatever features
the vendors did not implement in hardware were handed back to the Microsoft generic
implementation.

The MCD driver model showed great promise for bringing OpenGL to the PC mass
market. Initially available for Windows NT, a software development kit (SDK) was provided
to hardware vendors to create MCD drivers for Windows 98, and Microsoft encouraged
hardware vendors to use it for their OpenGL support. After many hardware vendors had
completed their MCD drivers, Microsoft decided not to license the code for public
release. This gave their own proprietary 3D API a temporary advantage in the consumer
marketplace.

The MCD driver model today is largely obsolete, but a few implementations are still in use
in legacy NT-based systems. One reason for its demise is that the MCD driver model
cannot support Intel’s Accelerated Graphics Port (AGP) texturing efficiently. Another is
that SGI began providing an optimized ICD driver kit to vendors that made writing ICDs
almost as easy as writing MCDs. (This move was a response to Microsoft’s withdrawal of
support for OpenGL MCDs on Windows 98.)

Mini-Driver
A mini-driver is not a real display driver. Instead, it is a drop-in replacement for
opengl32.dll that makes calls to a hardware vendor’s proprietary 3D hardware driver.
Typically, these mini-drivers convert OpenGL calls to roughly equivalent calls in a
vendor’s proprietary 3D API. The first mini-driver was written by 3dfx for its Voodoo
graphics card. This DLL drop-in converted OpenGL calls into the Voodoo’s native Glide
(the 3dfx 3D API) programming interface.

Although mini-drivers popularized OpenGL for games, they often had missing OpenGL
functions or features. Any application that used OpenGL did not necessarily work with a
mini-driver. Typically, these drivers provided only the barest functionality needed to run a

OpenGL Implementations on Windows 643

19

CHAPTER 19 Wiggle: OpenGL on Windows644

popular game. Though not widely documented, Microsoft even made an OpenGL to D3D
translation layer that was used on Windows XP to accelerate some games when an ICD
was not present. Fortunately, the widespread popularity of OpenGL has made the mini-
driver obsolete on newer commodity PCs.

OpenGL on Vista
A variation of this mini-driver still exists on Windows Vista, but is not exposed to develop-
ers. Microsoft has implemented an OpenGL to D3D emulator that supports OpenGL
version 1.4. This implementation looks like an ICD, but shows up only if a real ICD is not
installed. As of the initial release of Vista, there is no way to turn on this implementation
manually. Only a few games (selected by Microsoft) are “tricked” into seeing this imple-
mentation. Vista, like XP, does not ship with ICD drivers on the distribution media. After a
user downloads a new display driver from their vendor’s Web site, however, they will get a
true ICD-based driver, and full OpenGL support in both Windowed and full-screen games.

Extended OpenGL
If you are developing software for any version of Microsoft Windows, you are most
likely making use of header files and an import library that works with Microsoft’s
opengl32.dll. This DLL is designed to provide a generic (software-rendered) fallback if 3D
hardware is not installed, and has a dispatch mechanism that works with the official ICD
OpenGL driver model for hardware-based OpenGL implementations. Using this header
and import library alone gives you access only to functions and capabilities present in
OpenGL 1.1.

As of this edition, most desktop drivers support OpenGL version 2.1. Take note, however,
that OpenGL 1.1 is still a very capable and full-featured graphics API and is suitable for a
wide range of graphical applications, including games and business graphics. Even without
the additional features of OpenGL 1.2 and beyond, graphics hardware performance has
increased exponentially, and most PC graphics cards have the entire OpenGL pipeline
implemented in special-purpose hardware. OpenGL 1.1 can still produce screaming-fast
and highly complex 3D renderings!

Many applications still will require, or at least be significantly enhanced by, use of the
newer OpenGL innovations. To get to the newer OpenGL features (which are widely
supported), you need to use the same OpenGL extension mechanism that you use to get
to vendor-specific OpenGL enhancements. OpenGL extensions were introduced in
Chapter 2, and the specifics of using this extension mechanism on Windows are covered
later in this chapter in the section “OpenGL and WGL Extensions.”

This may sound like a bewildering environment in which to develop 3D graphics—especially
if you plan to port your applications to, say, the Macintosh platform, where OpenGL features
are updated more consistently with each OS release. Some strategies, however, can make
such development more manageable. First, you can call the following function so that your

application can tell at runtime which OpenGL version the hardware driver supports:

glGetString(GL_VERSION);

This way, you can gracefully decide whether the application is going to be able to run at
all on the user’s system. Because OpenGL and its extensions are dynamically loaded, there
is no reason your programs should not at least start and present the user with a friendly
and informative error or diagnostic message.

You also need to think carefully about what OpenGL features your application must have.
Can the application be written to use only OpenGL 1.1 features? Will the application be
usable at all if no hardware is present and the user must use the built-in software renderer?
If the answer to either of these questions is yes, you should first write your application’s
rendering code using only the import library for OpenGL 1.1. This gives you the widest
possible audience for your application.

When you have the basic rendering code in place, you can go back and consider perfor-
mance optimizations or special visual effects available with newer OpenGL features that
you want to make available in your program. By checking the OpenGL version early in
your program, you can introduce different rendering paths or functions that will option-
ally perform better or provide additional visual effects to your rendering. For example,
static texture maps could be replaced with fragment programs, or standard fog replaced
with volumetric fog made possible through vertex programs. Using the latest and greatest
features allows you to really show off your program, but if you rely on them exclusively,
you may be severely limiting your audience…and sales.

Bear in mind that the preceding advice should be weighed heavily against the type of
application you are developing. If you are making an immersive and fast-paced 3D game,
worrying about users with OpenGL 1.1 does not make much sense. On the other hand, a
program that, say, generates interactive 3D weather maps can certainly afford to be more
conservative.

Many, if not most, modern applications really must have some newer OpenGL feature; for
example, a medical visualization package may require that 3D texturing or the imaging
subset be available. In these types of more specialized or vertical markets, your application
will simply have to require some minimal OpenGL support to run. The OpenGL version
required in these cases will be listed among any other minimum system requirements that
you specify are needed for your software. Again, your application can check for these
details at startup.

Basic Windows Rendering
The GLUT library provided only one window, and OpenGL function calls always produced
output in that window. (Where else would they go?) Your own real-world Windows appli-
cations, however, will often have more than one window. In fact, dialog boxes, controls,

Basic Windows Rendering 645

19

and even menus are actually windows at a fundamental level; having a useful program
that contains only one window is nearly impossible (well, okay, maybe games are an
important exception!). How does OpenGL know where to draw when you execute your
rendering code? Before we answer this question, let’s first review how we normally draw in
a window without using OpenGL.

GDI Device Contexts
There are many technology options for drawing into a Windows window. The oldest and
most widely supported is the Windows GDI (graphics device interface). GDI is strictly a 2D
drawing interface, and was widely hardware accelerated before Windows Vista. Although
GDI is still available on Vista, it is no longer hardware accelerated; the preferred high-level
drawing technology is based on the .NET framework and is called the Windows
Presentation Foundation (WPF). WPF is also available via a download for Windows XP.
Over the years some minor 2D API variations have come and gone, as well as several
incarnations of Direct3D. On Vista, the new low-level rendering interface is called
Windows Graphics Foundation (WGF) and is essentially just Direct 3D version 10.

The one native rendering API common to all versions of Windows (even Windows Mobile)
is GDI. This is fortunate because GDI is how we initialize OpenGL and interact with
OpenGL on all versions of Windows (except Windows Mobile, where OpenGL is not
natively supported by Microsoft). On Vista, GDI is no longer hardware accelerated, but
this is irrelevant because we will never (at least when using OpenGL) use GDI for any
drawing operations anyway.

When you’re using GDI, each window has a device context that actually receives the
graphics output, and each GDI function takes a device context as an argument to indicate
which window you want the function to affect. You can have multiple device contexts,
but only one for each window.

Before you jump to the conclusion that OpenGL should work in a similar way, remember
that the GDI is Windows specific. Other environments do not have device contexts,
window handles, and the like. Although the ideas may be similar, they are certainly not
called the same thing and might work and behave differently. OpenGL, on the other
hand, was designed to be completely portable among environments and hardware plat-
forms (and it didn’t start on Windows anyway!). Adding a device context parameter to the
OpenGL functions would render your OpenGL code useless in any environment other
than Windows.

OpenGL does have a context identifier, however, and it is called the rendering context. The
rendering context is similar in many respects to the GDI device context because it is the
rendering context that remembers current colors, state settings, and so on, much like the
device context holds onto the current brush or pen color for Windows.

CHAPTER 19 Wiggle: OpenGL on Windows646

Pixel Formats
The Windows concept of the device context is limited for 3D graphics because it was
designed for 2D graphics applications. In Windows, you request a device context identifier
for a given window. The nature of the device context depends on the nature of the device.
If your desktop is set to 16-bit color, the device context Windows gives you knows about
and understands 16-bit color only. You cannot tell Windows, for example, that one
window is to be a 16-bit color window and another is to be a 32-bit color window.

Although Windows lets you create a memory device context, you still have to give it an
existing window device context to emulate. Even if you pass in NULL for the window para-
meter, Windows uses the device context of your desktop. You, the programmer, have no
control over the intrinsic characteristics of a window’s device context.

Any window or device that will be rendering 3D graphics has far more characteristics to it
than simply color depth, especially if you are using a hardware rendering device (3D
graphics card). Up until now, GLUT has taken care of these details for you. When you
initialized GLUT, you told it what buffers you needed (double or single color buffer, depth
buffer, stencil, and alpha).

Before OpenGL can render into a window, you must first configure that window according
to your rendering needs. Do you want hardware or software rendering? Will the rendering
be single or double buffered? Do you need a depth buffer? How about stencil, destination
alpha, or an accumulation buffer? After you set these parameters for a window, you
cannot change them later. To switch from a window with only a depth and color buffer to
a window with only a stencil and color buffer, you have to destroy the first window and
re-create a new window with the characteristics you need.

Describing a Pixel Format
The 3D characteristics of the window are set one time, usually just after window creation.
The collective name for these settings is the pixel format. Windows provides a structure
named PIXELFORMATDESCRIPTOR that describes the pixel format. This structure is defined as
follows:

typedef struct tagPIXELFORMATDESCRIPTOR {

WORD nSize; // Size of this structure

WORD nVersion; // Version of structure (should be 1)

DWORD dwFlags; // Pixel buffer properties

BYTE iPixelType; // Type of pixel data (RGBA or Color Index)

BYTE cColorBits; // Number of color bit planes in color buffer

BYTE cRedBits; // How many bits for red

BYTE cRedShift; // Shift count for red bits

BYTE cGreenBits; // How many bits for green

BYTE cGreenShift; // Shift count for green bits

BYTE cBlueBits; // How many bits for blue

BYTE cBlueShift; // Shift count for blue bits

Basic Windows Rendering 647

19

BYTE cAlphaBits; // How many bits for destination alpha

BYTE cAlphaShift; // Shift count for destination alpha

BYTE cAccumBits; // How many bits for accumulation buffer

BYTE cAccumRedBits; // How many red bits for accumulation buffer

BYTE cAccumGreenBits; // How many green bits for accumulation buffer

BYTE cAccumBlueBits; // How many blue bits for accumulation buffer

BYTE cAccumAlphaBits; // How many alpha bits for accumulation buffer

BYTE cDepthBits; // How many bits for depth buffer

BYTE cStencilBits; // How many bits for stencil buffer

BYTE cAuxBuffers; // How many auxiliary buffers

BYTE iLayerType; // Obsolete - ignored

BYTE bReserved; // Number of overlay and underlay planes

DWORD dwLayerMask; // Obsolete - ignored

DWORD dwVisibleMask; // Transparent color of underlay plane

DWORD dwDamageMask; // Obsolete - ignored

} PIXELFORMATDESCRIPTOR;

For a given OpenGL device (hardware or software), the values of these members are not
arbitrary. Only a limited number of pixel formats is available for a given window. Pixel
formats are said to be exported by the OpenGL driver or software renderer. Most of these
structure members are self-explanatory, but a few require some additional explanation, as
listed in Table 19.1.

TABLE 19.1 PIXELFORMATDESCRIPTOR Fields

Field Description

nSize The size of the structure; set to sizeof(PIXELFORMATDESCRIPTOR);.

nVersion Set to 1.

dwFlags A set of bit flags that specify properties of the pixel buffer. Most of these flags are

not mutually exclusive, but a few are used only when requesting or describing the

pixel format. Table 19.2 lists the valid flags for this member.

iPixelType The type of color buffer. Only two values are valid: PFD_TYPE_RGBA and

PFD_TYPE_COLORINDEX. PFD_TYPE_COLORINDEX allows you to request or describe the

pixel format as color index mode. This rendering mode should be considered obso-

lete on modern hardware and is mostly ignored throughout this book.

cColorBits The number of bits of color depth in the color buffer. Typical values are 8, 16, 24,

and 32. The 32-bit color buffers may or may not be used to store destination alpha

values. Only Microsoft’s generic implementation on Windows 2000, Windows XP,

and later supports destination alpha.

cRedBits The number of bits in the color buffer dedicated for the red color component.

cGreenBits The number of bits in the color buffer dedicated for the green color component.

cBlueBits The number of bits in the color buffer dedicated for the blue color component.

cAlphaBits The number of bits used for the alpha buffer. Destination alpha is not supported by

Microsoft’s generic implementation, but many hardware implementations are

beginning to support it.

CHAPTER 19 Wiggle: OpenGL on Windows648

TABLE 19.1 Continued

Field Description

cAccumBits The number of bits used for the accumulation buffer.

cDepthBits The number of bits used for the depth buffer. Typical values are 0, 16, 24, and 32.

The more bits dedicated to the depth buffer, the more accurate depth testing

will be.

cStencilBits The number of bits used for the stencil buffer.

cAuxBuffers The number of auxiliary buffers. In implementations that support auxiliary buffers,

rendering can be redirected to an auxiliary buffer from the color buffer and

swapped to the screen later.

iLayerType Obsolete (ignored).

bReserved The number of overlay and underlay planes supported by the implementation. Bits

0 through 3 specify the number of overlay planes (up to 15), and bits 4 through 7

specify the number of underlay planes (also up to 15). Windows Vista no longer

supports overlays.

dwLayerMask Obsolete (ignored).

dwVisibleMask The transparent color of an underlay plane. This is not supported on Windows Vista.

dwDamageMask Obsolete (ignored).

TABLE 19.2 Valid Flags to Describe the Pixel Rendering Buffer

Bit Flag Description

PFD_DRAW_TO_WINDOW The buffer’s output is displayed in a window.

PFD_DRAW_TO_BITMAP The buffer’s output is written to a Windows bitmap.

PFD_SUPPORT_GDI The buffer supports Windows GDI drawing. Most implementations

allow this only for single-buffered windows or bitmaps.

PFD_SUPPORT_OPENGL The buffer supports OpenGL drawing.

PFD_GENERIC_ACCELERATED The buffer is accelerated by an MCD device driver that accelerates

this format.

PFD_GENERIC_FORMAT The buffer is rendered by a software implementation. This bit is also

set with PFD_GENERIC_ACCELERATED for MCD drivers. Only if this bit is

clear is the hardware driver an ICD.

PFD_NEED_PALETTE The buffer is on a palette-managed device. This flag is set on Windows

when running in 8-bit (256-color) mode and requires a 3-3-2 color

palette.

PFD_NEED_SYSTEM_PALETTE This flag indicates that OpenGL hardware supports rendering in

256-color mode. A 3-3-2 palette must be realized to enable hardware

acceleration. Although documented, this flag can be considered obso-

lete. No mainstream hardware accelerator that supported accelerated

rendering in 256-color mode ever shipped for Windows.

PFD_DOUBLEBUFFER The color buffer is double buffered.

PFD_STEREO The color buffer is stereoscopic. This is not supported by Microsoft’s

generic implementation. Most PC vendors that support stereo do so

with custom extensions for their hardware.

Basic Windows Rendering 649

19

TABLE 19.2 Continued

Bit Flag Description

PFD_SWAP_LAYER_BUFFERS This flag is used if overlay and underlay planes are supported. If set,

these planes may be swapped independently of the color buffer. These

planes are no longer possible on Windows Vista.

PFD_DEPTH_DONTCARE This flag is used only when requesting a pixel format. It indicates that

you do not need a depth buffer. Some implementations can save

memory and enhance performance by not allocating memory for the

depth buffer.

PFD_DOUBLE_BUFFER_DONTCARE This flag is used only when requesting a pixel format. It indicates that

you do not plan to use double buffering. Although you can force

rendering to the front buffer only, this flag allows an implementation

to save memory and potentially enhance performance.

PFD_SWAP_COPY This is a hint (which means it may be ignored!) that the buffer swap

should be accomplished by means of a bulk copy of the back buffer to

the front buffer.

PFD_SWAP_EXCHANGE This is a hint (which means it may be ignored!) that the front and

back buffers should be exchanged when the buffer swap occurs.

Enumerating Pixel Formats
The pixel format for a window is identified by a one-based integer index number. An
implementation exports a number of pixel formats from which to choose. To set a pixel
format for a window, you must select one of the available formats exported by the driver.
You can use the DescribePixelFormat function to determine the characteristics of a given
pixel format. You can also use this function to find out how many pixel formats are
exported by the driver. The following code shows how to enumerate all the pixel formats
available for a window:

PIXELFORMATDESCRIPTOR pfd; // Pixel format descriptor

int nFormatCount; // How many pixel formats exported

. . .

// Get the number of pixel formats

// Will need a device context

pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);

nFormatCount = DescribePixelFormat(hDC, 1, 0, NULL);

// Retrieve each pixel format

for(int i = 1; i <= nFormatCount; i++)

{

// Get description of pixel format

DescribePixelFormat(hDC, i, pfd.nSize, &pfd);

. . .

. . .

}

CHAPTER 19 Wiggle: OpenGL on Windows650

The DescribePixelFormat function returns the maximum pixel format index. You can use
an initial call to this function as shown to determine how many are available. An interest-
ing utility program called GLView is included in the source distribution for this chapter.
This program enumerates all pixel formats available for your display driver for the given
resolution and color depths. Figure 19.1 shows the output from this program when a
double-buffered pixel format is selected. (A single-buffered pixel format would contain a
flickering block animation.)

Basic Windows Rendering 651

19

FIGURE 19.1 The GLView program shows all pixel formats for a given device.

The Microsoft Foundation Classes (MFC) source code is included for this program. This is a
bit more complex than your typical sample program, and GLView is provided more as a
tool for your use than as a programming example. The important code for enumerating
pixel formats was presented earlier and is less than a dozen lines long. If you are familiar
with MFC already, examination of this source code will show you how to integrate
OpenGL rendering into any CWnd derived window class.

The list box lists all the available pixel formats and displays their characteristics (driver
type, color depth, and so on). A sample window in the lower-right corner displays a rotat-
ing cube using a window created with the highlighted pixel format. The glGetString
function enables you to find out the name of the vendor for the OpenGL driver, as well as
other version information. Finally, a list box displays all the OpenGL and WGL extensions
exported by the driver (WGL extensions are covered later in this chapter).

If you experiment with this program, you’ll discover that not all pixel formats can be used
to create an OpenGL window, as shown in Figure 19.2. Even though the driver exports
these pixel formats, it does not mean that you can create an OpenGL-enabled window
with one of them. The most important criterion is that the pixel format color depth must
match the color depth of your desktop. That is, you can’t create a 16-bit color pixel format
for a 32-bit color desktop, or vice versa.

CHAPTER 19 Wiggle: OpenGL on Windows652

FIGURE 19.2 The GLView program showing an invalid pixel format.

Make special note of the fact that at least 24 pixel formats are always enumerated, some-
times more. If you are running without an OpenGL hardware driver, you will see exactly
24 pixel formats listed (all belonging to the Microsoft Generic Implementation). If you
have a hardware accelerator (either an MCD or an ICD), you’ll note that the accelerated
pixel formats are listed first, followed by the 24 generic pixel formats belonging to
Microsoft. This means that when hardware acceleration is present, you actually can choose
from two implementations of OpenGL. The first are the hardware-accelerated pixel
formats belonging to the hardware accelerator. The second are the pixel formats for
Microsoft’s software implementation.

Knowing this bit of information can be useful. For one thing, it means that a software
implementation is always available for rendering to bitmaps or printer devices. It also
means that if you so desire (for debugging purposes, perhaps), you can force software
rendering, even when an application might typically select hardware acceleration.

One final thing you may notice is that many pixel formats look the same. In these cases,
the pixel formats are supporting multisampled buffers. This feature came along after the
PIXELFORMATDESCRIPTOR was cast in stone, and we’ll have more to say about this later in
the chapter.

Selecting and Setting a Pixel Format
Enumerating all the available pixel formats and examining each one to find one that
meets your needs could turn out to be quite tedious. Windows provides a shortcut func-
tion that makes this process somewhat simpler. The ChoosePixelFormat function allows
you to create a pixel format structure containing the desired attributes of your 3D window.
The ChoosePixelFormat function then finds the closest match possible (with preference
for hardware-accelerated pixel formats) and returns the most appropriate index. The pixel
format is then set with a call to another new Windows function, SetPixelFormat. The
following code segment shows the use of these two functions:

int nPixelFormat;

. . .

static PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure

1, // Version of this structure

PFD_DRAW_TO_WINDOW | // Draw to window (not to bitmap)

PFD_SUPPORT_OPENGL | // Support OpenGL calls in window

PFD_DOUBLEBUFFER, // Double buffered mode

PFD_TYPE_RGBA, // RGBA color mode

32, // Want 32-bit color

0,0,0,0,0,0, // Not used to select mode

0,0, // Not used to select mode

0,0,0,0,0, // Not used to select mode

16, // Size of depth buffer

0, // No stencil

0, // No auxiliary buffers

0, // Obsolete or reserved

0, // No overlay and underlay planes

0, // Obsolete or reserved layer mask

0, // No transparent color for underlay plane

0}; // Obsolete

// Choose a pixel format that best matches that described in pfd

// for the given device context

nPixelFormat = ChoosePixelFormat(hDC, &pfd);

// Set the pixel format for the device context

SetPixelFormat(hDC, nPixelFormat, &pfd);

Initially, the PIXELFORMATDESCRIPTOR structure is filled with the desired characteristics of
the 3D-enabled window. In this case, you want a double-buffered pixel format that renders
into a window, so you request 32-bit color and a 16-bit depth buffer. If the current imple-
mentation supports 24-bit color at best, the returned pixel format will be a valid 24-bit

Basic Windows Rendering 653

19

color format. Depth buffer resolution is also subject to change. An implementation might
support only a 24-bit or 32-bit depth buffer. In any case, ChoosePixelFormat always tries
to return a valid pixel format, and if at all possible, it returns one that is hardware-acceler-
ated.

Some programmers and programming needs might require more sophisticated selection of
a pixel format. In these cases, you need to enumerate and inspect all available pixel
formats or use the WGL extension presented later in this chapter. For most uses, however,
the preceding code is sufficient to prime your window to receive OpenGL rendering
commands.

The OpenGL Rendering Context
A typical Windows application can consist of many windows. You can even set a pixel
format for each one (using that windows device context) if you want! But SetPixelFormat
can be called only once per window. When you call an OpenGL command, how does it
know which window to send its output to? In the previous chapters, we used the GLUT
framework, which provided a single window to display OpenGL output. Recall that with
normal Windows GDI-based drawing, each window has its own device context.

To accomplish the portability of the core OpenGL functions, each environment must
implement some means of specifying a current rendering window before executing any
OpenGL commands. Just as the Windows GDI functions use the windows device contexts,
the OpenGL environment is embodied in what is known as the rendering context. Just as a
device context remembers settings about drawing modes and commands for the GDI, the
rendering context remembers OpenGL settings and commands.

You create an OpenGL rendering context by calling the wglCreateContext function. This
function takes one parameter: the device context of a window with a valid pixel format.
The data type of an OpenGL rendering context is HGLRC. The following code shows the
creation of an OpenGL rendering context:

HGLRC hRC; // OpenGL rendering context

HDC hDC; // Windows device context

. . .

// Select and set a pixel format

. . .

hRC = wglCreateContext(hDC);

A rendering context is created that is compatible with the window for which it was
created. You can have more than one rendering context in your application—for instance,
two windows that are using different drawing modes, perspectives, and so on. However,
for OpenGL commands to know which window they are operating on, only one rendering
context can be active at any one time per thread. When a rendering context is made
active, it is said to be current.

CHAPTER 19 Wiggle: OpenGL on Windows654

When made current, a rendering context is also associated with a device context and thus
with a particular window. Now, OpenGL knows which window into which to render. You
can even move an OpenGL rendering context from window to window, but each window
must have the same pixel format. To make a rendering context current and associate it
with a particular window, you call the wglMakeCurrent function. This function takes two
parameters, the device context of the window and the OpenGL rendering context:

void wglMakeCurrent(HDC hDC, HGLRC hRC);

Putting It All Together
We’ve covered a lot of ground over the past several pages. We’ve described each piece of
the puzzle individually, but now let’s look at all the pieces put together. In addition to
seeing all the OpenGL-related code, we should examine some of the minimum require-
ments for any Windows program to support OpenGL. Our sample program for this section
is GLRECT. It should look somewhat familiar because it is also the first GLUT-based sample
program from Chapter 2. Now, however, the program is a full-fledged Windows program
written with nothing but C++ and the Win32 API. Figure 19.3 shows the output of the
new program, complete with a bouncing square.

Putting It All Together 655

19

FIGURE 19.3 Output from the GLRECT program with a bouncing square.

Creating the Window
The starting place for any low-level Windows-based GUI program is the WinMain function.
In this function, you register the window type, create the window, and start the message
pump. Listing 19.1 shows the WinMain function for the first sample.

LISTING 19.1 The WinMain Function of the GLRECT Sample Program

// Entry point of all Windows programs

int APIENTRY WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,

LPSTR lpCmdLine,

LISTING 19.1 Continued

int nCmdShow)

{

MSG msg; // Windows message structure

WNDCLASS wc; // Windows class structure

HWND hWnd; // Storage for window handle

// Register window style

wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;

wc.lpfnWndProc = (WNDPROC) WndProc;

wc.cbClsExtra = 0;

wc.cbWndExtra = 0;

wc.hInstance = hInstance;

wc.hIcon = NULL;

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

// No need for background brush for OpenGL window

wc.hbrBackground = NULL;

wc.lpszMenuName = NULL;

wc.lpszClassName = lpszAppName;

// Register the window class

if(RegisterClass(&wc) == 0)

return FALSE;

// Create the main application window

hWnd = CreateWindow(

lpszAppName,

lpszAppName,

// OpenGL requires WS_CLIPCHILDREN and WS_CLIPSIBLINGS

WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,

// Window position and size

100, 100,

250, 250,

NULL,

NULL,

hInstance,

NULL);

CHAPTER 19 Wiggle: OpenGL on Windows656

LISTING 19.1 Continued

// If window was not created, quit

if(hWnd == NULL)

return FALSE;

// Display the window

ShowWindow(hWnd,SW_SHOW);

UpdateWindow(hWnd);

// Process application messages until the application closes

while(GetMessage(&msg, NULL, 0, 0))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

return msg.wParam;

}

This listing pretty much contains your standard Windows GUI startup code. Only two
points really bear mentioning here. The first is the choice of window styles set in
CreateWindow. You can generally use whatever window styles you like, but you do need to
set the WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles. These styles were required in earlier
versions of Windows, but later versions have dropped them as a strict requirement. The
purpose of these styles is to keep the OpenGL rendering context from rendering into other
windows, which can happen in GDI. However, an OpenGL rendering context must be
associated with only one window at a time.

The second note you should make about this startup code is the use of CS_OWNDC for the
window style. Why you need this innocent-looking flag requires a bit more explanation.
You need a device context for both GDI rendering and for OpenGL double-buffered page
flipping. To understand what CS_OWNDC has to do with this, you first need to take a step
back and review the purpose and use of a windows device context.

First, You Need a Device Context
Before you can draw anything in a window with GDI, you first need the window’s device
context. You need it whether you’re doing OpenGL, GDI, or even Direct3D programming.
Any drawing or painting operation in Windows (even if you’re drawing on a bitmap in
memory) requires a device context that identifies the specific object being drawn on. You
retrieve the device context to a window with a simple function call:

HDC hDC = GetDC(hWnd);

Putting It All Together 657

19

The hDC variable is your handle to the device context of the window identified by the
window handle hWnd. You use the device context for all GDI functions that draw in the
window. You also need the device context for creating an OpenGL rendering context,
making it current, and performing the buffer swap. You tell Windows that you don’t need
the device context for the window any longer with another simple function call, using the
same two values:

ReleaseDC(hWnd, hDC);

The standard Windows programming wisdom is that you retrieve a device context, use it
for drawing, and then release it again as soon as possible. This advice dates back to the pre-
Win32 days; under Windows 3.1 and earlier, you had a small pool of memory allocated for
system resources, such as the windows device context. What happened when Windows ran
out of system resources? If you were lucky, you got an error message. If you were working
on something really important, the operating system could somehow tell, and it would
instead crash and take all your work with it. Well, at least it seemed that way!

The best way to spare your users this catastrophe was to make sure that the GetDC function
succeeded. If you did get a device context, you did all your work as quickly as possible
(typically within one message handler) and then released the device context so that other
programs could use it. The same advice applied to other system resources such as pens,
fonts, and brushes.

Enter Win32
Windows NT and the subsequent Win32-based operating systems were a tremendous bless-
ing for Windows programmers, in more ways than can be recounted here. Among their
many benefits was that you could have all the system resources you needed until you
exhausted available memory or your application crashed. (At least it wouldn’t crash the
OS!) It turns out that the GetDC function is, in computer time, quite an expensive function
call to make. If you got the device context when the window was created and hung on to
it until the window was destroyed, you could speed up your window painting consider-
ably. You could hang on to brushes, fonts, and other resources that would have to be
created or retrieved and potentially reinitialized each time the window was invalidated.

An old popular example of this Win32 benefit was a program that created random rectan-
gles and put them in random locations in the window. (This was a GDI sample.) The
difference between code written the old way and code written the new way was astonish-
ingly obvious. Wow—Win32 was great!

Three Steps Forward, Two Steps Back
Windows 95, 98, and ME brought Win32 programming to the mainstream, but still had
a few of the old 16-bit limitations deep down in the plumbing. The situation with losing
system resources was considerably improved, but it was not eliminated entirely. The oper-
ating system could still run out of resources, but (according to Microsoft) it was unlikely.
Alas, life is not so simple. Under Windows NT, when an application terminates, all

CHAPTER 19 Wiggle: OpenGL on Windows658

allocated system resources are automatically returned to the operating system. Under
Windows 95, 98, or ME, you have a resource leak if the program crashes or the application
fails to release the resources it allocated. Eventually, you will start to stress the system, and
you can run out of system resources (or device contexts).

What happens when Windows doesn’t have enough device contexts to go around? Well, it
just takes one from someone who is being a hog with them. This means that if you call
GetDC and don’t call ReleaseDC, Windows 95, 98, or ME might just appropriate your
device context when it becomes stressed. The next time you call wglMakeCurrent or
SwapBuffers, your device context handle might not be valid. Your application might crash
or mysteriously stop rendering. Ask someone in customer support how well it goes over
when you try to explain to a customer that his or her problem with your application is
really Microsoft’s fault!

All Is Not Lost
You actually have a way to tell Windows to create a device context just for your window’s
use. This feature is useful because every time you call GetDC, you have to reselect your
fonts, the mapping mode, and so on. If you have your own device context, you can do
this sort of initialization only once. Plus, you don’t have to worry about your device
context handle being yanked out from under you. Doing this is simple: You simply specify
CS_OWNDC as one of your class styles when you register the window. A common error is to
use CS_OWNDC as a window style when you call Create. There are window styles and there
are class styles, but you can’t mix and match.

Code to register your window style generally looks something like this:

WNDCLASS wc; // Windows class structure

...

...

// Register window style

wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;

wc.lpfnWndProc = (WNDPROC) WndProc;

...

...

wc.lpszClassName = lpszAppName;

// Register the window class

if(RegisterClass(&wc) == 0)

return FALSE;

You then specify the class name when you create the window:

hWnd = CreateWindow(wc.lpszClassName, szWindowName, ...

Graphics programmers should always use CS_OWNDC in the window class registration. This
ensures that you have the most robust code possible on any Windows platform. Another

Putting It All Together 659

19

consideration is that many older OpenGL hardware drivers have bugs because they expect
CS_OWNDC to be specified. They might have been originally written for NT, so the drivers do
not account for the possibility that the device context might become invalid. The driver
might also trip up if the device context does not retain its configuration (as is the case in
the GetDC/ReleaseDC scenario).

Regardless of the specifics, some older drivers are not very stable unless you specify the
CS_OWNDC flag. Today’s drivers rarely have this issue anymore, but one thing you learn as
an application developer is that it’s amazing where your code may end up sometimes!
Still, the other reasons outlined here provide plenty of incentive to make what is basically
a minor code adjustment.

Using the OpenGL Rendering Context
The real meat of the GLRECT sample program is in the window procedure, WndProc. The
window procedure receives window messages from the operating system and responds
appropriately. This model of programming, called message or event-driven programming, is
the foundation of the modern Windows GUI.

When a window is created, it first receives a WM_CREATE message from the operating
system. This is the ideal location to create and set up the OpenGL rendering context. A
window also receives a WM_DESTROY message when it is being destroyed. Naturally, this is
the ideal place to put cleanup code. Listing 19.2 shows the SetDCPixelFormat format,
which is used to select and set the pixel format, along with the window procedure for the
application. This function contains the same basic functionality that we have been using
with the GLUT framework.

LISTING 19.2 Setting the Pixel Format and Handling the Creation and Deletion of the
OpenGL Rendering Context

///////////////////////////////////////

// Select the pixel format for a given device context

void SetDCPixelFormat(HDC hDC)

{

int nPixelFormat;

static PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure

1, // Version of this structure

PFD_DRAW_TO_WINDOW | // Draw to window (not to bitmap)

PFD_SUPPORT_OPENGL | // Support OpenGL calls in window

PFD_DOUBLEBUFFER, // Double-buffered mode

PFD_TYPE_RGBA, // RGBA color mode

32, // Want 32-bit color

0,0,0,0,0,0, // Not used to select mode

0,0, // Not used to select mode

CHAPTER 19 Wiggle: OpenGL on Windows660

LISTING 19.2 Continued

0,0,0,0,0, // Not used to select mode

16, // Size of depth buffer

0, // Not used here

0, // Not used here

0, // Not used here

0, // Not used here

0,0,0 }; // Not used here

// Choose a pixel format that best matches that described in pfd

nPixelFormat = ChoosePixelFormat(hDC, &pfd);

// Set the pixel format for the device context

SetPixelFormat(hDC, nPixelFormat, &pfd);

}

///

// Window procedure, handles all messages for this program

LRESULT CALLBACK WndProc(HWND hWnd,

UINT message,

WPARAM wParam,

LPARAM lParam)

{

static HGLRC hRC = NULL; // Permanent rendering context

static HDC hDC = NULL; // Private GDI device context

switch (message)

{

// Window creation, set up for OpenGL

case WM_CREATE:

// Store the device context

hDC = GetDC(hWnd);

// Select the pixel format

SetDCPixelFormat(hDC);

// Create the rendering context and make it current

hRC = wglCreateContext(hDC);

wglMakeCurrent(hDC, hRC);

// Create a timer that fires 30 times a second

SetTimer(hWnd,33,1,NULL);

break;

Putting It All Together 661

19

LISTING 19.2 Continued

// Window is being destroyed, clean up

case WM_DESTROY:

// Kill the timer that we created

KillTimer(hWnd,101);

// Deselect the current rendering context and delete it

wglMakeCurrent(hDC,NULL);

wglDeleteContext(hRC);

// Tell the application to terminate after the window

// is gone.

PostQuitMessage(0);

break;

// Window is resized.

case WM_SIZE:

// Call our function which modifies the clipping

// volume and viewport

ChangeSize(LOWORD(lParam), HIWORD(lParam));

break;

// Timer moves and bounces the rectangle, simply calls

// our previous OnIdle function, then invalidates the

// window so it will be redrawn.

case WM_TIMER:

{

IdleFunction();

InvalidateRect(hWnd,NULL,FALSE);

}

break;

// The painting function. This message is sent by Windows

// whenever the screen needs updating.

case WM_PAINT:

{

// Call OpenGL drawing code

RenderScene();

// Call function to swap the buffers

SwapBuffers(hDC);

CHAPTER 19 Wiggle: OpenGL on Windows662

LISTING 19.2 Continued

// Validate the newly painted client area

ValidateRect(hWnd,NULL);

}

break;

. . .

default: // Passes it on if unprocessed

return (DefWindowProc(hWnd, message, wParam, lParam));

}

return (0L);

}

Initializing the Rendering Context
The first thing you do when the window is being created is retrieve the device context
(remember, you hang on to it) and set the pixel format:

// Store the device context

hDC = GetDC(hWnd);

// Select the pixel format

SetDCPixelFormat(hDC);

Then you create the OpenGL rendering context and make it current:

// Create the rendering context and make it current

hRC = wglCreateContext(hDC);

wglMakeCurrent(hDC, hRC);

The last task you handle while processing the WM_CREATE message is creating a Windows
timer for the window. You will use this shortly to affect the animation loop:

// Create a timer that fires 30 times a second

SetTimer(hWnd,33,1,NULL);

break;

Note that WM_TIMER is not the best way to achieve high frame rates. We’ll revisit this issue
later, but for now, it serves our purposes.

At this point, the OpenGL rendering context has been created and associated with a
window with a valid pixel format. From this point forward, all OpenGL rendering
commands will be routed to this context and window.

Putting It All Together 663

19

Shutting Down the Rendering Context
When the window procedure receives the WM_DESTROY message, the OpenGL rendering
context must be deleted. Before you delete the rendering context with the
wglDeleteContext function, you must first call wglMakeCurrent again, but this
time with NULL as the parameter for the OpenGL rendering context:

// Deselect the current rendering context and delete it

wglMakeCurrent(hDC,NULL);

wglDeleteContext(hRC);

Before deleting the rendering context, you should delete any display lists, texture objects,
or other OpenGL-allocated memory.

Other Windows Messages
All that is required to enable OpenGL to render into a window is creating and destroying
the OpenGL rendering context. However, to make your application well behaved, you
need to follow some conventions with respect to message handling. For example, you
need to set the viewport when the window changes size, by handling the WM_SIZE
message:

// Window is resized.

case WM_SIZE:

// Call our function which modifies the clipping

// volume and viewport

ChangeSize(LOWORD(lParam), HIWORD(lParam));

break;

The processing that happens in response to the WM_SIZE message is the same as in the
function you handed off to glutReshapeFunc in GLUT-based programs. The window proce-
dure also receives two parameters: lParam and wParam. The low word of lParam is the new
width of the window, and the high word is the height.

This example uses the WM_TIMER message handler to do the idle processing. The process is
not really idle, but the previous call to SetTimer causes the WM_TIMER message to be
received on a fairly regular basis (fairly because the exact interval is not guaranteed).

Other Windows messages handle things such as keyboard activity (WM_CHAR, WM_KEYDOWN)
and mouse movements (WM_MOUSEMOVE).

The WM_PAINT message bears closer examination. This message is sent to a window when-
ever Windows needs to draw or redraw its contents. To tell Windows to redraw a window
anyway, you invalidate the window with one function call in the WM_TIMER message
handler:

IdleFunction();

InvalidateRect(hWnd,NULL,FALSE);

CHAPTER 19 Wiggle: OpenGL on Windows664

Here, IdleFunction updates the position of the square, and InvalidateRect tells Windows
to redraw the window (now that the square has moved).

Most Windows programming books show you a WM_PAINT message handler with the well-
known BeginPaint/EndPaint function pairing. BeginPaint retrieves the device context so
it can be used for GDI drawing, and EndPaint releases the context and validates the
window. In our previous discussion of why you need the CS_OWNDC class style, we pointed
out that using this function pairing is generally a bad idea for high-performance graphics
applications. The following code shows roughly the equivalent functionality, without any
GDI overhead:

// The painting function. This message is sent by Windows

// whenever the screen needs updating.

case WM_PAINT:

{

// Call OpenGL drawing code

RenderScene();

// Call function to swap the buffers

SwapBuffers(hDC);

// Validate the newly painted client area

ValidateRect(hWnd,NULL);

}

break;

Because this example has a device context (hDC), you don’t need to continually get and
release it. We’ve mentioned the SwapBuffers function previously but not fully explained
it. This function takes the device context as an argument and performs the buffer swap for
double-buffered rendering. This is why you need the device context readily available when
rendering.

Notice that you must manually validate the window with the call to ValidateRect after
rendering. Without the BeginPaint/EndPaint functionality in place, there is no way to tell
Windows that you have finished drawing the window contents. One alternative to using
WM_TIMER to invalidate the window (thus forcing a redraw) is to simply not validate the
window. If the window procedure returns from a WM_PAINT message and the window is not
validated, the operating system generates another WM_PAINT message. This chain reaction
causes an endless stream of repaint messages. One problem with this approach to anima-
tion is that it can leave little opportunity for other window messages to be processed.
Although rendering might occur very quickly, the user might find it difficult or impossible
to resize the window or use the menu, for example.

Putting It All Together 665

19

OpenGL and Windows Fonts
One nice feature of Windows is its support for TrueType fonts. These fonts have been native
to Windows since before Windows became a 32-bit operating system. TrueType fonts
enhance text appearance because they are device independent and can be easily scaled
while still keeping a smooth shape. TrueType fonts are vector fonts, not bitmap fonts. What
this means is that the character definitions consist of a series of point and curve defini-
tions. When a character is scaled, the overall shape and appearance remain smooth.

Textual output is a part of nearly any Windows application, and 3D applications are no
exception. Microsoft provided support for TrueType fonts in OpenGL with two new wiggle
functions. You can use the first, wglUseFontOutlines, to create 3D font models that can be
used to create 3D text effects. The second, wglUseFontBitmaps, creates a series of font char-
acter bitmaps that can be used for 2D text output in a double-buffered OpenGL window.

3D Fonts and Text
The wglUseFontOutlines function takes a handle to a device context. It uses the TrueType
font currently selected into that device context to create a set of display lists for that font.
Each display list renders just one character from the font. Listing 19.3 shows the SetupRC
function from the sample program TEXT3D, where you can see the entire process of creat-
ing a font, selecting it into the device context, creating the display lists, and, finally, delet-
ing the (Windows) font.

LISTING 19.3 Creating a Set of 3D Characters

void SetupRC(HDC hDC)

{

// Set up the font characteristics

HFONT hFont;

GLYPHMETRICSFLOAT agmf[128]; // Throw away

LOGFONT logfont;

logfont.lfHeight = -10;

logfont.lfWidth = 0;

logfont.lfEscapement = 0;

logfont.lfOrientation = 0;

logfont.lfWeight = FW_BOLD;

logfont.lfItalic = FALSE;

logfont.lfUnderline = FALSE;

logfont.lfStrikeOut = FALSE;

logfont.lfCharSet = ANSI_CHARSET;

logfont.lfOutPrecision = OUT_DEFAULT_PRECIS;

logfont.lfClipPrecision = CLIP_DEFAULT_PRECIS;

logfont.lfQuality = DEFAULT_QUALITY;

logfont.lfPitchAndFamily = DEFAULT_PITCH;

CHAPTER 19 Wiggle: OpenGL on Windows666

LISTING 19.3 Continued

strcpy(logfont.lfFaceName,”Arial”);

// Create the font and display list

hFont = CreateFontIndirect(&logfont);

SelectObject (hDC, hFont);

// Create display lists for glyphs 0 through 128 with 0.1 extrusion

// and default deviation. The display list numbering starts at 1000

// (it could be any number).

nFontList = glGenLists(128);

wglUseFontOutlines(hDC, 0, 128, nFontList, 0.0f, 0.5f,

WGL_FONT_POLYGONS, agmf);

DeleteObject(hFont);

. . .

. . .

}

The function call to wglUseFontOutlines is the key function call to create your 3D
character set:

wglUseFontOutlines(hDC, 0, 128, nFontList, 0.0f, 0.5f,

WGL_FONT_POLYGONS, agmf);

The first parameter is the handle to the device context where the desired font has been
selected. The next two parameters specify the range of characters (called glyphs) in the font
to use. In this case, you use the 1st through 127th characters. (The indexes are zero based.)
The third parameter, nFontList, is the beginning of the range of display lists created previ-
ously. It is important to allocate your display list space before using either of the WGL font
functions. The next parameter is the chordal deviation. Think of it as specifying how
smooth you want the font to appear, with 0.0 being the most smooth.

The 0.5f is the extrusion of the character set. The 3D characters are defined to lie in the
xy plane. The extrusion determines how far along the z-axis the characters extend.
WGL_FONT_POLYGONS tells OpenGL to create the characters out of triangles and quads so
that they are solid. When this information is specified, normals are also calculated and
supplied for each letter. Only one other value is valid for this parameter: WGL_FONT_LINES.
It produces a wireframe version of the character set and does not generate normals.

The last argument is an array of type GLYPHMETRICSFLOAT, which is defined in this way:

typedef struct _GLYPHMETRICSFLOAT {

FLOAT gmfBlackBoxX; // Extent of character cell in x direction

OpenGL and Windows Fonts 667

19

FLOAT gmfBlackBoxY; // Extent of character cell in y direction

POINTFLOAT gmfptGlyphOrigin; // Origin of character cell

FLOAT gmfCellIncX; // Horizontal distance to origin of next cell

FLOAT gmfCellIncY; // Vertical distance to origin of next cell

}; GLYPHMETRICSFLOAT

Windows fills in this array according to the selected font’s characteristics. These values can
be useful when you want to determine the size of a string rendered with 3D characters.

When the display list for each character is called, it renders the character and advances the
current position to the right (positive x direction) by the width of the character cell. This
is like calling glTranslate after each character, with the translation in the positive x direc-
tion. You can use the glCallLists function in conjunction with glListBase to treat a
character array (a string) as an array of offsets from the first display list in the font. A
simple text output method is shown in Listing 19.4. The output from the TEXT3D
program appears in Figure 19.4.

LISTING 19.4 Rendering a 3D Text String

void RenderScene(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Blue 3D text

glColor3ub(0, 0, 255);

glPushMatrix();

glListBase(nFontList);

glCallLists (6, GL_UNSIGNED_BYTE, “OpenGL”);

glPopMatrix();

}

CHAPTER 19 Wiggle: OpenGL on Windows668

FIGURE 19.4 Sample 3D text in OpenGL.

2D Fonts and Text
The wglUseFontBitmaps function is similar to its 3D counterpart. This function does not
extrude the bitmaps into 3D, however, but instead creates a set of bitmap images of the
glyphs in the font. You output images to the screen using the bitmap functions discussed
in Chapter 7, “Imaging with OpenGL.” Each character rendered advances the raster posi-
tion to the right in a similar manner to the 3D text.

Listing 19.5 shows the code to set up the coordinate system for the window (ChangeSize
function), create the bitmap font (SetupRC function), and finally render some text
(RenderScene function). The output from the TEXT2D sample program is shown in
Figure 19.5.

LISTING 19.5 Creating and Using a 2D Font

//

// Window has changed size. Reset to match window coordinates

void ChangeSize(GLsizei w, GLsizei h)

{

GLfloat nRange = 100.0f;

GLfloat fAspect;

// Prevent a divide by zero

if(h == 0)

h = 1;

fAspect = (GLfloat)w/(GLfloat)h;

// Set Viewport to window dimensions

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,400, 400, 0);

// Viewing transformation

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

///

// Set up. Use a Windows font to create the bitmaps

void SetupRC(HDC hDC)

{

OpenGL and Windows Fonts 669

19

LISTING 19.5 Continued

// Set up the Font characteristics

HFONT hFont;

LOGFONT logfont;

logfont.lfHeight = -20;

logfont.lfWidth = 0;

logfont.lfEscapement = 0;

logfont.lfOrientation = 0;

logfont.lfWeight = FW_BOLD;

logfont.lfItalic = FALSE;

logfont.lfUnderline = FALSE;

logfont.lfStrikeOut = FALSE;

logfont.lfCharSet = ANSI_CHARSET;

logfont.lfOutPrecision = OUT_DEFAULT_PRECIS;

logfont.lfClipPrecision = CLIP_DEFAULT_PRECIS;

logfont.lfQuality = DEFAULT_QUALITY;

logfont.lfPitchAndFamily = DEFAULT_PITCH;

strcpy(logfont.lfFaceName,”Arial”);

// Create the font and display list

hFont = CreateFontIndirect(&logfont);

SelectObject (hDC, hFont);

// Create display lists for glyphs 0 through 128

nFontList = glGenLists(128);

wglUseFontBitmaps(hDC, 0, 128, nFontList);

DeleteObject(hFont); // Don’t need original font anymore

// Black Background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

}

//

// Draw everything (just the text)

void RenderScene(void)

{

glClear(GL_COLOR_BUFFER_BIT);

// Blue 3D Text - Note color is set before the raster position

glColor3f(1.0f, 1.0f, 1.0f);

glRasterPos2i(0, 200);

CHAPTER 19 Wiggle: OpenGL on Windows670

LISTING 19.5 Continued

glListBase(nFontList);

glCallLists (13, GL_UNSIGNED_BYTE, “OpenGL Rocks!”);

}

Full-Screen Rendering 671

19

FIGURE 19.5 Output from the TEXT2D sample program.

Note that wglUseFontBitmaps is a much simpler function. It requires only the device
context handle, the beginning and last characters, and the first display list name to be
used:

wglUseFontBitmaps(hDC, 0, 128, nFontList);

Because bitmap fonts are created based on the actual font and map directly to pixels on
the screen, the lfHeight member of the LOGFONT structure is used exactly in the same way
it is for GDI font rasterization.

Full-Screen Rendering
With OpenGL becoming popular among PC game developers, a common question is “How
do I do full-screen rendering with OpenGL?” The truth is, if you’ve read this chapter, you
already know how to do full-screen rendering with OpenGL—it’s just like rendering into
any other window! The real question is “How do I create a window that takes up the
entire screen and has no borders?” After you do this, rendering into this window is no
different from rendering into any other window in any other sample in this book.

Even though this issue isn’t strictly related to OpenGL, it is of enough interest to a wide
number of our readers that we give this topic some coverage here.

Creating a Frameless Window
The first task is to create a window that has no border or caption. This procedure is quite
simple. Following is the window creation code from the GLRECT sample program. We’ve
made one small change by making the window style WS_POPUP instead of WS_OVERLAPPED-
WINDOW:

// Create the main application window

hWnd = CreateWindow(lpszAppName,

lpszAppName,

// OpenGL requires WS_CLIPCHILDREN and WS_CLIPSIBLINGS

WS_POPUP | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,

// Window position and size

100, 100,

250, 250,

NULL,

NULL,

hInstance,

NULL);

The result of this change is shown in Figure 19.6.

CHAPTER 19 Wiggle: OpenGL on Windows672

FIGURE 19.6 A window with no caption or border.

As you can see, without the proper style settings, the window has neither a caption nor a
border of any kind. Don’t forget to take into account that now the window no longer has
a close button on it. The user will have to press Alt+F4 to close the window and exit the
program. Most user-friendly programs watch for a keystroke such as the Esc key or Q to
terminate the program.

Creating a Full-Screen Window
Creating a window the size of the screen is almost as trivial as creating a window with no
caption or border. The parameters of the CreateWindow function allow you to specify

where onscreen the upper-left corner of the window will be positioned and the width and
height of the window. To create a full-screen window, you always use (0,0) as the upper-
left corner. The only trick would be determining what size the desktop is so you know
how wide and high to make the window. You can easily determine this information by
using the Windows function GetDeviceCaps.

Listing 19.6 shows the new WinMain function from GLRECT, which is now the new sample
FSCREEN. To use GetDeviceCaps, you need a device context handle. Because you are in the
process of creating the main window, you need to use the device context from the desktop
window.

LISTING 19.6 Creating a Full-Screen Window

// Entry point of all Windows programs

int APIENTRY WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,

LPSTR lpCmdLine,

int nCmdShow)

{

MSG msg; // Windows message structure

WNDCLASS wc; // Windows class structure

HWND hWnd; // Storage for window handle

HWND hDesktopWnd; // Storage for desktop window handle

HDC hDesktopDC; // Storage for desktop window device context

int nScreenX, nScreenY; // Screen Dimensions

// Register Window style

wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;

wc.lpfnWndProc = (WNDPROC) WndProc;

wc.cbClsExtra = 0;

wc.cbWndExtra = 0;

wc.hInstance = hInstance;

wc.hIcon = NULL;

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

// No need for background brush for OpenGL window

wc.hbrBackground = NULL;

wc.lpszMenuName = NULL;

wc.lpszClassName = lpszAppName;

// Register the window class

if(RegisterClass(&wc) == 0)

return FALSE;

Full-Screen Rendering 673

19

LISTING 19.6 Continued

// Get the Window handle and Device context to the desktop

hDesktopWnd = GetDesktopWindow();

hDesktopDC = GetDC(hDesktopWnd);

// Get the screen size

nScreenX = GetDeviceCaps(hDesktopDC, HORZRES);

nScreenY = GetDeviceCaps(hDesktopDC, VERTRES);

// Release the desktop device context

ReleaseDC(hDesktopWnd, hDesktopDC);

// Create the main application window

hWnd = CreateWindow(lpszAppName,

lpszAppName,

// OpenGL requires WS_CLIPCHILDREN and WS_CLIPSIBLINGS

WS_POPUP | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,

// Window position and size

0, 0,

nScreenX, nScreenY,

NULL,

NULL,

hInstance,

NULL);

// If window was not created, quit

if(hWnd == NULL)

return FALSE;

// Display the window

ShowWindow(hWnd,SW_SHOW);

UpdateWindow(hWnd);

// Process application messages until the application closes

while(GetMessage(&msg, NULL, 0, 0))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

return msg.wParam;

}

CHAPTER 19 Wiggle: OpenGL on Windows674

The key code here is the lines that get the desktop window handle and device context.
The device context can then be used to obtain the screen’s horizontal and vertical resolu-
tion:

hDesktopWnd = GetDesktopWindow();

hDesktopDC = GetDC(hDesktopWnd);

// Get the screen size

nScreenX = GetDeviceCaps(hDesktopDC, HORZRES);

nScreenY = GetDeviceCaps(hDesktopDC, VERTRES);

// Release the desktop device context

ReleaseDC(hDesktopWnd, hDesktopDC);

If your system has multiple monitors, you should note that the values returned here would
be for the primary display device. You might also be tempted to force the window to be a
topmost window (using the WS_EX_TOPMOST window style). However, doing so makes it
possible for your window to lose focus but remain on top of other active windows. This
may confuse the user when the program stops responding to keyboard strokes.

You may also want to take a look at the Win32 function ChangeDisplaySettings in your
Windows SDK documentation. This function allows you to dynamically change the
desktop size at runtime and restore it when your application terminates. This capability
may be desirable if you want to have a full-screen window but at a lower or higher display
resolution than the default. If you do change the desktop settings, you must not create the
rendering window or set the pixelformat until after the desktop settings have changed.
OpenGL rendering contexts created under one environment (desktop settings) are not
likely to be valid in another.

Multithreaded Rendering
A powerful feature of the Win32 API is multithreading. The topic of threading is beyond
the scope of a book on computer graphics. Basically, a thread is the unit of execution for
an application. Most programs execute instructions sequentially from the start of the
program until the program terminates. A thread of execution is the path through the
machine code that the CPU traverses as it fetches and executes instructions. By creating
multiple threads using the Win32 API, you can create multiple paths through your source
code that are followed simultaneously.

Think of multithreading as being able to call two functions at the same time and then
have them executed simultaneously. Of course, the CPU cannot actually execute two code
paths simultaneously, so it switches between threads during normal program flow much
the same way a multitasking operating system switches between tasks. If you have more
than one processor, or a multicore CPU, multithreaded programs can experience quite
substantial performance gains as the work required is split between two execution units.

Multithreaded Rendering 675

19

Even on a single CPU system, a program carefully designed for multithreaded execution
can outperform a single-threaded application in many circumstances. On a single processor
machine, one thread can service I/O requests, for example, while another handles the GUI.

Some OpenGL implementations take advantage of a multiprocessor system. If, for
example, the transformation and lighting units of the OpenGL pipeline are not hardware
accelerated, a driver can create another thread so that these calculations are performed by
one CPU while another CPU feeds the transformed data to the rasterizer. Threads within a
driver can also be used to offload command assembly and dispatch, decreasing the latency
of many OpenGL calls.

You might think that using two threads to do your OpenGL rendering would speed up
your rendering as well. You could perhaps have one thread draw the background objects
in a scene while another thread draws the more dynamic elements. This approach is
almost always a bad idea. Although you can create two OpenGL rendering contexts for
two different threads, most drivers fail if you try to render with both of them in the same
window. Technically, this multithreading should be possible, and the Microsoft generic
implementation will succeed if you try it, as might many hardware implementations. In
the real world, the extra work you place on the driver with two contexts trying to share
the same framebuffer will most likely outweigh any performance benefit you hope to gain
from using multiple threads.

Multithreading can benefit your OpenGL rendering on a multiprocessor system or even on
a single processor system in at least two ways. In the first scenario, you have two different
windows, each with its own rendering context and thread of execution. This case could
still stress some drivers (some of the low-end game boards are stressed just by two applica-
tions using OpenGL simultaneously!), but many professional OpenGL implementations
can handle it quite well.

The second example is if you are writing a game or a real-time simulation. You can have a
worker thread perform physics calculations or artificial intelligence or handle player inter-
action while another thread does the OpenGL rendering. This scenario requires careful
sharing of data between threads but can provide a substantial performance boost on a
dual-processor machine, and even a single-processor machine can improve the responsive-
ness of your program. Although we’ve made the disclaimer that multithreaded program-
ming is outside the scope of this book, we present for your examination the sample
program RTHREAD in the source distribution for this chapter. This program creates and
uses a rendering thread. This program also demonstrates the use of the OpenGL WGL
extensions.

OpenGL and WGL Extensions
On the Windows platform, you do not have direct access to the OpenGL driver. All
OpenGL function calls are routed through the opengl32.dll system file. Because this DLL
understands only OpenGL 1.1 entrypoints (function names), you must have a mechanism

CHAPTER 19 Wiggle: OpenGL on Windows676

to get a pointer to an OpenGL function supported directly by the driver. Fortunately, the
Windows OpenGL implementation has a function named wglGetProcAddress that allows
you to retrieve a pointer to an OpenGL function supported by the driver, but not necessar-
ily natively supported by opengl32.dll:

PROC wglGetProcAddress(LPSTR lpszProc);

This function takes the name of an OpenGL function or extension and returns a function
pointer that you can use to call that function directly. For this to work, you must know
the function prototype for the function so you can create a pointer to it and subsequently
call the function.

OpenGL extensions (and post-version 1.1 features) come in two flavors. Some are simply
new constants and enumerants recognized by a vendor’s hardware driver. Others require
that you call new functions added to the API. The number of extensions is extensive, espe-
cially when you add in the newer OpenGL core functionality and vendor-specific exten-
sions. Complete coverage of all OpenGL extensions would require an entire book in itself
(if not an encyclopedia!). You can find a registry of extensions on the Internet and among
the Web sites listed in Appendix A, “Further Reading/References.”

Fortunately, the following two header files give you programmatic access to most OpenGL
extensions:

#include <wglext.h>

#include <glext.h>

These files can be found at the OpenGL extension registry Web site. They are also main-
tained by most graphics card vendors (see their developer support Web sites), and the
latest version as of this book’s printing is included in the source code distribution on our
Web site The wglext.h header contains a number of extensions that are Windows specific,
and the glext.h header contains both standard OpenGL extensions and many vendor-
specific OpenGL extensions.

Simple Extensions
Because this book covers known OpenGL features up to version 2.1, you may have already
discovered that many of the sample programs in this book use these extensions for
Windows builds of the sample code found in previous chapters. For example, in Chapter
9, “Texture Mapping: Beyond the Basics,” we showed you how to add specular highlights
to textured geometry using OpenGL’s separate specular color with the following function
call:

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);

However, this capability is not present in OpenGL 1.1, and the
GL_LIGHT_MODEL_COLOR_CONTROL and GL_SEPARATE_SPECULAR_COLOR constants are not

OpenGL and WGL Extensions 677

19

defined in the Windows version of gl.h. They are, however, found in glext.h, and this
file is already included automatically in all the samples in this book via the gltools.h
header file. The glLightModeli function, on the other hand, has been around since
OpenGL 1.0. These kinds of simple extensions simply pass new tokens to existing entry-
points (functions) and require only that you have the constants defined and know that
the extension or feature is supported by the hardware.

Even if the OpenGL version is still reported as 1.1, this capability may still be included in
the driver. This feature was originally an extension that was later promoted to the OpenGL
core functionality. You can check for this and other easy-to-access extensions (no function
pointers needed) quickly by using the following GlTools function:

bool gltIsExtSupported(const char *szExtension);

In the case of separate specular color, you might just code something like this:

if(gltIsExtSupported(GL_EXT_separate_specular_color))

RenderOnce();

else

UseMultiPassTechnique();

Here, you call the RenderOnce function if the extension (or feature) is supported, and the
UserMultiPassTechnique function to render an alternate (drawn twice and blended
together) and slower way to achieve the same effect.

Using New Entrypoints
A more complex extension example comes from the IMAGING sample program in
Chapter 7. In this case, the optional imaging subset not only is missing from the Windows
version of gl.h, but is optional in all subsequent versions of OpenGL as well. This is an
example of the type of feature that has to be there, or there is no point in continuing.
Thus, you first check for the presence of the imaging subset by checking for its extension
string:

// Check for imaging subset, must be done after window

// is created or there won’t be an OpenGL context to query

if(gltIsExtSupported(“GL_ARB_imaging”) == 0)

{

printf(“Imaging subset not supported\r\n”);

return 0;

}

The function prototype typedefs for the functions used are found in glext.h, and you use
them to create function pointers to each of the functions you want to call. On the
Macintosh platform, the standard system headers already contain these functions:

CHAPTER 19 Wiggle: OpenGL on Windows678

#ifndef __APPLE__

// These typdefs are found in glext.h

PFNGLHISTOGRAMPROC glHistogram = NULL;

PFNGLGETHISTOGRAMPROC glGetHistogram = NULL;

PFNGLCOLORTABLEPROC glColorTable = NULL;

PFNGLCONVOLUTIONFILTER2DPROC glConvolutionFilter2D = NULL;

#endif

Now you use the glTools function gltGetExtensionPointer to retrieve the function
pointer to the function in question. This function is simply a portability wrapper for
wglGetProcAddress on Windows and an admittedly more complex method on the Apple
of getting the function pointers:

#ifndef __APPLE__

glHistogram = gltGetExtensionPointer(“glHistogram”);

glGetHistogram = gltGetExtensionPointer(“glGetHistogram”);

glColorTable = gltGetExtensionPointer(“glColorTable”);

glConvolutionFilter2D = gltGetExtensionPointer(“glConvolutionFilter2D”);

#endif

Then you simply use the extension as if it were a normally supported part of the API:

// Start collecting histogram data, 256 luminance values

glHistogram(GL_HISTOGRAM, 256, GL_LUMINANCE, GL_FALSE);

glEnable(GL_HISTOGRAM);

Auto-Magic Extensions
Most normal developers would fairly quickly grow weary of always having to query for
new function pointers at the beginning of the program. There is a faster way, and in fact,
we used this shortcut for all the samples in this book. The GLEE library (GL Easy
Extension library) is included in the \shared directory with the source distribution for the
book on our Web site. Automatically gaining access to all the function pointers supported
by the driver is a simple matter of adding glee.c to your project, and glee.h to the top of
your header list.

GLEE is quite clever; the new functions initialize themselves the first time they are called.
This removes the need to perform any specialized initialization to gain access to all the
OpenGL functionality available by a particular driver on Windows. This does not,
however, remove the need to check for which version of OpenGL is currently supported
by the driver. If an entrypoint does not exist in the driver, the GLEE library will simply
return from the function call and do nothing.

OpenGL and WGL Extensions 679

19

WGL Extensions
Several Windows-specific WGL extensions are also available. You access the WGL
extensions’ entrypoints in the same manner as the other extensions—using the
wglGetProcAddress function. There is, however, an important exception. Typically,
among the many WGL extensions, only two are advertised by using
glGetString(GL_EXTENSIONS). One is the swap interval extension (which allows you to
synchronize buffer swaps with the vertical retrace), and the other is the WGL_ARB_exten-
sions_string extension. This extension provides yet another entrypoint that is used
exclusively to query for the WGL extensions. The ARB extensions string function is proto-
typed like this:

const char *wglGetExtensionsStringARB(HDC hdc);

This function retrieves the list of WGL extensions in the same manner in which you previ-
ously would have used glGetString. Using the wglext.h header file, you can retrieve a
pointer to this function like this:

PFNWGLGETEXTENSIONSSTRINGARBPROC *wglGetExtensionsStringARB;

wglGetExtensionsStringARB = (PFNWGLGETEXTENSIONSSTRINGARBPROC)

wglGetProcAddress(“wglGetExtensionsStringARB”);

glGetString returns the WGL_ARB_extensions_string identifier, but often developers skip
this check and simply look for the entrypoint, as shown in the preceding code fragment.
This approach usually works with most OpenGL extensions, but you should realize that
this is, strictly speaking, “coloring outside the lines.” Some vendors export extensions on
an “experimental” basis, and these extensions may not be officially supported, or the
functions may not function properly if you skip the extension string check. Also, more
than one extension may use the same function or functions. Testing only for function
availability provides no information on the availability or the reliability of the specific
extension or extensions that are supported.

Extended Pixel Formats
Perhaps one of the most important WGL extensions available for Windows is the
WGL_ARB_pixel_format extension. This extension provides a mechanism that allows you to
check for and select pixel format features that did not exist when PIXELFORMATDESCRIPTOR
was first created. For example, if your driver supports multisampled rendering (for full-
scene antialiasing, for example), there is no way to select a pixel format with this support
using the old PIXELFORMATDESCRIPTOR fields. If this extension is supported, the driver
exports the following functions:

BOOL wglGetPixelFormatAttribivARB(HDC hdc, GLint iPixelFormat,

GLint iLayerPlane, GLuint nAttributes,

const GLint *piAttributes, GLint *piValues);

CHAPTER 19 Wiggle: OpenGL on Windows680

BOOL wglGetPixelFormatAttribfvARB(HDC hdc, GLint iPixelFormat,

GLint iLayerPlane, GLuint nAttributes,

const GLint *piAttributes, GLfloat *pfValues);

These two variations of the same function allow you to query a particular pixel format
index and retrieve an array containing the attribute data for that pixel format. The first
argument, hdc, is the device context of the window that the pixel format will be used for,
followed by the pixel format index. The iLayerPlane argument specifies which layer plane
to query (0 on Vista, or if your implementation does not support layer planes). Next,
nAttributes specifies how many attributes are being queried for this pixel format, and the
array piAttributes contains the list of attribute names to be queried. The attributes that
can be specified are listed in Table 19.3. The final argument is an array that will be filled
with the corresponding pixel format attributes.

TABLE 19.3 Pixelformat Attributes

Constant Description

WGL_NUMBER_PIXEL_FORMATS_ARB Number of pixel formats for this device.

WGL_DRAW_TO_WINDOW_ARB Nonzero if the pixel format can be used with a window.

WGL_DRAW_TO_BITMAP_ARB Nonzero if the pixel format can be used with a memory

Device Independent Bitmap (DIB).

WGL_DEPTH_BITS_ARB Number of bits in the depth buffer.

WGL_STENCIL_BITS_ARB Number of bits in the stencil buffer.

WGL_ACCELERATION_ARB One of the values in Table 19.4 that specifies which, if any,

hardware driver is used.

WGL_NEED_PALETTE_ARB Nonzero if a palette is required.

WGL_NEED_SYSTEM_PALETTE_ARB Nonzero if the hardware supports one palette only in

256-color mode.

WGL_SWAP_LAYER_BUFFERS_ARB Nonzero if the hardware supports swapping layer planes.

WGL_SWAP_METHOD_ARB Method by which the buffer swap is accomplished for

double-buffered pixel formats. It is one of the values listed in

Table 19.5.

WGL_NUMBER_OVERLAYS_ARB Number of overlay planes.

WGL_NUMBER_UNDERLAYS_ARB Number of underlay planes.

WGL_TRANSPARENT_ARB Nonzero if transparency is supported.

WGL_TRANSPARENT_RED_VALUE_ARB Transparent red color.

WGL_TRANSPARENT_GREEN_VALUE_ARB Transparent green color.

WGL_TRANSPARENT_BLUE_VALUE_ARB Transparent blue color.

WGL_TRANSPARENT_ALPHA_VALUE_ARB Transparent alpha color.

WGL_SHARE_DEPTH_ARB Nonzero if layer planes share a depth buffer with the

main plane.

WGL_SHARE_STENCIL_ARB Nonzero if layer planes share a stencil buffer with the

main plane.

WGL_SHARE_ACCUM_ARB Nonzero if layer planes share an accumulation buffer with

the main plane.

OpenGL and WGL Extensions 681

19

TABLE 19.3 Continued

Constant Description

WGL_SUPPORT_GDI_ARB Nonzero if GDI rendering is supported (front buffer only).

WGL_SUPPORT_OPENGL_ARB Nonzero if OpenGL is supported.

WGL_DOUBLE_BUFFER_ARB Nonzero if double buffered.

WGL_STEREO_ARB Nonzero if left and right buffers are supported.

WGL_PIXEL_TYPE_ARB WGL_TYPE_RGBA_ARB for RGBA color modes;

WGL_TYPE_COLORINDEX_ARB for color index mode.

WGL_COLOR_BITS_ARB Number of bit planes in the color buffer.

WGL_RED_BITS_ARB Number of red bit planes in the color buffer.

WGL_RED_SHIFT_ARB Shift count for red bit planes.

WGL_GREEN_BITS_ARB Number of green bit planes in the color buffer.

WGL_GREEN_SHIFT_ARB Shift count for green bit planes.

WGL_BLUE_BITS_ARB Number of blue bit planes in the color buffer.

WGL_BLUE_SHIFT_ARB Shift count for blue bit planes.

WGL_ALPHA_BITS_ARB Number of alpha bit planes in the color buffer.

WGL_ALPHA_SHIFT_ARB Shift count for alpha bit planes.

WGL_ACCUM_BITS_ARB Number of bit planes in the accumulation buffer.

WGL_ACCUM_RED_BITS_ARB Number of red bit planes in the accumulation buffer.

WGL_ACCUM_GREEN_BITS_ARB Number of green bit planes in the accumulation buffer.

WGL_ACCUM_BLUE_BITS_ARB Number of blue bit planes in the accumulation buffer.

WGL_ACCUM_ALPHA_BITS_ARB Number of alpha bit planes in the accumulation buffer.

WGL_AUX_BUFFERS_ARB Number of auxiliary buffers.

TABLE 19.4 Acceleration Flags for WGL_ACCELERATION_ARB

Constant Description

WGL_NO_ACCELERATION_ARB Software rendering, no acceleration

WGL_GENERIC_ACCELERATION_ARB Acceleration via an MCD driver

WGL_FULL_ACCELERATION_ARB Acceleration via an ICD driver

TABLE 19.5 Buffer Swap Values for WGL_SWAP_METHOD_ARB

Constant Description

WGL_SWAP_EXCHANGE_ARB Swapping exchanges the front and back buffers.

WGL_SWAP_COPY_ARB The back buffer is copied to the front buffer.

WGL_SWAP_UNDEFINED_ARB The back buffer is copied to the front buffer, but the back buffer

contents remain undefined after the buffer swap.

There is, however, a Catch-22 to these and all other OpenGL extensions. You must have a
valid OpenGL rendering context before you can call either glGetString or
wglGetProcAddress. This means that you must first create a temporary window, set a pixel

CHAPTER 19 Wiggle: OpenGL on Windows682

format (we can actually cheat and just specify 1, which will be the first hardware acceler-
ated format) and then obtain a pointer to one of the wglGetPixelFormatAttribARB func-
tions. A convenient place to do this might be the splash screen or perhaps an initial
options dialog box that is presented to the user. You should not, however, try to use the
Windows desktop because your application does not own it!

The following simple example queries for a single attribute—the number of pixel formats
supported—so that you know how many you may need to look at:

int attrib[] = { WGL_NUMBER_PIXEL_FORMATS_ARB };

int nResults[0];

wglGetPixelFormatAttributeivARB(hDC, 1, 0, 1, attrib, nResults);

// nResults[0] now contains the number of exported pixel formats

For a more detailed example showing how to look for a specific pixel format (including a
multisampled pixel format), see the SPHEREWORLD32 sample program coming up next.

Win32 to the Max
SPHEREWORLD32 is a Win32-specific version of the Sphere World example we have
returned to again and again throughout this book. SPHEREWORLD32 allows you to select
windowed or full-screen mode, changes the display settings if necessary, and detects and
allows you to select a multisampled pixel format. Finally, you use the Windows-specific
font features to display the frame rate and other information onscreen. When in full-
screen mode, you can even Alt+Tab away from the program, and the window will be mini-
mized until reselected.

The complete source to this “ultimate” Win32 sample program contains extensive
comments to explain every aspect of the program. In the initial dialog box that is
displayed (see Figure 19.7), you can select full-screen or windowed mode, multisampled
rendering (if available), and whether you want to enable the swap interval extension. A
sample screen of the running program is shown in Figure 19.8.

OpenGL and WGL Extensions 683

19

FIGURE 19.7 The initial Options dialog box for SPHEREWORLD32.

FIGURE 19.8 Output from the SPHEREWORLD32 sample program.

Summary
This chapter introduced you to using OpenGL on the Win32 platform. You read about the
different driver models and implementations available for Windows and what to watch.
You also learned how to enumerate and select a pixel format to get the kind of hardware-
accelerated or software rendering support you want. You’ve now seen the basic framework
for a Win32 program that replaces the GLUT framework, so you can write true native
Win32 (actually, all this works under Win64 too!) application code. We also showed
you how to create a full-screen window for games or simulation-type applications.
Additionally, we discussed some of the Windows-specific features of OpenGL on Windows,
such as support for TrueType fonts and multiple rendering threads.

Finally, we offer in the source code the ultimate OpenGL on Win32 sample program,
SPHEREWORLD32. This program demonstrated how to use a number of Windows-specific
features and WGL extensions if they were available. It also demonstrated how to construct
a well-behaved program that will run on everything from an old 8-bit color display to the
latest 32-bit full-color mega-3D game accelerator.

CHAPTER 19 Wiggle: OpenGL on Windows684

CHAPTER 20

OpenGL on Mac OS X

by Richard S. Wright Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Choose appropriate pixel formats aglChoosePixelFormat

for OpenGL rendering

Manage OpenGL drawing contexts aglCreateContext/aglDestroyContext/

aglSetCurrentContext/aglSetDrawable

Do double-buffered drawing aglSwapBuffers

Create bitmap text fonts aglUseFont

OpenGL is the native and preferred 3D rendering API on the Mac OS X platform. In fact,
OpenGL is used at the lowest levels of the operating system for the desktop, GUI, and
Mac OS X’s own 2D graphics APIs and compositing engine (Quartz). The importance of
OpenGL on the Mac platform cannot be overstated. With its favored status in the eyes of
Apple (somewhat analogous to Direct3D’s status with Microsoft), it enjoys significant
support, and investment by Apple in continual tuning and extension to the API.

There are four programming interfaces to OpenGL on the Mac, each with its own person-
ality. Which one you use will vary greatly depending on how you prefer to create applica-
tions on the Mac, and for your specific rendering needs. Table 20.1 lists these four
interfaces. We will cover the first three of these in some detail.

686 CHAPTER 20 OpenGL on Mac OS X

TABLE 20.1 OpenGL Interface Technologies in OS X

Name Description

GLUT Provides a complete framework for simple rendering-based applications.

AGL Provides the OpenGL interface to developers using Carbon as their framework.

NSOpenGL Provides the OpenGL interface for developers using the Cocoa object-oriented

framework for their applications.

CGL Is the lowest-level OpenGL interface, available to all application technologies.

Both the AGL and NSOpenGL interfaces are layered on top of CGL.

We use these interfaces to do the setup for OpenGL in a window, or on a display device.
After that is out of the way, OpenGL is just OpenGL!

Remember, this chapter is not about OS X programming, but about using OpenGL on OS
X. If you are brand new to the Mac, the GLUT section should get you going. The sections
following that will assume some prior Mac programming experience. You can probably
still get things up and going, but the material will offer less insight into how to develop
on OS X than it will on how to use OpenGL.

GLUT
Both the simplest and most portable access to OpenGL on the Mac comes via the GLUT
library. Nearly all the samples in this book are written using the GLUT library, because it is
available for not only the Mac, but also Windows, and nearly every variant of UNIX as
well. GLUT is included in OS X automatically, so there is nothing else to install besides
the standard Apple developer tools. When browsing the source distribution for the book,
you’ll find a /Projects/Apple folder containing Xcode project files for every chapter,
except the non–Apple operating system specific chapters in Part III, “The Apocrypha.” For
your reference, all the screen shots in this chapter were made using Xcode version 2.4.1,
running under OS X version 10.4.8.

Setting Up a GLUT Project
Since the majority of examples in this book are GLUT projects, we aren’t going to go
through the actual programming involved in using GLUT, because this was pretty well
covered in Chapter 2, “Using OpenGL,” not to mention nearly every chapter since! We
will, however, at least walk you through setting up a brand-new Xcode GLUT project. This
is undoubtedly the simplest way to get going if you just want to experiment with OpenGL
on a Mac. Less experienced programmers seeking to get started right away with OpenGL
should definitely start with GLUT. More experienced Mac programmers can probably skip
right ahead to one of the next sections, OpenGL with Carbon or OpenGL with Cocoa.

To begin with, start Xcode (Xcode is Apple’s free development environment for the Mac,
and comes on every OS X installation CD). Select New Project from the main menu, and
specify a Cocoa application as shown in Figure 20.1.

FIGURE 20.1 GLUT-based programs start life as a Cocoa application.

GLUT is actually layered on top of the Cocoa interface, which we’ll discuss later. The New
Project Assistant will then create a simple Cocoa skeleton application for us. We’ll need to
make some changes to the defaults, however, before we can get started coding.

Application Frameworks
To begin with, we need to add a couple of application frameworks. An application frame-
work is a dynamically loaded “plug-in” for Mac applications. If you are already familiar
with Windows programming, these are analogous to DLLs, except they also contain all the
headers and other resources you need to program with them. To add a library of function-
ality to your application, you add that library’s framework. A large number of frameworks
ship standard on OS X, including GLUT and OpenGL.

To see the default frameworks included in your project, expand the Frameworks folder in
the Groups & Files pane, as shown in Figure 20.2.

To add the GLUT and OpenGL frameworks, right-click (or Ctrl-click) on the Frameworks
folder, select Add, and then select Existing Frameworks from the pop-up menu. The frame-
works are stored in the /System/Library/Frameworks folder. Frameworks are actually
whole folders containing all the data needed to include the library into your application.
Select and add both the GLUT and the OpenGL frameworks. You can also perform a multi-
ple selection by holding down the Apple key while clicking the framework name.

GLUT 687

20

CHAPTER 20 OpenGL on Mac OS X688

FIGURE 20.2 The initial project screen for a new GLUT-based program.

Ditching Cocoa
Finally, we just need the source code for our GLUT-based program. First we have to get rid
of the default Cocoa source module created for us. Click on the main.m file in the Other
Sources folder, also shown in Figure 20.2, and press the Delete key. A confirmation dialog
will appear; click Delete References & Files. This not only removes the file from the
project, but deletes the file itself.

Of course, now we have no source code for our program! You can add a new or existing C
or C++ file to the project with a right-click (or Ctrl-click) on the Other Sources folder. You
can select one of the sample programs in source distribution or create your own fresh new
program.

If you are not using our gltools helper functions and classes, you need to know what
standard headers you need to include for GLUT. These headers below bring in OpenGL,
the utility library, and GLUT functions:

#include <OpenGL/gl.h> // Apple OpenGL headers

#include <OpenGL/glu.h> // OpenGL Utilities

#include <Glut/glut.h> // Apple’s Implementation of GLUT

Finally, if you are new to the Mac platform, one of the most frustrating things to figure
out on your own is where files go. If you perform a standard C runtime fopen, for
example, where is the working directory? For GLUT-based programs, the current active
directory is located inside the application bundle in the /Resources folder. This folder is
not set to the current working directory until after you call glutInit. If you are going to
load textures or data files, you place these files here (see most of the previous chapters’
sample programs for an example of this).

To open an application’s bundle and look inside, right-click (or Ctrl-click) and select Show
Package Contents. Application bundles on the Mac are nothing more than a standard
application folder hierarchy. You can also directly add files to this folder as part of the
Xcode build process. Right-click on the Resources folder and select Add Existing Files.
Select any data files or textures you want packaged automatically, and you’re ready to go!

OpenGL with Carbon
Carbon is the name of an application development technology for OS X. Carbon is essen-
tially just an API, but it is a comprehensive API used for creating C and C++ applications
on Mac OS X. Carbon was the primary means by which application developers moved old
OS 9 applications to the new more modern and UNIX-based OS X. Carbon-based applica-
tions (I don’t know why, but I just love that term!) usually access OpenGL via the agl
(Apple GL) framework.

We’ll begin our first sample program, CARBONGL, with a simple Carbon-based program
that displays an empty window. To make things a little more interesting, we’ll port our
vertex buffer object–based THUNDERBIRD sample program in Chapter 11 from GLUT to
Carbon.

Setting Up for OpenGL
Before we can begin, we must add the OpenGL framework just as we did in the preceding
section. However, instead of GLUT, you also need to add the AGL framework. The AGL
library is Apple’s API glue that brings OpenGL into Carbon managed windows. Adding
these frameworks brings in the libraries during the link phase when you build your Xcode
projects. To include the functions from these libraries, you also need to include these two
headers:

#include <OpenGL/gl.h>

#include <Agl/agl.h>

In all of our GLUT-based sample programs, the /Resources folder inside the application
bundle was automatically set as the default working directory for the program. This is
extremely convenient, but not the default for OS X programs. GLUT did the heavy lifting
for us, but now we must have a little cheat to set this ourselves. These first few lines after
our main function will do the trick:

int main(int argc, char* argv[])

{

. . .

// Little cheat to get working directory back

// to /Resources like it is in GLUT

char *parentdir;

char *c;

OpenGL with Carbon 689

20

parentdir = strdup(argv[0]);

c = (char*) parentdir;

while (*c != ‘\0’) // go to end

c++;

while (*c != ‘/’) // back up to parent

c—;

*c++ = ‘\0’; // cut off last part (binary name)

// Change to Resources directory. Any files need to be placed there

chdir(parentdir);

chdir(“../Resources”);

free(parentdir);

There are four main things that every windowed OpenGL program must perform: setup,
shutdown, rendering, and handling window size changes. In GLUT we registered callback
functions for these tasks that were called at the appropriate time. In every platform-
specific program these same tasks are still the foundation of a sound rendering framework.
Setup occurs sometime after the window is created (often immediately), with shutdown
occurring when the window is being destroyed. OpenGL rendering is wired into the
normal event-driven paint or draw messages. Finally, when notified that a window has
changed size, it’s time to reset the viewport and potentially the projection as well.

With Carbon, we can register for notifications of some of these events. We’ll bring
OpenGL to life right after we create the window. Then we register for the following carbon
events in the window’s event handler: kEventWindowClose, kEventWindowDrawContent, and
kEventWindowBoundsChanged. Listing 20.1 shows a modified version of the standard
Carbon window creation code produced by the New Project Assistant in Xcode. This
specific code is used in our CARBONGL sample program for this chapter. We have added
tokens for our additional event notifications, and note the call to SetupGL that is called
right after we have created the window. We are going to look at that next.

LISTING 20.1 Initializing the Carbon Window

static OSStatus HandleNew()

{

OSStatus err;

WindowRef window;

static const EventTypeSpec kWindowEvents[] =

{

{ kEventClassCommand, kEventCommandProcess },

{ kEventClassWindow, kEventWindowDrawContent }, // when to draw

CHAPTER 20 OpenGL on Mac OS X690

LISTING 20.1 Continued

{ kEventClassWindow, kEventWindowClose }, // window being closed

{ kEventClassWindow, kEventWindowBoundsChanged }// window resized

};

Rect windowRect;

int windowAttributes;

// Set window dimensions here

SetRect(&windowRect, 10, 60, 800, 600);

// Set Window attributes

windowAttributes =

kWindowStandardHandlerAttribute | kWindowCloseBoxAttribute

kWindowCollapseBoxAttribute |

kWindowResizableAttribute | kWindowStandardDocumentAttributes;

// Create the Window

CreateNewWindow(kDocumentWindowClass, windowAttributes,

&windowRect, &window);

SetWTitle(window, “\pCarbonGL”);

// Install a command handler on the window. We don’t use this handler

// yet, but nearly all Carbon apps will need to handle commands, so this

// saves everyone a little typing.

InstallWindowEventHandler(window, GetWindowEventHandlerUPP(),

GetEventTypeCount(kWindowEvents), kWindowEvents,

NULL, NULL);

// Position new windows in a staggered arrangement on the main screen

RepositionWindow(window, NULL, kWindowCascadeOnMainScreen);

SetupGL(window);

ChangeSize(800, 600);

// The window was created hidden, so show it

ShowWindow(window);

CantCreateWindow:

return err;

}

OpenGL with Carbon 691

20

Setting the Pixel Format
Before OpenGL can be initialized for a window, you must first select an appropriate pixel
format. A pixel format describes the hardware buffer configuration for 3D rendering, things
like the depth of the color buffer, the size of the stencil buffer, and whether the buffer is
onscreen (the default) or offscreen. The pixel format is described by the AGL data type
AGLPixelFormat.

To select an appropriate pixel format for your needs, you first construct an array of integer
attributes. For example, the following array requests a double-buffered pixel format with
red, green, blue, and alpha components in the destination buffer, and a 16-bit depth buffer.
You may get other attributes as well, but you are essentially saying these are all you really
care about:

static GLint glAttributes[] = {

AGL_DOUBLEBUFFER, GL_TRUE, // Double buffered

AGL_RGBA, GL_TRUE, // Four-component color

AGL_DEPTH_SIZE, 16, // 16-bit (at least) depth buffer

AGL_NONE }; // Terminator

Note that you must terminate the array with AGL_NONE. Next, you pass this array to
aglChoosePixelFormat. This function searches for an appropriate specific pixel format that
matches your request as closely as possible. This returns either a valid AGLPixelFormat, or
NULL if the request could not be fulfilled.

AGLPixelFormat openGLFormat = aglChoosePixelFormat(NULL, 0, glAttributes);

if(openGLFormat == NULL)

// Something has gone wrong...deal with it!

Most attributes are followed by either a Boolean flag or an integer value. For example,
AGL_DEPTH_SIZE is expected to be followed by an integer value that specifies the number
of bits desired for the depth buffer. The available attributes and their meanings are listed
in Table 20.2.

TABLE 20.2 AGL Pixel Format Attribute List Constants

Constant Description

AGL_NONE This constant terminates the attribute list.

AGL_ALL_RENDERERS Select the pixelformat from all available renderers, including non-confor-

mat or special-purpose renderers.

AGL_BUFFER_SIZE The value following it is the sum of all the color bits in the color buffer.

Ignored if AGL_RGBA is also in the list.

AGL_LEVEL The value following it specifies the number of overlay planes desired, or if

negative the number of underlay planes.

AGL_RGBA The value following is GL_TRUE if four-component color values are to be

used, GL_FALSE for color index mode.

AGL_DOUBLEBUFFER The value following is GL_TRUE if double buffering is desired, GL_FALSE if

only a single-buffered format is required.

CHAPTER 20 OpenGL on Mac OS X692

TABLE 20.2 Continued

Constant Description

AGL_STEREO If the value following is GL_TRUE, the color buffers exist in left-right pairs.

AGL_AUX_BUFFERS The value following is the number of auxiliary buffers available.

AGL_RED_SIZE The value following is the desired size of the number of red component

bits in a GL_RGBA pixel format.

AGL_GREEN_SIZE The value following is the desired size of the number of green component

bits in a GL_RGBA pixel format.

AGL_BLUE_SIZE The value following is the desired size of the number of blue component

bits in a GL_RGBA pixel format.

AGL_ALPHA_SIZE The value following is the desired size of the number of alpha component

bits in a GL_RGBA pixel format.

AGL_DEPTH_SIZE The value following is the desired number of bits in the depth buffer.

AGL_STENCIL_SIZE The value following is the desired number of bits in the stencil buffer.

AGL_ACCUM_RED_SIZE The value following is the number of bits of the red component in the

accumulation buffer.

AGL_ACCUM_GREEN_SIZE The value following is the number of bits of the green component in the

accumulation buffer.

AGL_ACCUM_BLUE_SIZE The value following is the number of bits of the blue component in the

accumulation buffer.

AGL_ACCUM_ALPHA_SIZE The value following is the number of bits of the alpha component in the

accumulation buffer.

AGL_PIXEL_SIZE The value following is the total number of bits used to store a single pixel

in the frame buffer.

AGL_MINIMUM_POLICY This flag specifies never to select a pixel format containing buffers smaller

than specified (for example, asking for a 16-bit depth buffer with

AGL_DEPTH_SIZE).

AGL_MAXIMUM_POLICY This flag specifies that the largest available buffer should be selected if a

nonzero buffer size is requested (for example, you might get a 32-bit

depth buffer, even though you only asked for 16 bits).

AGL_OFFSCREEN Set to GL_TRUE to select only a renderer capable of rendering to an

off-screen buffer.

AGL_FULLSCREEN Set to GL_TRUE to request a pixel format that can be used to render to a

full-screen device. This attribute requires a Gdevice pointer be used in

aglChoosePixelformat.

AGL_SAMPLE_BUFFERS_ARB The value following this attribute is the number of multisample buffers.

AGL_SAMPLES_ARB The value following is the number of samples per multisample buffer.

AGL_AUX_DEPTH_STENCIL The value following is the independent depth and/or stencil buffers for

the auxiliary buffer.

AGL_COLOR_FLOAT Set the value following this field to GL_TRUE to request a floating-point

color buffer.

AGL_MULTISAMPLE This value hints to the driver that you prefer multisampling.

AGL_SUPERSAMPLE This value hints to the driver that you prefer supersampling.

AGL_SAMPLE_ALPHA This attribute requests alpha filtering when multisampling.

OpenGL with Carbon 693

20

The Rendering Context
After an appropriate pixel format is selected, it is used to create an OpenGL rendering context.
The rendering context can be thought of as a handle to a live and running OpenGL state
machine and renderer; it is the conduit through which your OpenGL commands reach the
hardware. The AGLContext data type represents the AGL OpenGL rendering context:

static AGLContext openGLContext = NULL; // OpenGL rendering context

In our CARBONGL sample program, this is a module global variable in the main.cpp file.
The setup after the selection of the pixel format continues:

// Create the context

openGLContext = aglCreateContext(openGLFormat, NULL);

if(openGLContext == NULL)

return false; // Handle failure gracefully please!

// No longer needed

aglDestroyPixelFormat(openGLFormat);

// Point to window and make current

aglSetDrawable(openGLContext, GetWindowPort(windowRef));

aglSetCurrentContext(openGLContext);

// OpenGL is up...go load up geometry and stuff

SetupRC();

The aglCreateContext takes the pixel format as the first argument, and NULL as the second
parameter. This second parameter may optionally be a preexisting rendering context that
will share its object state (all display lists, texture objects, vertex buffers, etc.) with the new
context. After the rendering context is created, the pixel format is no longer needed, and
can be destroyed with aglDestroyPixelFormat.

Finally, we set the rendering context to point to our carbon window, and make it current:

// Point to window and make current

aglSetDrawable(openGLContext, GetWindowPort(windowRef));

aglSetCurrentContext(openGLContext);

The AGL interface allows for multiple OpenGL rendering contexts, each of which can be
set to render to different windows. However, only one context may be current at any one
time. All OpenGL commands on the current thread will render to whichever rendering
context is currently current.

CHAPTER 20 OpenGL on Mac OS X694

Now that OpenGL is alive and well, it is ready to accept commands. The SetupRC function
is in thundergl.cpp, which has been borrowed from the THUNDERGL sample program in
Chapter 11, “It’s All About the Pipeline: Faster Geometry Throughput.” If you recall, this
function loads all the needed textures, and sets up the vertex buffer objects for the
Thunderbird model.

Cleanup
Before we get to rendering, let’s talk about cleanup while the startup is still fresh on your
mind. When the window is being destroyed, we first want to call the ShutdownRC function
in thundergl.cpp to free the texture objects and other data:

ShutdownRC();

Then we must set the current context to NULL, and set the context’s drawable to NULL.
Finally, we can destroy the context altogether:

// Unbind to context

aglSetCurrentContext (NULL);

// Remove drawable

aglSetDrawable (openGLContext, NULL);

aglDestroyContext (openGLContext);

The Big Event!
Now it’s time for the big event, or perhaps events would be more appropriate. In the event
handler for the CARBONGL sample program’s main window, there are three events that
pertain directly to our rendering needs. The first is received whenever the window changes
size:

// Size of window has changed

case kEventWindowBoundsChanged:

if(openGLContext)

{

aglUpdateContext(openGLContext);

GetWindowPortBounds(window, &windowRect);

ChangeSize(windowRect.right - windowRect.left,

windowRect.bottom - windowRect.top);

InvalWindowRect(window, &windowRect);

}

break;

OpenGL with Carbon 695

20

In addition to calling ChangeSize (which, as you recall from THUNDERGL, simply resets
the viewport and projection), you must also call aglUpdateContext anytime something
about the window or screen changes. This includes size changes, and screen resolution
mode changes. The call to the function InvalWindowRect ensures that the window gets
redrawn whenever the window size changes. Drawing or redrawing (there is no real differ-
ence!) is handled by the following bit of code:

// Draw/Render contents

case kEventWindowDrawContent:

{

RenderScene();

aglSwapBuffers(openGLContext);

GetWindowPortBounds(window, &windowRect);

InvalWindowRect(window, &windowRect);

}

break;

The RenderScene function is again simply brought over from the GLUT-based THUN-
DERGL sample program. Since we have previously established a double-buffered context,
we must issue a command to perform the buffer swap after rendering:

aglSwapBuffers(openGLContext);

The only argument to this function is the previously created OpenGL rendering context
identifier. In order to facilitate the animated effect, the last thing the drawing handler
does is request another draw event!

GetWindowPortBounds(window, &windowRect);

InvalWindowRect(window, &windowRect);

This provides a fairly high frame rate, rendering about as fast as is possible without
hacking outside of the carbon event framework. One of the reasons we do this, really, is so
that that we have something to show off in the next section! In the meantime, you can
see the fruits of our labor in Figure 20.3.

CHAPTER 20 OpenGL on Mac OS X696

FIGURE 20.3 The CARBONGL sample showing THUNDERGL ported from GLUT to native
Carbon.

Bitmap Fonts
Another useful feature of the AGL framework is support for bitmap fonts in OpenGL.
Essentially, the function aglUseFont will take an existing font and convert it into a series
of display lists, each containing a glBitmap call (see Chapter 7, “Imaging with OpenGL”)
for a single character, followed by an advance of the raster position. Setting up a set of
font bitmaps could not be much easier:

short fontID;

GetFNum((const unsigned char *)”/pTimes”, &fontID);

fontStart = glGenLists(96);

aglUseFont(openGLContext, fontID, bold, 14, ‘ ‘, 96, fontStart);

Setting Up the Font
On OS X, fonts are identified by a unique short integer. The GetFNum takes the font face
name, and returns this value. Before generating the font bitmap display lists, we call
glGenLists to reserve a range of display list IDs (see Chapter 11) large enough to hold
the range of characters we are interested in. The aglUseFont function is listed here for
convenience:

OpenGL with Carbon 697

20

GLboolean aglUseFont(AGLcontext ctx, GLint fontID, Style face,

GLint size, GLint first, GLint count, GLint base);

The first two parameters are the AGL OpenGL rendering context pointer, and the font
identifier. The face parameter can be one of the typical font face styles: normal, bold,
italic, underline, outline, shadow, condense, or extend. These face styles can also be
logically or’d together (e.g., italic | underline). These are followed by the point size of
the font.

The last three parameters specify the first character to begin with (in our sample, we
started with the space ‘ ‘, the number of characters to include in our font set (96 which
is usually the majority of normally printable characters), and finally the display list ID to
use as the starting point for our list of display lists.

Using the Font
In the CARBONGLFONTS sample program, we have reused our previous carbon frame-
work, but have added a frame rate display. The frame rate is simply the average number of
frames rendered per second, estimated by averaging the time to render 100 frames. This is
done repeatedly, and a static string containing the information is displayed constantly. To
begin, we make sure the current color is white, and set the raster position:

glColor3f(1.0f, 1.0f, 1.0f); // Just in case it gets changed

glWindowPos2f(10.0f, 10.0f);

Font rendering via this mechanism is based on display lists, so we must be careful when
mixing these font bitmaps with any other code that uses display lists. First we must set the
display list base to the beginning of our display list range, but subtract the first character’s
ASCII value.

glListBase(fontStart - ‘ ‘);

Then we use the glCallLists function to render an array of display list names. This array
just happens to be the ASCII text of the string we want to display. Each character’s ASCII
numerical value is added to the list base value, and the resulting display list is executed:

glCallLists(strlen(cBuffer), GL_BYTE, cBuffer);

The result is a sequence of display lists being called, each of which displays a single letter
from the string and advances the raster position for the next letter. The final result is seen
in Figure 20.4, which shows a single frame of the animation along with the average frame
rate of the last 100 frames displayed in the lower-left corner.

CHAPTER 20 OpenGL on Mac OS X698

FIGURE 20.4 The CARBONGLFONT sample with frame rate display.

OpenGL with Cocoa
There are many programming languages available to developers on Mac OS X. One very
popular language on the Mac (but not quite so popular elsewhere) is Objective-C. To the
uninitiated, Objective-C may appear as a strange blend of C and C++ with some
completely new syntax thrown in. But Objective-C is also the foundation of a very
popular application development technology called Cocoa.

Cocoa is best described as both a collection of application framework classes and a visual
programming paradigm. Developers do quite a bit of work in Interface Builder, designing
user interfaces, assigning properties, and even making connections between events.
Objective-C classes are subclassed from controls, or are created from scratch to add
application functionality. Fortunately, OpenGL is a first-class citizen in this development
environment.

Creating a Cocoa Program
A Cocoa-based program can be created using the New Project Assistant in Xcode. Figure
20.1 shows how we did this when we created our first GLUT-based program. This time,
however, we will not replace the generated project with GLUT-based code. Figure 20.5
shows our newly created COCOAGL project.

OpenGL with Cocoa 699

20

FIGURE 20.5 The initial COCOAGL project.

Adding an OpenGL View
Cocoa applications store resources and GUI layouts in a NIB file (which for historic
reasons stands for NEXTSTEP Interface Builder). Double-click the MainMenu.nib file under
the Resources folder. This will start Interface Builder and open the main nib for editing.
You should see a screen similar to that shown in Figure 20.6, with the main window
already open.

CHAPTER 20 OpenGL on Mac OS X700

FIGURE 20.6 Interface Builder—ready to go!

If the tool palette does not already have the Cocoa-GraphicsView displayed, advance by
clicking the far-right toolbar button. Click and drag an OpenGL view from the palette to
the main window and resize it to fill most of the main window. Just to make the OpenGL
view stand out, we have also changed the main window background to metallic (or
textured, depending on the version of your tools). You can see in Figure 20.7 that we now
have an NSOpenGLView ready to go in the center of the window.

OpenGL with Cocoa 701

20

FIGURE 20.7 A very basic interface window.

Creating a Custom OpenGL Class
The next task is to create a custom class derived from NSOpenGLView and associate it with
the OpenGL view in the window. Click the MainMenu.nib window and click the Classes
button. In the search edit control type NSOpenGLView. Right-click on this class and select
Subclass NSOpenGLView, as shown in Figure 20.8. For this sample program, we will again
be reusing the Thunderbird demo, so call the new subclass ThunderGLView.

FIGURE 20.8 Subclassing the NSOpenGLView.

Right-click again, and select Create Files for ThunderGLView. Save both the
ThunderGLView.h and the ThunderGLView.m files. Finally, we must associate this new
class with the NSOpenGLView in the main window.

To do this, select the NSOpenGLView window and bring up the Inspector (Tools, Show
Inspector on the main menu). Change the combo box on the inspector to Custom Class
and highlight the ThunderGLView class, as shown in Figure 20.9.

CHAPTER 20 OpenGL on Mac OS X702

FIGURE 20.9 Assigning the custom class to the NSOpenGLView.

Now save the interface file and close Interface Builder. Time to write some code!

Wiring It All Together
Back in the Xcode project window, you’ll see the ThunderGLView header and implementa-
tion files. These contain the stubbed definition of the ThunderGLView class, derived from
NSOpenGLView. Interface builder has already wired this class to our OpenGL view in the
main window, and we now only need to add the class framework and OpenGL rendering
code.

The edited header file for the new class is trivial and simply contains a member pointer to
an NSTimer that will be used for animation:

#import <Cocoa/Cocoa.h>

@interface ThunderGLView : NSOpenGLView

{

NSTimer *pTimer;

}

@end

In the implementation file, we add an idle function, and again the same four top-level
rendering tasks wired into the Cocoa framework that every other sample in this book has
needed: initialization, shutdown, render a frame, and handle window size changes. The
entire source to ThunderGLView.m is given in Listing 20.2.

LISTING 20.2 Implementation of the ThunderGLView Class

#import “ThunderGLView.h”

#include <OpenGL/gl.h>

// Functions in ThunderGL.cpp

void SetupRC(void);

void ShutdownRC(void);

void RenderScene(void);

void ChangeSize(int w, int h);

@implementation ThunderGLView

- (void)idle:(NSTimer *)pTimer

{

[self drawRect:[self bounds]];

}

// Do setup

- (void) prepareOpenGL

{

SetupRC();

OpenGL with Cocoa 703

20

LISTING 20.2 Continued

pTimer = [NSTimer timerWithTimeInterval:(0.0) target:self

selector:@selector(idle:) userInfo:nil repeats:YES];

[[NSRunLoop currentRunLoop]addTimer:pTimer forMode:NSDefaultRunLoopMode];

}

// Do cleanup

- (void) clearGLContext

{

ShutdownRC();

}

// Changed size

- (void)reshape

{

NSRect rect = [self bounds];

ChangeSize(rect.size.width, rect.size.height);

}

// Paint

-(void) drawRect: (NSRect) bounds

{

RenderScene();

glFlush(); // All done!

}

@end

Note that we had to declare the following functions, which are in the original
ThunderGL.cpp file:

// Functions in ThunderGL.cpp

void SetupRC(void);

void ShutdownRC(void);

void RenderScene(void);

void ChangeSize(int w, int h);

Fortunately, it is possible to call C and C++ code from Objective-C. There are a few caveats
to doing this, but the least troublesome to follow through on is to keep your C/C++ source
code separate from your Objective-C source code by placing them in different source files,
and provide a C-only API between code modules. It is possible to share C++ classes
between the two languages as well, but many developers find this more trouble than it’s

CHAPTER 20 OpenGL on Mac OS X704

worth. Consequently, we will need to declare the preceding four functions in
thundergl.cpp as having the “C” calling convention.

This is simple to do; we just place the following declarations near the top of
thundergl.cpp:

extern “C” {

void SetupRC(void);

void ShutdownRC(void);

void RenderScene(void);

void ChangeSize(int w, int h);

}

Figure 20.10 shows our completed Cocoa based project.

OpenGL with Cocoa 705

20

FIGURE 20.10 OpenGL in a Cocoa view.

Hang on a Second There!
At this point in time, the astute reader may be imagining the sound of screeching tires on
pavement. Was that a glFlush you saw after RenderScene in Listing 20.2 instead of some
sort of buffer swap call? Indeed it was, and this brings us to an interesting subtlety of
OpenGL on Mac OS X (as well as a nice segue into the next section).

On Mac OS X, the entire desktop is actually OpenGL accelerated. Anytime you are render-
ing with OpenGL, you are always rendering to an offscreen buffer. A buffer swap does
nothing but signal the OS that your rendering is ready to be composited with the rest of
the desktop. You can think of the desktop compositing engine as your front buffer. Thus,
in windowed OpenGL applications (this applies to both Cocoa and Carbon), all OpenGL
windows are really single buffered. Depending on how you look at it, it would also be okay
to say that all OpenGL windows are really double buffered, with the desktop composite
being the front buffer. Pick whichever one helps you sleep best at night! In fact, if you
were to execute a glDrawBuffer(GL_FRONT), the drivers on the Mac actually would fall into
a triple-buffered mode! In reality, all OpenGL windows on the Mac should be treated as
single buffered. The buffer swap calls are really just doing a glFlush, unless you are
working with a full screen context. For this (and many others—the least of which is that
you are bypassing the driver’s own good sense as to when to flush) you should avoid
glFlush in Cocoa views until you have completed all of your OpenGL rendering.

Full-Screen Rendering
Many OpenGL applications will need to render to the entire screen, rather than live
within the confines of a window. This would include many games, media players, Kiosk
hosted applications, and other specialized types of applications. One way to accomplish
this is to simply make a large window that is the size of the entire display. This, however,
is not the most optimal approach.

In the previous section, we discussed the fact that OpenGL windows are copied and
composited into the Mac OS X desktop at either the buffer swap or a call to glFlush or
glFinish. This operation can result in a large amount of memory being moved and oper-
ated on. All of the OpenGL interface technologies listed in Table 20.1 have support for
full-screen rendering. In full-screen mode, the application completely takes over the screen
and no other windows can be displayed until the application releases the screen.
Rendering occurs in the back buffer, and a buffer swap occurs to display the next frame.
Full-screen rendering can be significantly faster than windowed rendering as long as your
performance is not already geometry or CPU bound.

Managing the Display
A handful of the Quartz Display Services functions come in handy when we’re performing
full-screen rendering. We may want to change the display mode, for example; and if not,
we still will need a way to determine the screen resolution for our perspective projection
computations. We cannot rely on window bounds changes because when we’re rendering
to a full-screen context, there actually is no window!

For simplicity, we are going to ignore the complex issue of multiple monitors and display
devices, and restrict our interests to the main display (the one with the menu bar). We

CHAPTER 20 OpenGL on Mac OS X706

must first get a display ID that uniquely identifies a particular display. To get the main
display, this is one simple function call:

CGDirectDisplayID gCGDisplayID = CGMainDisplayID();

The display ID can now be used to query the display services and determine what resolu-
tion the display is currently operating at:

int nScreenWidth = CGDisplayPixelsWide(gCGDisplayID);

int nScreenHeight = CGDisplayPixelsHigh(gCGDisplayID);

If you are content to run full-screen at the default resolution, you can stop there. Each
display mode has again a unique reference. You can search for the best matching display
mode with this function:

CFDictionaryRef refDisplayMode =

CGDisplayBestModeForParameters(

gCGDisplayID, 32, nWidth, nHeight, NULL);

Here we set nWidth and nHeight to the desired screen resolution. As long as
refDisplayMode doesn’t come back as zero, you have a valid identifier for the requested
display mode. Note, you may not get exactly what you want with this function. For
example, if you request a screen resolution of 725×590, you are likely to just get 800×600
since that is the nearest valid display mode.

With a valid display mode in hand, we can change the display mode with a single func-
tion call. However, before you do that, you should capture the display:

CGDisplayCapture(gCGDisplayID);

Capturing the display tells the operating system that your application is in charge of the
display. If you do not call this when you change the display mode, all other running
applications will receive display change notifications, and will likely resize their windows
appropriately. This often leaves a mess on your desktop when your application terminates.
To release the display when your program terminates, call this:

CGReleaseAllDisplays();

Now that you know how to behave yourself when changing display modes, you can do so:

CGDisplaySwitchToMode(gCGDisplayID, refDisplayMode);

When your application terminates, the display mode will automatically be restored. This is
a nice feature, in case your program does happen to crash; it’s just not polite to leave
behind a mess on the desktop.

Full-Screen Rendering 707

20

AGL Full-Screen Support
With the display mode querying and changing out of the way, it’s time to get back to
creating our OpenGL context. Since our last AGL-based program contained a frame rate
display, we will go the AGL route for creating a full-screen rendering context. You will
easily be able to see for yourself the difference in frame rate between a maximized window
and a real full-screen context.

Retrofitting the previous CARBONGL sample program to the new FULLSCREEN sample
program is fairly straightforward. Start by adding a few new variables at the top to hold
the screen width and height, and a flag for whether we want the display mode changed:

static AGLContext openGLContext = NULL; // OpenGL rendering context

static int nScreenWidth = 800; // Set these to what you “want”

static int nScreenHeight = 600;

// Set to false to ignore above and keep current resolution.

static bool bChangeDisplayMode = false;

If the bChangeDisplayMode flag is left false, the values of nScreenWidth and
nScreenHeight are reset to the current display’s resolution. Aside from removing the
kEventWindowBoundsChanged handler, all the changes are in the SetupGL function, shown
in Listing 20.3.

LISTING 20.3 The New AGL-Based Setup for Full-Screen Rendering

bool SetupGL(void)

{

static AGLPixelFormat openGLFormat = NULL; // OpenGL pixel format

static GLint glAttributes[] = {

AGL_FULLSCREEN, // Full-Screen

AGL_NO_RECOVERY,

// Uncomment to get FSAA

// AGL_SAMPLE_BUFFERS_ARB, 1, // (only one supported)

// AGL_SAMPLES_ARB, 4, // Number of samples at a point

AGL_DOUBLEBUFFER, GL_TRUE, // Double buffered

AGL_RGBA, GL_TRUE, // Four-component color

AGL_DEPTH_SIZE, 16, // 16-bit (min) depth buffer

AGL_NONE }; // Terminator

// Get the main display and capture it.

CGDirectDisplayID gCGDisplayID = CGMainDisplayID();

CGDisplayCapture(gCGDisplayID);

CHAPTER 20 OpenGL on Mac OS X708

LISTING 20.3 Continued

// Change display mode if necessary

if(bChangeDisplayMode)

{

CFDictionaryRef refDisplayMode =

CGDisplayBestModeForParameters(

gCGDisplayID, 32, nScreenWidth, nScreenHeight, NULL);

// Screen will revert when this program ends

CGDisplaySwitchToMode(gCGDisplayID, refDisplayMode);

}

// Get the screen resolution (even if we have changed it)

nScreenWidth = CGDisplayPixelsWide(gCGDisplayID);

nScreenHeight = CGDisplayPixelsHigh(gCGDisplayID);

// Initialize OpenGL

// Choose pixelformat based on attribute list, and the main display device

GDHandle gdevice = GetMainDevice();

openGLFormat = aglChoosePixelFormat(&gdevice, 1, glAttributes);

if(openGLFormat == NULL)

return false;

// Create the context

openGLContext = aglCreateContext(openGLFormat, NULL);

if(openGLContext == NULL)

return false;

// Don’t need this anymore

aglDestroyPixelFormat(openGLFormat);

// Tell AGL to go full-screen

aglEnable(openGLContext, AGL_FS_CAPTURE_SINGLE);

aglSetFullScreen(openGLContext, 0, 0, 0, 0);

aglSetCurrentContext(openGLContext);

// OpenGL is up...go load up geometry and stuff

SetupRC();

// Reset projection

ChangeSize(nScreenWidth, nScreenHeight);

Full-Screen Rendering 709

20

LISTING 20.3 Continued

// Set up the font

fontStart = glGenLists(96);

short fontID;

GetFNum((const unsigned char *)”/pTimes”, &fontID);

aglUseFont(openGLContext, fontID, bold, 14, ‘ ‘, 96, fontStart);

glListBase(fontStart - ‘ ‘);

HideCursor(); // Hide the cursor (personal preference)

return true;

}

AGL Changes
The glAttributes list contains a few new tokens. The AGL_FULLSCREEN token requests a
full-screen pixel format, and the AGL_NO_RECOVERY says we are uninterested in a software
fallback that does not support full-screen.

At lower resolutions, aliasing artifacts are especially noticeable, so this seems a good
place to show off multisampling as well. Uncomment the two lines containing
AGL_SAMPLE_BUFFERS_ARB and AGL_SAMPLES_ARB to request a multisampling pixel format.
You will also notice that frame rates are noticeably smaller when this is enabled.

Also, different in this version is the call to aglChoosePixelFormat. Here you see that the
AGLDevice parameter cannot be NULL for full-screen contexts, but must contain an array
of devices. For our purposes, we pass in only the main display device ID:

GDHandle gdevice = GetMainDevice();

openGLFormat = aglChoosePixelFormat(&gdevice, 1, glAttributes);

Finally, we tell AGL that we want to go full-screen.

aglEnable(openGLContext, AGL_FS_CAPTURE_SINGLE);

aglSetFullScreen(openGLContext, 0, 0, 0, 0);

The first line tells AGL to “capture” the screen when it goes full-screen, and the second
line makes the change to full-screen mode. After this, all OpenGL rendering goes to the
full-screen context, and any application windows you or any other application have open
will not be visible.

CHAPTER 20 OpenGL on Mac OS X710

These two lines of code can actually be used to capture the screen and change the display
mode (by filling in some of those zeros). However, if you specify an invalid display
resolution, the display mode will not change. The previous approach using
CGDisplayBestModeForParameters is better since it is more likely to “guess” a valid
display mode based on your request.

Final Touches
Finally, our last OpenGL-related modification is to call the ChangeSize function with the
(potentially) new screen width and height:

ChangeSize(nScreenWidth, nScreenHeight);

Also, for games and many full-screen applications, the mouse cursor is an unnecessary
distraction. You can turn that off easily:

HideCursor();

Turning it back on is equally obvious:

ShowCursor();

Summary
We have taken a whirlwind tour of the most important OpenGL technologies available on
Mac OS X. We started with GLUT, which is the toolkit we used for most of this book’s
sample programs. You now even know how to start your own GLUT-based masterpiece
from scratch with Xcode. We followed that up with coverage for the more experienced
Mac programmers using either Carbon or the Cocoa application frameworks. We finished
with an example of full-screen rendering, and explained why it was inherently faster than
rendering in any window would be.

OpenGL is a core foundational technology for the Macintosh. A basic understanding of
OpenGL, and how applications can natively interact with it, is an essential skill for any
Mac OS X developer. This chapter only scratched the surface of a potentially deep and
complex topic. We have purposely stayed in the shallow end of the pool, as it were, so
that you can get going quickly and experiment as much as possible with OpenGL on this
wonderful platform. In Appendix A, “Further Reading/References,” you’ll find some addi-
tional great coverage of this exciting topic.

Summary 711

20

This page intentionally left blank

CHAPTER 21

OpenGL on Linux

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Manage visuals glXChooseVisual/glXChooseFBConfig

Create GLX windows glXCreateWindow

Manage OpenGL drawing contexts glXCreateContext/glXDestroyContext/glXMakeCurrent

Create OpenGL windows glXCreateWindow

Do double-buffered drawing glXSwapBuffers

Create bitmap text fonts glXUseXFont

Now that you have had a chance to learn how to use OpenGL on Windows and Mac OS,
it’s time for Linux to get some attention! Just like other platforms, Linux supports 3D
rendering through the OpenGL API.

In this chapter we will take a look at how Linux supports OpenGL, what interfaces are
available for developers, and how to set up an application. We will also hit GLUT, context
management, and how to allocate, render to, and deal with windows on X Windows.

The Basics
OpenGL has long been supported on various versions of Linux, Unix, and so on. On Unix,
native hardware support has often been built into the box. For Linux, Mesa3D comes
installed with most X Server configurations. Also, most 3D hardware vendors provide
some form of 3D acceleration for Linux, usually with proprietary closed-source drivers.

Before there was OpenGL, there was IRIS GL. This was a standard released by SGI. Next
came the public interface for 3D graphics, OpenGL. Brian Paul started a project to imple-
ment support for OpenGL, called Mesa. At the time there were very few functional
implementations. SGI, the founders of OpenGL, had very few computers available that
supported OpenGL. In 1995, the first release of Mesa opened the door to wider support

714 CHAPTER 21 OpenGL on Linux

that was not tied to a hardware vendor. Because Mesa was a hardware independent soft-
ware implementation, it was slower than most native implementations.

More recently hardware vendors have provided OpenGL support through both open- and
closed-source drivers. Currently, both ATI and NVIDIA provide OpenGL drivers supporting
at least OpenGL 2.0. The most recent version of Mesa supports OpenGL 1.5.

The X Window System is a graphical user interface that provides a more pleasing environ-
ment for users than a command prompt. This is similar to the interfaces for Microsoft
Windows and Mac OS. X Windows are not limited to running only on the system they
reside on. For instance, if you are away from your computer, you can connect to your X
Server from a different computer as if you were sitting in your own desk chair.

Many different X Window environments or window desktop managers are available, such
as KDE and Gnome. Each has a unique look and feel. These environments run on top of a
core server. For Linux this is usually XFree86, an open-source implementation of an X
Server. We will be running our OpenGL applications inside X Windows on Linux, taking
advantage of XFree86

Setup
Let’s take a quick look at making sure OpenGL is supported on your system. Without that,
the rest of this chapter is pretty meaningless. Try running the glxinfo command as shown
here:

glxinfo |grep rendering

You should get one of two responses:

direct rendering: Yes

direct rendering: No

If the answer is yes, good news! You have hardware support for 3D rendering. If no, you
may not have hardware that supports OpenGL, or you may not have drivers installed for
OpenGL. If hardware support is not available, try running the following:

glxinfo |grep “OpenGL vendor”

glxinfo |grep “OpenGL version”

This will print out the currently installed OpenGL driver information. Remember to be
careful about capitalization! If you do not have hardware drivers but do have Mesa
installed, the information for the Mesa driver will be displayed. You will also get the
current version of OpenGL that your Mesa implementation supports.

If the glxinfo command fails, or no vendor/version information is available, your distro is
not set up for rendering with OpenGL. You have some options. You can install Mesa, or
you can procure a video card that does support OpenGL rendering on Linux.

Setting Up Mesa
The latest version of Mesa can be downloaded from the Mesa 3D Web site;
http://www.mesa3d.org. From there you can get the download link for SourceForge. Once
it’s downloaded, unpack the files (example shown for Mesa 6.5.2):

gunzip MesaLib-6.5.2.tar.gz

tar xf MesaLib-6.5.2.tar

Next, you will need to compile the source that you have just unpacked. Go to the direc-
tory that was just created from the tar package and run the following:

make linux-x86

This will take a little while, but will build the Mesa package for your system. After it has
finished, a bunch of libraries will have been created. Now you will need to install the
libraries and headers to allow the OS to find them when necessary. Installs typically touch
files that are locked for administrator modification only. Before running the install, you
might want to switch to the root account by using the su command. To do the install, run
the following command:

make install

These are usually located in the following directories:

Libraries: usr/X11R6/lib

Includes: usr/include/

You have finished the Mesa install. If you have more questions about the Mesa setup or
install, visit the Mesa 3D Web site.

Setting Up Hardware Drivers
Hardware support for OpenGL is a little different to set up than Mesa. Each vendor has its
own process. ATI and NVIDIA provide proprietary driver packages that can be down-
loaded. The install process is usually very simple, just a matter of running the downloaded
package.

Some hardware vendors may also provide an open-source version of their display drivers.
Although it is nice to have the source for the driver build, these drivers are often slower
and have fewer features than their proprietary counterparts. This is usually because of the
trade secrets included in proprietary versions. Also the hardware interfaces for proprietary
drivers may use a less generic and more optimized path.

More Setup Details
For those who want to dig a little deeper into OpenGL setup, you can look into your X
Server configuration. Your config file can be found in /etc/X11. This file is used to set the

Setup 715

21

http://www.mesa3d.org

CHAPTER 21 OpenGL on Linux716

parameters of the X Server. The “Module” section specifies which modules will be loaded
with your X Server. Here, there may be load lines (as shown below) for DRI (Direct
Rendering Infrastructure), OpenGL, and GLX.

Load “glx”

Load “dri”

Load “GLcore”

Be careful in this file. Changes here can result in your X Server no longer loading.

Setting Up GLUT
GLUT may not be already installed on your system. If that’s the case, it can be down-
loaded from the OpenGL SuperBible Web site, http://www.opengl.org/superbible. Copy
the glut download to your system. Then go to the GLUT directory and perform the
following commands:

./mkmkfiles.imake

make

make install

The first command makes the makefiles you will use to compile the code. This is done
because different resources may be located in different places on individual systems. The
second command actually compiles the code. And the third installs the result. One note:
Make sure you have the correct permissions for the directory and all subcomponents, or
running mkmkfiles will fail. You will also need to assume root privileges.

To use GLUT in your applications, you will need to add the GLUT library to your link
command in your makefiles:

-lglut

Mesa 3D also supplies a version of GLUT that can be downloaded and installed.

Building OpenGL Apps
Now that we’ve gone through all that setup and our system is prepped for running and
compiling OpenGL programs, let’s take a look at how to build these programs. If you have
spent time working with Linux, you are probably already familiar with creating makefiles.
If so, skip ahead.

Makefiles are used on Linux systems to compile and link source code, creating an
executable file. They hold the instructions for the compiler and linker, telling them where
to find files and what to do with them. A sample makefile is shown below. It can be
modified and expanded to accommodate your own projects.

http://www.opengl.org/superbible

LIBDIRS = -L/usr/X11R6/lib -L/usr/X11R6/lib64 -L/usr/local/lib

INCDIRS = -I/usr/include -L/usr/local/include –L/usr/X11R6/include

COMPILERFLAGS = -Wall

CC = gcc

CFLAGS = $(COMPILERFLAGS) -g $(INCDIRS)

LIBS = -lX11 -lXi -lXmu -lglut -lGL -lGLU -lm

example : example.o

$(CC) $(CFLAGS) -o example $(LIBDIRS) example.c $(LIBS)

clean:

rm -f *.o

The first line creates a variable that contains the link parameters for libraries to be
included. The one used here will look in the standard lib directory for X11 and the loca-
tion for 64-bit specific libraries.

The second line lists the include paths the compiler should use when trying to find header
files. The next line specifies the compile flags to use with this instance. Then LIBS =
selects all the libraries that need to be linked into our program.

Finally we compile and link the single source file for the example, called example.c. The
last line cleans up intermediate objects that were created during the process. This example
can be used while substituting your file in the script. Other files can also be compiled
together as well. There are many good resources and tutorials on the Web for more infor-
mation on makefiles.

GLUT
GLUT has been covered earlier in this book. It is basically a very useful set of functions
that help make interfacing with OpenGL and the system much more user friendly, taking
care of many of the unsightly details. OpenGL code written with GLUT is also platform
agnostic, making the code very portable.

GLUT is available for download and installation on Linux. This helps make any applica-
tions that use GLUT very portable since the code can be compiled on Windows, Mac, and
Linux. It is also a good way to get applications up and running quickly, since no window
management is required. GLUT will be used for the first sample app in this chapter.

On the other hand, GLUT does not allow for very direct interface with the X Server. This
means that some things that can be done by directly communicating with the OS or X are
more difficult or impossible when using GLUT. That said, GLUT will be used for the first
sample program so that we can concentrate on other functionality. You will have to decide
what level of control you will need in determining whether GLUT will suffice or if you
should directly use GLX.

GLUT 717

21

GLX—Dealing with the X Windows Interface
On X Windows an interface is provided to allow applications to connect OpenGL with X
Windows, very similar to WGL on Microsoft Windows and AGL on Mac. There are many
different versions of GLX. Version 1.4 is the most recent version but is very similar to GLX
version 1.3. GLX 1.2 is currently the most commonly supported version on most Linux
distributions. GLX is a much more direct interface that will allow for greater control over
your applications system interface. Using GLX will enable you to tweak all the window
and surface properties available in X Windows/GLX. Although GLUT can make it easy to
get an application running quickly, it does not allow for the options available with a direct
interface. In this section we will go through what GLX can do and how to use it. We will
focus mainly on version 1.3 and point out what is different between versions 1.2 and 1.3.

To find more information about your installation of GLX, you can use the glxinfo
command again. Try the following:

glxinfo |grep “glx vendor”

glxinfo |grep “glx version”

This will display the GLX information for both server and client components of X
Windows. The effective version you can use is the older of the server and client versions.
So if your client reports 1.3 and your server reports 1.2, you are essentially using version
1.2. This means you can’t pick and choose which version of GLX you want to work
with. Instead, your code needs to be able to support the versions of GLX it is likely to
encounter.

Displays and X
Now that we have covered how to examine your system, getting it ready for OpenGL
execution and development, it’s time to look at actual code. The next sections examine
code constructs used to interface with X Windows and GLX. Before we get too far into
GLX, there are a few prerequisites. Remember that X Windows supports client and server
components running on separate systems, essentially allowing you to run your desktop
from somewhere else. Before we can create a window, we need to find out what display
the application will be executing on. The display will help the X Server understand where
we are rendering. Use the XOpenDisplay() function to get the current display.

Display *dpy = XOpenDisplay(getenv(“DISPLAY”));

This will give us a display pointer for the default display we can use later to tell the X
Server where we are. After our application is done, it also needs to close the display using
the XCloseDisplay() function. This tells the X Server that we are finished and it can close
the connection:

XCloseDisplay(Display * display);

CHAPTER 21 OpenGL on Linux718

Config Management and Visuals

GLX 1.3+
Configs on Linux are very similar to configs on OpenGL ES or pixel formats on Microsoft
Windows. Configs can be a little difficult to handle since there are so many factors all tied
together. For starters, you can use the glXGetFBConfigs interface to get information on all
the configs supported:

GLXFBConfig *glXGetFBConfigs(Display * dpy, int screen, int *nelements);

Use the display handle that you got from calling XOpenDisplay. For our purposes we can
use the default screen for the screen parameter. When the call returns, nelements will tell
you how many configs were returned.

There’s more to each config than its index. Each config has a unique set of attributes that
represent the functionality of that config. These attributes and a description of what they
do are listed in Table 21.1.

TABLE 21.1 GLX Config Attribute List

Attribute Description

GLX_BUFFER SIZE Total number of bits of color buffer.

GLX_RED_SIZE Number of bits in red channel of color buffer.

GLX_GREEN_SIZE Number of bits in green channel of color buffer.

GLX_BLUE_SIZE Number of bits in blue channel of color buffer.

GLX_ALPHA_SIZE Number of bits in alpha channel of color buffer.

GLX_DEPTH_SIZE Number of bits per pixel in depth buffer.

GLX_STENCIL_SIZE Number of bits per pixel in stencil buffer.

GLX_CONFIG_CAVEAT Set to one of the following caveats: GLX_NONE, GLX_SLOW_CONFIG,

or GLX_NON_CONFORMANT_CONFIG. These can warn of potential

issues for this config. A slow config may be software emulated

because it exceeds HW limits. A nonconformant config will not

pass the conformance test.

GLX_X_RENDERABLE Is set to GLX_TRUE if the X Server can render to this surface.

GLX_VISUAL_ID The XID of the related visual.

GLX_X_VISUAL_TYPE Type of an X visual if config supports window rendering

(associated visual exists).

GLX_DRAWABLE_TYPE Valid surface targets supported. May be any or all of

GLX_WINDOW_BIT, GLX_PIXMAP_BIT, or GLX_PBUFFER_BIT.

GLX_RENDER_TYPE Bitfield indicating the types of contexts that can be bound.

May be GLX_RGBA_BIT or GLX_COLOR_INDEX_BIT.

GLX_FBCONFIG_ID The XID for the GLXFBConfig.

GLX_LEVEL The frame buffer level.

GLX_DOUBLEBUFFER Is GLX_TRUE if color buffers are double buffered.

GLX—Dealing with the X Windows Interface 719

21

TABLE 21.1 Continued

Attribute Description

GLX_STEREO Is GLX_TRUE if color buffers support stereo rendering.

GLX_SAMPLE_BUFFERS Number of multisample buffers. Must be 0 or 1.

GLX_SAMPLES Number of samples per pixel for multisample buffers.

Will be 0 if GLX_SAMPLE_BUFFERS is 0.

GLX_TRANSPARENT_TYPE Indicates support of transparency. Value may be GLX_NONE,

GLX_TRANSPARENT_RGB, or GLX_TRANSPARENT_INDEX.

If transparency is supported, a transparent pixel is drawn when the

pixel’s components are all equal to the respective transparent

RGB values.

GLX_TRANSPARENT_RED_VALUE Red value a framebuffer pixel must have to be transparent.

GLX_TRANSPARENT_GREEN_VALUE Green value a framebuffer pixel must have to be transparent.

GLX_TRANSPARENT_BLUE_VALUE Blue value a framebuffer pixel must have to be transparent.

GLX_TRANSPARENT_ALPHA_VALUE Alpha value a framebuffer pixel must have to be transparent.

GLX_TRANSPARENT_INDEX_VALUE Index value a framebuffer pixel must have to be transparent.

For color index configs only.

GLX_MAX_PBUFFER_WIDTH Maximum width that can be used to create a pBuffer.

GLX_MAX_PBUFFER_HEIGHT Maximum height that can be used to create a pBuffer.

GLX_MIN_PBUFFER_PIXELS Largest total size of a pBuffer, in pixels.

GLX_AUX_BUFFERS Number of supported auxiliary buffers.

GLX_ACCUM_RED_SIZE Number of bits in red channel of the auxiliary buffer.

GLX_ACCUM_GREEN_SIZE Number of bits in green channel of the auxiliary buffer.

GLX_ACCUM_BLUE_SIZE Number of bits in blue channel of the auxiliary buffer.

GLX_ACCUM_ALPHA_SIZE Number of bits in alpha channel of the auxiliary buffer.

Each of these attributes can be queried for a given format by using the
glXGetFBConfigAttrib command:

Glint glXGetFBConfigAttrib(Display * dpy, GLXFBConfig config,

int attribute, int *value);

Set the config parameter to the config number you are interested in querying and the
attribute parameter to the attribute you are interested in. The result will be returned in
the value parameter. If the glXGetFBConfigAttrib call fails, it may return the error
GLX_BAD_ATTRIBUTE if the attribute you are requesting doesn’t exist.

GLX also provides a method for getting a subset of the full config selection that meet a set
of criteria. This can help narrow down the total set of configs to just those you care about,
making it much easier to find a config that will work for your application. For instance, if
you have an application that wants to render in a window, the config you select needs to
support rendering to a window:

CHAPTER 21 OpenGL on Linux720

GLXFBConfig *glXChooseFBConfig(Display * dpy, int screen,

const int *attrib_list, int *nelements);

Pass in the screen you are interested in. Also specify the elements that are required for a
config match. This is done with a NULL-terminated list of parameter and value pairs.
These attributes are the same config attributes that are listed in Table 21.1.

attrib_list = {attribute1, attribute_value1,

attribute2, attribute_value2,

attribute3, attribute_value3,

0};

Similar to glXGetFBConfigs, the number of elements that matched the attribute list
is returned in nelements. A pointer to a list of matching configs is returned by the
function. Remember to use XFree to clean up the memory that was returned by the
glXChooseFBConfig call. All configs returned will match the minimum criteria you set in
the attrib list.

There are a few key attributes you may want to pay attention to when creating a config—
for example,GLX_X_RENDERABLE should be GLX_TRUE so that you can use OpenGL to render;
GLX_DRAWABLE_TYPE needs to include GLX_WINDOW_BIT if you are rendering to a window;
GLX_RENDER_TYPE should be GLX_RGBA_BIT; and GLX_CONFIG_CAVEAT should be set to
GLX_NONE or at the very least should not have the GLX_SLOW_CONFIG bit set. After that you
may also want to make sure that the color, depth, and stencil channels meet your
minimum requirements. The pBuffer, accumulation, and transparency values are less
commonly used.

For attributes you don’t specify, the glXChooseFBConfigs command will use the defaults.
These are listed in the GLX specification. The sort mechanism orders the configs using
relative attribute priorities. The order for the highest priority attributes is
GLX_CONFIG_CAVEAT, the color buffer bit depths, GLX_BUFFER_SIZE, and then GLX_DOUBLE-
BUFFER.

If a config has the GLX_WINDOW_BIT set for the GLX_DRAWABLE_TYPE attribute, the config will
have an associated X visual. The visual can be queried using the following command:

XVisualInfo *glXGetVisualFromFBConfig(Display * dpy, GLXFBConfig config);

NULL will be returned if there isn’t an associated X visual. Don’t forget to free the
returned memory with XFree.

PBuffers will not be discussed since they are being phased out. They are difficult to imple-
ment, difficult to use, and often much slower than normal rendering. Pixmaps fall into
the same category. Instead, frame buffer objects replace this functionality. Also, color
index mode is not covered here. It also is generally deprecated and not supported on most
PC-based implementations.

GLX—Dealing with the X Windows Interface 721

21

GLX 1.2
With older versions of GLX, none of the preceding config interfaces is available. Instead of
finding a config and then getting the corresponding visual, you can just search for a visual
directly:

XVisualInfo *glXChooseVisual (Display * dpy, GLXFBConfig config);

Pass in the screen you will use for your window and a list of visual attributes. The possible
attributes are listed in Table 21.2. Some attribute tokens can simply be added to the list,
but most must be paired with a corresponding value, just as is done for
glXChooseFBConfig in GLX 1.3. These attributes are noted in their descriptions.

TABLE 21.2 Visual Attribute List

Attribute Description

GLX_USE_GL Ignored since only GL visuals are searched.

GLX_BUFFER SIZE Total depth in bits of the color buffer. Follow with integer indicating

minimum size.

GLX_RGBA Requires visual to support TrueColor and DirectColor. This means colors

will be stored in separate red, green, blue, and alpha channels.

GLX_RED_SIZE Number of bits in red channel of color buffer. Follow with integer

indicating minimum size.

GLX_GREEN_SIZE Number of bits in green channel of color buffer. Follow with integer

indicating minimum size.

GLX_BLUE_SIZE Number of bits in blue channel of color buffer. Follow with integer

indicating minimum size.

GLX_ALPHA_SIZE Number of bits in alpha channel of color buffer. Follow with integer

indicating minimum size.

GLX_DEPTH_SIZE Number of bits in depth buffer. Follow with integer indicating

minimum size.

GLX_STENCIL_SIZE Number of bits in stencil buffer. Follow with integer indicating

minimum size.

GLX_DOUBLEBUFFER Requires matching visual to be double buffered.

GLX_STEREO Requires matching visual to support stereo rendering.

GLX_AUX_BUFFERS The number of supported auxiliary buffers. Follow with integer

indicating minimum number of aux buffers.

GLX_ACCUM_RED_SIZE Number of bits in red channel of the accumulation buffer. Follow with

integer indicating minimum size.

GLX_ACCUM_GREEN_SIZE Number of bits in green channel of the accumulation buffer. Follow

with integer indicating minimum size.

GLX_ACCUM_BLUE_SIZE Number of bits in blue channel of the accumulation buffer. Follow with

integer indicating minimum size.

GLX_ACCUM_ALPHA_SIZE Number of bits in alpha channel of the accumulation buffer. Follow with

integer indicating minimum size.

GLX_LEVEL The frame buffer level. Followed by an integer indicating the exact level.

CHAPTER 21 OpenGL on Linux722

The last item in the list of visual attributes must be NULL. If no matching visuals are
found, NULL is returned. Returned visuals will need to be freed with XFree.

GLX 1.2 also provides a method for querying attributes of a visual. glXGetConfig will take
a visual and one of the attributes listed in Table 21.2, providing the result:

int glXGetConfig(Display * dpy, XVisualInfo *visual, int attribute, int *value);

Windows and Render Surfaces
Alright, now that we got through the messy stuff, let’s create a window. X provides an
interface to create windows, XCreateWindow. This returns a handle for the new X window.
The command needs a parent window at creation time; you can also use the main X
window for this. You should already be familiar with the display parameter here. Also, you
need to tell X how big to make the window and where to put it with the x,y position and
width/height parameters.

Window XCreateWindow(Display * dpy, Window parent, int x, int y, unsigned int width,

unsigned int height, unsigned int border_width, int depth, unsigned int class,

Visual *visual, unsigned_long valuemask, XSetWindowAttributes *attributes);

Also tell X what kind of a window you want with the window class. This can be one of
three values: InputOnly, InputOutput, or CopyFromParent. CopyFromParent will use the
value that the parent window was created with. The attributes and valuemask fields let
you tell X what types of characteristics the window should have. The attributes field
holds the values and the valuemask tells X which values it should pay attention to. To get
more information on attributes, check out X Server documentation.

GLX 1.3+
After the X window has been created and you are on a system supporting GLX 1.3, you
can create the GLX window association. The GLX call must be made with a config that is
compatible with the visual used when calling XCreateWindow. glXGetVisualFromFBConfig
is helpful for that. Use the glXCreateWindow command to create a new onscreen OpenGL
rendering area that will be associated with the specified X window:

GLXWindow glXCreateWindow(Display * dpy, GLXFBConfig config, Window win,

const int *attrib_list);

You can use the config as returned from the work in the preceding section. The
attrib_list currently does not support any parameters and is for future expansion.
Pass in NULL.

glXCreateWindow will throw an error and fail if any of the following conditions is true: if
the config is not compatible with the window visual, if the config doesn’t support window
rendering, if the window parameter is invalid, if a GLXFBConfig has already been associated
with the window, if the GLXFBConfig is invalid, or if there was a general failure creating

GLX—Dealing with the X Windows Interface 723

21

the GLX window. Also remember that glXCreateWindow is supported only in GLX 1.3 or
later. It does not work on older versions. Remember we checked the versions earlier by
running glxinfo |grep “glx version” in a terminal.

After you are done rendering, you will also have to clean up the windows you have
created. To destroy the GLX window, call glxDestroyWindow with the GLX window handle
you got when you called glXCreateWindow:

glXDestroyWindow(Display * dpy, GLXWindow window);

To destroy the X window you also created, you can use the similarly named
XDestroyWindow command, and pass back the X window handle:

XDestroyWindow(Display * dpy, Window win);

GLX 1.2
To create a window in GLX1.2, you do not need to use any special GLX commands.
Instead, simply call XCreateWindow. The X window will also need to be destroyed as
described previously.

Context Management
A context is a set of OpenGL state that is associated with a handle. Once created, the
context can then be used to render with. Multiple contexts can be created, but only one
can be bound to a render surface at a time. At least one context is necessary to be able to
render. The methods for creating contexts and setting the current context are slightly
different for GLX 1.3+ and GLX 1.2.

GLX 1.3+
For GLX 1.3+, you can create a new context with the glXCreateNewContext command.
When successful, this function returns a context handle you can use when telling GLX
which context you want to use when rendering. The config you use to create this context
needs to be compatible with the render surface you intend to draw on. For common cases,
it is easiest to use the same config that was used to create the GLX window.

GLXContext glXCreateNewContext(Display * dpy, GLXFBConfig config,

int render_type, GLXContext share_list, bool direct);

The render_type parameter will accept GLX_RGBA_TYPE or GLX_COLOR_INDEX_TYPE.
GLX_RGBA_TYPE should be used since we are not using color index mode. Normally you
should also pass NULL in the share_list parameter. However, if you have multiple
contexts for an app and would like to share GL objects such as display lists, VBOs,
textures, and so forth, you can pass in the first context’s handle when creating the second.
This will cause both contexts to use the same namespace. Specifying TRUE for the direct
parameter requests a direct hardware context for a local X Server connection, and FALSE
creates a context that renders through the X Server.

CHAPTER 21 OpenGL on Linux724

If creation fails, the function will return NULL; otherwise, it will initialize the context to
default OpenGL state. The function will throw an error if you pass an invalid handle as
the share_list parameter, if the config is invalid, or if the system is out of resources.

To use a context you have created, you can call glXMakeContextCurrent:

glXMakeContextCurrent(Display * dpy, GLXDrawable draw, GLXDrawable read,

GLXContext ctx);

It is most common to specify the same drawable for read and draw targets when making a
context current. This means that the same context will be used for both read and draw
operations. If a different context was bound before you made this call, it will be flushed
and marked as no longer current. If the context you pass is not valid or either drawable is
no longer valid, the function will throw an error. It will also throw an error if the context’s
config is not compatible with the config used to create the drawables. Contexts can be
released from a thread by passing None in the read and draw drawable parameters, and
NULL as the context. If None is not passed for the drawables when trying to free a context,
GLX will throw an error.

GLX will allow you to query certain things from a context as well. Use the
glXQueryContext command to query GLX_FBCONFIG_ID, GLX_RENDER_TYPE, or GLX_SCREEN
attributes associated with the context:

int glXQueryContext(Display * dpy, GLXContext ctx, int attribute, int *value);

There are a few other context-related commands in GLX, but these are mostly self-descrip-
tive. glXGetCurrentReadDrawable is supported only in GLX 1.3:

GLXDrawable glXGetCurrentReadDrawable(void);

In addition, the following functions are supported by both GLX 1.2 and 1.3.

GLXContext glXGetCurrentContext(void);

GLXDrawable glXGetCurrentDrawable(void);

Display glXGetCurrentDisplay(void);

Once finished with a context, it is important to destroy it so that the implementation can
free the related resources. Use the glXDestroyContext command for both GLX 1.2 and 1.3:

glXDestroyContext(Display * dpy, GLXContext ctx);

If the context is currently bound to any thread, the context will not be destroyed until it
is no longer current. The function will throw an error if you pass an invalid context
handle.

One other handy feature provided by GLX 1.2/1.3 is the capability to copy data from one
context to another using glXCopyContext. Just pass in the source and destination context

GLX—Dealing with the X Windows Interface 725

21

handles. A mask is used to specify the pieces of OpenGL state that you would like to copy.
These are the same values that may be passed into glPushAttrib/glPopAttrib. To copy
everything, you can pass GL_ALL_ATTRIB_BITS. Client-side state will not be copied.

glXCopyContext(Display * dpy, GLXContext source, GLXContext dest, unsigned long

mask);

To find out if a context is a direct context, you can call glXIsDirect for GLX 1.2/1.3. This
will return true if the context is a direct rendering context.

glXIsDirect(Display * dpy, GLXContext ctx);

GLX 1.2
Most of the context interfaces provided previously can be used only in GLX 1.3. However,
there are some similar methods that can be used on older GLX versions. To create a
context in GLX 1.2, call glXCreateContext. This command is very similar to
glXCreateNewContext except it takes visual info in place of config info and does not
accept a render type parameter.

GLXContext glXCreateContext(Display * dpy, XVisualInfo* visual,

GLXContext share_list, Bool direct);

To make a context current, call glXMakeCurrent with the context to be rendered with.
Here, only one parameter is accepted for the drawable. In GLX 1.2 the same drawable will
be used for both draw and read operations.

Bool glXMakeCurrent(Display * dpy, GLXDrawable drawable, GLXContext ctx);

To unbind the context from the current thread, pass None as the drawable and NULL as
the context.

Synchronization
GLX has several synchronization commands that are similar to those on other OSs.
Making a call to glXWaitGL will guarantee that all GL rendering will finish for a window
before other native rendering occurring after the call to glXWaitGL is allowed to proceed.
These might be window decorations drawn by the window manager like scroll bars and
buttons, or 2D drawing. This allows an app to ensure that all rendering happens in the
correct order and that rendering is not incorrectly overlapped or overwritten.

void glXWaitGL(void);

Likewise, a call to glXWaitX ensures that all native rendering made before the call to
glXWaitX completes before any OpenGL rendering after the call is allowed to happen.

void glXWaitX(void);

CHAPTER 21 OpenGL on Linux726

When using a double-buffered config, a call to glXSwapBuffers will present the contents
of the back buffer to the window. The call also performs a glFlush before the swap occurs.
Afterward, the contents of the new back buffer are undefined. GLX will throw an error if
the drawable is invalid, the display is invalid, or if the window is no longer valid.

void glXSwapBuffers(Display *dpy, GLXDrawable draw);

GLX Strings
Several different strings can be queried from GLX. First, you can get a string with all the
supported extension strings listed by calling glXQueryExtensionsString:

const char *glXQueryExtensionsString(Display *dpy, int screen);

You can also call glXGetClientString or glXQueryServerString to find out information
about the client library or the server, respectively. Pass it one of the following enums in
the name field: GLX_VENDOR, GLX_VERSION, or GLX_EXTENSIONS.

const char *glXGetClientString(Display *dpy, int name);

const char *glXQueryServerString(Display *dpy, int screen, int name);

The Rest of GLX
There are a few less-common components of GLX we haven’t covered yet. Let’s take a
quick look at them. The first is a simple method of querying the current GLX version. This
function returns integers, which are easier to parse than the version string returned when
the string query functions are used. This is helpful for determining what version of GLX
you are dealing with from inside your application. The version is broken down into major
and minor components:

bool glXQueryVersion(Display *dpy, int *major, int *minor);

You can query certain state from the current drawable. GLX provides the function
glXQueryDrawable to allow applications to get information on how the drawable is set up.
Pass in the attribute you are interested in: GLX_WIDTH, GLX_HEIGHT, GLX_PRESERVED_
CONTENTS, GLX_LARGEST_PBUFFER, or GLX_FBCONFIG_ID. The result will be returned in the
value field. You will also need to specify the drawable you are interested in.

void glXQueryDrawable(Display *dpy, GLXDrawable draw, int attribute, unsigned int

*value);

There is also a set of functions for creating, dealing with, and deleting pixmaps and
pBuffers. These will not be covered since we are not covering and do not recommend you
use pixmaps or pBuffers.

GLX—Dealing with the X Windows Interface 727

21

X Fonts
The X environment provides for automatic bitmap font generation. This makes it easier
for applications to render text in OpenGL, since each character does not need to be stored
in the application as a texture. GLX extends this functionality, making it even easier to
use. First, call into X and load the font you want to use, and then create display lists to
hold the characters, one for each character. Next, call glXUseFont to load the fonts into
the display lists:

void glXUseXFont(Font font, int first, int count, int list_base);

Now you are ready to use the display lists for rendering. Each list will hold a call to
glBitmap. You can use glRasterPos to set the screen position and then glCallLists to
draw characters. The first sample app demonstrates how to use the display list generation
function to simplify writing text to the screen. Figure 21.1 shows the output of this simple
demo. Listing 21.1 shows the important steps in this app. First a font is chosen and
display list names are generated for the characters. Next glXUseFont is called to populate
the display lists. Last, glCallLists is used to render each character.

CHAPTER 21 OpenGL on Linux728

FIGURE 21.1 The simple font text example.

LISTING 21.1 The font.c Sample Program

char *szString = “GLX Fonts”;

// Load a courier font with size 48pix.

XFontStruct *xFont = XLoadQueryFont(dpy,

“-*-courier-bold-r-normal—48-*-*-*-*-*-*-*”);

// Generate display list names

uiDListStart = glGenLists(96);

// Have GLX generate the display lists for the characters

glXUseXFont(xFont->fid, ‘ ‘, 96, uiDListStart);

// Save the display list bit

glPushAttrib(GL_LIST_BIT);

// Set up the display list offset

glListBase(uiDListStart - ‘ ‘);

LISTING 21.1 Continued

// Now call the appropriate lists for the characters

// in the string

glCallLists(strlen(szString), GL_UNSIGNED_BYTE, (GLubyte*)szString);

// Restore the display list bit

glPopAttrib();

Extending GLX
GLX and OpenGL can be extended beyond what is in the core specification. Vendors can
write new extensions to that functionality for applications to use. This allows applications
to have options that either are vendor-specific or are available before they can become
part of the core specification. You can query the list of extensions available for GLX on a
system by calling glXQueryExtensionString. An application can also call
glGetString(GL_EXTENSIONS) to get the OpenGL extensions available.

After you know which extensions are available, you may have to get new entry points to
use them. GLX provides a method to get these. The glXGetProcAddress provides exten-
sion function addresses for extensions. This function is available only for GLX versions 1.4
and newer.

void (*glXGetProcAddress(const ubyte *procname))();

There are a large number of extensions registered for OpenGL. You can take a look at what
is available by browsing the extension registry on the OpenGL Web page. For GLX
versions before 1.4, you can use the ARB extension version, as shown next, but be sure to
check that it exists in the extension string first!

void (*glXGetProcAddressARB(const ubyte *procname))();

Putting It All Together
Now, for the fun part! Let’s put all this GLX stuff together and create an app that uses GLX
instead of GLUT for window creation and maintenance. GLUT is great for creating quick,
simple apps but does not allow very granular control over the GLX environment.

Because many X Servers packaged with Linux do not yet support GLX 1.3, our example
uses the GLX 1.2 interfaces. The first step is to open a connection to the X Server:

rcx->dpy = XOpenDisplay(NULL);

Then, let’s check the supported GLX version to make sure that the functionality we will
use later is supported:

Putting It All Together 729

21

glXQueryVersion(rcx->dpy, &nMajorVer, &nMinorVer);

printf(“Supported GLX version - %d.%d\n”, nMajorVer, nMinorVer);

if(nMajorVer == 1 && nMinorVer < 2)

{

printf(“ERROR: GLX 1.2 or greater is necessary\n”);

XCloseDisplay(rcx->dpy);

exit(0);

}

Now that we know we are good to go, look for a visual that meets our requirements. We
aren’t very picky here since this app doesn’t have any complex interactions with the
framebuffer.

static int attributes[] = { GLX_RGBA,

GLX_DOUBLEBUFFER,

GLX_DEPTH_SIZE, 16,

GLX_RED_SIZE, 8,

GLX_BLUE_SIZE, 8,

GLX_GREEN_SIZE, 8,

0 };

visualInfo = glXChooseVisual(rcx->dpy,

DefaultScreen(rcx->dpy), attributes);

After we have a visual, we can use it to create a new X window. Before calling into
XCreateWindow, we have to figure out what things we want the window to do. Pick the
events that will be of interest and add them to the event mask. Do the same with the
window mask. Set the desired border size and gravity. We also have to create a color map
for the window to use. While we are at it, map the window to the display:

winAttribs.event_mask = ExposureMask | VisibilityChangeMask |

KeyPressMask | PointerMotionMask |

StructureNotifyMask ;

winAttribs.border_pixel = 0;

winAttribs.bit_gravity = StaticGravity;

winAttribs.colormap = XCreateColormap(rcx->dpy,

RootWindow(rcx->dpy, visualInfo->screen),

visualInfo->visual, AllocNone);

winmask = CWBorderPixel | CWBitGravity | CWEventMask| CWColormap;

CHAPTER 21 OpenGL on Linux730

rcx->win = XCreateWindow(rcx->dpy, DefaultRootWindow(rcx->dpy), 20, 20,

rcx->nWinWidth, rcx->nWinHeight, 0,

visualInfo->depth, InputOutput,

visualInfo->visual, winmask, &winAttribs);

XMapWindow(rcx->dpy, rcx->win);

Great! We have a window! There are still a few steps that need to be completed before we
can render. First let’s create a context and make it the current context. Remember, we will
need the visual that we used to create the window to create the context.

rcx->ctx = glXCreateContext(rcx->dpy, visualInfo, 0, True);

glXMakeCurrent(rcx->dpy, rcx->win, rcx->ctx);

After a context is bound, we can make GL calls. So first we need to set the viewport and
scissor rectangle:

glViewport(0,0,rcx->nWinWidth,rcx->nWinHeight);

glScissor(0,0,rcx->nWinWidth,rcx->nWinHeight);

Next, clear the color buffer and the matrices we care about. Also set the viewing frustum:

glClearColor(0.0f, 1.0f, 1.0f, 1.0f);

glClear(GL_COLOR_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Set the frustum

glFrustum(fXLeft, fXRight, fYBottom, fYTop, 0.1f, 100.f);

OpenGL setup now is complete, and we can concentrate on rendering something. This
little demo application draws two eyeballs that do their best to follow your mouse pointer
around the window. Some math is done to figure out where to put the eyeballs, where the
mouse pointer is, and where the eyeballs should be looking. You can take a look at the full
source available on the download site to see how all this works together. Only the impor-
tant snippets will be listed here since this chapter is not introducing new OpenGL func-
tionality. Figure 21.2 shows the output of the GLX demo.

Putting It All Together 731

21

FIGURE 21.2 Here’s looking at you!

Several events will cause the contents of the OpenGL window to be redrawn, like uncover
events, window moves or resizes. Also any mouse pointer movement will send similar
events. These mouse motion events are used to update the eyeball positions. Afterward,
glXSwapBuffers is called:

glClear(GL_COLOR_BUFFER_BIT);

// Clear matrix stack

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// Draw left eyeball

glColor3f(1.0, 1.0, 1.0);

glScalef(0.20, 0.20, 1.0);

glTranslatef(-1.5, 0.0, 0.0);

DrawCircle();

// Draw left pupil

glColor3f(0.0, 0.0, 0.0);

glScalef(0.40, 0.40, 1.0);

glTranslatef(fLeftX, fLeftY, 0.0);

DrawCircle();

// Draw right eyeball

glColor3f(1.0, 1.0, 1.0);

glLoadIdentity();

glScalef(0.20, 0.20, 1.0);

glTranslatef(1.5, 0.0, 0.0);

DrawCircle();

CHAPTER 21 OpenGL on Linux732

// Draw right pupil

glColor3f(0.0, 0.0, 0.0);

glScalef(0.40, 0.40, 1.0);

glTranslatef(fRightX, fRightY, 0.0);

DrawCircle();

// Clear matrix stack

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// Draw nose

glColor3f(0.5, 0.0, 0.7);

glScalef(0.20, 0.20, 1.0);

glTranslatef(0.0, -1.5, 0.0);

glBegin(GL_TRIANGLES);

glVertex2f(0.0, 1.0);

glVertex2f(-0.5, -1.0);

glVertex2f(0.5, -1.0);

glEnd();

// Display rendering

glXSwapBuffers(rcx->dpy, rcx->win);

Before the app closes, there is some cleanup that needs to be done. Remember, when we
started the application, a connection to the X Server was opened, an X window was
created, and a context was created and bound. Now before the app exits these have to be
cleaned up. Note that the context will be unbound from the thread before it is destroyed.

glXMakeCurrent(rcx->dpy, None, NULL);

glXDestroyContext(rcx->dpy, rcx->ctx);

rcx->ctx = NULL;

XDestroyWindow(rcx->dpy, rcx->win);

rcx->win = (Window)NULL;

XCloseDisplay(rcx->dpy);

rcx->dpy = 0;

Putting It All Together 733

21

Summary
OpenGL is an important part of Linux because it is the main hardware accelerated 3D
interface. Although we have seen how GLUT can be used with Linux, GLX is also very
important for defining buffer resources, window management, and other Linux-specific
interfaces with OpenGL. There are also other helpful interfaces available on Linux, like
XFonts, that can make rendering easier for applications.

GLX 1.3 provides an interface to Linux and OpenGL that allows intricate control of the
rendering environment. It has many similarities to its WGL and AGL counterparts. GLX
1.2 also offers a functional interface to Linux for OpenGL applications and is currently
more widely supported.

CHAPTER 21 OpenGL on Linux734

CHAPTER 22

OpenGL ES: OpenGL on the Small

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Choose configs eglGetConfig/eglChooseConfig/eglGetConfigAttrib

Create EGL windows eglCreateWindowSurface

Manage EGL contexts eglCreateContext/eglDestroyContext/eglMakeCurrent

Post buffers to the window and eglSwapBuffers/eglSwapInterval/eglWaitGL

synchronize

This chapter is a peek into the world of OpenGL ES rendering. This set of APIs is intended
for use in embedded environments where traditionally resources are much more limited.
OpenGL ES dares to go where other rendering APIs can only dream of.

There is a lot of ground to cover, but we will go over much of the basics. We’ll take a look
at the different versions of OpenGL ES and what the differences are. We will also go over
the windowing interfaces designed for use with OpenGL ES. Also, we will touch on some
issues specific to dealing with embedded environments.

OpenGL on a Diet
You will find that OpenGL ES is very similar to regular OpenGL. This isn’t accidental; the
OpenGL ES specifications were developed from different versions of OpenGL. As you have
seen up until now, OpenGL provides a great interface for rendering. It is very flexible and
can be used in many applications, from gaming to workstations to medical imaging.

What’s the ES For?
Over time, the OpenGL API has been expanded and added to in order to support new
features. This has caused the OpenGL application interface to become bloated, providing

736 CHAPTER 22 OpenGL ES: OpenGL on the Small

many different methods of doing the same thing. Take, for instance, drawing a single
point. The first available method was drawing in immediate mode, in which you use
glBegin/glEnd with the vertex information defined in between. Also, display lists were
available, allowing immediate mode commands to be captured into a list that can be
replayed again and again. Using the newer glDrawArrays method allows you to put your
points in a prespecified array for rendering convenience. And Buffer Objects allow you to
do something similar, but from local GPU memory.

The simple action of drawing a point can be done four different ways, each having differ-
ent advantages. Although it is nice to have many choices when implementing your own
application, all of this flexibility has produced a very large API. This in turn requires a very
large and complex driver to support it. In addition, special hardware is often required to
make each path efficient and fast.

Because of the public nature of OpenGL, it has been a great candidate for use in many
different applications outside of the personal computer. But implementers had a hard time
conforming to the entire OpenGL spec for these limited hardware applications. For this
reason, a new version was necessary; one with Embedded Systems specifically in mind,
hence the ES moniker.

A Brief History
As hardware costs have come down and more functionality can be fit into smaller areas on
semiconductors, the user interfaces have become more and more complex for embedded
devices. A common example is the automobile. In the 1980s the first visual feedback from
car computers was provided in the form of single- and multiline text. These interfaces
provided warnings about seatbelt usage, current gas mile usage, and so on. After that, two-
dimensional displays became prevalent. These often used bitmap-like rendering to present
2D graphics. Most recently, 3D-capable systems have been integrated to help support GPS
navigation and other graphic-intensive features. A similar technological history exists for
aeronautical instrumentation and cellphones.

The early embedded 3D interfaces were often proprietary and tied closely to the specific
hardware features present. This was often the case because the supported feature set was
small and varied greatly from device to device. But as 3D engine complexity increased and
was used in more and more devices, a standard interface became more important and
useful. It was very difficult to port an application from device to device when 3D APIs
were so different.

With this in mind, a consortium was formed to help define an interface that would be
flexible and portable, yet tailored to embedded environments and conscious of their
limitations. This body would be called the Khronos Group.

Khronos
The Khronos Group was originally founded in 2000 by members of the OpenGL ARB, the
OpenGL governing body. Many capable media APIs existed for the PC space, but the goal
of Khronos was to help define interfaces that were more applicable to devices beyond the
personal computer. The first embedded API it developed was OpenGL ES.

Khronos consists of many industry leaders in both hardware and software. Some of the
current members are Motorola, Texas Instruments, AMD, Sun Microsystems, Intel,
NVIDIA, and Nokia. The complete list is long and distinguished. You can visit the Khronos
Web site for more information (www.khronos.org).

Version Development
The first version of OpenGL ES released, cleverly called ES 1.0, was an attempt to drasti-
cally reduce the API footprint of a full-featured PC API. This release used the OpenGL 1.3
specification as a basis. Although very capable, OpenGL ES 1.0 removed many less
frequently used or very complex portions of the full OpenGL specification. Just like its big
brother, OpenGL ES 1.0 defines a fixed functionality pipe for vertex transform and frag-
ment processing.

Being the first release, it was targeted at implementations that supported hardware-acceler-
ated paths for some portions of the pipeline and possibly software implementations for
others. In limited devices it is very common to have both software and hardware work
together to enable the entire rendering path.

ES 1.1 was completed soon after the first specification had been released. Although very
similar to OpenGL ES 1.0, the 1.1 specification is written from the OpenGL 1.5 specifica-
tion. In addition, a more advanced texture path is supported. A buffer object and draw
texture interface has also been added. All in all, the ES 1.1 release was very similar to ES
1.0 but added a few new interesting features.

ES 2.0 was a complete break from the pack. It is not backward compatible with the ES 1.x
versions. The biggest difference is that the fixed functionality portions of the pipeline
have been removed. Instead, programmable shaders are used to perform the vertex
and fragment processing steps. The ES 2.0 specification is based on the OpenGL 2.0
specification.

To fully support programmable shaders, ES 2.0 employs the OpenGL ES Shading Language.
This is a high-level shading language that is very similar to the OpenGL Shading Language
that is defined for use with OpenGL 2.0+. The reason ES 2.0 is such a large improvement
is that all the fixed functionality no longer encumbers the API. This means applications
can then implement and use only the features they need in their own shaders. The driver
and hardware are relieved from tracking state that may never be used. Of course, the other
side of the coin is that applications that want to use portions of the old fixed-function
pipeline will need to implement these in app-defined shaders.

OpenGL on a Diet 737

22

www.khronos.org

CHAPTER 22 OpenGL ES: OpenGL on the Small738

There is one more ES version worth mentioning, OpenGL ES SC 1.0. This special version
is designed for execution environments with extreme reliability restraints. These applica-
tions are considered “Safety Critical,” hence the SC designator. Typical applications are in
avionics, automobile, and military environments. In these areas 3D applications are often
used for instrumentation, mapping, and representing terrain.

The ES SC 1.0 specification uses the OpenGL ES 1.0 specification as a base, which was
derived from OpenGL 1.3. Some things are removed from the core ES 1.0 version to
reduce implementation costs, and many features from core OpenGL are added back. The
most important re-additions are display lists, immediate mode rendering (glBegin/glEnd),
draw pixels, and bitmap rendering. These cumbersome features are included to minimize
the complexity of porting older safety critical systems that may already use these features.

So, to recap, the OpenGL ES versions currently defined and the related OpenGL version
are listed in Table 22.1.

TABLE 22.1 Base OpenGL versions for ES

OpenGL ES OpenGL

ES 1.0 GL 1.3

ES 1.1 GL 1.5

ES 2.0 GL 2.0

ES SC 1.0 GL 1.3

Which Version Is Right for You?
Often hardware is created with a specific API in mind. These platforms usually will
support only a single accelerated version of ES. It is sometimes helpful to think of the
different versions of ES as profiles that represent the functionality of the underlying hard-
ware. For this reason, if you are developing for a specific platform, you may not have a
choice as to which version of ES to use.

For traditional GL, typically new hardware will be designed to support the latest version
available. ES is a little different. The type of features targeted for new hardware are chosen
based on several factors; targeted production cost, typical uses, and system support are a
few. For instance, adding hardware functionality for supporting ES 2.0 on an entry-level
cellphone may not make sense if it is not intended to be used as a game platform.

The following sections define each specification in much more detail. The Khronos Group
has chosen to define the OpenGL ES specifications relative to their OpenGL counterparts.
This provides a convenient way to define the entire specification without having to fully
describe each interface. Most developers are already familiar with the parent OpenGL
specification, making the consumption of the ES version very efficient. For those who are
not, cross-referencing the relevant full OpenGL specification is a great way to get the rest
of the picture.

Before we get started, it is important to note that the ES 1.x specifications support multi-
ple profiles. The Common profile is designed as the usual interface for heavier-weight
implementations. The Common-Lite profile is designed for thinner, leaner applications.

The Common profile is a superset of the Common-Lite profile. The Common-Lite profile
does not support floating-point interfaces, whereas the Common profile does. But the
Common-Lite profile can use an extension definition of fixed point to use interfaces that
whole numbers are not suitable for.

To get the most out of this chapter, you should be very comfortable with most of the
OpenGL feature set. This chapter is more about showing you what the major differences
are between regular OpenGL and OpenGL ES and less about describing each feature again
in detail.

ES 1.0
OpenGL ES 1.0 is written as a difference specification to OpenGL 1.3, which means that
the new specification is defined by the differences between it and the reference. We will
review OpenGL ES 1.0 relative to the OpenGL 1.3 specification and highlight the impor-
tant differences.

Vertex Specification
The first major change for ES 1.0 is the removal of the glBegin/glEnd entrypoints and
rendering mechanism. With this, edge flag support is also removed. Although the use of
glBegin/glEnd provides a simple mechanism for rendering, the required driver-side
support is usually complex. Vertex arrays can be used for vertex specification just as effec-
tively, although the more complex glInterleavedArrays and glDrawRangeElements are
not supported.

Also, the primitive types GL_QUAD, GL_QUAD_STRIPS, and GL_POLYGON are no longer
supported. Other primitive types can be used just as effectively. By the same token, the
glRect commands have been removed. Color index mode is removed. For vertex specifica-
tion, only the types float, short, and byte are accepted for vertex data. For color compo-
nents ubyte can also be used.

Even though immediate mode rendering has been removed, ES 1.0 still supports several
entrypoints for setting the current render state. This can help reduce the amount of data
overhead required per-vertex for state that may not change frequently when drawing with
arrays. glNormal3f, glMultiTexCoord4f and glColor3f are all still available.

glNormal3f(GLfloat coords);

glMultiTexCoord4f(GLenum texture, GLfloat coords);

glColor4f(GLfloat components);

The Common-Lite profile supports these entrypoints as well, but replaces the floating-
point parameters with fixed-point.

Which Version Is Right for You? 739

22

Transforms
The full transform pipeline still exists, but some changes have been made to simplify
complex operations. No texture generation exists, and support for the color matrix has
been removed. Because of data type limitations, all double-precision matrix specification is
removed. Also, the transpose versions of matrix specification entrypoints have been
removed.

OpenGL usually requires an implementation to support a matrix stack depth of at least 32.
To ease memory requirements for OpenGL ES 1.0 implementations, a stack depth of only
16 is required. Also, user-specified clip planes are not supported.

Coloring
The full lighting model is supported with a few exceptions. Local viewer has been
removed, as has support for different front and back materials. The only supported color
material mode is GL_AMBIENT_AND_DIFFUSE. Secondary color is also removed.

Rasterization
There are also a few important changes to the rasterization process. Point and line
antialiasing is supported because it is a frequently used feature. However, line stipple and
polygon stipple have been removed. These features tend to be very difficult to implement
and are not as commonly used except by a few CAD apps. Polygon smooth has also been
removed. Polygon offset is still available, but only for filled triangles, not for lines or
points.

All support for directly drawing pixel rectangles has been removed. This means
glDrawPixels, glPixelTransfer, glPixelZoom, and all related functionality is not
supported. Therefore the imaging subset is also not supported. glBitmap rendering is
removed as well. glPixelStorei is still supported to allow for glReadPixels pack align-
ment. These paths tend to be complex in hardware. It is still possible to emulate
glDrawPixels by creating a texture with color buffer data that would have been used for
a glDrawPixels call and then drawing a screen-aligned textured polygon .

Texturing
Texturing is another complex feature that can be simplified for a limited API. For starters,
1D textures are redundant since they can be emulated with a 2D texture of height 1. Also,
3D and cube map textures are removed because of their added complexity and less
frequent use. Borders are not supported. To simplify 2D textures, only a few image formats
are supported: GL_RGB, GL_RGBA, GL_LUMINANCE, GL_ALPHA, and GL_LUMINANCE_ALPHA.
glCopyTexImage2D and glCopyTexSubImage are supported, as well as compressed textures.
However, glGetCompressedTexImage is not supported and compressed formats are illegal as
internal formats for glTexImage2D calls, so compressed textures have to be compressed
offline using vendor-provided tools.

The texture environment remains intact except for combine mode, which is not
supported. Both GL_CLAMP_TO_EDGE and GL_REPEAT wrap modes are supported. GL_CLAMP

CHAPTER 22 OpenGL ES: OpenGL on the Small740

and GL_CLAMP_TO_BORDER are not supported. Controls over mipmap image levels and LOD
range are also removed.

Per-Fragment Operations
Most per-fragment operations, such as scissoring, stenciling, and depth test, remain intact
since most of them provide unique and commonly used functionality. Blending is
included but operations other than GL_ADD are not supported. So glBlendEquation and
glBlendColor are no longer necessary.

Framebuffer Operations
Of course, all color index operations are not supported for whole framebuffer operations
since color index is not supported. In addition, accumulation buffers are not supported.
Also, drawing to multiple color buffers is not supported, so glDrawBuffer is not available.
Similarly, glReadPixels is supported but glReadBuffer is not since the only valid render-
ing target is the front buffer. As has been previously mentioned, glCopyPixels is also
gone.

Other Functionality
Evaluators are not supported. Selection and feedback are not supported.

State
OpenGL ES 1.0 has decided to limit access to internal state. This helps reduce duplication
of state storage for implementations and can provide for more optimal implementation.
Generally, all dynamic state is not accessible whereas static state is available. Only the
following functions are allowed for accessing state:

glGetIntegerv(GLenum pname, Glint *params);

glGetString(GLenum pname);

Hints are queryable. Also, independent hardware limits are supported, such as
GL_MODELVIEW_MATRIX_STACK_DEPTH, GL_MAX_TEXTURE_SIZE, and GL_ALIASED_POINT_RANGE.

Core Additions
For the most part, OpenGL ES is a subset of OpenGL functionality. But there are also a few
additions. These take the form of extensions that are accepted as core additions to the ES
specification. That means they are required to be supported by any implementation that is
conformant, unless the extension is optional (OES_query_matrix).

Byte Coordinates—OES_byte_coordinates This, along with the next extension, are two
of the biggest enablers for limited embedded systems. This extension allows byte data
usage for vertex and texture coordinates.

Fixed Point—OES_fixed_point This extension introduces a new integer-based fixed-point
data type for use in defining vertex data. The new interfaces mirror the floating-point
versions with the new data type. The new commands are glNormal3x, glMultiTexCord4x,

Which Version Is Right for You? 741

22

glVertexPointer, glColorPointer, glNormalPointer, glTexCordPointer, glDepthRange,
glLoadMatrixx, glMultMatrixx, glRotatex, glScalex, glTranslatex, glFrustumx,
glOrthox, glMaterialx[v], glLight[v], glLightModelx[v], glPointSizex, glLineWidthx,
glPolygonOffsetx, glTexParameterx, glTexEnvx[v], glFogx[v], glSampleCoveragex,
glAlphaFuncx, glClearColorx, and glClearDepthx.

Single-Precision Commands—OES_single_precision This extension adds a few new
single-precision entrypoints as alternatives to the original double-precision versions. The
supported functions are glDepthRangef, glFrustrumf, glOrthof, and glClearDepthf.

Compressed Paletted Textures—OES_compressed_paletted_texture This extension
provides for specifying compressed texture images in color index formats, along with
a color palette. It also adds ten new internal texture formats to allow for texture
specification.

Read Format—OES_read_format Read Format is a required extension. With this exten-
sion, the optimal type and format combinations for use with glReadPixels can be
queried. The format and type have to be within the set of supported texture image
values. These are stored as state variables with the names
GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES and
GL_IMPLEMENTATION_COLOR_READ_TYPE_OES. This prevents the ES implementation from
having to do a software conversion of the pixel buffer.

Query Matrix—OES_query_matrix This is an optional extension that allows access to
certain matrix states. If this extension is supported, the modelview, texture, and projection
matrix can be queried. The extension allows for retrieval in a fixed-point format for the
profiles that require it. (Common-Lite)

ES 1.1
The ES 1.1x specification is similar to the 1.0 specification. The biggest change is that
OpenGL 1.5 is used for the base of this revision, instead of OpenGL 1.3. So most of the
new features in OpenGL 1.5 are also available in ES 1.1x. In addition to the OpenGL 1.5
features, there are a few new core extensions. In this section we will cover the major
changes to ES 1.1 with reference to ES 1.0 instead of beginning from scratch.

Vertex Processing and Coloring
Most of the vertex specification path is the same as the ES 1.0 path. There are a few addi-
tions to commands that can be used to define vertex information. Color information can
be defined using unsigned bytes:

glColor4ub[v](GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha);

Also, buffer objects were added to the OpenGL 1.5 specification and are included in the
OpenGL ES 1.1 specification. Some aspects of buffer objects allowed for flexible usage. For
instance, after a buffer object is specified, OpenGL 1.5 allows for that buffer to be mapped
back to system memory so that the application can update it, as well as updating buffers
by GL. And to support this access method, different usage indicators are given when
glBufferData is called on a buffer.

CHAPTER 22 OpenGL ES: OpenGL on the Small742

For the ES version, the multiple usage profiles for buffer objects are removed. Instead, the
only supported usage is GL_STATIC_DRAW. This means that the buffer object data is
intended to be specified once, and then repeatedly rendered from. When ES can expect
this behavior, it can optimize the handling and efficiency of the buffer object. In addition,
system limitations in an embedded environment may not allow for the video memory
holding the buffer object to be mapped to the application directly. Since all other usage
methods are not supported, GL_STREAM_DRAW, GL_STREAM_COPY, GL_STREAM_READ,
GL_STATIC_READ, GL_DYNAMIC_COPY, and GL_DYNAMIC_READ tokens are not accepted. Also,
the glMapBuffer and glUnmapBuffer commands are not supported.

Clip planes were not supported in ES 1.0, but have been added to ES 1.1 in a limited
fashion. The new minimum number of supported clip planes is one instead of six. Also,
the commands for setting clip planes take lower precision plane equations. The precision
is dependent on the profile.

Query functions are generally not supported in the previous version of ES. For lighting
state, several functions were added to permit query. These are glGetMaterialfv and
glGetLightfv.

Rasterization
Point parameters are also added. The interface is more limited than the standard OpenGL
1.5 interface. Only the glPointParameterf[v] interface is supported.

Texturing
The level of texturing support in ES 1.1 has been expanded. One of the major changes is
the re-addition of mipmapping. This helps relieve applications from having to store all the
mipmap data or calculate it at runtime. Also, glIsTexture is added back to the interface to
help determine what textures have been instantiated. As part of the generate mipmap
support, the GL_GENERATE_MIPMAP hint is supported.

Only GL_TEX_ENV_COLOR and GL_TEX_ENV_MODE were previously supported, and in a limited
capacity at that. But OpenGL ES 1.1 adds all of the texture environment back in.

State
One of the fundamental changes in level of support for ES 1.1 is state queries. A premise
for the ES 1.0 spec was to limit the amount of interaction between the application and GL.
This helps to simplify the interface to allow for a leaner implementation. As part of this
effort, all dynamic state queries were removed from the GL interface.

Now, many of the dynamic GL state queries are available again. This is helpful for applica-
tion development, since querying state can be an important debug tool. For the most part,
any state that is accepted in ES 1.1 can be queried. But the same limitations that exist in
the state command interface exist in the query interface. For instance, glGetMaterialiv is
not supported while glGetMaterialfv is, and state interface supports only the “fv” inter-
face. So the query interfaces parallel the state interfaces. In the same respect, only query
interfaces for the supported data types for a given profile are valid.

Which Version Is Right for You? 743

22

Texture data queries are still limited. The only valid state queries are the following:
GL_TEXTURE_2D, GL_TEXTURE_BINDING_2D, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, and
GL_GENERATE_MIPMAP.

Core Additions
Most of the same extensions are included in the OpenGL ES 1.1 specification as are in 1.0.
However, the optional OES_query_matrix extension has been replaced by a new extension
that also allows matrices to be queried. Several additional extensions are added to the 1.0
set to further extend ES functionality. The OpenGL ES 1.0 extensions that are also part of
the ES 1.1 specification are OES_byte_coordinates, OES_fixed_point, OES_single_preci-
sion, OES_read_format, OES_query_matrix, and OES_compressed_paletted_texture. These
are already described in the preceding section.

Matrix Palette—OES_matrix_palette Most embedded systems have to keep object
models simple due to limited resources. This can be a problem when we’re trying to model
people, animals, or other complex objects. As body parts move, when a bone modeling
method is used, there can be gaps between different parts. Imagine standing one cylinder
on top of another, and then tilting the top one off-axis. The result is a developing gap
between the two cylinders, which in a game might represent an upper arm and a lower
arm of a human character.

This is a hard problem to solve without complex meshes connecting each piece that need
to be recalculated on every frame. That sort of solution is usually well out of the reach of
most embedded systems.

Another solution is to use a new OpenGL ES extension that enables the technique of
vertex skinning. This stitches together the ends of each “bone,” eliminating the gap. The
final result is a smooth, texturable surface connecting each bone.

When this extension is enabled, a palette of matrices can be supported. These are not
part of the matrix stack, but can be enabled by setting the GL_MATRIX_MODE to
GL_MATRIX_PALETTE_OES. Each implementation can support a different number of matrices
and vertex units. The application can then define a set of indices, one for each bone.
There is also an associated weight for each index. The final vertex is then the sum of each
index weight times its respective matrix palette times the vertex. The normal is calculated
in a similar way.

To select the current matrix, use the glCurrentPaletteMatrix command, passing in an
index for the specific palette matrix to modify. The matrix can then be set using the
normal load matrix commands. Alternatively, the current palette matrix can be loaded
from the modelview matrix by using the glLoadPaletteFromModelViewMatrixOES
command. You will have to enable two new vertex arrays, GL_MATRIX_INDEX_ARRAY and
GL_WEIGHT_ARRAY. Also, the vertex array pointers will need to be set using the
glWeightPointer and glMatrixIndexPointer commands:

CHAPTER 22 OpenGL ES: OpenGL on the Small744

glCurrentPaletteMatrixOES(GLuint index);

glLoadPaletteFromModelViewMatrixOES();

glMatrixIndexPointerOES(GLint size, GLenum type, sizei stride, void *pointer);

glWeightPointerOES(Glint size, GLenum type, sizei stride, void *pointer);

Point Sprites—OES_point_sprite Point sprites do not exist as core functionality in
OpenGL 1.5. Instead, they are supported as the ARB_point_sprite extension and then
later in OpenGL 2.0. The OES_point_sprite core extension is very similar to the ARB
version that was written for OpenGL 1.5, but takes into account the embedded system
environment. Mainly this means that instead of using token names that end in “ARB,”
token names end in “OES.”

Point Size Array—OES_point_size_array To support quick and efficient rendering of
particle systems, the OES_point_size_array extension was added. This allows a vertex
array to be defined that will contain point sizes. This allows the application to render an
entire series of points with varying sizes in one glDrawArrays call. Without this exten-
sion the GL point size state would have to be changed between rendering each point that
had a different size.

Matrix Get—OES_matrix_get Because some applications would like to read matrix state
back, particularly useful after having done a series of matrix transforms or multiplications,
the new required OES_matrix_get extension was added to provide a query path suited to
ES. The Common profile is permitted to query for float values whereas the Common-Lite
profile must use a fixed-point representation. The commands are glGetFloatv and
glGetFixedv, respectively; they return matrix data as a single array. This extension is in
addition to OES_query_matrix.

Draw Texture—OES_draw_texture In certain environments, ES may be the only API for
rendering, or it may be inconvenient for an application to switch between two APIs.
Although 2D-like rendering can be done with OpenGL, it can be cumbersome. This exten-
sion is intended to help resolve this problem as well as provide a method for quickly
drawing font glyphs and backgrounds.

With this extension, a screen-aligned texture can be drawn to a rectangle region on the
screen. This may be done using the glDrawTex commands:

glDrawTex{sifx}OES(T Xs, T Ys, T Zs, T Ws, T Hs);

glDrawTex{sifx}vOES(T *coords);

In addition, a specific region of a texture for use can be defined. The entire texture does
not need to be used for a glDrawTex call. This may be done by calling glTexParameter
with the GL_TEXTURE_CROP_RECT_OES token and the four texture coordinates to use as the
texture crop rectangle. By default, the crop rectangle is 0,0,0,0. The texture crop rectangle
will not affect any other GL commands besides glDrawTex.

Which Version Is Right for You? 745

22

ES 2.0
The first two major OpenGL ES specifications were largely complexity reductions from
existing OpenGL specifications. ES 2.0 extends this trend by wholesale removal of large
parts of core OpenGL 2.0, making even greater strides in rendering path consolidation.

At the same time, ES 2.0 provides more control over the graphics pipeline than was previ-
ously available. Instead of supporting a slimmed-down version of the fixed-function
pipeline, the fixed-function pipeline has been completely removed. In its place is a
programmable shader path that allows applications to decide individually which vertex
and fragment processing steps are important.

One prevalent change in ES 2.0 is the support of floating-point data types in commands.
Previously, floating-point data needed to be emulated using fixed-point types, which are
still available in ES 2.0. Also, the data types byte, unsigned byte, short, and unsigned
short are not used for OpenGL commands.

Vertex Processing and Coloring
As with the preceding versions, display list and immediate mode render are not supported.
Vertex arrays or vertex buffer objects must be used for vertex specification. The vertex
buffer object interface now supports mapping and unmapping buffers just as OpenGL 2.0
does. Predetermined array types are no longer supported (glVertexPointer,
glNormalPointer, etc.). The only remaining method for specifying vertex data is the use of
generic attributes through the following entrypoints.

glVertexAttribPointer(GLuint index, GLuint size, GLenum type,

GLboolean normalized, sizei stride, const void *ptr);

In addition, glInterleavedArrays and glArrayElement are no longer supported. Also,
normal rescale, normalization, and texture coordinate generation are not supported.
Because the fixed-function pipeline has been removed, these features are no longer rele-
vant. If desirable, similar functionality can be implemented in programmable shaders.

Because the fixed-function pipeline has been removed, all lighting state is also removed.
Lighting models can be represented in programmable shaders as well.

Programmable Pipeline
OpenGL ES 2.0 has replaced the fixed-function pipeline with support for programmable
shaders. In OpenGL 2.0, which also supports programmable GLSL shaders, the implemen-
tation model allows applications to compile source at runtime using shader source strings.
OpenGL ES 2.0 uses a shading language similar to the GLSL language specification, called
the OpenGL ES Shading Language. This version has changes that are specific to embedded
environments and hardware they contain.

CHAPTER 22 OpenGL ES: OpenGL on the Small746

Although a built-in compiler is very easy to use, including the compiler in the OpenGL
driver can be large (several megabytes) and the compile process can be very CPU intensive.
These limitations do not work well with smaller handheld embedded systems, which have
much more stringent limitations for both memory and processing power.

For this reason, OpenGL ES has provided two different paths for the compilation of
shaders. The first is similar to OpenGL 2.0, allowing applications to compile and link
shaders using shader source strings at runtime. The second is a method for compiling
shaders offline and then loading the compiled result at runtime. Neither method individu-
ally is required, but an OpenGL ES 2.0 implementation must support at least one.

Many of the original OpenGL 2.0 commands are still part of ES. The same semantics of
program and shader management are still in play. The first step in using the programma-
ble pipeline is to create the necessary shader and program objects. This is done with the
following commands:

glCreateShader(void);

glCreateProgram(void);

After that, shader objects can be attached to program objects:

glAttachShader(GLuint program, GLuint shader);

Shaders can be compiled before or after attachment if the compile method is supported.
But the shader source needs to be specified first. These methods are covered in the follow-
ing extension sections: “Shader Source Loading and Compiling” and “Loading Shaders.”
Also, generic attribute channels can be bound to names during this time:

glBindAttribLocation(GLuint program, GLuint index, const char *name);

The program can then be linked. If the shader binary interface is supported, the shader
binaries for the compiled shaders need to be loaded before the link method is called. A
single binary can be loaded for a fragment-vertex pair if they were compiled together
offline.

glLinkProgram(GLuint program);

After the program has been successfully linked, it can be set as the currently executing
program by calling glUseProgram. Also, at this point uniforms can be set as needed. All
the normal OpenGL 2.0 attribute and uniform interfaces are supported. However, the
transpose bit for setting uniform matrices must be GL_FALSE. This feature is not essential
to the functioning of the programmable pipeline. Trying to draw without a valid program
bound will generate undefined results.

glUseProgram(GLuint program);

glUniform{1234}{if}(GLint location, T values);

glUniform{1234}{if}v(GLint location, sizei count, T value);

Which Version Is Right for You? 747

22

glUniformMatrix{234}fv(GLint location, sizei count,

GLboolean transpose, T value);

Using the programmable pipeline in OpenGL ES 2.0 is pretty straightforward if you are
familiar with using GLSL. If you don’t have much GLSL experience, it may be helpful to
do some work with programmable shaders in OpenGL 2.0 first since programming for a
PC is usually more user-friendly than most embedded environments. For more informa-
tion and the semantics of using shaders and programs, see chapters 15 through 17. To get
a better idea of how the two OpenGL ES shader compilation models are used, see the
related extensions at the end of this section.

Rasterization
Handling of points has also changed. Only aliased points are supported. Also, point sprites
are always enabled for point rendering. Several aspects of point sprite handling have also
changed. Vertex shaders are responsible for outputting point size; there is no other way for
point size to be specified. GL_COORD_REPLACE can be used to generate point texture coordi-
nates from 0 to 1 for s and t coordinates. Also, the point coordinate origin is set to
GL_UPPER_LEFT and cannot be changed.

Antialiased lines are not supported. OpenGL ES 2.0 also has the same limitations as ES 1.1
for polygon support.

Texturing
Texture support has been expanded for ES 2.0. In addition to 2D textures, cubemaps are
supported. Depth textures still are not supported and 3D textures remain optional. Non-
power-of-two textures support was promoted to OpenGL 2.0 and is included as part of the
ES 2.0 specification as well. But for ES, non-power-of-two textures are valid only for 2D
textures when mipmapping is not in use and the texture wrap mode is set to clamp to
edge.

Fragment Operations
There are also a few changes to the per-fragment operations allowed in ES 2.0. It is
required that there be at least one config available that supports both a depth buffer and a
stencil buffer. This will guarantee that an application depending on the use of depth infor-
mation and stencil compares will function on any implementation that supports OpenGL
ES 2.0.

A few things have also been removed from the OpenGL 2.0 spec. First, the alpha test stage
has been removed since an application can implement this stage in a fragment shader. The
glLogicOp interface is no longer supported. And occlusion queries are also not part of
OpenGL ES.

Blending works as it does in OpenGL 2.0, but the scope is more limited. glBlendEquation
and glBlendEquationSeparate can only support the following modes; GL_FUNC_ADD,
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT.

CHAPTER 22 OpenGL ES: OpenGL on the Small748

State
OpenGL ES 2.0 supports the same state and state queries as OpenGL ES 1.1. But the state
that is not part of ES 2.0 cannot be queried, for instance, GL_CURRENT_COLOR and
GL_CURRENT_NORMAL. Vertex array data state is also not queryable since ES 2.0 does not
support named arrays. Queries have been added for shader and program state and these
are the same as in OpenGL 2.0.

Core Additions
The number of core additions and extensions has dramatically increased to support the
more flexible nature of ES 2.0. Some of these are required but most are optional. You may
notice there are many layered extensions for things like texturing. With the use of this
model, an optional core extension definition is created for compatibility purposes, while
still allowing implementations to decide exactly what components should be imple-
mented and to what level.

Two required extensions are promoted along from ES 1.1 and ES 1.0: OES_read_format and
OES_compressed_paletted_texture.

Framebuffer Objects—OES_framebuffer_object The framebuffer object extension was
originally written against OpenGL 2.0, and is required to be supported in OpenGL ES 2.0.
This extension creates the concept of a “frame-buffer-attachable image.” This image is
similar to the window render surfaces. The main intention is to allow other surfaces to be
bound to the GL framebuffer. This allows direct rendering to arbitrary surfaces that can
later be used as texture images, among other things. Because this extension details many
intricate interactions, only the broad strokes will be represented here. Refer to the ES 2.0
specification and the EXT_framebuffer_object description for more information on usage,
and to Chapter 18, “Advanced Buffers,” for the OpenGL 2.0 explanation of framebuffer
objects.

Framebuffer Texture Mipmap Rendering—OES_fbo_render_mipmap When rendering to a
framebuffer object that is used as a mipmapped texture, this optional extension allows for
rendering into any of the mipmap levels of the attached framebuffer object. This can be
done using the glFramebufferTexture2DOES and glFramebufferTexture3DOES commands.

Render Buffer Storage Formats To increase the data type options for render buffer
storage formats, the following extensions have been added: OES_rgb_rgba, OES_depth24,
OES_depth32, OES_stencil1, OES_stencil_4, and OES_stencil8. Of these, only
OES_stencil8 is required. These new formats are relevant only for use with framebuffer
objects and are designed to extend framebuffer object compatibility.

Half-Float Vertex Format—OES_vertex_half_float With this optional extension it is
possible to specify vertex data with 16 bit floating-point values. When this is done, the
required storage for vertex data can be significantly reduced from the size of larger data
types. Also, the smaller data type can have a positive effect on the efficiency of the vertex
transform portions of the pipeline. Use of half-floats for data like colors often does not
have any adverse effects, especially for limited display color depth.

Which Version Is Right for You? 749

22

Floating-Point Textures Two new optional extensions, OES_texture_half_float and
OES_texture_float, define new texture formats using floating-point components. The
OES_texture_float uses a 32-bit floating format whereas OES_texture_half_float uses a
16-bit format. Both extensions support GL_NEAREST magnification as well as GL_NEAREST,
and GL_NEAREST_MIPMAP_NEAREST minification filters. To use the other minification
and magnification filters defined in OpenGL ES, the support of
OES_texture_half_float_linear and OES_texture_float_linear extension is required.

Unsigned Integer Element Indices—OES_element_index_uint Element index use in
OpenGL ES is inherently limited by the maximum size of the index data types. The use of
unsigned bytes and unsigned shorts allows for only 65,536 elements to be used. This
optional extension allows for the use of element indexing with unsigned integers, extend-
ing the maximum reference index to beyond what current hardware could store.

Mapping Buffers—OES_mapbuffer For vertex buffer object support in previous OpenGL
ES versions, the capability to specify and use anything other than a static buffer was
removed. When this optional extension is available, use of the tokens GL_STREAM_DRAW,
GL_STREAM_COPY, GL_STREAM_READ, GL_STATIC_READ, GL_DYNAMIC_COPY, and
GL_DYNAMIC_READ are valid, as well as the glMapBuffer and glUnmapBuffer entrypoints.
This permits applications to map and edit VBOs that already have been defined.

3D Textures—OES_texture_3D Generally, most ES applications do not require support for
3D textures. This extension was kept as optional to allow implementations to decide
whether support could be accelerated and would be useful on an individual basis. Also,
texture wrap modes and mipmapping are supported for 3D textures that have power-of-
two dimensions. Non-power-of-two 3D textures only support GL_CLAMP_TO_EDGE for
mipmapping and texture wrap.

Non-Power-of-Two Extended Support—OES_texture_npot For non-power-of-two
textures, the optional OES_texture_npot extension provides two additional wrap modes.
GL_REPEAT and GL_MIRRORED_REPEAT are allowed as texture wrap modes and minification
filters when this extension is supported.

High-Precision Floats and Integers in Fragment Shaders—OES_fragment_precision_high

This optional extension allows for support of the high-precision qualifier for integers and
floats defined in fragment shaders.

Ericsson Compressed Texture Format—OES_compressed_ETC1_RGB8_texture The need for
compressed texture support in OpenGL ES has long been understood, but format specifica-
tion and implementation has been left to each individual implementer. This optional
extension formalizes one of these formats for use on multiple platforms.

To load a compressed texture using the ETC_RGB8 format, call glCompressedTexImage2D
with an internal format of GL_ETC1_RGB8_OES. This format defines a scheme by which each
4×4 texel block is grouped. A base color is then derived, and modifiers for each texel are
selected from a table. The modifiers are then added to the base color and clamped to
0–255 to determine the final texel color. The full OES_compressed_ETC1_RGB8_texture
description has more details on this process.

CHAPTER 22 OpenGL ES: OpenGL on the Small750

Shader Source Loading and Compiling—OES_shader_source This extension is one of the
two methods for loading shaders. If this extension is not supported, OES_shader_binary
must be. This version is the most like OpenGL 2.0. There are several entrypoints that are
valid only for this extension and are used for loading uncompiled shader source.

After the creation of a shader, the source must be set for the shader using the
glShaderSource function. This can be done before or after the shader is attached to a
program, but must be done before glCompileShader is called. After the source has been
set, but before glLinkProgram is called if the shader is attached to a program, the shader
must be compiled with a call to glCompileShader.

glShaderSource(GLuint shader, sizei count, const char **string,

const int *length);

glCompileShaer(GLuint shader);

Because the shader source path has been added back to the programmable pipeline, several
shader-specific queries are also available. glGetShaderInfoLog can be used to query infor-
mation specific to a shader. Compile info is usually the most important information stored
in the log. glGetShaderSource can be used to query the shader strings.

glGetShaderInfoLog(GLuint shader, sizei bufsize, sizei *length, char *infolog);

glGetShaderSource(GLuint shader, sizei bufsize, sizei *length, char *source);

Different implementations of OpenGL ES 2.0 may have different levels of internal preci-
sion when executing linked programs. Both the precision and the range can be checked
for both shader types, vertex and fragment, with the glGetShaderPrecisionFormatOES.
Each precision-specific data type, GL_LOW_FLOAT, GL_MEDIUM_FLOAT, GL_HIGH_FLOAT,
GL_LOW_INT, GL_MEDIUM_INT, and GL_HIGH_INT, can be queried individually. The results of
the queries are log base 2 numbers.

glGetShaderPrecisionFormatOES(GLenum shadertype, sizei bufsize,

sizei *length, char *source);

The last function added with this extension is glReleaseShaderCompilerOES. The resources
that need to be initialized to successfully compile a shader can be extensive. Generally, an
application will compile and link all shaders/programs it will use before executing any
draw calls. This new command signals to the implementation that the compiler will not
be used for a while and any allocated resources can be freed. The call does not mean that
shaders are no longer allowed to be compiled, though.

Loading Shaders—OES_shader_binary This extension is the other method for loading
shaders. If this extension is not supported, OES_shader_source must be. This extension is
intended to address the resource issues related to including a compiler in the OpenGL ES
implementation. A compiler can require large amounts of storage, and the execution of an
optimizing compiler on shaders during execution can steal large amounts of CPU time.

Which Version Is Right for You? 751

22

Using this method allows applications to compile shaders offline for execution on a
specific system. These compiled shaders can then be loaded at execution time. This solves
the storage problems related to including a compiler and eliminates any compile-time
stalls.

This extension also supports use of the command glGetShaderPrecisionFormatOES. See
the earlier description under “OES_shader_source” to get a detailed explanation.

One new command has been added to load compiled shader source, glShaderBinaryOES.
This command can be used to load a single binary for multiple shaders that were all
compiled offline together. These shaders are all listed together on the glShaderBinaryOES
call, with “n” being the count of shader handles. For OpenGL ES 2.0, the binary format is
always GL_PLATFORM_BINARY.

glShaderBinaryOES(GLint n, GLuint *shaders, GLenum binaryformat,

const void *binary, GLint length);

Shaders are compiled offline using an implementation-specific interface that is defined by
individual vendors. These compiles will return a shader binary that will be used at execu-
tion time. It is best to compile both the vertex and the fragment shaders for an intended
program at the same time, together. This gives the compiler the most opportunity to opti-
mize the compiled shader code, eliminating any unnecessary steps such as outputting
interpolants in vertex shaders that are never read in the fragment shader.

There is an additional link-time caveat. glLinkProgram is allowed to fail if optimized
vertex and fragment shader source pairs are not linked together. This is because it is possi-
ble for the vertex shader to need a recompile based on the needs of the fragment shader.

ES SC
The last version of OpenGL ES we will present is OpenGL ES SC. This is the safety-critical
specification. At this time there is only one release of SC, version 1.0. The SC specification
is important for execution in places where an application or driver crash can have serious
implications, such as for aircraft instrumentation or on an automobile’s main computer.
Also, many of the removed features for SC were pulled out to make testing easier, since
safety-critical components must go through a much more extensive testing and certifica-
tion process than a normal PC component.

Because the industry in many of these safety-critical areas tends to progress slowly, many
embedded applications use older features of OpenGL that are removed from the newer
versions of OpenGL ES. You will find that many of these features are still present in
OpenGL ES SC. SC has been written against the OpenGL 1.3 specification. Interface
versions specific to the byte, short, and unsigned short data types have been removed to
help reduce the number of entrypoints.

CHAPTER 22 OpenGL ES: OpenGL on the Small752

Vertex Processing and Coloring
In SC, immediate mode rendering has been added back in for all primitive types except
GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON. These can be simulated using other primitive
types. Edge flags are not supported. Also, the vertex data entry routines have been reduced
to include only the following:

glBegin(GLenum mode);

glEnd();

glVertex{2,3}f[v](T coords);

glNormal3f[v](GLfloat coords);

glMultiTexCoord2f(GLenum texture, GLfloat coords);

glColor4{f,fv,ub}(GLfloat components);

Rendering with vertex arrays is also supported in the same capacity as OpenGL ES 1.0, but
generally only support GL_FLOAT as the array data type (color arrays can also be
GL_UNSIGNED_BYTE). Also, all the float versions of matrix specification and manipulation
functions are supported, whereas the double versions are not since doubles are generally
not supported in OpenGL ES. But the transpose versions of the commands are also not
supported. Texture coordinate generation is not available.

Many SC systems rely on OpenGL ES to do all graphic rendering, including 2D, menus,
and such. So, bitmaps are an important part of menus and 2D rendering and are available
on SC. Because bitmaps are supported in SC, a method for setting the current raster posi-
tion is also necessary. The glRasterPos entrypoint has been included to fulfill this need:

glRasterPos3f(GLfloat coords);

glBitmap(sizei width, sizei height, GLfloat xorig, GLfloat yorig,

GLfloat xmove, GLfloat ymove, const GLubyte *bitmap);

Most of the lighting model stays intact and at least two lights must be supported. But two-
sided lighting has been removed, and with it go differing front and back materials. Also,
local viewer is not available and the only color material mode is GL_AMBIENT_AND_DIFFUSE.

Rasterization
The rasterization path is very similar to the OpenGL 1.3 path. Point rendering is fully
supported. Also, line and polygon stippling is supported. But as with the other ES versions,
point and line polygon modes are not supported. Neither is GL_POLYGON_SMOOTH or multi-
sample. As in OpenGL ES 1.0, only 2D textures are supported.

Fragment Operations
Fragment operations will seem familiar. Depth test is included as well as alpha test, scissor-
ing, and blending. This specification also still allows use of color mask and depth mask.

Which Version Is Right for You? 753

22

State
Most states that are available for rendering are also available for querying. Most entry-
points are also supported unless they are duplicates or are for a data type that is not
supported.

Core Additions
Even the SC version of OpenGL ES has several core additions. These are
OES_single_precision, EXT_paletted_texture, and EXT_shared_texture_palette. Single
precision has already been covered in previous versions of ES. Paletted texture support is
very similar to the compressed paletted texture support offered in other versions of ES and
is not described in detail here. Shared paletted textures expand on paletted textures by
allowing for a common, shared palette.

The ES Environment
Now that we have seen what the specs actually look like, we are almost ready to take a
peek at an example. Figure 22.1 shows an example of OpenGL ES running on a cell phone.
To see a color version, flip to the Color Insert section of the book. But before that, there
are a few issues unique to embedded systems that you should keep in mind while working
with OpenGL ES and targeting embedded environments.

CHAPTER 22 OpenGL ES: OpenGL on the Small754

FIGURE 22.1 OpenGL ES rendering on a cellphone.

Application Design Considerations
For first-timers to the embedded world, things are a bit different here than when working
on a PC. The ES world spans a wide variety of hardware profiles. The most capable of these

might be multicore systems with extensive dedicated graphics resources, such as the Sony
PlayStation 3. Alternatively, and probably more often, you may be developing for or
porting to an entry-level cellphone with a 50MHz processor and 16MB of storage.

On limited systems, special attention must be paid to instruction count because every
cycle counts if you are looking to maintain reasonable performance. Certain operations
can be very slow. An example might be finding the sine of an angle. Instead of calling
sin() in a math library, it would be much faster to do a lookup in a precalculated table if
a close approximation would do the job. In general, the types of calculations and algo-
rithms that might be part of a PC application should be updated for use in an embedded
system. One example might be physics calculations, which are often very expensive. These
can usually be simplified and approximated for use on embedded systems like cellphones.

On systems that support only ES 1.x, it’s also important to be aware of native floating-
point support. Many of these systems do not have the capability to perform floating-point
operations directly. This means all floating-point operations will be emulated in software.
These operations are generally very slow and should be avoided at all costs. This is the
reason that ES has provided for an interface that does not require floating-point data
usage.

Dealing with a Limited Environment
Not only can the environment be limiting when working on embedded systems, but the
graphics processing power itself is unlikely to be on par with the bleeding edge of PC
graphics. This limitation also creates specific areas that need special attention when you’re
looking to optimize the performance of your app, or just to get it to load and run at all!

It may be helpful to create a budget for storage space. In this way you can break up the
maximum graphics/system memory available into pieces for each memory-intensive cate-
gory. This will help to provide a perspective on how much data each unique piece of your
app can use and when you are starting to run low.

One of the most obvious areas is texturing. Large detailed textures can help make a PC
targeted application provide a rich and detailed environment. This is great for the user expe-
rience. But in most embedded systems textures can be a huge resource hog. Many of the
older platforms may not have full hardware support for texturing. OpenGL ES 1.x imple-
mentations may also be limited in the texture environment that can be hardware acceler-
ated. You’ll want to refer to the documentation for your platform for this information. But
these issues can cause large performance drops when many fragments are textured, especially
if each piece of overlapping geometry is textured and drawn in the wrong order.

In addition to core hardware texturing performance, texture sizes can also be a major limi-
tation. Both 3D and cube map textures can quickly add up to a large memory footprint.
This is one reason why only 2D textures are supported in ES 1.x and 3D textures are
optional for ES 2.0. Usually when the amount of graphics and system memory is limited,

The ES Environment 755

22

the screen size is also small. This means that a much smaller texture can be used with
similar visual results. Also, it may be worth avoiding multitexture because it requires
multiple texture passes as well as more texture memory.

Vertex count can also have an adverse effect on performance. Earlier ES platforms often
performed vertex transform on the CPU instead of on dedicated graphics resources. This can
be especially slow when using lighting on ES 1.x. To reduce vertex counts, difficult decisions
have to be made about which parts of object models are important and require higher tessel-
lation, and which are less important or may not suffer if rendered with less tessellation.

Vertex storage can also impact memory, similar to textures. In addition to setting a cap for
the total memory used for vertices, it may also be helpful to decide which parts of a scene
are important and divide up the vertex allotment along those lines.

One trick to keeping rendering smooth while many objects are on the screen is to change
the vertex counts for objects relative to their distance from the viewer. This is a level-of-
detail approach to geometry management. For instance, if you would like to generate a
forest scene, three different models of trees could be used. One level would have a very
small vertex count and would be used to render the farthest of the trees. A medium vertex
count could be used for trees of intermediate distance, and a larger count would be used
on the closest. This would allow many trees to be rendered much quicker than if they
were all at a high detail level. Because the least detailed trees are the farthest away, and
may also be partially occluded, it is unlikely the lower detail would be noticed. But there
may be significant savings in vertex processing as a result.

Fixed-Point Math
You may ask yourself, “What is fixed-point math and why should I care?” The truth is that
you may not care if your hardware supports floating-point numbers and the version of
OpenGL ES you are using does as well. But there are many platforms that do not natively
support floating point. Floating-point calculations in CPU emulation are very slow and
should be avoided. In those instances, a representation of a floating-point number can be
used to communicate nonwhole numbers. I definitely am not going to turn this into a
math class! But instead a few basic things about fixed-point math will be covered to give
you an idea of what’s involved. If you need to know more, there are many great resources
available that go to great lengths in discussing fixed-point math.

First, let’s review how floating-point numbers work. There are basically two components to
a floating-point number: The mantissa describes the fractional value, and the exponent is
the scale or power. In this way large numbers are represented with the same number of
significant digits as small numbers. They are related by m * 2e where m is the mantissa
and e is the exponent.

Fixed-point representation is different. It looks more like a normal integer. The bits are
divided into two parts, with one part being the integer portion and the other part being
the fractional. The position between the integer and fractional components is the

CHAPTER 22 OpenGL ES: OpenGL on the Small756

“imaginary point.” There also may be a sign bit. Putting these pieces together, a fixed-
point format of s15.16 means that there is 1 sign bit, 15 bits represent the integer, and 16
bits represent the fraction. This is the format used natively by OpenGL ES to represent
fixed-point numbers.

Addition of two fixed-point numbers is simple. Because a fixed-point number is basically
an integer with an arbitrary “point,” the two numbers can be added together with a
common scalar addition operation. The same is true for subtraction. There is one require-
ment for performing these operations. The fixed-point numbers must be in the same
format. If they are not, one must be converted to the format of the other first. So to add
or subtract a number with format s23.8 and one with s15.16, one format has to be picked
and both numbers converted to that format.

Multiplication and division are a bit more complex. When two fixed-point numbers are
multiplied together, the imaginary point of the result will be the sum of that in the two
operands. For instance, if you were multiplying two numbers with formats of s23.8
together, the result would be in the format of s15.16. So it is often helpful to first convert
the operands into a format that will allow for a reasonably accurate result format. You
probably don’t want to multiply two s15.16 formats together if they are greater than 1.0—
the result format would have no integer portion! Division is very similar, except the size of
the fractional component of the second number is subtracted from the first.

When using fixed-point numbers, you have to be especially careful about overflow issues.
With normal floating point, when the fractional component would overflow, the expo-
nent portion is modified to preserve accuracy and prevent the overflow. This is not the
case for fixed point. To avoid overflowing fixed-point numbers when performing opera-
tions that might cause problems, the format can be altered. The numbers can be converted
to a format that has a larger integer component, and then converted back before calling
into OpenGL ES. With multiplication similar issues result in precision loss of the fractional
component when the result is converted back to one of the operand formats. There are
also math packages available to help you convert to and from fixed-point formats, as well
as perform math functions. This is probably the easiest way to handle fixed-point math if
you need to use it for an entire application.

That’s it! Now you have an idea how to do basic math operations using fixed-point
formats. This will help get you started if you find yourself stuck having to use fixed-point
values when working with embedded systems. There are many great references for learn-
ing more about fixed-point math. One is Essential Mathematics for Games and Interactive
Applications by James Van Verth and Lars Bishop (Elsevier, Inc. 2004).

EGL: A New Windowing Environment
You have already heard about glx, agl, and wgl. These are the OpenGL-related system
interfaces for OSs like Linux, Apple’s Mac OS, and Microsoft Windows. These interfaces are
necessary to do the setup and management for system-side resources that OpenGL will

EGL: A New Windowing Environment 757

22

use. The EGL implementation often is also provided by the graphics hardware vendor.
Unlike the other windowing interfaces, EGL is not OS specific. It has been designed to run
under Windows, Linux, or embedded OSs such as Brew and Symbian. A block diagram of
how EGL and OpenGL ES fit into an embedded system is shown in Figure 22.2

EGL has its own native types just like OpenGL does. EGLBoolean has two values that are
named similarly to their OpenGL counterparts: EGL_TRUE and EGL_FALSE. EGL also defines
the type EGLint. This is an integer that is sized the same as the native platform integer
type. The most current version of EGL as of this writing is EGL 1.2

CHAPTER 22 OpenGL ES: OpenGL on the Small758

3D Application

OS OpenGL ESEGL

System
Hardware

Graphics Processor

FIGURE 22.2 A typlical embedded system diagram.

EGL Displays
Most EGL entrypoints take a parameter called EGLDisplay. This is a reference to the
rendering target where drawing can take place. It might be easiest to think of this as corre-
sponding to a physical monitor. The first step in setting up EGL will be to get the default
display. This can be done through the following function:

EGLDisplay eglGetDisplay(NativeDisplayType display_id);

The native display id that is taken as a parameter is dependent on the system. For
instance, if you were working with an EGL implementation on Windows, the display_id
parameter you pass would be the device context. You can also pass EGL_DEFAULT_DISPLAY
if you don’t have the display id and just want to render on the default device. If
EGL_NO_DISPLAY is returned, an error occurred.

Now that you have a display handle, you can use it to initialize EGL. If you try to use
other EGL interfaces without initializing EGL first, you will get an EGL_NOT_INITIALIZED
error.

EGLBoolean eglInitialize(EGLDisplay dpy, EGLint *major, EGLint *minor);

The other two parameters returned are the major and minor EGL version numbers. By
calling the initialize command, you tell EGL you are getting ready to do rendering, which
will allow it to allocate and set up any necessary resources.

The main addition to EGL 1.2 is the eglBindAPI interface. This allows an application to
select from different rendering APIs, such as OpenGL ES and OpenVG. Only one context
can be current for each API per thread. Use this interface to tell EGL which interface it
should use for subsequent calls to eglMakeCurrent in a thread. Pass in one of two
tokens to signify the correct API; EGL_OPENVG_API, EGL_OPENGL_ES_API. The call will fail if
an invalid enum is passed in. The default value is EGL_OPENGL_ES_API. So unless you plan
to switch between multiple APIs, you don’t need to set EGL_OPENGL_ES_API to get
OpenGL ES.

EGLBoolean eglBindAPI(EGLenum api);

EGL also provides a method to query the current API, eglQueryAPI. This interface returns
one of the two enums previously listed.

EGLBoolean eglBindAPI(EGLenum api);

On exit of your application, or after you are done rendering, a call must be made to EGL
again to clean up all allocated resources. After this call is made, further references to EGL
resources with the current display will be invalid until eglInitialize is called on it again.

EGLBoolean eglTerminate(EGLDisplay dpy);

Also on exit and when finished rendering from a thread, call eglReleaseThread. This
allows EGL to release any resources it has allocated in that thread. If a context is still
bound, eglReleaseThread will release it as well. It is still valid to make EGL calls after
calling eglReleaseThread, but that will cause EGL to reallocate any state it just released.

EGLBoolean eglReleaseThread(EGLDisplay dpy);

Creating a Window
As on most platforms, creating a window to render in can be a complex task. Windows are
created in the native operating system. Later we will look at how to tell EGL about native
windows. Thankfully the process is similar enough to that for Windows and Linux.

Display Configs
An EGL config is analogous to a pixel format on Windows or visuals on Linux. Each config
represents a group of attributes or properties for a set of render surfaces. In this case the
render surface will be a window on a display. It is typical for an implementation to support
multiple configs. Each config is identified by a unique number. Different constants are
defined that correlate to attributes of a config. They are defined in Table 22.2.

EGL: A New Windowing Environment 759

22

TABLE 22.2 EGL Config Attribute List

Attribute Description

EGL_BUFFER SIZE Total depth in bits of color buffer.

EGL_RED_SIZE Number of bits in red channel of color buffer.

EGL_GREEN_SIZE Number of bits in green channel of color buffer.

EGL_BLUE_SIZE Number of bits in blue channel of color buffer.

EGL_ALPHA_SIZE Number of bits in alpha channel of color buffer.

EGL_DEPTH_SIZE Number of bits in depth buffer.

EGL_LUMINANCE_SIZE Number of bits of luminance in the color buffer

EGL_STENCIL_SIZE Number of bits in stencil buffer.

EGL_BIND_TO_TEXTURE_RGB True if config is bindable to RGB textures.

EGL_BIND_TO_TEXTURE_RGBA True if config is bindable to RGBA textures.

EGL_CONFIG_CAVEAT Set to one of the following caveats: EGL_NONE,

EGL_SLOW_CONFIG, or EGL_NON_CONFORMANT_CONFIG. These

can warn of potential issues for this config. A slow config

may be software emulated because it exceeds hardware

limits. A nonconformant config will not pass the confor-

mance test.

EGL_CONFIG_ID Unique identifier for this config.

EGL_LEVEL Framebuffer level.

EGL_NATIVE_RENDERABLE Is set to EGL_TRUE if native APIs can render to this surface.

EGL_NATIVE_VISUAL_ID May represent the id of the native visual if the config

supports a window, otherwise is 0.

EGL_NATIVE_VISUAL_TYPE Type of a native visual if config supports window rendering.

EGL_RENDERABLE_TYPE Native type of visual. May be EGL_OPENGL_ES_BIT or

EGL_OPENVG_BIT

EGL_SURFACE_TYPE Valid surface targets supported. May be any or all of

EGL_WINDOW_BIT, EGL_PIXMAP_BIT, or EGL_PBUFFER_BIT.

EGL_COLOR_BUFFER_TYPE Type of color buffer. May be EGL_RGB_BUFFER or

EGL_LUMINANCE_BUFFER.

EGL_MIN_SWAP_INTERVAL Smallest value that can be accepted by eglSwapInterval.

Smaller values will be clamped to this minimum.

EGL_MAX_SWAP_INTERVAL Largest value that can be accepted by eglSwapInterval.

Larger values will be clamped to this maximum.

EGL_SAMPLE_BUFFERS Number of multisample buffers supported. Must be 0 or 1.

EGL_SAMPLES Number of samples per pixel for multisample buffers. Will

be 0 if EGL_SAMPLE_BUFFERS is 0.

EGL_ALPHA_MASK_SIZE Number of bits of alpha mask

EGL_TRANSPARENT_TYPE Indicates support of transparency. Value may be EGL_NONE

or EGL_TRANSPARENT_RGB. If transparency is supported, a

transparent pixel is drawn when the pixel’s components are

all equal to the respective transparent RGB values.

EGL_TRANSPARENT_RED_VALUE Red value a framebuffer pixel must have to be transparent.

CHAPTER 22 OpenGL ES: OpenGL on the Small760

TABLE 22.2 Continued

Attribute Description

EGL_TRANSPARENT_GREEN_VALUE Green value a framebuffer pixel must have to be

transparent.

EGL_TRANSPARENT_BLUE_VALUE Blue value a framebuffer pixel must have to be transparent.

EGL_MAX_PBUFFER_WIDTH Maximum width that can be used to create a pBuffer.

EGL_MAX_PBUFFER_HEIGHT Maximum height that can be used to create a pBuffer.

EGL_MAX_PBUFFER_PIXELS Largest total size of a pBuffer, in pixels.

It is necessary to choose a config before creating a render surface. But with all the possible
combinations of attributes, the process may seem difficult. EGL has provided several tools
to help you decide which config will best support your needs. If you have an idea of the
kind of options you need for a window, you can use the eglChooseConfig interface to let
EGL choose the best config for your requirements.

EGLBoolean eglChooseConfig(EGLDisplay dpy, const EGLint *attrib_list,

EGLConfig *configs,EGLint config_size,

EGLint *num_configs);

First decide how many matches you are willing to look through. Then allocate memory to
hold the returned config handles. The matching config handles will be returned through
the configs pointer. The number of configs will be returned through the num_config
pointer. Next comes the tricky part. You have to decide which parameters are important
to you in a functional config. Then, you create a list of each attrib followed by the
corresponding value. For simple applications, some important attributes might be the bit
depths of the color and depth buffers, and the surface type. The list must be terminated
with EGL_NONE. An example of an attribute list is shown here:

EGLint attributes[] = {EGL_BUFFER_SIZE, 24,

EGL_RED_SIZE, 6,

EGL_GREEN_SIZE, 6,

EGL_BLUE_SIZE, 6,

EGL_DEPTH_SIZE, 12,

EGL_SURFACE_TYPE, EGL_WINDOW_BIT,

EGL_NONE};

For attributes that are not specified in the array, the default values will be used. During the
search for a matching config, some of the attributes you list are required to make an exact
match whereas others are not. Table 22.3 lists the default values and the compare method
for each attribute.

EGL: A New Windowing Environment 761

22

TABLE 22.3 EGL Config Attribute List

Compare
Attribute Operator Default

EGL_BUFFER SIZE Minimum 0

EGL_RED_SIZE Minimum 0

EGL_GREEN_SIZE Minimum 0

EGL_BLUE_SIZE Minimum 0

EGL_ALPHA_SIZE Minimum 0

EGL_DEPTH_SIZE Minimum 0

EGL_LUMINANCE_SIZE Minimum 0

EGL_STENCIL_SIZE Minimum 0

EGL_BIND_TO_TEXTURE_RGB Equal EGL_DONT_CARE

EGL_BIND_TO_TEXTURE_RGBA Equal EGL_DONT_CARE

EGL_CONFIG_CAVEAT Equal EGL_DONT_CARE

EGL_CONFIG_ID Equal EGL_DONT_CARE

EGL_LEVEL Equal 0

EGL_NATIVE_RENDERABLE Equal EGL_DONT_CARE

EGL_NATIVE_VISUAL_TYPE Equal EGL_DONT_CARE

EGL_RENDERABLE_TYPE Mask EGL_OPENGL_ES_BIT

EGL_SURFACE_TYPE Equal EGL_WINDOW_BIT

EGL_COLOR_BUFFER_TYPE Equal EGL_RGB_BUFFER

EGL_MIN_SWAP_INTERVAL Equal EGL_DONT_CARE

EGL_MAX_SWAP_INTERVAL Equal EGL_DONT_CARE

EGL_SAMPLE_BUFFERS Minimum 0

EGL_SAMPLES Minimum 0

EGL_ALPHA_MASK_SIZE Minimum 0

EGL_TRANSPARENT_TYPE Equal EGL_NONE

EGL_TRANSPARENT_RED_VALUE Equal EGL_DONT_CARE

EGL_TRANSPARENT_GREEN_VALUE Equal EGL_DONT_CARE

EGL_TRANSPARENT_BLUE_VALUE Equal EGL_DONT_CARE

EGL uses a set of rules to sort the matching results before they are returned to you.
Basically, the caveat field is matched first, followed by the color buffer channel depths,
then the total buffer size, and next the sample buffer information. So the config that is
the best match should be first. After you have received the matching configs, you can
peruse the results to find the best option for you. The first one will often be sufficient.

To analyze the attributes for each config, you can use eglGetConfigAttrib. This will allow
you to query the attributes for a config, one at a time:

EGLBoolean eglGetConfigAttrib(EGLDisplay dpy, EGLConfig config,

EGLint attribute, EGLint *value);

CHAPTER 22 OpenGL ES: OpenGL on the Small762

If you prefer a more “hands-on” approach to choosing a config, a more direct method for
accessing supported configs is also provided. You can use eglGetConfigs to get all the
configs supported by EGL:

EGLBoolean eglGetConfigs(EGLDisplay dpy, EGLConfig *configs,

EGLint config_size, EGLint *num_configs);

This function is very similar to eglChooseConfig except that it will return a list that is not
dependent on some search criteria. The number of configs returned will be either the
maximum available or the number passed in by config_size, whichever is smaller.
Here also a buffer needs to be preallocated based on the expected number of formats.
After you have the list, it is up to you to pick the best option, examining each with
eglGetConfigAttrib. It is unlikely that multiple different platforms will have the same
configs or list configs in the same order. So it is important to properly select a config
instead of blindly using the config handle.

Creating Rendering Surfaces
Now that we know how to pick a config that will support our needs, it’s time to look at
creating an actual render surface. The focus will be window surfaces, although it is also
possible to create nondisplayable surfaces such as pBuffers and pixmaps. The first step will
be to create a native window that has the same attributes as those in the config you chose.
Then you can use the window handle to create a window surface. The window handle
type will be related to the platform or OS you are using. In this way the same interface
will support many different OSs without having to define a new method for each.

EGLSurface eglCreateWindowSurface(EGLDisplay dpy, EGLConfig config,

NativeWindowType win, EGLint *attrib_list);

The handle for the onscreen surface is returned if the call succeeds. The attrib_list para-
meter is intended to specify window attributes, but currently none is defined. After you
are done rendering, you’ll have to destroy your surface using the eglDestroySurface
function:

EGLBoolean eglDestroySurface(EGLDisplay dpy, EGLSurface surface);

After a window render surface has been created and the hardware resources have been
configured, you are almost ready to go!

Context Management
The last step is to create a render context to use. The rendering context is a set of state
used for rendering. At least one context must be supported.

EGLContext eglCreateContext(EGLDisplay dpy, EGLConfig config,

EGLContext share_context, const EGLint *attrib_list);

EGL: A New Windowing Environment 763

22

To create a context, call the eglCreateContext function with the display handle you have
been using all along. Also pass in the config used to create the render surface. The config
used to create the context must be compatible with the config used to create the window.
The share_context parameter is used to share objects like textures and shaders between
contexts. Pass in the context you would like to share with. Normally you will pass
EGL_NO_CONTEXT here since sharing is not necessary. The context handle is passed back if
the context was successfully created; otherwise, EGL_NO_CONTEXT is returned.

Now that you have a rendering surface and a context, you’re ready to go! The last thing to
do is to tell EGL which context you’d like to use, since you can use multiple contexts for
rendering. Use eglMakeCurrent to set a context as current. You can use the surface you
just created as both the read and the draw surfaces.

EGLBoolean eglMakeCurrent(EGLDisplay dpy, EGLSurface draw,

EGLSurface read, EGLContext ctx);

You will get an error if the draw or read surfaces are invalid or if they are not compatible
with the context. To release a bound context, you can call eglMakeCurrent with
EGL_NO_CONTEXT as the context. You must use EGL_NO_SURFACE as the read and write
surfaces when releasing a context. To delete a context you are finished with, call
eglDestroyContext:

EGLBoolean eglDestroyContex(EGLDisplay dpy, EGLContext ctx);

Presenting Buffers and Rendering Synchronization
For rendering, there are certain EGL functions you may need in order to help keep things
running smoothly. The first is eglSwapBuffers. This interface allows you to present a color
buffer to a window. Just pass in the window surface you would like to post to:

EGLBoolean eglSwapBuffers(EGLDisplay dpy, EGLSurface surface);

Just because eglSwapBuffers is called doesn’t mean it’s the best time to actually post the
buffer to the monitor. It’s possible that the display is in the middle of displaying a frame
when eglSwapBuffers is called. This case causes an artifact called tearing that looks like
the frame is slightly skewed on a horizontal line. EGL provides a way to decide if it should
wait until the current drawing is complete before posting the swapped buffer to the
monitor:

EGLBoolean eglSwapInterval(EGLDisplay dpy, EGLint interval);

By setting the swap interval to 0, you are telling EGL to not synchronize swaps and that
an eglSwapBuffers call should be posted immediately. The default value is 1, which means
each swap will be synchronized with the next post to the monitor. The interval is clamped
to the values of EGL_MIN_SWAP_INTERVAL and EGL_MAX_SWAP_INTERVAL.

CHAPTER 22 OpenGL ES: OpenGL on the Small764

If you plan to render to your window using other APIs besides OpenGL ES/EGL, there are
some things you can do to ensure that rendering is posted in the right order:

EGLBoolean eglWaitGL(void);

EGLBoolean eglWaitNative(EGLint engine);

Use eglWaitGL to prevent other API rendering from operating on a window surface before
OpenGL ES rendering completes. Use eglWaitNative to prevent OpenGL ES from execut-
ing before native API rendering completes. The engine parameter can be defined in EGL
extensions specific to an implementation, but EGL_CORE_NATIVE_ENGINE can also be used
and will refer to the most common native rendering engine besides OpenGL ES. This is
implementation/system specific.

More EGL Stuff
We have covered the most important and commonly used EGL interfaces. There are a few
more EGL functions left to talk about that are more peripheral to the common execution
path.

EGL Errors
EGL provides a method for getting EGL-specific errors that may be thrown during EGL
execution. Most functions return EGL_TRUE or EGL_FALSE to indicate whether they were
successful, but in the event of a failure, a Boolean provides very little information on what
went wrong. In this case, eglGetError may be called to get more information:

EGLint eglGetError();

The last thrown error is returned. This will be one of the following self-explanatory errors:
EGL_SUCCESS, EGL_NOT_INITIALIZED, EGL_BAD_ACCESS, EGL_BAD_ALLOC, EGL_BAD_ATTRIBUTE,
EGL_BAD_CONTEXT, EGL_BAD_CONFIG, EGL_BAD_CURRENT_SURFACE, EGL_BAD_DISPLAY,
EGL_BAD_SURFACE, EGL_BAD_MATCH, EGL_BAD_PARAMETER, EGL_BAD_NATIVE_PIXMAP,
EGL_BAD_NATIVE_WINDOW, or EGL_CONTEXT_LOST.

Getting EGL Strings
There are a few EGL state strings that may be of interest. These include the EGL version
string and extension string. To get these, use the eglQueryString interface with the
EGL_VERSION and EGL_EXTENSIONS enums:

const char *eglQueryString(EGLDisplay dpy, EGLint name);

Extending EGL
Like OpenGL, EGL provides support for various extensions. These are often extensions
specific to the current platform and can provide for extended functionality beyond that of
the core specification. To find out what extensions are available on your system, you can

EGL: A New Windowing Environment 765

22

use the eglQueryString function previously discussed. To get more information on
specific extensions, you can visit the Khronos Web site listed in the reference section.
Some of these extensions may require additional entrypoints. To get the entrypoint
address for these extensions, pass the name of the new entrypoint into the following
function:

void (*eglGetProcAddress(const char *procname))();

Use of this entrypoint is very similar to wglGetProcAddress. A NULL return means the
entry point does not exist. But just because a non-NULL address is returned does not mean
the function is actually supported. The related extensions must exist in the EGL extension
string or the OpenGL ES extension string. It is important to ensure that you have a valid
function pointer (non-NULL) returned from calling eglGetProcAddress.

Negotiating Embedded Environments
After examining all the different versions of OpenGL ES and EGL, it’s time to look closer
at the environment of an embedded system and how it will affect an OpenGL ES applica-
tion. The environment will play an important role in how you approach creating ES
applications.

Popular Operating Systems
Because OpenGL ES is not limited to certain platforms as many 3D APIs are, a wide variety
of OSs have been used. This decision is often already made for you, because most embed-
ded systems are designed for use with certain OSs, and certain OSs are intended for use on
specific hardware.

One of the most apparent platforms is Microsoft Windows CE/Windows Pocket
PC/Windows Mobile. The Microsoft OSs are currently most prevalent on PDA type
systems. Also, slimmed-down versions of Linux are very popular for their flexibility and
extensibility. Brew and Symbian are common in the cellphone arena. Each of these
options often has its own SDK for developing, compiling, loading, and debugging applica-
tions. For our example, we will target PC-based systems running Windows, although this
code can be compiled for any target.

Embedded Hardware
The number of hardware implementations supporting OpenGL ES is rapidly growing.
Many hardware vendors create their own proprietary implementations for inclusion in
their products. Some of these are Ericsson, Nokia, and Motorola.

CHAPTER 22 OpenGL ES: OpenGL on the Small766

Other companies provide standalone support for integration into embedded solutions, like
the AMD Imageon processors. And some provide licensing for IP-enabling OpenGL ES
support, such as PowerVR (www.imgtec.com/PowerVR/Products/index.asp). There are
many ways OpenGL ES hardware support can find its way into an embedded system
near you!

Vendor-Specific Extensions
Each OpenGL ES vendor often has a set of extensions that are specific to its hardware and
implementation. These often extend the number and types of formats available. Because
these extensions are useful only for limited sets of hardware, they are not discussed here.

For the Home Gamer
For those of us not lucky enough to be working on a hardware emulator or hardware
itself, there are other options if you would still like to try your hand at OpenGL ES. There
are several OpenGL ES implementations available that will execute on a full-scale operat-
ing system. These are also great for doing initial development.

At the time of writing, a software implementation of OpenGL ES1.1 is available on
Sourceforge called Vincent (http://ogl-es.sourceforge.net/index.htm). The project is open
source, so anyone can try it. Unfortunately, at this time the only supported target environ-
ments are Microsoft Windows Mobile OSs and the ARM processor. This makes it difficult
for the ordinary programmer to try out. But if you have experience with Windows CE, this
might be a good place to start. A version of Vincent has been started that targets OpenGL
ES 2.x, but currently is not ready for use.

Another option is PowerVR by Imagination Technologies. PowerVR is an IP-based technol-
ogy that can be integrated into proprietary designs. They also have a free download for
the PowerVR SDK. This is a package that includes an OpenGL ES emulator that will run on
Microsoft Windows and Linux systems.

Hybrid Graphics Ltd. has also released a development package called Rasteroid that
provides OpenGL ES emulator capabilities
(http://www.hybrid.fi/main/products/devtools.php). This SDK is also freely downloadable
for application development purposes.

Putting OpenGL ES into Action
Time for the meat and potatoes! Now that we have seen what OpenGL ES looks like, how
it works, and the type of hardware and environments that are used, let’s look at an actual
example. We will walk through a simple OpenGL ES application using a PC emulator.
The setup will be based on the Hybrid Graphics Rasteroid SDK. This platform will work
only on Microsoft Windows–based systems. For those of you with other OSs, take a peek
at what the PowerVR emulator has to offer. It also supports both Mac OS and Linux
environments.

Putting OpenGL ES into Action 767

22

www.imgtec.com/PowerVR/Products/index.asp
http://www.hybrid.fi/main/products/devtools.php
http://ogl-es.sourceforge.net/index.htm

To successfully compile, link, and execute this program, you will need to download and
install the Rasteroid SDK. How this relates to the sample code is described in the
Readme.txt document that accompanies the source.

Setting Up the Environment
First things first: To render to the screen we will need a window. But before anything can
be done with EGL, we need to create an OS-specific window. Then, the EGL display can be
queried. Pass in the display you want; in this case we will ask for the default display:

programInfo->display = eglGetDisplay(EGL_DEFAULT_DISPALY);

After you have the display handle, you’ll use it in many other EGL calls to signify which
device you are referring to. Next, initialize EGL. Without initialization, most other calls are
invalid and will throw an error.

eglInitialize(programInfo->display, &majorVer, &minorVer);

EGL will tell you what its major and minor versions are when you initialize it. Now that
EGL has been “turned on,” we need to choose a config. First, select the attributes you
need; then, pass them into eglChooseConfig:

EGLint attribs[] =

{

EGL_RED_SIZE, 6,

EGL_GREEN_SIZE, 6,

EGL_BLUE_SIZE, 6,

EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT,

EGL_SURFACE_TYPE, EGL_WINDOW_BIT,

EGL_NONE

};

eglChooseConfig(programInfo->display, attribs, returnedConfigs, 1,

&matchingConfigCnt);

programInfo->config = returnedConfigs[0];

In this case we are only interested in getting one match. We will assume that the returned
config will work for us since it matches the attribute criteria. For more robustness, an app
can choose to have all matches returned, and then parse through the results to find the
one that will work best. This is a simple application and will not require a special config.
Store the config away.

Now that EGL is initialized and we know what config we want to use, we can create an
EGL window surface to go along with the native window created earlier. Choose which
surface attributes are desirable and call eglCreateWindowSurface using the config that was
the best match and the native window handle that was returned when we created an

CHAPTER 22 OpenGL ES: OpenGL on the Small768

OS window:

EGLint surfAttribs[] =

{

EGL_COLORSPACE, EGL_COLORSPACE_sRGB,

EGL_NONE

};

programInfo->windowSurface = eglCreateWindowSurface(programInfo->display,

programInfo->config,

(NativeWindowType)surfDesc.nativePtr,

surfAttribs);

Again, store away the returned window surface handle for use later. Now that the window
setup is all squared away, it’s time to focus on more OpenGL-related stuff. We will need a
context in order to make any OpenGL calls. Call eglCreateContext to get one, and use
the display and config values we stored away to tell EGL where and what kind of context
we need:

programInfo->esContext = eglCreateContext(programInfo->display,

programInfo->config,

NULL,

NULL);

Keep the context handle so we know which context will be used. Now that a context has
been created, make it the current context so it can actually be used for rendering. To do
this, we will use all the handles we have spent all this time allocating:

eglMakeCurrent(programInfo->display, programInfo->windowSurface,

programInfo->windowSurface, programInfo->esContext);

After the context is created and made current, OpenGL calls can now be made. But before
we get to the OpenGL stuff, there is one last task. EGL still needs to be told what kind of
rendering we will do to the surfaces we allocated. Do this with the eglBindAPI call. We are
interested only in EGL rendering, so no surprise here.

eglBindAPI(EGL_OPENGL_ES_API);

Setting Up OpenGL ES State
Now that we have a current context, we can initialize the OpenGL state that needs to be
set for rendering. First, set the viewport and scissor rectangle to the size of the window
that was just created:

glViewport(0, 0, x, y);

glScissor(0, 0, x, y);

Putting OpenGL ES into Action 769

22

Next, clear the projection matrix:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

Then, call glFrustrumf to set up a projection matrix that matches our window. The para-
meters are calculated based on the window size:

glFrustumf(fXLeft, fXRight, fYBottom, fYTop, 0.1f, 100.f);

One last thing: There is some OpenGL state that can be set up now since it will not
change while we are rendering. First set the shade model to flat, and then set the raster
color. Also, turn on vertex arrays since that is what we will use to specify our geometry.
And we will have to set the vertex pointer to our vertex data that has been predefined.

glShadeModel(GL_FLAT);

glColor4x(0x00000, 0x10000, 0x10000, 0x10000);

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_BYTE, 0, verts);

That’s it! EGL is now set up and ready for rendering. OpenGL ES state is also set up and
ready to go.

Rendering
Rasteroid works much like GLUT. There is a rendering loop that gets called when the scene
needs to be updated. We will use this loop to trigger all of our rendering. In addition to
normal window redraw triggers, the draw function will be called periodically, allowing us
to animate rendering.

Because this sample code is meant to demonstrate EGL and ES, the actual rendering is not
very fancy. We will focus all of our rendering efforts on a single triangle!

The first task will be to update the window specific state. This was covered previously.
Next, a clear color will be chosen and the color buffer cleared

glClearColor(fClearColor, fClearColor, fClearColor, 1.0f);

glClear(GL_COLOR_BUFFER_BIT);

Now, let’s set up the model view matrix to prepare for rendering. We’ll throw in a little
rotation to keep things mildly interesting:

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(0.f, 0.f, -20.f);

CHAPTER 22 OpenGL ES: OpenGL on the Small770

// rotate based on application execution time

glRotatef((GLfloat)(time*35.0f), -1.0f, -3.0f, 0.0f);

glRotatef((GLfloat)(time*20.0f), 0.5f, 0.0f, 7.0f);

At long last, it’s time to draw! We’ll just make one glDrawArrays call:

glDrawArrays(GL_TRIANGLE_STRIP, 0, 3);

There is one thing left to do. The drawing we just completed needs to be presented to the
window surface. This is done with the eglSwapBuffers command:

eglSwapBuffers(programInfo->display, programInfo->windowSurface);

Figure 22.3 shows the result of our labor. This app isn’t too fancy, but in this chapter our
focus is on getting OpenGL ES working and using EGL to interface with the environment.

Putting OpenGL ES into Action 771

22

FIGURE 22.3 A spinning triangle in ES.

Cleaning Up
Before we are done, some cleanup is necessary. When the app exits, all the OpenGL ES and
EGL state we set up needs to be released so that the system knows we are done drawing.
First, release the context we created by calling eglMakeCurrent with NULL:

eglMakeCurrent(programInfo->display, NULL, NULL, NULL);

After the context is no longer current, it can be deleted:

eglDestroyContext(programInfo->display, programInfo->esContext);

Now that the context is cleaned up, we can clean up the surface and tell EGL we are done
for now:

eglDestroySurface(programInfo->display, programInfo->windowSurface);

eglTerminate(programInfo->display);

eglReleaseThread();

Summary
We have covered a lot of ground in this chapter. First, OpenGL ES 1.0 was examined. This
was the first OpenGL ES specification and was based on OpenGL 1.3. It uses the same type
of fixed functionality pipeline to render. Next, OpenGL ES 1.1 was reviewed. This version,
based on OpenGL 1.5, was a step up from OpenGL ES 1.0 and added many new features
from its OpenGL counterpart. Then came OpenGL ES 2.0, based on OpenGL 2.0. This
version takes a whole new approach by eliminating fixed function rendering altogether
and introducing programmable shaders in its place. Last was OpenGL ES SC 1.0. This
version provided compatibility features allowing it to work well in environments that
require reliable execution.

We also were introduced to EGL and how it can be used to do window management with
OpenGL ES. In addition, we have gone over some of the differences in working with an
embedded environment. There are many setups in which OpenGL ES can operate. And for
development on a PC, emulators have been created that can be used to simulate an
OpenGL ES capable system. Finally, we saw an example of how to create an OpenGL ES
application on a normal PC.

CHAPTER 22 OpenGL ES: OpenGL on the Small772

APPENDIX A

Further Reading/References

Real-time 3D graphics and OpenGL are popular topics, and there’s more information and
techniques in practice than can ever be published in a single book. You might find the
following resources helpful as you further your knowledge and experience.

Other Good OpenGL Books
OpenGL Programming Guide, 5th Edition: The Official Guide to Learning OpenGL, Version 2.
OpenGL Architecture Board, Dave Shreiner, Mason Woo, and Jackie Neider.
Addison-Wesley, 2005.

OpenGL Shading Language, 2nd Edition. Randi J. Rost. Addison-Wesley, 2006.

OpenGL Distilled. Paul Martz. Addison-Wesley, 2006.

OpenGL Programming on Mac OS X: Architecture, Performance, and Integration.
Robert P. Kuehne and J. D. Sullivan. Addison-Wesley, 2007.

OpenGL Programming for the X Window System. Mark J. Kilgard. Addison-Wesley, 1996.

Interactive Computer Graphics: A Top-Down Approach with OpenGL, 4th Edition.
Edward Angel. Addison-Wesley, 2005.

The OpenGL Extensions Guide. Eric Lengyel. Charles River Media, 2003.

Advanced Graphics Programming Using OpenGL. Tom McReynolds and David Blythe.
The Morgan Kaufmann Series in Computer Graphics, 2005.

More OpenGL Game Programming. Dave Astle, Editor. Thomson Course Technology, 2006.

3D Graphics Books
3D Computer Graphics, 3rd Edition. Alan Watt. Addison-Wesley, 1999.

3D Math Primer for Graphics and Game Development. Fletcher Dunn and Ian Parbery.
Wordware Publishing, 2002.

Advanced Animation and Rendering Techniques: Theory and Practice. Alan Watt and Mark Watt
(contributor). Addison-Wesley, 1992.

Introduction to Computer Graphics. James D. Foley, Andries van Dam, Steven K. Feiner, John
F. Hughes, and Richard L. Phillips. Addison-Wesley, 1993.

774 APPENDIX A Further Reading/References

Open Geometry: OpenGL + Advanced Geometry. Georg Glaeser and Hellmuth Stachel.
Springer-Verlag, 1999.

Mathematics for 3D Game Programming & Computer Graphics, 2nd Edition. Eric Lengyel.
Charles River Media, 2003.

Essential Mathematics for Games and Interactive Applications, James Van Verth and Lars
Bishop. The Morgan Kaufmann Series in Interactive 3d Technology

Shader X 4: Advanced Rendering Techniques. Wolfgang Engel, Editor. Charles River Media,
2006.

Texturing & Modeling: A Procedural Approach, 3rd Edition. David S. Ebert, F. Kenton Musgrave,
Darwyn Peachey, Ken Perlin, Steven Worley. The Morgan Kaufmann Series in Computer
Graphics

Web Sites
The OpenGL SuperBible Web site:

www.opengl.org/superbible

The official OpenGL Web site:

www.opengl.org

The OpenGL SDK (lots of tutorials and tools):

www.opengl.org/sdk/

The preceding three Web sites are the gateways to OpenGL information on the Web, and
of course, the official source of information for all things OpenGL and SuperBible related.
The following sites also pertain to information covered in this book and offer vendor-
specific OpenGL support, tutorials, demos, and news.

The Khronos Group OpenGL ES home page:

www.khronos.org/opengles/

The OpenGL Extension Registry:

www.opengl.org/registry/

AMD/ATI’s developer home page:

www.ati.amd.com/developer/

www.opengl.org/superbible
www.opengl.org
www.opengl.org/sdk/
www.khronos.org/opengles/
www.opengl.org/registry/
www.ati.amd.com/developer/

NVIDIA’s developer home page:

developer.nvidia.com/

The Mesa 3D OpenGL “work-a-like”:

www.mesa3d.org

Open source X Window System

www.xfree86.org

Web Sites 775

A

www.mesa3d.org
www.xfree86.org

This page intentionally left blank

APPENDIX B

Glossary

Aliasing Technically, the loss of signal information in an image reproduced at some
finite resolution. It is most often characterized by the appearance of sharp jagged edges
along points, lines, or polygons due to the nature of having a limited number of fixed-
sized pixels.

Alpha A fourth color value added to provide a degree of transparency to the color of an
object. An alpha value of 0.0 means complete transparency; 1.0 denotes no transparency
(opaque).

Ambient light Light in a scene that doesn’t come from any specific point source or
direction. Ambient light illuminates all surfaces evenly and on all sides. In the OpenGL
lighting model, ambient light approximates how light is collectively scattered off all the
surfaces in a scene.

Antialiasing A rendering method used to smooth lines and curves and polygon edges.
This technique averages the color of pixels adjacent to the line. It has the visual effect of
softening the transition from the pixels on the line and those adjacent to the line, thus
providing a smoother appearance. Full-scene Antialiasing is supported by OpenGL via the
multisampling feature.

ARB The Architecture Review Board. The committee body consisting of 3D graphics
hardware vendors, previously charged with maintaining the OpenGL specification. The
OpenGL ARB is now the name of the Khronos working group that is responsible for main-
tenance of the OpenGL specification.

Aspect ratio The ratio of the width of a window to the height of the window.
Specifically, the width of the window in pixels divided by the height of the window in
pixels.

AUX library A window-system-independent utility library. Limited but useful for quick
and portable OpenGL demonstration programs. Now largely replaced by the GLUT library.

Bézier curve A curve whose shape is defined by control points near the curve rather
than by the precise set of points that define the curve itself.

Bitplane An array of bits mapped directly to screen pixels.

778 APPENDIX B Glossary

Buffer An area of memory used to store image information. This can be color, depth, or
blending information. The red, green, blue, and alpha buffers are often collectively
referred to as the color buffer.

Cartesian A coordinate system based on three directional axes placed at a 90° orienta-
tion to one another. These coordinates are labeled x, y, and z.

Clip coordinates The 4D geometric coordinates that result from the modelview and
projection transformation.

Clipping The elimination of a portion of a single primitive or group of primitives. The
points that would be rendered outside the clipping region or volume are not drawn. The
clipping volume is generally specified by the projection matrix. Clipped primitives are
reconstructed such that the edges of the primitive do not lie outside the clipping region.

Color index mode A color mode in which colors in a scene are selected from a fixed
number of colors available in a palette. These entries are referenced by an index into the
palette. This mode is rarely used and even more rarely hardware accelerated.

Convex A reference to the shape of a polygon. A convex polygon has no indentations,
and no straight line can be drawn through the polygon that intersects it more than twice
(once entering, once leaving).

Culling The elimination of graphics primitives that would not be seen if rendered.
Backface culling eliminates the front or back face of a primitive so that the face isn’t
drawn. Frustum culling eliminates whole objects that would fall outside the viewing
frustum.

Destination color The stored color at a particular location in the color buffer. This
terminology is usually used when describing blending operations to distinguish between
the color already present in the color buffer and the color coming into the color buffer
(source color).

Display list A compiled list of OpenGL functions and commands. When called, a
display list executes faster than a manually called list of single commands.

Dithering A method used to simulate a wider range of color depth by placing different-
colored pixels together in patterns that give the illusion of shading between the two
colors.

Double buffered A drawing technique used by OpenGL. The image to be displayed is
assembled in memory and then placed on the screen in a single update operation, rather
than built primitive by primitive on the screen. Double buffering is a much faster and
smoother update operation and can produce animations.

Extruded The process of taking a 2D image or shape and adding a third dimension
uniformly across the surface. This process can transform 2D fonts into 3D lettering.

Eye coordinates The coordinate system based on the position of the eye. The eye’s posi-
tion is placed at (0, 0, 0) and looks down the negative z-axis.

Frustum A truncated pyramid-shaped viewing volume that creates a perspective view.
(Near objects are large; far objects are small.)

GLSL Acronym for the OpenGL Shading Language, a high-level C-like shading language.

GLUT library The OpenGL Utility Toolkit. A window-system-independent utility library
useful for creating sample programs and simple 3D rendering programs that are indepen-
dent of the operating system and windowing system. Typically used to provide portability
between Windows, X-Window, Linux, and so on.

Immediate mode A graphics rendering mode in which commands and functions are
sent individually and have an immediate effect on the state of the rendering engine.

Implementation A software- or hardware-based device that performs OpenGL rendering
operations.

Khronos Group An industry consortium that now manages the maintenance and
promotion of the OpenGL specification in addition to several other industry standards

Literal A value, not a variable name. A specific string or numeric constant embedded
directly in source code.

Matrix A 2D array of numbers. Matrices can be operated on mathematically and are
used to perform coordinate transformations.

Mipmapping A technique that uses multiple levels of detail for a texture. This technique
selects from among the different sizes of an image available, or possibly combines the two
nearest sized matches to produce the final fragments used for texturing.

Modelview matrix The OpenGL matrix that transforms primitives to eye coordinates
from object coordinates.

Normal A directional vector that points perpendicularly to a plane or surface. When
used, normals are applied to each vertex in a primitive.

Normalize The reduction of a normal to a unit normal. A unit normal is a vector that
has a length of exactly 1.0.

NURBS An acronym for non-uniform rational B-spline. This is a method of specifying
parametric curves and surfaces.

Orthographic A drawing mode in which no perspective or foreshortening takes place.
Also called parallel projection. The lengths and dimensions of all primitives are undis-
torted regardless of orientation or distance from the viewer.

Glossary 779

B

Palette A set of colors available for drawing operations. For 8-bit Windows color modes,
the palette contains 256 color entries, and all pixels in the scene can be colored from only
this set.

Parametric curve A curve whose shape is determined by one (for a curve) or two (for a
surface) parameters. These parameters are used in separate equations that yield the indi-
vidual x, y, and z values of the points along the curve.

Perspective A drawing mode in which objects farther from the viewer appear smaller
than nearby objects.

Pixel Condensed from the words picture element. This is the smallest visual division avail-
able on the computer screen. Pixels are arranged in rows and columns and are individually
set to the appropriate color to render any given image.

Pixmap A two-dimensional array of color values that compose a color image. Pixmaps
are so called because each picture element corresponds to a pixel on the screen.

Polygon A 2D shape drawn with three or more sides.

Primitive A 2D polygonal shape defined by OpenGL. All objects and scenes are
composed of various combinations of primitives.

Projection The transformation of lines, points, and polygons from eye coordinates to
clipping coordinates on the screen.

Quadrilateral A polygon with exactly four sides.

Rasterize The process of converting projected primitives and bitmaps into pixel frag-
ments in the frame buffer.

Render The conversion of primitives in object coordinates to an image in the frame
buffer. The rendering pipeline is the process by which OpenGL commands and statements
become pixels on the screen.

Retained mode A style of 3D programming in which an object’s representation is held
in memory by the programming library.

Scintillation A sparkling or flashing effect produced on objects when a nonmipmapped
texture map is applied to a polygon that is significantly smaller than the size of the
texture being applied. This term is also applied to aliasing artifacts.

Shader A small program that is executed by the graphics hardware, often in parallel, to
operate on individual vertices or pixels. See also GLSL.

Source color The color of the incoming fragment, as opposed to the color already
present in the color buffer (destination color). This terminology is usually used when
describing how the source and destination colors are combined during a blending
operation.

APPENDIX B Glossary780

Specification The design document that specifies OpenGL operation and fully describes
how an implementation must work.

Spline A general term used to describe any curve created by placing control points near
the curve, which have a pulling effect on the curve’s shape. This is similar to the reaction
of a piece of flexible material when pressure is applied at various points along its length.

Stipple A binary bit pattern used to mask out pixel generation in the frame buffer. This
is similar to a monochrome bitmap, but one-dimensional patterns are used for lines and
two-dimensional patterns are used for polygons.

Tessellation The process of breaking down a complex 2D polygon into a planar mesh of
convex polygons.

Texel Similar to pixel (picture element), a texel is a texture element. A texel represents a
color from a texture that is applied to a pixel fragment in the frame buffer.

Texture An image pattern of colors applied to the surface of a primitive.

Texture mapping The process of applying a texture image to a surface. The surface does
not have to be planar (flat). Texture mapping is often used to wrap an image around a
curved object or to produce patterned surfaces such as wood or marble.

Transformation The manipulation of a coordinate system. This can include rotation,
translation, scaling (both uniform and nonuniform), and perspective division.

Translucence A degree of transparency of an object. In OpenGL, this is represented by
an alpha value ranging from 1.0 (opaque) to 0.0 (transparent).

Vertex A single point in space. Except when used for point and line primitives, it also
defines the point at which two edges of a polygon meet.

Viewing volume The area in 3D space that can be viewed in the window. Objects and
points outside the viewing volume are clipped (cannot be seen).

Viewport The area within a window that is used to display an OpenGL image. Usually,
this encompasses the entire client area. Stretched viewports can produce enlarged or
shrunken output within the physical window.

Wireframe The representation of a solid object by a mesh of lines rather than solid
shaded polygons. Wireframe models are usually rendered faster and can be used to view
both the front and the back of an object at the same time.

Glossary 781

B

This page intentionally left blank

APPENDIX C

API Reference

Overview of Appendix C
Appendix C is composed of API reference pages, covering OpenGL. These pages come from
several different sources.

The following OpenGL reference pages are Copyright © 2003-2005 3Dlabs Inc. Ltd. and
may be distributed subject to the terms and conditions set forth in the Open Publication
License, v 1.0, 8 June 1999. For details, see http://opencontent.org/openpub/.

glAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram,

glCreateShader, glDeleteProgram, glDeleteShader, glDetachShader, glDrawBuffers,

glEnableVertexAttribArray/glDisableVertexAttribArray, glGetActiveAttrib,

glGetActiveUniform, glGetAttachedShaders, glGetAttribLocation, glGetProgramiv,

glGetProgramInfoLog, glGetShaderiv, glGetShaderInfoLog, glGetUniform,

glGetUniformLocation, glGetVertexAttrib, glGetVertexAttribPointerv,

glIsProgram, glIsShader, glLinkProgram, glShaderSource,

glUniform/glUniformMatrix, glUseProgram, glValidateProgram, glVertexAttrib,

glVertexAttribPointer

The following OpenGL reference pages are Copyright © 2007 The Khronos Group Inc.
and licensed under the Khronos Free Use License. For details, see
http://www.khronos.org/help/legal/KFUL/.

glBlendEquationSeparate, glStencilFuncSeparate, glStencilMaskSeparate,

glStencilOpSeparate

The following OpenGL reference pages were written for this book and offered back to the
community for free use. They are Copyright © 2005 Addison-Wesley and may be distrib-
uted subject to the terms and conditions set forth in the Open Publication License, v 1.0,
8 June 1999. For details, see http://opencontent.org/openpub/.

glBeginQuery/glEndQuery, glBindBuffer, glBufferData, glBufferSubData,

glDeleteBuffers, glDeleteQueries, glGenBuffers, glGenQueries,

glGetBufferParameteriv, glGetBufferPointerv, glGetBufferSubData, glGetQueryiv,

glGetQueryObject, glIsBuffer, glIsQuery, glMapBuffer/glUnmapBuffer

http://www.khronos.org/help/legal/KFUL/
http://opencontent.org/openpub/
http://opencontent.org/openpub/

glAccum

Operate on the accumulation buffer

C Specification
void glAccum(GLenum op, GLfloat value);

Parameters
op Specifies the accumulation buffer operation. Symbolic constants GL_ACCUM, GL_LOAD,

GL_ADD, GL_MULT, and GL_RETURN are accepted.
value Specifies a floating-point value used in the accumulation buffer operation. op determines

how value is used.

Description
The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather,

images rendered into one of the color buffers are added to the contents of the accumulation buffer
after rendering. Effects such as antialiasing (of points, lines, and polygons), motion blur, and depth of
field can be created by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The number
of bits per component in the accumulation buffer depends on the implementation. You can examine
this number by calling glGetIntegerv four times, with arguments GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, and GL_ACCUM_ALPHA_BITS. Regardless of the
number of bits per component, the range of values stored by each component is [-1,1] . The accumu-
lation buffer pixels are mapped one-to-one with frame buffer pixels.

glAccum operates on the accumulation buffer. The first argument, op, is a symbolic constant that
selects an accumulation buffer operation. The second argument, value, is a floating-point value to be
used in that operation. Five operations are specified: GL_ACCUM, GL_LOAD, GL_ADD, GL_MULT, and
GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and applied
identically to the red, green, blue, and alpha components of each pixel. If a glAccum operation
results in a value outside the range [-1,1] , the contents of an accumulation buffer pixel component
are undefined.

The operations are as follows:
GL_ACCUM
Obtains R, G, B, and A values from the buffer currently selected for reading (see glReadBuffer).

Each component value is divided by 2n – 1, where n is the number of bits allocated to each color
component in the currently selected buffer. The result is a floating-point value in the range [0,1] ,
which is multiplied by value and added to the corresponding pixel component in the accumulation
buffer, thereby updating the accumulation buffer.

GL_LOAD
Similar to GL_ACCUM, except that the current value in the accumulation buffer is not used in the

calculation of the new value. That is, the R, G, B, and A values from the currently selected buffer are
divided by 2n – 1, multiplied by value, and then stored in the corresponding accumulation buffer
cell, overwriting the current value.

GL_ADD
Adds value to each R, G, B, and A in the accumulation buffer.
GL_MULT
Multiplies each R, G, B, and A in the accumulation buffer by value and returns the scaled

component to its corresponding accumulation buffer location.
GL_RETURN
Transfers accumulation buffer values to the color buffer or buffers currently selected for writing.

Each R, G, B, and A component is multiplied by value, then multiplied by 2n – 1, clamped to the
range [0,2n – 1] , and stored in the corresponding display buffer cell. The only fragment operations
that are applied to this transfer are pixel ownership, scissor, dithering, and color writemasks.

glAccum784

To clear the accumulation buffer, call glClearAccum with R, G, B, and A values to set it to, then
call glClear with the accumulation buffer enabled.

Notes
Only pixels within the current scissor box are updated by a glAccum operation.

Errors
GL_INVALID_ENUM is generated if op is not an accepted value.
GL_INVALID_OPERATION is generated if there is no accumulation buffer.
GL_INVALID_OPERATION is generated if glAccum is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_ACCUM_RED_BITS
glGet with argument GL_ACCUM_GREEN_BITS
glGet with argument GL_ACCUM_BLUE_BITS
glGet with argument GL_ACCUM_ALPHA_BITS

See Also
glClear, glClearAccum, glCopyPixels, glDrawBuffer, glGet, glReadBuffer,

glReadPixels, glScissor, glStencilOp

glActiveTexture

Select active texture unit

C Specification
void glActiveTexture(GLenum texture);

Parameters
texture Specifies which texture unit to make active. The number of texture units is imple-

mentation dependent, but must be at least two. texture must be one of
GL_TEXTUREi, where i ranges from 0 to the larger of (GL_MAX_TEXTURE_COORDS
– 1) and (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS – 1). The initial value is
GL_TEXTURE0.

Description
glActiveTexture selects which texture unit subsequent texture state calls will affect. The

number of texture units an implementation supports is implementation dependent, but must be at
least 2.

Vertex arrays are client-side GL resources, which are selected by the glClientActiveTexture
routine.

Notes
glActiveTexture is only supported if the GL version is 1.3 or greater, or if ARB_multitexture

is included in the string returned by glGetString when called with the argument GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if texture is not one of GL_TEXTUREi, where i ranges from 0 to

the larger of (GL_MAX_TEXTURE_COORDS – 1) and (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS – 1).

Associated Gets
glGet with argument GL_ACTIVE_TEXTURE, GL_MAX_TEXTURE_COORDS, or

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS

See Also
glClientActiveTexture, glMultiTexCoord, glTexParameter

glActiveTexture 785

C

glAlphaFunc

Specify the alpha test function

C Specification
void glAlphaFunc(GLenum func, GLclampf ref);

Parameters
func Specifies the alpha comparison function. Symbolic constants GL_NEVER, GL_LESS,

GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are
accepted. The initial value is GL_ALWAYS.

ref Specifies the reference value that incoming alpha values are compared to. This value is
clamped to the range [0,1] , where 0 represents the lowest possible alpha value and 1 the
highest possible value. The initial reference value is 0.

Description
The alpha test discards fragments depending on the outcome of a comparison between an incom-

ing fragment’s alpha value and a constant reference value. glAlphaFunc specifies the reference value
and the comparison function. The comparison is performed only if alpha testing is enabled. By
default, it is not enabled. (See glEnable and glDisable of GL_ALPHA_TEST.)

func and ref specify the conditions under which the pixel is drawn. The incoming alpha value
is compared to ref using the function specified by func. If the value passes the comparison, the
incoming fragment is drawn if it also passes subsequent stencil and depth buffer tests. If the value
fails the comparison, no change is made to the frame buffer at that pixel location. The comparison
functions are as follows:

GL_NEVER
Never passes.
GL_LESS
Passes if the incoming alpha value is less than the reference value.
GL_EQUAL
Passes if the incoming alpha value is equal to the reference value.
GL_LEQUAL
Passes if the incoming alpha value is less than or equal to the reference value.
GL_GREATER
Passes if the incoming alpha value is greater than the reference value.
GL_NOTEQUAL
Passes if the incoming alpha value is not equal to the reference value.
GL_GEQUAL
Passes if the incoming alpha value is greater than or equal to the reference value.
GL_ALWAYS
Always passes (initial value).
glAlphaFunc operates on all pixel write operations, including those resulting from the scan

conversion of points, lines, polygons, and bitmaps, and from pixel draw and copy operations.
glAlphaFunc does not affect screen clear operations.

Notes
Alpha testing is performed only in RGBA mode.

Errors
GL_INVALID_ENUM is generated if func is not an accepted value.
GL_INVALID_OPERATION is generated if glAlphaFunc is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_ALPHA_TEST_FUNC
glGet with argument GL_ALPHA_TEST_REF
glIsEnabled with argument GL_ALPHA_TEST

glAlphaFunc786

See Also
glBlendFunc, glClear, glDepthFunc, glEnable, glStencilFunc

glAreTexturesResident

Determine if textures are loaded in texture memory

C Specification
GLboolean glAreTexturesResident(GLsizei n,

const GLuint * textures,
GLboolean * residences);

Parameters
n Specifies the number of textures to be queried.
textures Specifies an array containing the names of the textures to be queried.
residences Specifies an array in which the texture residence status is returned. The resi-

dence status of a texture named by an element of textures is returned in the
corresponding element of residences.

Description
GL establishes a “working set” of textures that are resident in texture memory. These textures can

be bound to a texture target much more efficiently than textures that are not resident.
glAreTexturesResident queries the texture residence status of the n textures named by the

elements of textures. If all the named textures are resident, glAreTexturesResident returns
GL_TRUE, and the contents of residences are undisturbed. If not all the named textures are resi-
dent, glAreTexturesResident returns GL_FALSE, and detailed status is returned in the n elements
of residences. If an element of residences is GL_TRUE, then the texture named by the corre-
sponding element of textures is resident.

The residence status of a single bound texture may also be queried by calling
glGetTexParameter with the target argument set to the target to which the texture is bound, and
the pname argument set to GL_TEXTURE_RESIDENT. This is the only way that the residence status of
a default texture can be queriedglAreTexturesResident.

Notes
glAreTexturesResident is available only if the GL version is 1.1 or greater.
glAreTexturesResident returns the residency status of the textures at the time of invocation.

It does not guarantee that the textures will remain resident at any other time.
If textures reside in virtual memory (there is no texture memory), they are considered always

resident.
Some implementations may not load a texture until the first use of that texture.

Errors
GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_VALUE is generated if any element in textures is 0 or does not name a texture. In

that case, the function returns GL_FALSE and the contents of residences is indeterminate.
GL_INVALID_OPERATION is generated if glAreTexturesResident is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTexParameter with parameter name GL_TEXTURE_RESIDENT retrieves the residence status

of a currently bound texture.

See Also
glBindTexture, glGetTexParameter, glPrioritizeTextures, glTexImage1D,

glTexImage2D, glTexImage3D, glTexParameter

glAreTexturesResident 787

C

glArrayElement

Render a vertex using the specified vertex array element

C Specification
void glArrayElement(GLint i);

Parameters
i Specifies an index into the enabled vertex data arrays.

Description
glArrayElement commands are used within glBegin/glEnd pairs to specify vertex and

attribute data for point, line, and polygon primitives. If GL_VERTEX_ARRAY is enabled when
glArrayElement is called, a single vertex is drawn, using vertex and attribute data taken from loca-
tion i of the enabled arrays. If GL_VERTEX_ARRAY is not enabled, no drawing occurs but the attrib-
utes corresponding to the enabled arrays are modified.

Use glArrayElement to construct primitives by indexing vertex data, rather than by streaming
through arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possi-
ble to explicitly specify per-primitive attributes such as a single normal for each triangle.

Changes made to array data between the execution of glBegin and the corresponding execution
of glEnd may affect calls to glArrayElement that are made within the same glBegin/glEnd period
in nonsequential ways. That is, a call to glArrayElement that precedes a change to array data may
access the changed data, and a call that follows a change to array data may access original data.

Notes
glArrayElement is available only if the GL version is 1.1 or greater.
glArrayElement is included in display lists. If glArrayElement is entered into a display list,

the necessary array data (determined by the array pointers and enables) is also entered into the
display list. Because the array pointers and enables are client-side state, their values affect display lists
when the lists are created, not when the lists are executed.

Errors
GL_INVALID_VALUE may be generated if i is negative.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to an enabled

array and the buffer object’s data store is currently mapped.

See Also
glClientActiveTexture, glColorPointer, glDrawArrays, glEdgeFlagPointer,

glFogCoordPointer, glGetPointerv, glIndexPointer, glInterleavedArrays,
glNormalPointer, glSecondaryColorPointer, glTexCoordPointer, glVertexPointer

glAttachShader

Attach a shader object to a program object

C Specification
void glAttachShader(GLuint program,

GLuint shader);

Parameters
program Specifies the program object to which a shader object will be attached.
shader Specifies the shader object that is to be attached.

Description
In order to create an executable, there must be a way to specify the list of things that will be

linked together. Program objects provide this mechanism. Shaders that are to be linked together in a
program object must first be attached to that program object. glAttachShader attaches the shader

glArrayElement788

object specified by shader to the program object specified by program. This indicates that shader
will be included in link operations that will be performed on program.

All operations that can be performed on a shader object are valid whether or not the shader
object is attached to a program object. It is permissible to attach a shader object to a program object
before source code has been loaded into the shader object or before the shader object has been
compiled. It is permissible to attach multiple shader objects of the same type because each may
contain a portion of the complete shader. It is also permissible to attach a shader object to more than
one program object. If a shader object is deleted while it is attached to a program object, it will be
flagged for deletion, and deletion will not occur until glDetachShader is called to detach it from all
program objects to which it is attached.

Notes
glAttachShader is available only if the GL version is 2.0 or greater.

Errors
GL_INVALID_VALUE is generated if either program or shader is not a value generated by

OpenGL.
GL_INVALID_OPERATION is generated if program is not of type GL_PROGRAM_OBJECT.
GL_INVALID_OPERATION is generated if shader is not of type GL_SHADER_OBJECT.
GL_INVALID_OPERATION is generated if shader is already attached to program.
GL_INVALID_OPERATION is generated if glAttachShader is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetAttachedShaders with the handle of a valid program object
glIsProgram
glIsShader

See Also
glCompileShader, glDetachShader, glLinkProgram, glShaderSource

glBegin

Delimit the vertices of a primitive or a group of like primitives

C Specification
void glBegin(GLenum mode);

Parameters
mode Specifies the primitive or primitives that will be created from vertices presented between

glBegin and the subsequent glEnd. Ten symbolic constants are accepted: GL_POINTS,
GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

C Specification
void glEnd(void);

Description
glBegin and glEnd delimit the vertices that define a primitive or a group of like primitives.

glBegin accepts a single argument that specifies in which of ten ways the vertices are interpreted.
Taking n as an integer count starting at one, and N as the total number of vertices specified, the inter-
pretations are as follows:

GL_POINTS
Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES
Treats each pair of vertices as an independent line segment. Vertices 2n – 1 and 2n define line n.

lines are drawn.N
2

glBegin 789

C

GL_LINE_STRIP
Draws a connected group of line segments from the first vertex to the last. Vertices n and n + 1

define line n. N – 1 lines are drawn.
GL_LINE_LOOP
Draws a connected group of line segments from the first vertex to the last, then back to the first.

Vertices n and n + 1 define line n. The last line, however, is defined by vertices N and 1. N lines are
drawn.

GL_TRIANGLES
Treats each triplet of vertices as an independent triangle. Vertices 3n – 2, 3n – 1, and 3 n define

triangle n. triangles are drawn.

GL_TRIANGLE_STRIP
Draws a connected group of triangles. One triangle is defined for each vertex presented after the

first two vertices. For odd n, vertices n, n + 1, and n + 2 define triangle n. For even n, vertices n + 1, n,
and n + 2 define triangle n. N – 2 triangles are drawn.

GL_TRIANGLE_FAN
Draws a connected group of triangles. One triangle is defined for each vertex presented after the

first two vertices. Vertices 1, n + 1, and n + 2 define triangle n. N – 2 triangles are drawn.
GL_QUADS
Treats each group of four vertices as an independent quadrilateral. Vertices 4n – 3, 4n – 2, 4n – 1,

and 4n define quadrilateral n. quadrilaterals are drawn.

GL_QUAD_STRIP
Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of vertices

presented after the first pair. Vertices 2n – 1, 2n, 2n + 2, and 2n + 1 define quadrilateral n.
quadrilaterals are drawn. Note that the order in which vertices are used to construct a
quadrilateral from strip data is different from that used with independent data.

GL_POLYGON
Draws a single, convex polygon. Vertices 1 through N define this polygon.
Only a subset of GL commands can be used between glBegin and glEnd. The commands are

glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint,
glArrayElement, glMaterial, and glEdgeFlag. Also, it is acceptable to use glCallList or
glCallLists to execute display lists that include only the preceding commands. If any other GL
command is executed between glBegin and glEnd, the error flag is set and the command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be
defined between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons that are incom-
pletely specified are not drawn. Incomplete specification results when either too few vertices are
provided to specify even a single primitive or when an incorrect multiple of vertices is specified. The
incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3
for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of
vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

Errors
GL_INVALID_ENUM is generated if mode is set to an unaccepted value.
GL_INVALID_OPERATION is generated if glBegin is executed between a glBegin and the corre-

sponding execution of glEnd.
GL_INVALID_OPERATION is generated if glEnd is executed without being preceded by a

glBegin.
GL_INVALID_OPERATION is generated if a command other than glVertex, glColor,

glSecondaryColor, glIndex, glNormal, glFogCoord, glTexCoord, glMultiTexCoord,
glEvalCoord, glEvalPoint, glArrayElement, glMaterial, glEdgeFlag, glCallList, or
glCallLists is executed between the execution of glBegin and the corresponding execution glEnd.

N
2

N
4

N
3

glBegin790

Execution of glEnableClientState, glDisableClientState, glEdgeFlagPointer,
glFogCoordPointer, glTexCoordPointer, glColorPointer, glSecondaryColorPointer,
glIndexPointer, glNormalPointer, glVertexPointer, glInterleavedArrays, or
glPixelStore is not allowed after a call to glBegin and before the corresponding call to glEnd, but
an error may or may not be generated.

See Also
glArrayElement, glCallList, glCallLists, glColor, glEdgeFlag, glEvalCoord,

glEvalPoint, glFogCoord, glIndex, glMaterial, glMultiTexCoord, glNormal,
glSecondaryColor, glTexCoord, glVertex

glBeginQuery

Delimit the boundaries of a query object

C Specification
void glBeginQuery(GLenum target, GLuint id);

Parameters
target Specifies the target type of query object established between glBeginQuery and the

subsequent glEndQuery. The symbolic constant must be GL_SAMPLES_PASSED.
id Specifies the name of a query object.

C Specification
void glEndQuery(GLenum target);

Parameters
target Specifies the target type of query object to be concluded. The symbolic constant must

be GL_SAMPLES_PASSED.

Description
glBeginQuery and glEndQuery delimit the boundaries of a query object. If a query object with

name id does not yet exist it is created.
When glBeginQuery is executed, the query object’s samples-passed counter is reset to 0.

Subsequent rendering will increment the counter once for every sample that passes the depth test.
When glEndQuery is executed, the samples-passed counter is assigned to the query object’s result
value. This value can be queried by calling glGetQueryObject with pnameGL_QUERY_RESULT.

Querying the GL_QUERY_RESULT implicitly flushes the GL pipeline until the rendering delimited
by the query object has completed and the result is available. GL_QUERY_RESULT_AVAILABLE can be
queried to determine if the result is immediately available or if the rendering is not yet complete.

Notes
If the samples-passed count exceeds the maximum value representable in the number of available

bits, as reported by glGetQueryiv with pnameGL_QUERY_COUNTER_BITS, the count becomes
undefined.

An implementation may support 0 bits in its samples-passed counter, in which case query results
are always undefined and essentially useless.

When SAMPLE_BUFFERS is 0, the samples-passed counter will increment once for each fragment
that passes the depth test. When SAMPLE_BUFFERS is 1, an implementation may either increment the
samples-passed counter individually for each sample of a fragment that passes the depth test, or it
may choose to increment the counter for all samples of a fragment if any one of them passes the
depth test.

glBeginQuery and glEndQuery are available only if the GL version is 1.5 or greater.

glBeginQuery 791

C

Errors
GL_INVALID_ENUM is generated if target is not GL_SAMPLES_PASSED.
GL_INVALID_OPERATION is generated if glBeginQuery is executed while a query object of the

same target is already active.
GL_INVALID_OPERATION is generated if glEndQuery is executed when a query object of the

same target is not active.
GL_INVALID_OPERATION is generated if id is 0.
GL_INVALID_OPERATION is generated if id is the name of an already active query object.
GL_INVALID_OPERATION is generated if glBeginQuery or glEndQuery is executed between the

execution of glBegin and the corresponding execution of glEnd.

See Also
glDeleteQueries, glGenQueries, glGetQueryiv, glGetQueryObject, glIsQuery

glBindAttribLocation

Associate a generic vertex attribute index with a named attribute variable

C Specification
void glBindAttribLocation(GLuint program,

GLuint index,
const GLchar * name);

Parameters
program Specifies the handle of the program object in which the association is to be made.
index Specifies the index of the generic vertex attribute to be bound.
name Specifies a null terminated string containing the name of the vertex shader

attribute variable to which index is to be bound.

Description
glBindAttribLocation is used to associate a user-defined attribute variable in the program

object specified by program with a generic vertex attribute index. The name of the user-defined
attribute variable is passed as a null terminated string in name. The generic vertex attribute index to
be bound to this variable is specified by index. When program is made part of current state, values
provided via the generic vertex attribute index will modify the value of the user-defined attribute
variable specified by name.

If name refers to a matrix attribute variable, index refers to the first column of the matrix. Other
matrix columns are then automatically bound to locations index + 1 for a matrix of type mat2;
index + 1 and index + 2 for a matrix of type mat3; and index + 1, index + 2, and
index + 3 for a matrix of type mat4.

This command makes it possible for vertex shaders to use descriptive names for attribute variables
rather than generic variables that are numbered from 0 to GL_MAX_VERTEX_ATTRIBS -1. The values
sent to each generic attribute index are part of current state, just like standard vertex attributes such
as color, normal, and vertex position. If a different program object is made current by calling
glUseProgram, the generic vertex attributes are tracked in such a way that the same values will be
observed by attributes in the new program object that are also bound to index.

Attribute variable name-to-generic attribute index bindings for a program object can be explicitly
assigned at any time by calling glBindAttribLocation. Attribute bindings do not go into effect
until glLinkProgram is called. After a program object has been linked successfully, the index values
for generic attributes remain fixed (and their values can be queried) until the next link command
occurs.

Applications are not allowed to bind any of the standard OpenGL vertex attributes using this
command, as they are bound automatically when needed. Any attribute binding that occurs after the
program object has been linked will not take effect until the next time the program object is linked.

glBindAttribLocation792

Notes
glBindAttribLocation is available only if the GL version is 2.0 or greater.
glBindAttribLocation can be called before any vertex shader objects are bound to the speci-

fied program object. It is also permissible to bind a generic attribute index to an attribute variable
name that is never used in a vertex shader.

If name was bound previously, that information is lost. Thus you cannot bind one user-defined
attribute variable to multiple indices, but you can bind multiple user-defined attribute variables to the
same index.

Applications are allowed to bind more than one user-defined attribute variable to the same
generic vertex attribute index. This is called aliasing, and it is allowed only if just one of the aliased
attributes is active in the executable program, or if no path through the shader consumes more than
one attribute of a set of attributes aliased to the same location. The compiler and linker are allowed to
assume that no aliasing is done and are free to employ optimizations that work only in the absence of
aliasing. OpenGL implementations are not required to do error checking to detect aliasing. Because
there is no way to bind standard attributes, it is not possible to alias generic attributes with conven-
tional ones (except for generic attribute 0).

Active attributes that are not explicitly bound will be bound by the linker when glLinkProgram
is called. The locations assigned can be queried by calling glGetAttribLocation.

OpenGL copies the name string when glBindAttribLocation is called, so an application may
free its copy of the name string immediately after the function returns.

Errors
GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_OPERATION is generated if name starts with the reserved prefix “gl_”.
GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not of type GL_PROGRAM_OBJECT.
GL_INVALID_OPERATION is generated if glBindAttribLocation is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetActiveAttrib with argument program
glGetAttribLocation with arguments program and name
glIsProgram

See Also
glDisableVertexAttribArray, glEnableVertexAttribArray, glUseProgram,

glVertexAttrib, glVertexAttribPointer

glBindBuffer

Bind a named buffer object

C Specification
void glBindBuffer(GLenum target,

GLuint buffer);

Parameters
target Specifies the target to which the buffer object is bound. The symbolic constant must be

GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

buffer Specifies the name of a buffer object.

glBindBuffer 793

C

Description
glBindBuffer lets you create or use a named buffer object. Calling glBindBuffer with target

set to GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER or
GL_PIXEL_UNPACK_BUFFER and buffer set to the name of the new buffer object binds the buffer
object name to the target. When a buffer object is bound to a target, the previous binding for that
target is automatically broken.

Buffer object names are unsigned integers. The value zero is reserved, but there is no default
buffer object for each buffer object target. Instead, buffer set to zero effectively unbinds any buffer
object previously bound, and restores client memory usage for that buffer object target. Buffer object
names and the corresponding buffer object contents are local to the shared display-list space (see
glXCreateContext) of the current GL rendering context; two rendering contexts share buffer object
names only if they also share display lists.

You may use glGenBuffers to generate a set of new buffer object names.
The state of a buffer object immediately after it is first bound is an unmapped zero-sized memory

buffer with READ_WRITE access and STATIC_DRAW usage.
While a nonzero buffer object name is bound, GL operations on the target to which it is bound

affect the bound buffer object, and queries of the target to which it is bound return state from the
bound buffer object. While buffer object name zero is bound, as in the initial state, attempts to
modify or query state on the target to which it is bound generates an INVALID_OPERATION error.

When vertex array pointer state is changed, for example by a call to glNormalPointer, the
current buffer object binding (GL_ARRAY_BUFFER_BINDING) is copied into the corresponding client
state for the vertex array type being changed, for example GL_NORMAL_ARRAY_BUFFER_BINDING.
While a nonzero buffer object is bound to the GL_ARRAY_BUFFER target, the vertex array pointer
parameter that is traditionally interpreted as a pointer to client-side memory is instead interpreted as
an offset within the buffer object measured in basic machine units.

While a nonzero buffer object is bound to the GL_ARRAY_ELEMENT_BUFFER target, the indices
parameter of glDrawElements, glDrawRangeElements, or glMultiDrawElements that is tradi-
tionally interpreted as a pointer to client-side memory is instead interpreted as an offset within the
buffer object measured in basic machine units.

While a nonzero buffer object is bound to the GL_PIXEL_PACK_BUFFER target, the following
commands are affected: glGetCompressedTexImage, glGetConvolutionFilter,
glGetHistogram, glGetMinmax, glGetPixelMap, glGetPolygonStipple,
glGetSeparableFilter, glGetTexImage, and glReadPixels. The pointer parameter that is tradi-
tionally interpreted as a pointer to client-side memory where the pixels are to be packed is instead
interpreted as an offset within the buffer object measured in basic machine units.

While a nonzero buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target, the following
commands are affected: glBitmap, glColorSubTable, glColorTable, glCompressedTexImage1D,
glCompressedTexImage2D, glCompressedTexImage3D, glCompressedTexSubImage1D,
glCompressedTexSubImage2D, glCompressedTexSubImage3D, glConvolutionFilter1D,
glConvolutionFilter2D, glDrawPixels, glPixelMap, glPolygonStipple,
glSeparableFilter2D, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, and glTexSubImage3D. The pointer parameter that is traditionally interpreted as
a pointer to client-side memory from which the pixels are to be unpacked is instead interpreted as an
offset within the buffer object measured in basic machine units.

A buffer object binding created with glBindBuffer remains active until a different buffer
object name is bound to the same target, or until the bound buffer object is deleted with
glDeleteBuffers.

Once created, a named buffer object may be re-bound to any target as often as needed. However,
the GL implementation may make choices about how to optimize the storage of a buffer object based
on its initial binding target.

glBindBuffer794

Notes
glBindBuffer is available only if the GL version is 1.5 or greater.
GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL version is

2.1 or greater.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_OPERATION is generated if glBindBuffer is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_ARRAY_BUFFER_BINDING
glGet with argument GL_ELEMENT_ARRAY_BUFFER_BINDING
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also
glDeleteBuffers, glGenBuffers, glGet, glIsBuffer

glBindTexture

Bind a named texture to a texturing target

C Specification
void glBindTexture(GLenum target,

GLuint texture);

Parameters
target Specifies the target to which the texture is bound. Must be either GL_TEXTURE_1D,

GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP.
texture Specifies the name of a texture.

Description
glBindTexture lets you create or use a named texture. Calling glBindTexture with target set

to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D or GL_TEXTURE_CUBE_MAP and texture set
to the name of the new texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the default texture
for each texture target. Texture names and the corresponding texture contents are local to the shared
display-list space (see glXCreateContext) of the current GL rendering context; two rendering
contexts share texture names only if they also share display lists.

You may use glGenTextures to generate a set of new texture names.
When a texture is first bound, it assumes the specified target: A texture first bound to

GL_TEXTURE_1D becomes one-dimensional texture, a texture first bound to GL_TEXTURE_2D becomes
two-dimensional texture, a texture first bound to GL_TEXTURE_3D becomes three-dimensional
texture, and a texture first bound to GL_TEXTURE_CUBE_MAP becomes a cube-mapped texture. The
state of a one-dimensional texture immediately after it is first bound is equivalent to the state of the
default GL_TEXTURE_1D at GL initialization, and similarly for two- and three-dimensional textures
and cube-mapped textures.

While a texture is bound, GL operations on the target to which it is bound affect the bound
texture, and queries of the target to which it is bound return state from the bound texture. If texture
mapping is active on the target to which a texture is bound, the bound texture is used. In effect, the
texture targets become aliases for the textures currently bound to them, and the texture name zero
refers to the default textures that were bound to them at initialization.

glBindTexture 795

C

A texture binding created with glBindTexture remains active until a different texture is bound
to the same target, or until the bound texture is deleted with glDeleteTextures.

Once created, a named texture may be re-bound to its same original target as often as needed. It is
usually much faster to use glBindTexture to bind an existing named texture to one of the texture
targets than it is to reload the texture image using glTexImage1D, glTexImage2D, or
glTexImage3D. For additional control over performance, use glPrioritizeTextures.
glBindTexture is included in display lists.

Notes
glBindTexture is available only if the GL version is 1.1 or greater.
GL_TEXTURE_CUBE_MAP is available only if the GL version is 1.3 or greater.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_OPERATION is generated if texture was previously created with a target that

doesn’t match that of target.
GL_INVALID_OPERATION is generated if glBindTexture is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_TEXTURE_BINDING_1D
glGet with argument GL_TEXTURE_BINDING_2D
glGet with argument GL_TEXTURE_BINDING_3D

See Also
glAreTexturesResident, glDeleteTextures, glGenTextures, glGet, glGetTexParameter,

glIsTexture, glPrioritizeTextures, glTexImage1D, glTexImage2D, glTexParameter

glBitmap

Draw a bitmap

C Specification
void glBitmap(GLsizei width,

GLsizei height,
GLfloat xorig,
GLfloat yorig,
GLfloat xmove,
GLfloat ymove,
const GLubyte * bitmap);

Parameters
width, height Specify the pixel width and height of the bitmap image.
xorig, yorig Specify the location of the origin in the bitmap image. The origin is measured

from the lower-left corner of the bitmap, with right and up being the positive
axes.

xmove, ymove Specify the x and y offsets to be added to the current raster position after the
bitmap is drawn.

bitmap Specifies the address of the bitmap image.

Description
A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster

position, and frame buffer pixels corresponding to 1’s in the bitmap are written using the current
raster color or index. Frame buffer pixels corresponding to 0’s in the bitmap are not modified.

glBitmap796

glBitmap takes seven arguments. The first pair specifies the width and height of the bitmap
image. The second pair specifies the location of the bitmap origin relative to the lower-left corner of
the bitmap image. The third pair of arguments specifies x and y offsets to be added to the current
raster position after the bitmap has been drawn. The final argument is a pointer to the bitmap image
itself.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a bitmap image is specified, bitmap is treated as a byte offset into the buffer
object’s data store.

The bitmap image is interpreted like image data for the glDrawPixels command, with width
and height corresponding to the width and height arguments of that command, and with type set
to GL_BITMAP and format set to GL_COLOR_INDEX. Modes specified using glPixelStore affect the
interpretation of bitmap image data; modes specified using glPixelTransfer do not.

If the current raster position is invalid, glBitmap is ignored. Otherwise, the lower-left corner of
the bitmap image is positioned at the window coordinates

xw = | xr – xo |
yw = | yr – yo |
where (xr,yr) is the raster position and (xo,yo) is the bitmap origin. Fragments are then generated

for each pixel corresponding to a 1 (one) in the bitmap image. These fragments are generated using
the current raster z coordinate, color or color index, and current raster texture coordinates. They are
then treated just as if they had been generated by a point, line, or polygon, including texture
mapping, fogging, and all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position are offset
by xmove and ymove. No change is made to the z coordinate of the current raster position, or to the
current raster color, texture coordinates, or index.

Notes
To set a valid raster position outside the viewport, first set a valid raster position inside the view-

port, then call glBitmap with NULL as the bitmap parameter and with xmove and ymove set to the
offsets of the new raster position. This technique is useful when panning an image around the view-
port.

Errors
GL_INVALID_VALUE is generated if width or height is negative.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glBitmap is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_SECONDARY_COLOR
glGet with argument GL_CURRENT_RASTER_DISTANCE
glGet with argument GL_CURRENT_RASTER_INDEX
glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS
glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also
glBindBuffer, glDrawPixels, glPixelStore, glPixelTransfer, glRasterPos,

glWindowPos

glBitmap 797

C

glBlendColor

Set the blend color

C Specification
void glBlendColor(GLclampf red,

GLclampf green,
GLclampf blue,
GLclampf alpha);

Parameters
red, green, blue, alpha Specify the components of GL_BLEND_COLOR

Description
The GL_BLEND_COLOR may be used to calculate the source and destination blending factors. The

color components are clamped to the range [0,1] before being stored. See glBlendFunc for a
complete description of the blending operations. Initially the GL_BLEND_COLOR is set to (0, 0, 0, 0).

Notes
glBlendColor is part of the ARB_imaging subset. glBlendColor is present only if

ARB_imaging is returned when glGetString is called with GL_EXTENSIONS as its argument.

Errors
GL_INVALID_OPERATION is generated if glBlendColor is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with an argument of GL_BLEND_COLOR

See Also
glBlendEquation, glBlendFunc, glGetString

glBlendEquation

Specify the equation used for both the RGB blend equation and the Alpha blend equation

C Specification
void glBlendEquation(GLenum mode);

Parameters
mode Specifies how source and destination colors are combined. It must be GL_FUNC_ADD,

GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

Description
The blend equations determine how a new pixel (the “source” color) is combined with a pixel

already in the framebuffer (the “destination” color). This function sets both the RGB blend equation
and the alpha blend equation to a single equation.

These equations use the source and destination blend factors specified by either glBlendFunc or
glBlendFuncSeparate. See glBlendFunc or glBlendFuncSeparate for a description of the
various blend factors.

In the equations that follow, source and destination color components are referred to as
(Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad) , respectively. The result color is referred to as (Rr,Gr,Br,Ar) . The source
and destination blend factors are denoted (sR,sG,sB,sA) and (dR,dG,dB,dA) , respectively. For these equa-
tions all color components are understood to have values in the range [0,1] .

glBlendColor798

Mode RGB Components Alpha Component
GL_FUNC_ADD Rr = min (1,Rs sR + Rd dR) Ar = min (1,As sA + Ad dA)

Gr = min (1,Gs sG + Gd dG)

Br = min (1,Bs sB + Bd dB)

GL_FUNC_SUBTRACT Rr = max (0,Rs sR – Rd dR) Ar = max (0,As sA – Ad dA)

Gr = max (0,Gs sG – Gd dG)

Br = max (0,Bs sB – Bd dB)

GL_FUNC_REVERSE_SUBTRACT Rr = max (0,Rd dR – Rs sR) Ar = max (0,Ad dA – As sA)

Gr = max (0,Gd dG – Gs sG)

Br = max (0,Bd dB – Bs sB)

GL_FUNC_MIN Rr = min (Rs,Rd) Ar = min (As,Ad)

Gr = min (Gs,Gd)

Br = min (Bs,Bd)

GL_FUNC_MAX Rr = max (Rs,Rd) Ar = max (As,Ad)

Gr = max (Gs,Gd)

Br = max (Bs,Bd)

The results of these equations are clamped to the range [0,1] .
The GL_MIN and GL_MAX equations are useful for applications that analyze image data (image

thresholding against a constant color, for example). The GL_FUNC_ADD equation is useful for antialias-
ing and transparency, among other things.

Initially, both the RGB blend equation and the alpha blend equation are set to GL_FUNC_ADD.

Notes
The GL_MIN, and GL_MAX equations do not use the source or destination factors, only the source

and destination colors.

Errors
GL_INVALID_ENUM is generated if mode is not one of GL_FUNC_ADD, GL_FUNC_SUBTRACT,

GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.
GL_INVALID_OPERATION is generated if glBlendEquation is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with an argument of GL_BLEND_EQUATION_RGB
glGet with an argument of GL_BLEND_EQUATION_ALPHA

See Also
glGetString, glBlendColor, glBlendFuncglBlendFuncSeparate

glBlendEquationSeparate

Set the RGB blend equation and the alpha blend equation separately

C Specification
void glBlendEquationSeparate(GLenum modeRGB,

GLenum modeAlpha);

Parameters
modeRGB Specifies the RGB blend equation, how the red, green, and blue components of the

source and destination colors are combined. It must be GL_FUNC_ADD,
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

glBlendEquationSeparate 799

C

modeAlpha Specifies the alpha blend equation, how the alpha component of the source and
destination colors are combined. It must be GL_FUNC_ADD, GL_FUNC_SUBTRACT,
GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

Description
The blend equations determines how a new pixel (the “source” color) is combined with a pixel

already in the framebuffer (the “destination” color). This function specifies one blend equation for
the RGB-color components and one blend equation for the alpha component.

The blend equations use the source and destination blend factors specified by either
glBlendFunc or glBlendFuncSeparate. See glBlendFunc or glBlendFuncSeparate for a
description of the various blend factors.

In the equations that follow, source and destination color components are referred to as
(Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad), respectively. The result color is referred to as (Rr,Gr,Br,Ar). The source and
destination blend factors are denoted (sR,sG,sB,sA) and (dR,dG,dB,dA), respectively. For these equations all
color components are understood to have values in the range [0,1].

Mode RGB Components Alpha Component
GL_FUNC_ADD Rr = min (1,Rs sR + Rd dR) Ar = min (1,As sA + Ad dA)

Gr = min (1,Gs sG + Gd dG)

Br = min (1,Bs sB + Bd dB)

GL_FUNC_SUBTRACT Rr = max (0,Rs sR – Rd dR) Ar = max (0,As sA – Ad dA)

Gr = max (0,Gs sG – Gd dG)

Br = max (0,Bs sB – Bd dB)

GL_FUNC_REVERSE_SUBTRACT Rr = max (0,Rd dR – Rs sR) Ar = max (0,Ad dA – As sA)

Gr = max (0,Gd dG – Gs sG)

Br = max (0,Bd dB – Bs sB)

GL_FUNC_MIN Rr = min (Rs,Rd) Ar = min (As,Ad)

Gr = min (Gs,Gd)

Br = min (Bs,Bd)

GL_FUNC_MAX Rr = max (Rs,Rd) Ar = max (As,Ad)

Gr = max (Gs,Gd)

Br = max (Bs,Bd)

The results of these equations are clamped to the range [0,1].
The GL_MIN and GL_MAX equations are useful for applications that analyze image data (image

thresholding against a constant color, for example). The GL_FUNC_ADD equation is useful for antialias-
ing and transparency, among other things.

Initially, both the RGB blend equation and the alpha blend equation are set to GL_FUNC_ADD.

Notes
glBlendEquationSeparate is available only if the GL version is 2.0 or greater.
The GL_MIN, and GL_MAX equations do not use the source or destination factors, only the source

and destination colors.

Errors
GL_INVALID_ENUM is generated if either modeRGB or modeAlpha is not one of GL_FUNC_ADD,

GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.
GL_INVALID_OPERATION is generated if glBlendEquationSeparate is executed between the

execution of glBegin and the corresponding execution of glEnd.

glBlendEquationSeparate800

Associated Gets
glGet with an argument of GL_BLEND_EQUATION_RGB
glGet with an argument of GL_BLEND_EQUATION_ALPHA

See Also
glGetString, glBlendColor, glBlendFunc, glBlendFuncSeparate

glBlendFunc

Specify pixel arithmetic

C Specification
void glBlendFunc(GLenum sfactor,

GLenum dfactor);

Parameters
sfactor Specifies how the red, green, blue, and alpha source blending factors are computed. The

following symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA, and
GL_SRC_ALPHA_SATURATE. The initial value is GL_ONE.

dfactor Specifies how the red, green, blue, and alpha destination blending factors are
computed. The following symbolic constants are accepted: GL_ZERO, GL_ONE,
GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA. GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, and
GL_ONE_MINUS_CONSTANT_ALPHA. The initial value is GL_ZERO.

Description
In RGBA mode, pixels can be drawn using a function that blends the incoming (source) RGBA

values with the RGBA values that are already in the frame buffer (the destination values). Blending is
initially disabled. Use glEnable and glDisable with argument GL_BLEND to enable and disable
blending.

glBlendFunc defines the operation of blending when it is enabled. sfactor specifies which
method is used to scale the source color components. dfactor specifies which method is used to
scale the destination color components. The possible methods are described in the following table.
Each method defines four scale factors, one each for red, green, blue, and alpha. In the table and in
subsequent equations, source and destination color components are referred to as (Rs,Gs,Bs,As) and
(Rd,Gd,Bd,Ad) . The color specified by glBlendColor is referred to as (Rc,Gc,Bc,Ac). They are understood
to have integer values between 0 and (kR,kG,kB,kA), where

kc = 2m
c – 1

and (mR,mG,mB,mA) is the number of red, green, blue, and alpha bitplanes.
Source and destination scale factors are referred to as (sR,sG,sB,sA) and (dR,dG,dB,dA). The scale factors

described in the table, denoted (fR,fG,fB,fA), represent either source or destination factors. All scale
factors have range [0,1].

glBlendFunc 801

C

Parameter (fR,fG,fB,fA)
GL_ZERO (0,0,0,0)
GL_ONE (1,1,1,1)

GL_SRC_COLOR

GL_ONE_MINUS_SRC_COLOR

GL_DST_COLOR

GL_ONE_MINUS_DST_COLOR

GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA

GL_CONSTANT_COLOR (Rc,Gc,Bc,Ac)

GL_ONE_MINUS_CONSTANT_COLOR (1,1,1,1) – (Rc,Gc,Bc,Ac)

GL_CONSTANT_ALPHA (Ac,Ac,Ac,Ac)

GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1,1) – (Ac,Ac,Ac,Ac)

GL_SRC_ALPHA_SATURATE (i,i,i,1)

In the table,

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the system uses
the following equations:

Rd = min (kR,Rs sR + Rd dR)
Gd = min (kG,Gs sG + Gd dG)
Bd = min (kB,Bs sB + Bd dB)
Ad = min (kA,As sA + Ad dA)

min (As kA Ad)
kA

i = , –

Ad
kA

Ad
kA

,
Ad
kA

,
Ad
kA

,()–(1,1,1,1)

Ad
kA

Ad
kA

,
Ad
kA

,
Ad
kA

,()

As
kA

As
kA

,
As
kA

,
As
kA

,()–(1,1,1,1)

As
kA

As
kA

,
As
kA

,
As
kA

,()

Rd
kR

Gd
kG

,
Bd
kB

,
Ad
kA

,()–(1,1,1,1)

Rd
kR

Gd
kG

,
Bd
kB

,
Ad
kA

,()

Rs
kR

Gs
kG

,
Bs
kB

,
As
kA

,()(1,1,1,1) –

Rs
kR

Gs
kG

,
Bs
kB

,
As
kA

,()

glBlendFunc802

Despite the apparent precision of the above equations, blending arithmetic is not exactly speci-
fied, because blending operates with imprecise integer color values. However, a blend factor that
should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0
reduces its multiplicand to 0. For example, when sfactor is GL_SRC_ALPHA, dfactor is
GL_ONE_MINUS_SRC_ALPHA, and As is equal to kA, the equations reduce to simple replacement:

Rd = RsGd = GsBd = BsAd = As

Examples
Transparency is best implemented using blend function (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this trans-
parency calculation does not require the presence of alpha bitplanes in the frame buffer.

Blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for rendering
antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using blend function (GL_SRC_ALPHA_SATURATE, GL_ONE) with
polygons sorted from nearest to farthest. (See the glEnable, glDisable reference page and the
GL_POLYGON_SMOOTH argument for information on polygon antialiasing.) Destination alpha
bitplanes, which must be present for this blend function to operate correctly, store the accumulated
coverage.

Notes
Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (KA), repre-

senting complete opacity, to 0.0 (0), representing complete transparency.
When more than one color buffer is enabled for drawing, the GL performs blending separately for

each enabled buffer, using the contents of that buffer for destination color. (See glDrawBuffer.)
Blending affects only RGBA rendering. It is ignored by color index renderers.
GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA,

GL_ONE_MINUS_CONSTANT_ALPHA are available only if the GL version is 1.4 or greater or if the
ARB_imaging is supported by your implementation.

GL_SRC_COLOR and GL_ONE_MINUS_SRC_COLOR are valid only for sfactor if the GL version is
1.4 or greater.

GL_DST_COLOR and GL_ONE_MINUS_DST_COLOR are valid only for dfactor if the GL version is
1.4 or greater.

Errors
GL_INVALID_ENUM is generated if either sfactor or dfactor is not an accepted value.
GL_INVALID_OPERATION is generated if glBlendFunc is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_BLEND_SRC
glGet with argument GL_BLEND_DST
glIsEnabled with argument GL_BLEND

See Also
glAlphaFunc, glBlendColor, glBlendEquation, glBlendFuncSeparate, glClear,

glDrawBuffer, glEnable, glLogicOp, glStencilFunc

glBlendFuncSeparate

Specify pixel arithmetic for RGB and alpha components separately

C Specification
void glBlendFuncSeparate(GLenum srcRGB,

GLenum dstRGB,
GLenum srcAlpha,
GLenum dstAlpha);

glBlendFuncSeparate 803

C

Parameters
srcRGB Specifies how the red, green, and blue blending factors are computed. The follow-

ing symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA,
GL_ONE_MINUS_CONSTANT_ALPHA, and GL_SRC_ALPHA_SATURATE.
The initial value is GL_ONE.

dstRGB Specifies how the red, green, and blue destination blending factors are computed.
The following symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA. GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, and
GL_ONE_MINUS_CONSTANT_ALPHA. The initial value is GL_ZERO.

srcAlpha Specifies how the alpha source blending factor is computed. The same symbolic
constants are accepted as for srcRGB. The initial value is GL_ONE.

dstAlpha Specifies how the alpha destination blending factor is computed. The same
symbolic constants are accepted as for dstRGB. The initial value is GL_ZERO.

Description
In RGBA mode, pixels can be drawn using a function that blends the incoming (source) RGBA

values with the RGBA values that are already in the frame buffer (the destination values). Blending is
initially disabled. Use glEnable and glDisable with argument GL_BLEND to enable and disable
blending.

glBlendFuncSeparate defines the operation of blending when it is enabled. srcRGB specifies
which method is used to scale the source RGB-color components. dstRGB specifies which method is
used to scale the destination RGB-color components. Likewise, srcAlpha specifies which method is
used to scale the source alpha color component, and dstAlpha specifies which method is used to
scale the destination alpha component. The possible methods are described in the following table.
Each method defines four scale factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are referred to
as (Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad) . The color specified by glBlendColor is referred to as (Rc,Gc,Bc,Ac).
They are understood to have integer values between 0 and (kR,kG,kB,kA) , where

kc = 2m
c – 1

and (mR,mG,mB,mA) is the number of red, green, blue, and alpha bitplanes.
Source and destination scale factors are referred to as (sR,sG,sB,sA) and (dR,dG,dB,dA). All scale factors

have range [0,1].

Parameter RGB Factor Alpha Factor

GL_ZERO (0,0,0) 0

GL_ONE (1,1,1) 1

GL_SRC_COLOR

GL_ONE_MINUS_SRC_COLOR

GL_DST_COLOR
Ad
kA

Rd
kR

Gd
kG

,
Bd
kB

,()

As
kA

1 –
Rs
kR

Gs
kG

,
Bs
kB

,()(1,1,1,1) –

As
kA

Rs
kR

Gs
kG

,
Bs
kB

,()

glBlendFuncSeparate804

Parameter RGB Factor Alpha Factor

GL_ONE_MINUS_DST_COLOR

GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA

GL_CONSTANT_COLOR (Rc,Gc,Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1,1,1) – (Rc,Gc,Bc) 1 – Ac

GL_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1) – (Ac,Ac,Ac) 1 – Ac

GL_SRC_ALPHA_SATURATE (i,i,i) 1

In the table,
i = min (As,1 – Ad)
To determine the blended RGBA values of a pixel when drawing in RGBA mode, the system uses

the following equations:
Rd = min (kR,Rs sR + Rd dR) Gd = min (kG,Gs sG + Gd dG) Bd = min (kB,Bs sB + Bd dB) Ad = min (kA,As sA +

Ad dA)
Despite the apparent precision of the above equations, blending arithmetic is not exactly speci-

fied, because blending operates with imprecise integer color values. However, a blend factor that
should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0
reduces its multiplicand to 0. For example, when srcRGB is GL_SRC_ALPHA, dstRGB is
GL_ONE_MINUS_SRC_ALPHA, and As is equal to kA, the equations reduce to simple replacement:

Rd = RsGd = GsBd = BsAd = As

Notes
glBlendFuncSeparate is available only if the GL version is 1.4 or greater.
Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (KA),

representing complete opacity, to 0.0 (0), representing complete transparency.
When more than one color buffer is enabled for drawing, the GL performs blending separately for

each enabled buffer, using the contents of that buffer for destination color. (See glDrawBuffer.)
Blending affects only RGBA rendering. It is ignored by color index renderers.
GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA,

GL_ONE_MINUS_CONSTANT_ALPHA are available only if the GL version is 1.4 or greater or if the
ARB_imaging is supported by your implementation.

GL_SRC_COLOR and GL_ONE_MINUS_SRC_COLOR are valid only for srcRGB if the GL version is 1.4
or greater.

GL_DST_COLOR and GL_ONE_MINUS_DST_COLOR are valid only for dstRGB if the GL version is 1.4
or greater.

Ad
kA

1 –
Ad
kA

Ad
kA

,
Ad
kA

,()(1,1,1) –

Ad
kA

Ad
kA

Ad
kA

,
Ad
kA

,()

As
kA

1 –
As
kA

As
kA

,
As
kA

,()(1,1,1) –

As
kA

As
kA

As
kA

,
As
kA

,()

Ad
kA

1 –
Rd
kR

Gd
kG

,
Bd
kB

,()(1,1,1) –

glBlendFuncSeparate 805

C

Errors
GL_INVALID_ENUM is generated if either srcRGB or dstRGB is not an accepted value.
GL_INVALID_OPERATION is generated if glBlendFuncSeparate is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_BLEND_SRC_RGB
glGet with argument GL_BLEND_SRC_ALPHA
glGet with argument GL_BLEND_DST_RGB
glGet with argument GL_BLEND_DST_ALPHA
glIsEnabled with argument GL_BLEND

See Also
glAlphaFunc, glBlendColor, glBlendFunc, glBlendEquation, glClear, glDrawBuffer,

glEnable, glLogicOp, glStencilFunc

glBufferData

Create and initialize a buffer object’s data store

C Specification
void glBufferData(GLenum target,

GLsizeiptr size,
const GLvoid * data,
GLenum usage);

Parameters
target Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,

GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

size Specifies the size in bytes of the buffer object’s new data store.
data Specifies a pointer to data that will be copied into the data store for initialization, or

NULL if no data is to be copied.
usage Specifies the expected usage pattern of the data store. The symbolic constant must be

GL_STREAM_DRAW, GL_STREAM_READ, GL_STREAM_COPY, GL_STATIC_DRAW,
GL_STATIC_READ, GL_STATIC_COPY, GL_DYNAMIC_DRAW, GL_DYNAMIC_READ, or
GL_DYNAMIC_COPY.

Description
glBufferData creates a new data store for the buffer object currently bound to target. Any pre-

existing data store is deleted. The new data store is created with the specified size in bytes and
usage. If data is not NULL, the data store is initialized with data from this pointer. In its initial state,
the new data store is not mapped, it has a NULL mapped pointer, and its mapped access is
GL_READ_WRITE.

usage is a hint to the GL implementation as to how a buffer object’s data store will be accessed.
This enables the GL implementation to make more intelligent decisions that may significantly impact
buffer object performance. It does not, however, constrain the actual usage of the data store. usage
can be broken down into two parts: first, the frequency of access (modification and usage), and
second, the nature of that access.

The frequency of access may be one of these:
STREAM
The data store contents will be modified once and used at most a few times.
STATIC
The data store contents will be modified once and used many times.

glBufferData806

DYNAMIC
The data store contents will be modified repeatedly and used many times.
The nature of access may be one of these:
DRAW
The data store contents are modified by the application, and used as the source for GL drawing

and image specification commands.
READ
The data store contents are modified by reading data from the GL, and used to return that data

when queried by the application.
COPY
The data store contents are modified by reading data from the GL, and used as the source for GL

drawing and image specification commands.

Notes
glBufferData is available only if the GL version is 1.5 or greater.
Targets GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL

version is 2.1 or greater.
If data is NULL, a data store of the specified size is still created, but its contents remain uninitial-

ized and thus undefined.
Clients must align data elements consistent with the requirements of the client platform, with an

additional base-level requirement that an offset within a buffer to a datum comprising NN.

Errors
GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER,

GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.
GL_INVALID_ENUM is generated if usage is not GL_STREAM_DRAW, GL_STREAM_READ,

GL_STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ, GL_STATIC_COPY, GL_DYNAMIC_DRAW,
GL_DYNAMIC_READ, or GL_DYNAMIC_COPY.

GL_INVALID_VALUE is generated if size is negative.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_OUT_OF_MEMORY is generated if the GL is unable to create a data store with the specified

size.
GL_INVALID_OPERATION is generated if glBufferData is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetBufferSubData
glGetBufferParameteriv with argument GL_BUFFER_SIZE or GL_BUFFER_USAGE

See Also
glBindBuffer, glBufferSubData, glMapBuffer, glUnmapBuffer

glBufferSubData

Update a subset of a buffer object’s data store

C Specification
void glBufferSubData(GLenum target,

GLintptr offset,
GLsizeiptr size,
const GLvoid * data);

glBufferSubData 807

C

Parameters
target Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,

GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.
offset Specifies the offset into the buffer object’s data store where data replacement will begin,

measured in bytes.
size Specifies the size in bytes of the data store region being replaced.
data Specifies a pointer to the new data that will be copied into the data store.

Description
glBufferSubData redefines some or all of the data store for the buffer object currently bound to

target. Data starting at byte offset offset and extending for size bytes is copied to the data store
from the memory pointed to by data. An error is thrown if offset and size together define a range
beyond the bounds of the buffer object’s data store.

Notes
glBufferSubData is available only if the GL version is 1.5 or greater.
Targets GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL

version is 2.1 or greater.
When replacing the entire data store, consider using glBufferSubData rather than completely

recreating the data store with glBufferData. This avoids the cost of reallocating the data store.
Consider using multiple buffer objects to avoid stalling the rendering pipeline during data store

updates. If any rendering in the pipeline makes reference to data in the buffer object being updated
by glBufferSubData, especially from the specific region being updated, that rendering must drain
from the pipeline before the data store can be updated.

Clients must align data elements consistent with the requirements of the client platform, with an
additional base-level requirement that an offset within a buffer to a datum comprising NN.

Errors
GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER,

GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.
GL_INVALID_VALUE is generated if offset or size is negative, or if together they define a

region of memory that extends beyond the buffer object’s allocated data store.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if the buffer object being updated is mapped.
GL_INVALID_OPERATION is generated if glBufferSubData is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetBufferSubData

See Also
glBindBuffer, glBufferData, glMapBuffer, glUnmapBuffer

glCallList

Execute a display list

C Specification
void glCallList(GLuint list);

Parameters
list Specifies the integer name of the display list to be executed.

Description
glCallList causes the named display list to be executed. The commands saved in the display

list are executed in order, just as if they were called without using a display list. If list has not been
defined as a display list, glCallList is ignored.

glBufferSubData808

glCallList can appear inside a display list. To avoid the possibility of infinite recursion result-
ing from display lists calling one another, a limit is placed on the nesting level of display lists during
display-list execution. This limit is at least 64, and it depends on the implementation.
GL state is not saved and restored across a call to glCallList. Thus, changes made to GL state
during the execution of a display list remain after execution of the display list is completed. Use
glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to preserve GL state across
glCallList calls.

Notes
Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as

long as the display list includes only commands that are allowed in this interval.

Associated Gets
glGet with argument GL_MAX_LIST_NESTING
glIsList

See Also
glCallLists, glDeleteLists, glGenLists, glNewList, glPushAttrib, glPushMatrix

glCallLists

Execute a list of display lists

C Specification
void glCallLists(GLsizei n,

GLenum type,
const GLvoid * lists);

Parameters
n Specifies the number of display lists to be executed.
type Specifies the type of values in lists. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, GL_2_BYTES, GL_3_BYTES, and GL_4_BYTES are accepted.

lists Specifies the address of an array of name offsets in the display list. The pointer type is
void because the offsets can be bytes, shorts, ints, or floats, depending on the value of
type.

Description
glCallLists causes each display list in the list of names passed as lists to be executed. As a

result, the commands saved in each display list are executed in order, just as if they were called
without using a display list. Names of display lists that have not been defined are ignored.

glCallLists provides an efficient means for executing more than one display list. type allows
lists with various name formats to be accepted. The formats are as follows:

GL_BYTE
lists is treated as an array of signed bytes, each in the range -128 through 127.
GL_UNSIGNED_BYTE
lists is treated as an array of unsigned bytes, each in the range 0 through 255.
GL_SHORT
lists is treated as an array of signed two-byte integers, each in the range -32768 through 32767.
GL_UNSIGNED_SHORT
lists is treated as an array of unsigned two-byte integers, each in the range 0 through 65535.
GL_INT
lists is treated as an array of signed four-byte integers.
GL_UNSIGNED_INT
lists is treated as an array of unsigned four-byte integers.

glCallLists 809

C

GL_FLOAT
lists is treated as an array of four-byte floating-point values.
GL_2_BYTES
lists is treated as an array of unsigned bytes. Each pair of bytes specifies a single display-list

name. The value of the pair is computed as 256 times the unsigned value of the first byte plus the
unsigned value of the second byte.

GL_3_BYTES
lists is treated as an array of unsigned bytes. Each triplet of bytes specifies a single display-list

name. The value of the triplet is computed as 65536 times the unsigned value of the first byte, plus
256 times the unsigned value of the second byte, plus the unsigned value of the third byte.

GL_4_BYTES
lists is treated as an array of unsigned bytes. Each quadruplet of bytes specifies a single display-

list name. The value of the quadruplet is computed as 16777216 times the unsigned value of the first
byte, plus 65536 times the unsigned value of the second byte, plus 256 times the unsigned value of
the third byte, plus the unsigned value of the fourth byte.

The list of display-list names is not null-terminated. Rather, n specifies how many names are to be
taken from lists.

An additional level of indirection is made available with the glListBase command, which speci-
fies an unsigned offset that is added to each display-list name specified in lists before that display
list is executed.

glCallLists can appear inside a display list. To avoid the possibility of infinite recursion result-
ing from display lists calling one another, a limit is placed on the nesting level of display lists during
display-list execution. This limit must be at least 64, and it depends on the implementation.

GL state is not saved and restored across a call to glCallLists. Thus, changes made to GL state
during the execution of the display lists remain after execution is completed. Use glPushAttrib,
glPopAttrib, glPushMatrix, and glPopMatrix to preserve GL state across glCallLists calls.

Notes
Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as

long as the display list includes only commands that are allowed in this interval.

Errors
GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_ENUM is generated if type is not one of GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,

GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES, GL_3_BYTES,
GL_4_BYTES.

Associated Gets
glGet with argument GL_LIST_BASE
glGet with argument GL_MAX_LIST_NESTING
glIsList

See Also
glCallList, glDeleteLists, glGenLists, glListBase, glNewList, glPushAttrib,

glPushMatrix

glClear

Clear buffers to preset values

C Specification
void glClear(GLbitfield mask);

glCallLists810

Parameters
mask Bitwise OR of masks that indicate the buffers to be cleared. The four masks are

GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_ACCUM_BUFFER_BIT, and
GL_STENCIL_BUFFER_BIT.

Description
glClear sets the bitplane area of the window to values previously selected by glClearColor,

glClearIndex, glClearDepth, glClearStencil, and glClearAccum. Multiple color buffers can
be cleared simultaneously by selecting more than one buffer at a time using glDrawBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the opera-
tion of glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical
operation, stenciling, texture mapping, and depth-buffering are ignored by glClear.

glClear takes a single argument that is the bitwise OR of several values indicating which buffer
is to be cleared.

The values are as follows:
GL_COLOR_BUFFER_BIT
Indicates the buffers currently enabled for color writing.
GL_DEPTH_BUFFER_BIT
Indicates the depth buffer.
GL_ACCUM_BUFFER_BIT
Indicates the accumulation buffer.
GL_STENCIL_BUFFER_BIT
Indicates the stencil buffer.
The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

Notes
If a buffer is not present, then a glClear directed at that buffer has no effect.

Errors
GL_INVALID_VALUE is generated if any bit other than the four defined bits is set in mask.
GL_INVALID_OPERATION is generated if glClear is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_ACCUM_CLEAR_VALUE
glGet with argument GL_DEPTH_CLEAR_VALUE
glGet with argument GL_INDEX_CLEAR_VALUE
glGet with argument GL_COLOR_CLEAR_VALUE
glGet with argument GL_STENCIL_CLEAR_VALUE

See Also
glClearAccum, glClearColor, glClearDepth, glClearIndex, glClearStencil,

glColorMask, glDepthMask, glDrawBuffer, glScissor, glStencilMask

glClearAccum

Specify clear values for the accumulation buffer

C Specification
void glClearAccum(GLfloat red,

GLfloat green,
GLfloat blue,
GLfloat alpha);

glClearAccum 811

C

Parameters
red, green, blue, alpha Specify the red, green, blue, and alpha values used when the

accumulation buffer is cleared. The initial values are all 0.

Description
glClearAccum specifies the red, green, blue, and alpha values used by glClear to clear the accu-

mulation buffer.
Values specified by glClearAccum are clamped to the range [-1,1].

Errors
GL_INVALID_OPERATION is generated if glClearAccum is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_ACCUM_CLEAR_VALUE

See Also
glAccum, glClear

glClearColor

Specify clear values for the color buffers

C Specification
void glClearColor(GLclampf red,

GLclampf green,
GLclampf blue,
GLclampf alpha);

Parameters
red, green, blue, alpha Specify the red, green, blue, and alpha values used when the color

buffers are cleared. The initial values are all 0.

Description
glClearColor specifies the red, green, blue, and alpha values used by glClear to clear the color

buffers. Values specified by glClearColor are clamped to the range [0,1].

Errors
GL_INVALID_OPERATION is generated if glClearColor is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_COLOR_CLEAR_VALUE

See Also
glClear

glClearDepth

Specify the clear value for the depth buffer

C Specification
void glClearDepth(GLclampd depth);

Parameters
depth Specifies the depth value used when the depth buffer is cleared. The initial value is 1.

Description
glClearDepth specifies the depth value used by glClear to clear the depth buffer. Values speci-

fied by glClearDepth are clamped to the range [0,1].

glClearColor812

Errors
GL_INVALID_OPERATION is generated if glClearDepth is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_DEPTH_CLEAR_VALUE

See Also
glClear

glClearIndex

Specify the clear value for the color index buffers

C Specification
void glClearIndex(GLfloat c);

Parameters
c Specifies the index used when the color index buffers are cleared. The initial value is 0.

Description
glClearIndex specifies the index used by glClear to clear the color index buffers. c is not

clamped. Rather, c is converted to a fixed-point value with unspecified precision to the right of the
binary point. The integer part of this value is then masked with 2m – 1, where m is the number of bits
in a color index stored in the frame buffer.

Errors
GL_INVALID_OPERATION is generated if glClearIndex is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_INDEX_CLEAR_VALUE
glGet with argument GL_INDEX_BITS

See Also
glClear

glClearStencil

Specify the clear value for the stencil buffer

C Specification
void glClearStencil(GLint s);

Parameters
s Specifies the index used when the stencil buffer is cleared. The initial value is 0.

Description
glClearStencil specifies the index used by glClear to clear the stencil buffer. s is masked

with 2m – 1, where m is the number of bits in the stencil buffer.

Errors
GL_INVALID_OPERATION is generated if glClearStencil is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_STENCIL_CLEAR_VALUE
glGet with argument GL_STENCIL_BITS

See Also
glClear, glStencilFunc, glStencilFuncSeparate, glStencilMask,

glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

glClearStencil 813

C

glClientActiveTexture

Select active texture unit

C Specification
void glClientActiveTexture(GLenum texture);

Parameters
texture Specifies which texture unit to make active. The number of texture units is imple-

mentation dependent, but must be at least two. texture must be one of
GL_TEXTUREi, where i ranges from 0 to the value of GL_MAX_TEXTURE_COORDS - 1,
which is an implementation-dependent value. The initial value is GL_TEXTURE0.

Description
glClientActiveTexture selects the vertex array client state parameters to be modified by

glTexCoordPointer, and enabled or disabled with glEnableClientState or
glDisableClientState, respectively, when called with a parameter of GL_TEXTURE_COORD_ARRAY.

Notes
glClientActiveTexture is supported only if the GL version is 1.3 or greater, or

ARB_multitexture is included in the string returned by glGetString when called with the argu-
ment GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if texture is not one of GL_TEXTUREi, where i ranges from 0 to

the value of GL_MAX_TEXTURE_COORDS - 1.

Associated Gets
glGet with argument GL_CLIENT_ACTIVE_TEXTURE or GL_MAX_TEXTURE_COORDS

See Also
glActiveTexture, glDisableClientState, glEnableClientState, glMultiTexCoord,

glTexCoordPointer

glClipPlane

Specify a plane against which all geometry is clipped

C Specification
void glClipPlane(GLenum plane,

const GLdouble * equation);

Parameters
plane Specifies which clipping plane is being positioned. Symbolic names of the form

GL_CLIP_PLANEi, where i is an integer between 0 and GL_MAX_CLIP_PLANES-1,
are accepted.

equation Specifies the address of an array of four double-precision floating-point values.
These values are interpreted as a plane equation.

Description
Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z.

glClipPlane allows the specification of additional planes, not necessarily perpendicular to the x, y,
or z axis, against which all geometry is clipped. To determine the maximum number of additional
clipping planes, call glGetIntegerv with argument GL_MAX_CLIP_PLANES. All implementations
support at least six such clipping planes. Because the resulting clipping region is the intersection of
the defined half-spaces, it is always convex.

glClientActiveTexture814

glClipPlane specifies a half-space using a four-component plane equation. When glClipPlane
is called, equation is transformed by the inverse of the modelview matrix and stored in the resulting
eye coordinates. Subsequent changes to the modelview matrix have no effect on the stored plane-
equation components. If the dot product of the eye coordinates of a vertex with the stored plane
equation components is positive or zero, the vertex is in with respect to that clipping plane.
Otherwise, it is out.

To enable and disable clipping planes, call glEnable and glDisable with the argument
GL_CLIP_PLANEi, where i is the plane number.

All clipping planes are initially defined as (0, 0, 0, 0) in eye coordinates and are disabled.

Notes
It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

Errors
GL_INVALID_ENUM is generated if plane is not an accepted value.
GL_INVALID_OPERATION is generated if glClipPlane is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetClipPlane
glIsEnabled with argument GL_CLIP_PLANEi

See Also
glEnable

glColor

Set the current color

C Specification
void glColor3b(GLbyte red,

GLbyte green,
GLbyte blue);

void glColor3s(GLshort red,
GLshort green,
GLshort blue);

void glColor3i(GLint red,
GLint green,
GLint blue);

void glColor3f(GLfloat red,
GLfloat green,
GLfloat blue);

void glColor3d(GLdouble red,
GLdouble green,
GLdouble blue);

void glColor3ub(GLubyte red,
GLubyte green,
GLubyte blue);

void glColor3us(GLushort red,
GLushort green,
GLushort blue);

void glColor3ui(GLuint red,
GLuint green,
GLuint blue);

glColor 815

C

void glColor4b(GLbyte red,
GLbyte green,
GLbyte blue,
GLbyte alpha);

void glColor4s(GLshort red,
GLshort green,
GLshort blue,
GLshort alpha);

void glColor4i(GLint red,
GLint green,
GLint blue,
GLint alpha);

void glColor4f(GLfloat red,
GLfloat green,
GLfloat blue,
GLfloat alpha);

void glColor4d(GLdouble red,
GLdouble green,
GLdouble blue,
GLdouble alpha);

void glColor4ub(GLubyte red,
GLubyte green,
GLubyte blue,
GLubyte alpha);

void glColor4us(GLushort red,
GLushort green,
GLushort blue,
GLushort alpha);

void glColor4ui(GLuint red,
GLuint green,
GLuint blue,
GLuint alpha);

Parameters
red, green, blue Specify new red, green, and blue values for the current color.
alpha Specifies a new alpha value for the current color. Included only in the four-

argument glColor4 commands.

C Specification
void glColor3bv(const GLbyte * v);
void glColor3sv(const GLshort * v);
void glColor3iv(const GLint * v);
void glColor3fv(const GLfloat * v);
void glColor3dv(const GLdouble * v);
void glColor3ubv(const GLubyte * v);
void glColor3usv(const GLushort * v);
void glColor3uiv(const GLuint * v);
void glColor4bv(const GLbyte * v);
void glColor4sv(const GLshort * v);
void glColor4iv(const GLint * v);
void glColor4fv(const GLfloat * v);
void glColor4dv(const GLdouble * v);
void glColor4ubv(const GLubyte * v);

glColor816

void glColor4usv(const GLushort * v);
void glColor4uiv(const GLuint * v);

Parameters
v Specifies a pointer to an array that contains red, green, blue, and (sometimes) alpha values.

Description
The GL stores both a current single-valued color index and a current four-valued RGBA color.

glColor sets a new four-valued RGBA color. glColor has two major variants: glColor3 and
glColor4. glColor3 variants specify new red, green, and blue values explicitly and set the current
alpha value to 1.0 (full intensity) implicitly. glColor4 variants specify all four color components
explicitly.

glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i take three or four
signed byte, short, or long integers as arguments. When v is appended to the name, the color
commands can take a pointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and exponent
sizes. Unsigned integer color components, when specified, are linearly mapped to floating-point
values such that the largest representable value maps to 1.0 (full intensity), and 0 maps to 0.0 (zero
intensity). Signed integer color components, when specified, are linearly mapped to floating-point
values such that the most positive representable value maps to 1.0, and the most negative repre-
sentable value maps to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Floating-
point values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before the current
color is updated. However, color components are clamped to this range before they are interpolated
or written into a color buffer.

Notes
The initial value for the current color is (1, 1, 1, 1).
The current color can be updated at any time. In particular, glColor can be called between a call

to glBegin and the corresponding call to glEnd.

Associated Gets
glGet with argument GL_CURRENT_COLOR
glGet with argument GL_RGBA_MODE

See Also
glColorPointer, glIndex, glSecondaryColor

glColorMask

Enable and disable writing of frame buffer color components

C Specification
void glColorMask(GLboolean red,

GLboolean green,
GLboolean blue,
GLboolean alpha);

Parameters
red, green, blue, alpha Specify whether red, green, blue, and alpha can or cannot be

written into the frame buffer. The initial values are all
GL_TRUE, indicating that the color components can be written.

Description
glColorMask specifies whether the individual color components in the frame buffer can or cannot
be written. If red is GL_FALSE, for example, no change is made to the red component of any pixel in
any of the color buffers, regardless of the drawing operation attempted.

glColorMask 817

C

Changes to individual bits of components cannot be controlled. Rather, changes are either
enabled or disabled for entire color components.

Errors
GL_INVALID_OPERATION is generated if glColorMask is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_COLOR_WRITEMASK
glGet with argument GL_RGBA_MODE

See Also
glClear, glColor, glColorPointer, glDepthMask, glIndex, glIndexPointer,

glIndexMask, glStencilMask

glColorMaterial

Cause a material color to track the current color

C Specification
void glColorMaterial(GLenum face,

GLenum mode);

Parameters
face Specifies whether front, back, or both front and back material parameters should track

the current color. Accepted values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.
The initial value is GL_FRONT_AND_BACK.

mode Specifies which of several material parameters track the current color. Accepted values
are GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and
GL_AMBIENT_AND_DIFFUSE. The initial value is GL_AMBIENT_AND_DIFFUSE.

Description
glColorMaterial specifies which material parameters track the current color. When

GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode, of the
material or materials specified by face, track the current color at all times.

To enable and disable GL_COLOR_MATERIAL, call glEnable and glDisable with argument
GL_COLOR_MATERIAL. GL_COLOR_MATERIAL is initially disabled.

Notes
glColorMaterial makes it possible to change a subset of material parameters for each vertex

using only the glColor command, without calling glMaterial. If only such a subset of parameters
is to be specified for each vertex, calling glColorMaterial is preferable to calling glMaterial.

Call glColorMaterial before enabling GL_COLOR_MATERIAL.
Calling glDrawElements, glDrawArrays, or glDrawRangeElements may leave the current

color indeterminate, if the color array is enabled. If glColorMaterial is enabled while the current
color is indeterminate, the lighting material state specified by face and mode is also indeterminate.

If the GL version is 1.1 or greater, and GL_COLOR_MATERIAL is enabled, evaluated color values
affect the results of the lighting equation as if the current color were being modified, but no change is
made to the tracking lighting parameter of the current color.

Errors
GL_INVALID_ENUM is generated if face or mode is not an accepted value.
GL_INVALID_OPERATION is generated if glColorMaterial is executed between the execution of

glBegin and the corresponding execution of glEnd.

glColorMaterial818

Associated Gets
glIsEnabled with argument GL_COLOR_MATERIAL
glGet with argument GL_COLOR_MATERIAL_PARAMETER
glGet with argument GL_COLOR_MATERIAL_FACE

See Also
glColor, glColorPointer, glDrawArrays, glDrawElements, glDrawRangeElements,

glEnable, glLight, glLightModel, glMaterial

glColorPointer

Define an array of colors

C Specification
void glColorPointer(GLint size,

GLenum type,
GLsizei stride,
const GLvoid * pointer);

Parameters
size Specifies the number of components per color. Must be 3 or 4. The initial

value is 4.
type Specifies the data type of each color component in the array. Symbolic constants

GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, and GL_DOUBLE are accepted. The initial value is
GL_FLOAT.

stride Specifies the byte offset between consecutive colors. If stride is 0, the colors are
understood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first component of the first color element in the array.
The initial value is 0.

Description
glColorPointer specifies the location and data format of an array of color components to use

when rendering. size specifies the number of components per color, and must be 3 or 4. type speci-
fies the data type of each color component, and stride specifies the byte stride from one color to
the next, allowing vertices and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations; see glInterleavedArrays.)

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a color array is specified, pointer is treated as a byte offset into the buffer object’s data store.
Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as color vertex array client-side
state (GL_COLOR_ARRAY_BUFFER_BINDING).

When a color array is specified, size, type, stride, and pointer are saved as client-side state,
in addition to the current vertex array buffer object binding.

To enable and disable the color array, call glEnableClientState and glDisableClientState
with the argument GL_COLOR_ARRAY. If enabled, the color array is used when glDrawArrays,
glMultiDrawArrays, glDrawElements, glMultiDrawElements, glDrawRangeElements, or
glArrayElement is called.

Notes
glColorPointer is available only if the GL version is 1.1 or greater.
The color array is initially disabled and isn’t accessed when glArrayElement, glDrawElements,

glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or glMultiDrawElements is called.
Execution of glColorPointer is not allowed between the execution of glBegin and the corre-

sponding execution of glEnd, but an error may or may not be generated. If no error is generated, the
operation is undefined.

glColorPointer 819

C

glColorPointer is typically implemented on the client side.
Color array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors
GL_INVALID_VALUE is generated if size is not 3 or 4.
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets
glIsEnabled with argument GL_COLOR_ARRAY
glGet with argument GL_COLOR_ARRAY_SIZE
glGet with argument GL_COLOR_ARRAY_TYPE
glGet with argument GL_COLOR_ARRAY_STRIDE
glGet with argument GL_COLOR_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_COLOR_ARRAY_POINTER

See Also
glArrayElement, glBindBuffer, glColor, glDisableClientState, glDrawArrays,

glDrawElements, glDrawRangeElements, glEdgeFlagPointer, glEnableClientState,
glFogCoordPointer, glIndexPointer, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormalPointer, glPopClientAttrib, glPushClientAttrib,
glSecondaryColorPointer, glTexCoordPointer, glVertexAttribPointer, glVertexPointer

glColorSubTable

Respecify a portion of a color table

C Specification
void glColorSubTable(GLenum target,

GLsizei start,
GLsizei count,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters
target Must be one of GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or

GL_POST_COLOR_MATRIX_COLOR_TABLE.
start The starting index of the portion of the color table to be replaced.
count The number of table entries to replace.
format The format of the pixel data in data. The allowable values are GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR,
GL_RGBA, and GL_BGRA.

type The type of the pixel data in data. The allowable values are GL_UNSIGNED_BYTE,
GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Pointer to a one-dimensional array of pixel data that is processed to replace the
specified region of the color table.

glColorSubTable820

Description
glColorSubTable is used to respecify a contiguous portion of a color table previously defined

using glColorTable. The pixels referenced by data replace the portion of the existing table from
indices start to start + count – 1, inclusive. This region may not include any entries outside the
range of the color table as it was originally specified. It is not an error to specify a subtexture with
width of 0, but such a specification has no effect.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a portion of a color table is respecified, data is treated as a byte offset into the
buffer object’s data store.

Notes
glColorSubTable is present only if ARB_imaging is returned when glGetString is called with

an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_VALUE is generated if start + count > width.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glColorSubTable is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetColorTable, glGetColorTableParameter
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also
glColorTable, glColorTableParameter, glCopyColorTable, glCopyColorSubTable,

glGetColorTable

glColorTable

Define a color lookup table

C Specification
void glColorTable(GLenum target,

GLenum internalformat,
GLsizei width,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters
target Must be one of GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE,

GL_POST_COLOR_MATRIX_COLOR_TABLE, GL_PROXY_COLOR_TABLE,
GL_PROXY_POST_CONVOLUTION_COLOR_TABLE, or
GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

glColorTable 821

C

internalformat The internal format of the color table. The allowable values are GL_ALPHA,
GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, and GL_RGBA16.

width The number of entries in the color lookup table specified by data.
format The format of the pixel data in data. The allowable values are GL_RED,

GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type The type of the pixel data in data. The allowable values are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data Pointer to a one-dimensional array of pixel data that is processed to build the
color table.

Description
glColorTable may be used in two ways: to test the actual size and color resolution of a lookup

table given a particular set of parameters, or to load the contents of a color lookup table. Use the
targets GL_PROXY_* for the first case and the other targets for the second case.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a color table is specified, data is treated as a byte offset into the buffer object’s
data store.

If target is GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or
GL_POST_COLOR_MATRIX_COLOR_TABLE, glColorTable builds a color lookup table from an array of
pixels. The pixel array specified by width, format, type, and data is extracted from memory and
processed just as if glDrawPixels were called, but processing stops after the final expansion to RGBA
is completed.

The four scale parameters and the four bias parameters that are defined for the table are then used
to scale and bias the R, G, B, and A components of each pixel. (Use glColorTableParameter to set
these scale and bias parameters.)

Next, the R, G, B, and A values are clamped to the range [0,1]. Each pixel is then converted to the
internal format specified by internalformat. This conversion simply maps the component values of
the pixel (R, G, B, and A) to the values included in the internal format (red, green, blue, alpha, lumi-
nance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

glColorTable822

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels
are stored in the color table. They form a one-dimensional table with indices in the range [0,width – 1].

If target is GL_PROXY_*, glColorTable recomputes and stores the values of the proxy color
table’s state variables GL_COLOR_TABLE_FORMAT, GL_COLOR_TABLE_WIDTH,
GL_COLOR_TABLE_RED_SIZE, GL_COLOR_TABLE_GREEN_SIZE, GL_COLOR_TABLE_BLUE_SIZE,
GL_COLOR_TABLE_ALPHA_SIZE, GL_COLOR_TABLE_LUMINANCE_SIZE, and GL_COLOR_TABLE_INTEN-
SITY_SIZE. There is no effect on the image or state of any actual color table. If the specified color
table is too large to be supported, then all the proxy state variables listed above are set to zero.
Otherwise, the color table could be supported by glColorTable using the corresponding non-proxy
target, and the proxy state variables are set as if that target were being defined.

The proxy state variables can be retrieved by calling glGetColorTableParameter with a target
of GL_PROXY_*. This allows the application to decide if a particular glColorTable command would
succeed, and to determine what the resulting color table attributes would be.

If a color table is enabled, and its width is nonzero, then its contents are used to replace a subset
of the components of each RGBA pixel group, based on the internal format of the table.

Each pixel group has color components (R, G, B, A) that are in the range [0.0,1.0]. The color
components are rescaled to the size of the color lookup table to form an index. Then a subset of the
components based on the internal format of the table are replaced by the table entry selected by that
index. If the color components and contents of the table are represented as follows:

Representation Meaning

r Table index computed from R

g Table index computed from G

b Table index computed from B

a Table index computed from A

L[i] Luminance value at table index i

I[i] Intensity value at table index i

R[i] Red value at table index i

G[i] Green value at table index i

B[i] Blue value at table index i

A[i] Alpha value at table index i

then the result of color table lookup is as follows:

Resulting Texture Components

Table Internal Format R G B A

GL_ALPHA R G B A[a]

GL_LUMINANCE L[r] L[g] L[b] At

GL_LUMINANCE_ALPHA L[r] L[g] L[b] A[a]

GL_INTENSITY I[r] I[g] I[b] I[a]

GL_RGB R[r] G[g] B[b] A

GL_RGBA R[r] G[g] B[b] A[a]

When GL_COLOR_TABLE is enabled, the colors resulting from the pixel map operation (if it is
enabled) are mapped by the color lookup table before being passed to the convolution operation. The
colors resulting from the convolution operation are modified by the post convolution color lookup
table when GL_POST_CONVOLUTION_COLOR_TABLE is enabled. These modified colors are then sent to
the color matrix operation. Finally, if GL_POST_COLOR_MATRIX_COLOR_TABLE is enabled, the colors
resulting from the color matrix operation are mapped by the post color matrix color lookup table
before being used by the histogram operation.

glColorTable 823

C

Notes
glColorTable is present only if ARB_imaging is returned when glGetString is called with an

argument of GL_EXTENSIONS.
If target is set to GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or

GL_POST_COLOR_MATRIX_COLOR_TABLE, then width must be a power of two or a
GL_INVALID_VALUE error is generated.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero.
GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be supported by the

implementation, and target is not a GL_PROXY_* target.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glColorTable is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetColorTableParameter
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also
glColorSubTable, glColorTableParameter, glCopyColorTable, glCopyColorSubTable,

glGetColorTable

glColorTableParameter

Set color lookup table parameters

C Specification
void glColorTableParameterfv(GLenum target,

GLenum pname,
const GLfloat * params);

void glColorTableParameteriv(GLenum target,
GLenum pname,
const GLint * params);

Parameters
target The target color table. Must be GL_COLOR_TABLE,

GL_POST_CONVOLUTION_COLOR_TABLE, or
GL_POST_COLOR_MATRIX_COLOR_TABLE.

pname The symbolic name of a texture color lookup table parameter. Must be one of
GL_COLOR_TABLE_SCALE or GL_COLOR_TABLE_BIAS.

params A pointer to an array where the values of the parameters are stored.

glColorParameter824

Description
glColorTableParameter is used to specify the scale factors and bias terms applied to color

components when they are loaded into a color table. target indicates which color table the scale
and bias terms apply to; it must be set to GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE,
or GL_POST_COLOR_MATRIX_COLOR_TABLE.

pname must be GL_COLOR_TABLE_SCALE to set the scale factors. In this case, params points to an
array of four values, which are the scale factors for red, green, blue, and alpha, in that order.

pname must be GL_COLOR_TABLE_BIAS to set the bias terms. In this case, params points to an
array of four values, which are the bias terms for red, green, blue, and alpha, in that order.

The color tables themselves are specified by calling glColorTable.

Notes
glColorTableParameter is available only if ARB_imaging is returned from calling

glGetString with an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if target or pname is not an acceptable value.
GL_INVALID_OPERATION is generated if glColorTableParameter is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetColorTableParameter

See Also
glColorTable, glPixelTransfer

glCompileShader

Compile a shader object

C Specification
void glCompileShader(GLuint shader);

Parameters
shader Specifies the shader object to be compiled.

Description
glCompileShader compiles the source code strings that have been stored in the shader object

specified by shader.
The compilation status will be stored as part of the shader object’s state. This value will be set to

GL_TRUE if the shader was compiled without errors and is ready for use, and GL_FALSE otherwise.
It can be queried by calling glGetShader with arguments shader and GL_COMPILE_STATUS.

Compilation of a shader can fail for a number of reasons as specified by the OpenGL Shading
Language Specification. Whether or not the compilation was successful, information about the
compilation can be obtained from the shader object’s information log by calling
glGetShaderInfoLog.

Notes
glCompileShader is available only if the GL version is 2.0 or greater.

Errors
GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not of type GL_SHADER_OBJECT.
GL_INVALID_OPERATION is generated if glCompileShader is executed between the execution of

glBegin and the corresponding execution of glEnd.

glCompileShader 825

C

Associated Gets
glGetShaderInfoLog with argument shader
glGetShader with arguments shader and GL_COMPILE_STATUS
glIsShader

See Also
glCreateShader, glLinkProgram, glShaderSource

glCompressedTexImage1D

Specify a one-dimensional texture image in a compressed format

C Specification
void glCompressedTexImage1D(GLenum target,

GLint level,
GLenum internalformat,
GLsizei width,
GLint border,
GLsizei imageSize,
const GLvoid * data);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_1D or

GL_PROXY_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n

is the nth mipmap reduction image.
internalformat Specifies the format of the compressed image data stored at address data.
width Specifies the width of the texture image including the border if any. If the

GL version does not support non-power-of-two sizes, this value must be
2n + 2 (border) for some integer n. All implementations support texture
images that are at least 64 texels wide. The height of the 1D texture image
is 1.

border Specifies the width of the border. Must be either 0 or 1.
imageSize Specifies the number of unsigned bytes of image data starting at the address

specified by data.
data Specifies a pointer to the compressed image data in memory.

Description
Texturing maps a portion of a specified texture image onto each graphical primitive for which

texturing is enabled. To enable and disable one-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_1D.

glCompressedTexImage1D loads a previously defined, and retrieved, compressed one-dimen-
sional texture image if target is GL_TEXTURE_1D (see glTexImage1D).

If target is GL_PROXY_TEXTURE_1D, no data is read from data, but all of the texture image state
is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to
0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

internalformat must be extension-specified compressed-texture format. When a texture is
loaded with glTexImage1D using a generic compressed texture format (e.g., GL_COMPRESSED_RGB)
the GL selects from one of its extensions supporting compressed textures. In order to load the
compressed texture image using glCompressedTexImage1D, query the compressed texture image’s
size and format using glGetTexLevelParameter.

glCompressedTexImage1D826

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes
glCompressedTexImage1D is available only if the GL version is 1.3 or greater.
Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-

tion exports the GL_ARB_texture_non_power_of_two extension.

Errors
GL_INVALID_ENUM is generated if internalformat is of the generic compressed internal

formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, or
GL_COMPRESSED_RGBA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexImage1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets
glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glIsEnabled with argument GL_TEXTURE_1D

See Also
glActiveTexture, glColorTable, glCompressedTexImage2D, glCompressedTexImage3D,

glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glMatrixMode, glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage2D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

glCompressedTexImage2D

Specify a two-dimensional texture image in a compressed format

C Specification
void glCompressedTexImage2D(GLenum target,

GLint level,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLint border,
GLsizei imageSize,
const GLvoid * data);

glCompressedTexImage2D 827

C

Parameters
target Specifies the target texture. Must be GL_TEXTURE_2D,

GL_PROXY_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is
the nth mipmap reduction image.

internalformat Specifies the format of the compressed image data stored at address data.
Must be one of the following constants: GL_COMPRESSED_ALPHA,
GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_COMPRESSED_SLUMINANCE, or GL_COMPRESSED_SLUMINANCE_ALPHA.
GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA,
GL_COMPRESSED_SRGB_ALPHA,

width Specifies the width of the texture image including the border if any. If the GL
version does not support non-power-of-two sizes, this value must be 2n + 2
(border) for some integer n. All implementations support texture images that
are at least 64 texels wide.

height Specifies the height of the texture image including the border if any. If the GL
version does not support non-power-of-two sizes, this value must be Must be
2n + 2 (border) for some integer n. All implementations support texture
images that are at least 64 texels wide.

border Specifies the width of the border. Must be either 0 or 1.
imageSize Specifies the number of unsigned bytes of image data starting at the address

specified by data.
data Specifies a pointer to the compressed image data in memory.

Description
Texturing maps a portion of a specified texture image onto each graphical primitive for which

texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_2D. To enable and disable texturing using cube-mapped textures, call
glEnable and glDisable with argument GL_TEXTURE_CUBE_MAP.

glCompressedTexImage2D loads a previously defined, and retrieved, compressed two-dimen-
sional texture image if target is GL_TEXTURE_2D (see glTexImage2D).

If target is GL_PROXY_TEXTURE_2D, no data is read from data, but all of the texture image state
is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to
0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

internalformat must be an extension-specified compressed-texture format. When a texture is
loaded with glTexImage2D using a generic compressed texture format (e.g., GL_COMPRESSED_RGB),
the GL selects from one of its extensions supporting compressed textures. In order to load the
compressed texture image using glCompressedTexImage2D, query the compressed texture image’s
size and format using glGetTexLevelParameter.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

glCompressedTexImage2D828

Notes
glCompressedTexImage2D is available only if the GL version is 1.3 or greater.
Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-

tion exports the GL_ARB_texture_non_power_of_two extension.
The GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, GL_COMPRESSED_SRGB_ALPHA,

GL_COMPRESSED_SLUMINANCE, and GL_COMPRESSED_SLUMINANCE_ALPHA internal formats are only
available if the GL version is 2.1 or greater.

Errors
GL_INVALID_ENUM is generated if internalformat is not one of these generic compressed inter-

nal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_ALPHA,
GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexImage2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets
glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glIsEnabled with argument GL_TEXTURE_2D

See Also
glActiveTexture, glColorTable, glCompressedTexImage1D, glCompressedTexImage3D,

glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glMatrixMode, glPixelStore,
glPixelTransfer, glTexEnv, glTexGen, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

glCompressedTexImage2D 829

C

glCompressedTexImage3D

Specify a three-dimensional texture image in a compressed format

C Specification
void glCompressedTexImage3D(GLenum target,

GLint level,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLsizei imageSize,
const GLvoid * data);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_3D or

GL_PROXY_TEXTURE_3D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the

nth mipmap reduction image.
internalformat Specifies the format of the compressed image data stored at address data. Must

be one of the following constants: GL_COMPRESSED_ALPHA,
GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA,
GL_COMPRESSED_SRGB_ALPHA, GL_COMPRESSED_SLUMINANCE, or
GL_COMPRESSED_SLUMINANCE_ALPHA.

width Specifies the width of the texture image including the border if any. If the GL
version does not support non-power-of-two sizes, this value must be 2n + 2
(border) for some integer n. All implementations support texture images that
are at least 64 texels wide.

height Specifies the height of the texture image including the border if any. If the GL
version does not support non-power-of-two sizes, this value must be 2n + 2
(border) for some integer n. All implementations support texture images that
are at least 64 texels wide.

depth Specifies the depth of the texture image including the border if any. If the GL
version does not support non-power-of-two sizes, this value must be 2n + 2
(border) for some integer n. All implementations support texture images that
are at least 64 texels wide.

border Specifies the width of the border. Must be either 0 or 1.
imageSize Specifies the number of unsigned bytes of image data starting at the address

specified by data.
data Specifies a pointer to the compressed image data in memory.

Description
Texturing maps a portion of a specified texture image onto each graphical primitive for which

texturing is enabled. To enable and disable three-dimensional texturing, call glEnable and
glDisable with argument GL_TEXTURE_3D.

glCompressedTexImage3D loads a previously defined, and retrieved, compressed three-dimen-
sional texture image if target is GL_TEXTURE_3D (see glTexImage3D).

If target is GL_PROXY_TEXTURE_3D, no data is read from data, but all of the texture image state
is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to

glCompressedTexImage3D830

0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

internalformat must be an extension-specified compressed-texture format. When a texture is
loaded with glTexImage2D using a generic compressed texture format (e.g., GL_COMPRESSED_RGB),
the GL selects from one of its extensions supporting compressed textures. In order to load the
compressed texture image using glCompressedTexImage3D, query the compressed texture image’s
size and format using glGetTexLevelParameter.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes
glCompressedTexImage3D is available only if the GL version is 1.3 or greater.
Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-

tion exports the GL_ARB_texture_non_power_of_two extension.
The GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, GL_COMPRESSED_SRGB_ALPHA,

GL_COMPRESSED_SLUMINANCE, and GL_COMPRESSED_SLUMINANCE_ALPHA internal formats are only
available if the GL version is 2.1 or greater.

Errors
GL_INVALID_ENUM is generated if internalformat is not one of these generic compressed inter-

nal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_ALPHA,
GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexImage3D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets
glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glIsEnabled with argument GL_TEXTURE_3D

See Also
glActiveTexture, glColorTable, glCompressedTexImage1D, glCompressedTexImage2D,

glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glMatrixMode, glPixelStore,
glPixelTransfer, glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

glCompressedTexImage3D 831

C

glCompressedTexSubImage1D

Specify a one-dimensional texture subimage in a compressed format

C Specification
void glCompressedTexSubImage1D(GLenum target,

GLint level,
GLint xoffset,
GLsizei width,
GLenum format,
GLsizei imageSize,
const GLvoid * data);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.
xoffset Specifies a texel offset in the x direction within the texture array.
width Specifies the width of the texture subimage.
format Specifies the format of the compressed image data stored at address data.
imageSize Specifies the number of unsigned bytes of image data starting at the address specified

by data.
data Specifies a pointer to the compressed image data in memory.

Description
Texturing maps a portion of a specified texture image onto each graphical primitive for which

texturing is enabled. To enable and disable one-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_1D.

glCompressedTexSubImage1D redefines a contiguous subregion of an existing one-dimensional
texture image. The texels referenced by data replace the portion of the existing texture array with x
indices xoffset and xoffset + width – 1, inclusive. This region may not include any texels outside
the range of the texture array as it was originally specified. It is not an error to specify a subtexture
with width of 0, but such a specification has no effect.

format must be an extension-specified compressed-texture format. The format of the
compressed texture image is selected by the GL implementation that compressed it (see
glTexImage1D), and should be queried at the time the texture was compressed with
glGetTexLevelParameter.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes
glCompressedTexSubImage1D is available only if the GL version is 1.3 or greater.

Errors
GL_INVALID_ENUM is generated if format is one of these generic compressed internal formats:

GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_ALPHA, GL_COMPRESSED_SRGB,
GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

glCompressedTexSubImage1D832

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexSubImage1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets
glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glIsEnabled with argument GL_TEXTURE_1D

See Also
glActiveTexture, glColorTable, glCompressedTexImage1D, glCompressedTexImage2D,

glCompressedTexImage3D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glMatrixMode, glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage2D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

glCompressedTexSubImage2D

Specify a two-dimensional texture subimage in a compressed format

C Specification
void glCompressedTexSubImage2D(GLenum target,

GLint level,
GLint xoffset,
GLint yoffset,
GLsizei width,
GLsizei height,
GLenum format,
GLsizei imageSize,
const GLvoid * data);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_

POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_
POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.
yoffset Specifies a texel offset in the y direction within the texture array.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.
format Specifies the format of the compressed image data stored at address data.
imageSize Specifies the number of unsigned bytes of image data starting at the address specified

by data.
data Specifies a pointer to the compressed image data in memory.

glCompressedTexSubImage2D 833

C

Description
Texturing maps a portion of a specified texture image onto each graphical primitive for which

texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_2D. To enable and disable texturing using cube-mapped texture, call
glEnable and glDisable with argument GL_TEXTURE_CUBE_MAP.

glCompressedTexSubImage2D redefines a contiguous subregion of an existing two-dimensional
texture image. The texels referenced by data replace the portion of the existing texture array with x
indices xoffset and xoffset + width – 1, and the y indices yoffset and yoffset + height – 1,
inclusive. This region may not include any texels outside the range of the texture array as it was origi-
nally specified. It is not an error to specify a subtexture with width of 0, but such a specification has
no effect.

format must be an extension-specified compressed-texture format. The format of the
compressed texture image is selected by the GL implementation that compressed it (see
glTexImage2D) and should be queried at the time the texture was compressed with
glGetTexLevelParameter.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes
glCompressedTexSubImage2D is available only if the GL version is 1.3 or greater.
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,

GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP are available only if the GL version is 1.3 or greater.

Errors
GL_INVALID_ENUM is generated if format is one of these generic compressed internal formats:

GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_ALPHA, GL_COMPRESSED_SRGB,
GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexSubImage2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets
glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glIsEnabled with argument GL_TEXTURE_2D or GL_TEXTURE_CUBE_MAP

glCompressedTexSubImage2D834

See Also
glActiveTexture, glColorTable, glCompressedTexImage1D, glCompressedTexImage2D,

glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage3D,
glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glMatrixMode, glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage2D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

glCompressedTexSubImage3D

Specify a three-dimensional texture subimage in a compressed format

C Specification
void glCompressedTexSubImage3D(GLenum target,

GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLsizei imageSize,
const GLvoid * data);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_3D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.
xoffset Specifies a texel offset in the x direction within the texture array.
yoffset Specifies a texel offset in the y direction within the texture array.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.
depth Specifies the depth of the texture subimage.
format Specifies the format of the compressed image data stored at address data.
imageSize Specifies the number of unsigned bytes of image data starting at the address specified

by data.
data Specifies a pointer to the compressed image data in memory.

Description
Texturing maps a portion of a specified texture image onto each graphical primitive for which

texturing is enabled. To enable and disable three-dimensional texturing, call glEnable and
glDisable with argument GL_TEXTURE_3D.

glCompressedTexSubImage3D redefines a contiguous subregion of an existing three-dimen-
sional texture image. The texels referenced by data replace the portion of the existing texture array
with x indices xoffset and xoffset + width – 1, and the y indices yoffset and yoffset +
height – 1, and the z indices zoffset and zoffset + depth – 1, inclusive. This region may not
include any texels outside the range of the texture array as it was originally specified. It is not an error
to specify a subtexture with width of 0, but such a specification has no effect.

format must be an extension-specified compressed-texture format. The format of the
compressed texture image is selected by the GL implementation that compressed it (see
glTexImage3D) and should be queried at the time the texture was compressed with
glGetTexLevelParameter.

glCompressedTexSubImage3D 835

C

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes
glCompressedTexSubImage3D is available only if the GL version is 1.3 or greater.

Errors
GL_INVALID_ENUM is generated if format is one of these generic compressed internal formats:

GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_ALPHA, GL_COMPRESSED_SRGB,
GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexSubImage3D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets
glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glIsEnabled with argument GL_TEXTURE_3D

See Also
glActiveTexture, glColorTable, glCompressedTexImage1D, glCompressedTexImage2D,

glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glMatrixMode, glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage2D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

glConvolutionFilter1D

Define a one-dimensional convolution filter

C Specification
void glConvolutionFilter1D(GLenum target,

GLenum internalformat,
GLsizei width,
GLenum format,
GLenum type,
const GLvoid * data);

glCompressedTexSubImage3D836

Parameters
target Must be GL_CONVOLUTION_1D.
internalformat The internal format of the convolution filter kernel. The allowable values are

GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width The width of the pixel array referenced by data.
format The format of the pixel data in data. The allowable values are GL_ALPHA,

GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY, GL_RGB, and GL_RGBA.
type The type of the pixel data in data. Symbolic constants GL_UNSIGNED_BYTE,

GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

data Pointer to a one-dimensional array of pixel data that is processed to build the
convolution filter kernel.

Description
glConvolutionFilter1D builds a one-dimensional convolution filter kernel from an array of pixels.
The pixel array specified by width, format, type, and data is extracted from memory and

processed just as if glDrawPixels were called, but processing stops after the final expansion to RGBA
is completed.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a convolution filter is specified, data is treated as a byte offset into the buffer
object’s data store.

The R, G, B, and A components of each pixel are next scaled by the four 1D
GL_CONVOLUTION_FILTER_SCALE parameters and biased by the four 1D
GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters are set by
glConvolutionParameter using the GL_CONVOLUTION_1D target and the names
GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves

are vectors of four values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This conver-
sion simply maps the component values of the pixel (R, G, B, and A) to the values included in the
internal format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

glConvolutionFilter1D 837

C

The red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in floating-point rather than integer format. They form a one-dimensional filter kernel image
indexed with coordinate i such that i starts at 0 and increases from left to right. Kernel location i is
derived from the ith pixel, counting from 0.

Note that after a convolution is performed, the resulting color components are also scaled by
their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased by their corresponding
GL_POST_CONVOLUTION_c_BIAS parameters (where c takes on the values RED, GREEN, BLUE, and
ALPHA). These parameters are set by glPixelTransfer.

Notes
glConvolutionFilter1D is present only if ARB_imaging is returned when glGetString is

called with an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_1D.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum

supported value. This value may be queried with glGetConvolutionParameter using target
GL_CONVOLUTION_1D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and type is not GL_RGB.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and type is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glConvolutionFilter1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetConvolutionParameter, glGetConvolutionFilter
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also
glConvolutionFilter2D, glSeparableFilter2D, glConvolutionParameter,
glPixelTransfer

glConvolutionFilter1D838

glConvolutionFilter2D

Define a two-dimensional convolution filter

C Specification
void glConvolutionFilter2D(GLenum target,

GLenum internalformat,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters
target Must be GL_CONVOLUTION_2D.
internalformat The internal format of the convolution filter kernel. The allowable values are

GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width The width of the pixel array referenced by data.
height The height of the pixel array referenced by data.
format The format of the pixel data in data. The allowable values are GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type The type of the pixel data in data. Symbolic constants GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

data Pointer to a two-dimensional array of pixel data that is processed to build the
convolution filter kernel.

Description
glConvolutionFilter2D builds a two-dimensional convolution filter kernel from an array of

pixels.
The pixel array specified by width, height, format, type, and data is extracted from memory

and processed just as if glDrawPixels were called, but processing stops after the final expansion to
RGBA is completed.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a convolution filter is specified, data is treated as a byte offset into the buffer
object’s data store.

glConvolutionFilter2D 839

C

The R, G, B, and A components of each pixel are next scaled by the four 2D
GL_CONVOLUTION_FILTER_SCALE parameters and biased by the four 2D
GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters are set by
glConvolutionParameter using the GL_CONVOLUTION_2D target and the names
GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves
are vectors of four values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This conver-
sion simply maps the component values of the pixel (R, G, B, and A) to the values included in the
internal format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

The red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in floating-point rather than integer format. They form a two-dimensional filter kernel image
indexed with coordinates i and j such that i starts at zero and increases from left to right, and j starts
at zero and increases from bottom to top. Kernel location i,j is derived from the Nth pixel, where
N is i + j*width.

Note that after a convolution is performed, the resulting color components are also scaled by
their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased by their corresponding
GL_POST_CONVOLUTION_c_BIAS parameters (where c takes on the values RED, GREEN, BLUE, and
ALPHA). These parameters are set by glPixelTransfer.

Notes
glConvolutionFilter2D is present only if ARB_imaging is returned when glGetString is

called with an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_2D.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum

supported value. This value may be queried with glGetConvolutionParameter using target
GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_VALUE is generated if height is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using target
GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

glConvolutionFilter2D840

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glConvolutionFilter2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetConvolutionParameter, glGetConvolutionFilter

See Also
glConvolutionFilter1D, glSeparableFilter2D, glConvolutionParameter,

glPixelTransfer

glConvolutionParameter

Set convolution parameters

C Specification
void glConvolutionParameterf(GLenum target,

GLenum pname,
GLfloat params);

void glConvolutionParameteri(GLenum target,
GLenum pname,
GLint params);

Parameters
target The target for the convolution parameter. Must be one of GL_CONVOLUTION_1D,

GL_CONVOLUTION_2D, or GL_SEPARABLE_2D.
pname The parameter to be set. Must be GL_CONVOLUTION_BORDER_MODE.
params The parameter value. Must be one of GL_REDUCE, GL_CONSTANT_BORDER,

GL_REPLICATE_BORDER.

C Specification
void glConvolutionParameterfv(GLenum target,

GLenum pname,
const GLfloat * params);

void glConvolutionParameteriv(GLenum target,
GLenum pname,
const GLint * params);

Parameters
target The target for the convolution parameter. Must be one of GL_CONVOLUTION_1D,

GL_CONVOLUTION_2D, or GL_SEPARABLE_2D.
pname The parameter to be set. Must be one of GL_CONVOLUTION_BORDER_MODE,

GL_CONVOLUTION_BORDER_COLOR, GL_CONVOLUTION_FILTER_SCALE, or
GL_CONVOLUTION_FILTER_BIAS.

params The parameter value. If pnamev is GL_CONVOLUTION_BORDER_MODE, paramsv must be one
of GL_REDUCE, GL_CONSTANT_BORDER, or GL_REPLICATE_BORDER. Otherwise, must be a
vector of four values (for red, green, blue, and alpha, respectively) to be used for scaling
(when pnamev is GL_CONVOLUTION_FILTER_SCALE), or biasing (when pnamev is
GL_CONVOLUTION_FILTER_BIAS) a convolution filter kernel or setting the constant border
color (when pnamev is GL_CONVOLUTION_BORDER_COLOR.

glConvolutionParameter 841

C

Description
glConvolutionParameter sets the value of a convolution parameter.
target selects the convolution filter to be affected: GL_CONVOLUTION_1D, GL_CONVOLUTION_2D,

or GL_SEPARABLE_2D for the 1D, 2D, or separable 2D filter, respectively.
pname selects the parameter to be changed. GL_CONVOLUTION_FILTER_SCALE and

GL_CONVOLUTION_FILTER_BIAS affect the definition of the convolution filter kernel; see
glConvolutionFilter1D, glConvolutionFilter2D, and glSeparableFilter2D for details. In
these cases, paramsv is an array of four values to be applied to red, green, blue, and alpha values,
respectively. The initial value for GL_CONVOLUTION_FILTER_SCALE is (1, 1, 1, 1), and the initial
value for GL_CONVOLUTION_FILTER_BIAS is (0, 0, 0, 0).

A pname value of GL_CONVOLUTION_BORDER_MODE controls the convolution border mode. The
accepted modes are:

GL_REDUCE
The image resulting from convolution is smaller than the source image. If the filter width is Wf

and height is Hf, and the source image width is Ws and height is Hs, then the convolved image width
will be Ws – Wf + 1 and height will be Hs – Hf + 1. (If this reduction would generate an image with
zero or negative width and/or height, the output is simply null, with no error generated.) The coordi-
nates of the image resulting from convolution are zero through Ws – Wf in width and zero through
Hs – Hf in height.

GL_CONSTANT_BORDER
The image resulting from convolution is the same size as the source image, and processed as if the

source image were surrounded by pixels with their color specified by the
GL_CONVOLUTION_BORDER_COLOR.

GL_REPLICATE_BORDER
The image resulting from convolution is the same size as the source image, and processed as if the

outermost pixel on the border of the source image were replicated.

Notes
glConvolutionParameter is present only if ARB_imaging is returned when glGetString is

called with an argument of GL_EXTENSIONS.
In cases where errors can result from the specification of invalid image dimensions, it is the

dimensions after convolution that are tested, not the dimensions of the source image. For example,
glTexImage1D requires power-of-two image size. When GL_REDUCE border mode is in effect, the
source image must be larger than the final power-of-two size by one less than the size of the 1D filter
kernel.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if pname is not one of the allowable values.
GL_INVALID_ENUM is generated if pname is GL_CONVOLUTION_BORDER_MODE and params is not

one of GL_REDUCE, GL_CONSTANT_BORDER, or GL_REPLICATE_BORDER.
GL_INVALID_OPERATION is generated if glConvolutionParameter is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetConvolutionParameter

See Also
glConvolutionFilter1D, glConvolutionFilter2D, glSeparableFilter2D,

glGetConvolutionParameter

glConvolutionParameter842

glCopyColorSubTable

Respecify a portion of a color table

C Specification
void glCopyColorSubTable(GLenum target,

GLsizei start,
GLint x,
GLint y,
GLsizei width);

Parameters
target Must be one of GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or

GL_POST_COLOR_MATRIX_COLOR_TABLE.
start The starting index of the portion of the color table to be replaced.
x, y The window coordinates of the left corner of the row of pixels to be copied.
width The number of table entries to replace.

Description
glCopyColorSubTable is used to respecify a contiguous portion of a color table previously

defined using glColorTable. The pixels copied from the framebuffer replace the portion of the exist-
ing table from indices start to start + x – 1, inclusive. This region may not include any entries
outside the range of the color table, as was originally specified. It is not an error to specify a subtex-
ture with width of 0, but such a specification has no effect.

Notes
glCopyColorSubTable is present only if ARB_imaging is returned when glGetString is called

with an argument of GL_EXTENSIONS.

Errors
GL_INVALID_VALUE is generated if target is not a previously defined color table.
GL_INVALID_VALUE is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if start + x > width.
GL_INVALID_OPERATION is generated if glCopyColorSubTable is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetColorTable, glGetColorTableParameter

See Also
glColorSubTable, glColorTableParameter, glCopyColorTable, glCopyColorSubTable,

glGetColorTable

glCopyColorTable

Copy pixels into a color table

C Specification
void glCopyColorTable(GLenum target,

GLenum internalformat,
GLint x,
GLint y,
GLsizei width);

Parameters
target The color table target. Must be GL_COLOR_TABLE,

GL_POST_CONVOLUTION_COLOR_TABLE, or
GL_POST_COLOR_MATRIX_COLOR_TABLE.

glCopyColorTable 843

C

internalformat The internal storage format of the texture image. Must be one of the following
symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMI-
NANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

x The x coordinate of the lower-left corner of the pixel rectangle to be transferred to
the color table.

y The y coordinate of the lower-left corner of the pixel rectangle to be transferred to
the color table.

width The width of the pixel rectangle.

Description
glCopyColorTable loads a color table with pixels from the current GL_READ_BUFFER (rather

than from main memory, as is the case for glColorTable).
The screen-aligned pixel rectangle with lower-left corner at (x,\ y) having width width and

height 1 is loaded into the color table. If any pixels within this region are outside the window that is
associated with the GL context, the values obtained for those pixels are undefined.

The pixels in the rectangle are processed just as if glReadPixels were called, with internal-
format set to RGBA, but processing stops after the final conversion to RGBA.

The four scale parameters and the four bias parameters that are defined for the table are then used
to scale and bias the R, G, B, and A components of each pixel. The scale and bias parameters are set
by calling glColorTableParameter.

Next, the R, G, B, and A values are clamped to the range [0,1]. Each pixel is then converted to the
internal format specified by internalformat. This conversion simply maps the component values of
the pixel (R, G, B, and A) to the values included in the internal format (red, green, blue, alpha, lumi-
nance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting
pixels are stored in the color table. They form a one-dimensional table with indices in the range
[0,width – 1].

Notes
glCopyColorTable is available only if ARB_imaging is returned from calling glGetString with

an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated when target is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero.
GL_INVALID_VALUE is generated if internalformat is not one of the allowable values.

glCopyColorTable844

GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be supported by the
implementation.

GL_INVALID_OPERATION is generated if glCopyColorTable is executed between the execution
of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetColorTable, glGetColorTableParameter

See Also
glColorTable, glColorTableParameter, glReadPixels

glCopyConvolutionFilter1D

Copy pixels into a one-dimensional convolution filter

C Specification
void glCopyConvolutionFilter1D(GLenum target,

GLenum internalformat,
GLint x,
GLint y,
GLsizei width);

Parameters
target Must be GL_CONVOLUTION_1D.
internalformat The internal format of the convolution filter kernel. The allowable values are

GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8,
GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4,
GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2, GL_RGB,
GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA,
GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or
GL_RGBA16.

x, y The window space coordinates of the lower-left coordinate of the pixel array to
copy.

width The width of the pixel array to copy.

Description
glCopyConvolutionFilter1D defines a one-dimensional convolution filter kernel with pixels

from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glConvolutionFilter1D).

The screen-aligned pixel rectangle with lower-left corner at (x,\ y), width width and height 1 is
used to define the convolution filter. If any pixels within this region are outside the window that is
associated with the GL context, the values obtained for those pixels are undefined.

The pixels in the rectangle are processed exactly as if glReadPixels had been called with
format set to RGBA, but the process stops just before final conversion. The R, G, B, and A compo-
nents of each pixel are next scaled by the four 1D GL_CONVOLUTION_FILTER_SCALE parameters and
biased by the four 1D GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters
are set by glConvolutionParameter using the GL_CONVOLUTION_1D target and the names
GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves
are vectors of four values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

glCopyConvolutionFilter1D 845

C

Each pixel is then converted to the internal format specified by internalformat. This conver-
sion simply maps the component values of the pixel (R, G, B, and A) to the values included in the
internal format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

The red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in floating-point rather than integer format.

Pixel ordering is such that lower x screen coordinates correspond to lower i filter image coordinates.
Note that after a convolution is performed, the resulting color components are also scaled by

their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased by their corresponding
GL_POST_CONVOLUTION_c_BIAS parameters (where c takes on the values RED, GREEN, BLUE, and
ALPHA). These parameters are set by glPixelTransfer.

Notes
glCopyConvolutionFilter1D is present only if ARB_imaging is returned when glGetString

is called with an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_1D.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum

supported value. This value may be queried with glGetConvolutionParameter using target
GL_CONVOLUTION_1D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_OPERATION is generated if glCopyConvolutionFilter1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetConvolutionParameter, glGetConvolutionFilter

See Also
glConvolutionFilter1D, glConvolutionParameter, glPixelTransfer

glCopyConvolutionFilter2D

Copy pixels into a two-dimensional convolution filter

C Specification
void glCopyConvolutionFilter2D(GLenum target,

GLenum internalformat,
GLint x,
GLint y,
GLsizei width,
GLsizei height);

glCopyConvolutionFilter1D846

Parameters
target Must be GL_CONVOLUTION_2D.
internalformat The internal format of the convolution filter kernel. The allowable values are

GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

x, y The window space coordinates of the lower-left coordinate of the pixel array
to copy.

width The width of the pixel array to copy.
height The height of the pixel array to copy.

Description
glCopyConvolutionFilter2D defines a two-dimensional convolution filter kernel with pixels

from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glConvolutionFilter2D).

The screen-aligned pixel rectangle with lower-left corner at (x,\ y), width width and height
height is used to define the convolution filter. If any pixels within this region are outside the
window that is associated with the GL context, the values obtained for those pixels are undefined.

The pixels in the rectangle are processed exactly as if glReadPixels had been called with format
set to RGBA, but the process stops just before final conversion. The R, G, B, and A components of
each pixel are next scaled by the four 2D GL_CONVOLUTION_FILTER_SCALE parameters and biased by
the four 2D GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters are set by
glConvolutionParameter using the GL_CONVOLUTION_2D target and the names
GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves
are vectors of four values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This conver-
sion simply maps the component values of the pixel (R, G, B, and A) to the values included in the
internal format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

The red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in floating-point rather than integer format.

Pixel ordering is such that lower x screen coordinates correspond to lower i filter image coordi-
nates, and lower y screen coordinates correspond to lower j filter image coordinates.

Note that after a convolution is performed, the resulting color components are also scaled by
their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased by their corresponding
GL_POST_CONVOLUTION_c_BIAS parameters (where c takes on the values RED, GREEN, BLUE, and
ALPHA). These parameters are set by glPixelTransfer.

glCopyConvolutionFilter2D 847

C

Notes
glCopyConvolutionFilter2D is present only if ARB_imaging is returned when glGetString

is called with an argument of GL_EXTENSIONS.

Errors
GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_2D.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum

supported value. This value may be queried with glGetConvolutionParameter using target
GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_VALUE is generated if height is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using target
GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if glCopyConvolutionFilter2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetConvolutionParameter, glGetConvolutionFilter

See Also
glConvolutionFilter2D, glConvolutionParameter, glPixelTransfer

glCopyPixels

Copy pixels in the frame buffer

C Specification
void glCopyPixels(GLint x,

GLint y,
GLsizei width,
GLsizei height,
GLenum type);

Parameters
x, y Specify the window coordinates of the lower-left corner of the rectangular

region of pixels to be copied.
width, height Specify the dimensions of the rectangular region of pixels to be copied. Both

must be nonnegative.
type Specifies whether color values, depth values, or stencil values are to be copied.

Symbolic constants GL_COLOR, GL_DEPTH, and GL_STENCIL are accepted.

Description
glCopyPixels copies a screen-aligned rectangle of pixels from the specified frame buffer location

to a region relative to the current raster position. Its operation is well defined only if the entire pixel
source region is within the exposed portion of the window. Results of copies from outside the
window, or from regions of the window that are not exposed, are hardware dependent and unde-
fined.

x and y specify the window coordinates of the lower-left corner of the rectangular region to be
copied. width and height specify the dimensions of the rectangular region to be copied. Both width
and height must not be negative.

Several parameters control the processing of the pixel data while it is being copied. These parame-
ters are set with three commands: glPixelTransfer, glPixelMap, and glPixelZoom. This refer-
ence page describes the effects on glCopyPixels of most, but not all, of the parameters specified by
these three commands.

glCopyPixels848

glCopyPixels copies values from each pixel with the lower-left corner at (x + i,y + j) for
0 <= i < width and 0 <= j < height. This pixel is said to be the ith pixel in the jth row. Pixels are
copied in row order from the lowest to the highest row, left to right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the transfer for
each data type are as follows:

GL_COLOR
Indices or RGBA colors are read from the buffer currently specified as the read source buffer (see

glReadBuffer). If the GL is in color index mode, each index that is read from this buffer is
converted to a fixed-point format with an unspecified number of bits to the right of the binary point.
Each index is then shifted left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If
GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise unspeci-
fied bit locations in the result. If GL_MAP_COLOR is true, the index is replaced with the value that it
references in lookup table GL_PIXEL_MAP_I_TO_I. Whether the lookup replacement of the index is
done or not, the integer part of the index is then ANDed with 2b – 1, where b is the number of bits in
a color index buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that is read
are converted to an internal floating-point format with unspecified precision. The conversion maps
the largest representable component value to 1.0, and component value 0 to 0.0. The resulting float-
ing-point color values are then multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,
GREEN, BLUE, and ALPHA for the respective color components. The results are clamped to the range
[0,1]. If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. c is R, G, B, or A.

If the ARB_imaging extension is supported, the color values may be additionally processed by
color-table lookups, color-matrix transformations, and convolution filters.

The GL then converts the resulting indices or RGBA colors to fragments by attaching the current
raster position z coordinate and texture coordinates to each pixel, then assigning window coordinates
(xr + i,yr + j) , where (xr,yr) is the current raster position, and the pixel was the ith pixel in the jth row.
These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are
written to the frame buffer.

GL_DEPTH
Depth values are read from the depth buffer and converted directly to an internal floating-point

format with unspecified precision. The resulting floating-point depth value is then multiplied by
GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The GL then converts the resulting depth components to fragments by attaching the current
raster position color or color index and texture coordinates to each pixel, then assigning window
coordinates (xr + i,yr + j) , where (xr,yr) is the current raster position, and the pixel was the ith pixel in
the jth row. These pixel fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before
the fragments are written to the frame buffer.

GL_STENCIL
Stencil indices are read from the stencil buffer and converted to an internal fixed-point format

with an unspecified number of bits to the right of the binary point. Each fixed-point index is then
shifted left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is nega-
tive, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the
result. If GL_MAP_STENCIL is true, the index is replaced with the value that it references in lookup
table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is done or not, the
integer part of the index is then ANDed with 2b – 1, where b is the number of bits in the stencil
buffer. The resulting stencil indices are then written to the stencil buffer such that the index read
from the ith location of the jth row is written to location (xr + i,yr + j) , where (xr,yr) is the current
raster position. Only the pixel ownership test, the scissor test, and the stencil writemask affect these
write operations.

glCopyPixels 849

C

The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom is used to
change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr,yr) is the
current raster position, and a given pixel is in the ith location in the jth row of the source pixel
rectangle, then fragments are generated for pixels whose centers are in the rectangle with corners at

(xr + zoomx i,yr + zoomy j)
and

(xr + zoomx (i + 1) ,yr + zoomy (j + 1))
where zoomx is the value of GL_ZOOM_X and zoomy is the value of GL_ZOOM_Y.

Examples
To copy the color pixel in the lower-left corner of the window to the current raster position, use

glCopyPixels(0, 0, 1, 1, GL_COLOR);

Notes
Modes specified by glPixelStore have no effect on the operation of glCopyPixels.

Errors
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if either width or height is negative.
GL_INVALID_OPERATION is generated if type is GL_DEPTH and there is no depth buffer.
GL_INVALID_OPERATION is generated if type is GL_STENCIL and there is no stencil buffer.
GL_INVALID_OPERATION is generated if glCopyPixels is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID

See Also
glColorTable, glConvolutionFilter1D, glConvolutionFilter2D, glDepthFunc,

glDrawBuffer, glDrawPixels, glMatrixMode, glPixelMap, glPixelTransfer, glPixelZoom,
glRasterPos, glReadBuffer, glReadPixels, glSeparableFilter2D, glStencilFunc,
glWindowPos

glCopyTexImage1D

Copy pixels into a 1D texture image

C Specification
void glCopyTexImage1D(GLenum target,

GLint level,
GLenum internalformat,
GLint x,
GLint y,
GLsizei width,
GLint border);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the

nth mipmap reduction image.
internalformat Specifies the internal format of the texture. Must be one of the following

symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
GL_ALPHA16, GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY,

glCopyPixels850

GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMI-
NANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SLUMINANCE, GL_SLUMINANCE8,
GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8,
GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

x, y Specify the window coordinates of the left corner of the row of pixels to be
copied.

width Specifies the width of the texture image. Must be 0 or 2n + 2 (border) for some
integer n. The height of the texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

Description
glCopyTexImage1D defines a one-dimensional texture image with pixels from the current

GL_READ_BUFFER.
The screen-aligned pixel row with left corner at (x,y) and with a length of width + 2 (border)

defines the texture array at the mipmap level specified by level. internalformat specifies the
internal format of the texture array.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process
stops just before final conversion. At this point all pixel component values are clamped to the range
[0,1] and then converted to the texture’s internal format for storage in the texel array.

Pixel ordering is such that lower x screen coordinates correspond to lower texture coordinates.
If any of the pixels within the specified row of the current GL_READ_BUFFER are outside the

window associated with the current rendering context, then the values obtained for those pixels are
undefined.

glCopyTexImage1D defines a one-dimensional texture image with pixels from the current
GL_READ_BUFFER.

When internalformat is one of the sRGB types, the GL does not automatically convert the
source pixels to the sRGB color space. In this case, the glPixelMap function can be used to accom-
plish the conversion.

Notes
glCopyTexImage1D is available only if the GL version is 1.1 or greater.
Texturing has no effect in color index mode.
1, 2, 3, and 4 are not accepted values for internalformat.
An image with 0 width indicates a NULL texture.
When the ARB_imaging extension is supported, the RGBA components copied from the frame-

buffer may be processed by the imaging pipeline. See glTexImage1D for specific details.
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, and

GL_DEPTH_COMPONENT32 are available only if the GL version is 1.4 or greater.
Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-

tion exports the GL_ARB_texture_non_power_of_two extension.
The GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8, GL_SLUMINANCE,

GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, and GL_SLUMINANCE8_ALPHA8 internal formats are only
available if the GL version is 2.1 or greater. See glTexImage1D for specific details about sRGB conversion.

glCopyTexImage1D 851

C

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2 max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalformat is not an allowable value.
GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

cannot be represented as 2n + 2 (border) for some integer value of n.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if glCopyTexImage1D is executed between the execution

of glBegin and the corresponding execution of glEnd.
GL_INVALID_OPERATION is generated if internalformat is GL_DEPTH_COMPONENT,

GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32 and there is no
depth buffer.

Associated Gets
glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also
glCopyPixels, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,

glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D, glTexParameter

glCopyTexImage2D

Copy pixels into a 2D texture image

C Specification
void glCopyTexImage2D(GLenum target,

GLint level,
GLenum internalformat,
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLint border);

Parameters
target Specifies the target texture. Must be GL_TEXTURE_2D,

GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the
nth mipmap reduction image.

internalformat Specifies the internal format of the texture. Must be one of the following symbolic
constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY,
GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32,

glCopyTexImage1D852

GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, GL_RGBA16, GL_SLUMINANCE, GL_SLUMINANCE8,
GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8,
GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

x, y Specify the window coordinates of the lower-left corner of the rectangular region
of pixels to be copied.

width Specifies the width of the texture image. Must be 0 or 2n + 2 (border) for some
integer n.

height Specifies the height of the texture image. Must be 0 or 2m + 2 (border) for some
integer m.

border Specifies the width of the border. Must be either 0 or 1.

Description
glCopyTexImage2D defines a two-dimensional texture image, or cube-map texture image with

pixels from the current GL_READ_BUFFER.
The screen-aligned pixel rectangle with lower-left corner at (x, y) and with a width of

width + 2 (border) and a height of height + 2 (border) defines the texture array at the mipmap
level specified by level. internalformat specifies the internal format of the texture array.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the
process stops just before final conversion. At this point all pixel component values are clamped to the
range [0,1] and then converted to the texture’s internal format for storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t texture
coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the
window associated with the current rendering context, then the values obtained for those pixels are
undefined.

When internalformat is one of the sRGB types, the GL does not automatically convert the
source pixels to the sRGB color space. In this case, the glPixelMap function can be used to accom-
plish the conversion.

Notes
glCopyTexImage2D is available only if the GL version is 1.1 or greater.
Texturing has no effect in color index mode.
1, 2, 3, and 4 are not accepted values for internalformat.
An image with height or width of 0 indicates a NULL texture.
When the ARB_imaging extension is supported, the RGBA components read from the frame-

buffer may be processed by the imaging pipeline. See glTexImage1D for specific details.
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,

GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP are available only if the GL version is 1.3 or greater.

GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, and
GL_DEPTH_COMPONENT32 are available only if the GL version is 1.4 or greater.

The GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8, GL_SLUMINANCE,
GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, and GL_SLUMINANCE8_ALPHA8 internal formats are only
available if the GL version is 2.1 or greater. See glTexImage2D for specific details about sRGB conversion.

glCopyTexImage2D 853

C

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2 max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

or depth cannot be represented as 2k + 2 (border) for some integer k.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_VALUE is generated if internalformat is not an accepted format.
GL_INVALID_OPERATION is generated if glCopyTexImage2D is executed between the execution

of glBegin and the corresponding execution of glEnd.
GL_INVALID_OPERATION is generated if internalformat is GL_DEPTH_COMPONENT,

GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32 and there is no
depth buffer.

Associated Gets
glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D or GL_TEXTURE_CUBE_MAP

See Also
glCopyPixels, glCopyTexImage1D, glCopyTexSubImage1D, glCopyTexSubImage2D,

glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D, glTexParameter

glCopyTexSubImage1D

Copy a one-dimensional texture subimage

C Specification
void glCopyTexSubImage1D(GLenum target,

GLint level,
GLint xoffset,
GLint x,
GLint y,
GLsizei width);

Parameters
/target Specifies the target texture. Must be GL_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.
xoffset Specifies the texel offset within the texture array.
x, y Specify the window coordinates of the left corner of the row of pixels to be copied.
width Specifies the width of the texture subimage.

Description
glCopyTexSubImage1D replaces a portion of a one-dimensional texture image with pixels from

the current GL_READ_BUFFER (rather than from main memory, as is the case for glTexSubImage1D).
The screen-aligned pixel row with left corner at (x,\ y), and with length width replaces the

portion of the texture array with x indices xoffset through xoffset + width – 1, inclusive. The
destination in the texture array may not include any texels outside the texture array as it was origi-
nally specified.

glCopyTexSubImage1D854

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process
stops just before final conversion. At this point, all pixel component values are clamped to the range
[0,1] and then converted to the texture’s internal format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has no effect. If
any of the pixels within the specified row of the current GL_READ_BUFFER are outside the read
window associated with the current rendering context, then the values obtained for those pixels are
undefined.

No change is made to the internalformat, width, or border parameters of the specified
texture array or to texel values outside the specified subregion.

Notes
glCopyTexSubImage1D is available only if the GL version is 1.1 or greater.
Texturing has no effect in color index mode.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.
When the ARB_imaging extension is supported, the RGBA components copied from the frame-

buffer may be processed by the imaging pipeline. See glTexImage1D for specific details.

Errors
GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_1D.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage1D or glCopyTexImage1D operation.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level > log2 (max) , where max is the returned value of

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if xoffset <– b, or (xoffset + width) > (w – b) , where w is

the GL_TEXTURE_WIDTH and b is the GL_TEXTURE_BORDER of the texture image being modified. Note
that w includes twice the border width.

Associated Gets
glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage2D,

glCopyTexSubImage3D, glPixelStore, glPixelTransfer, glReadBuffer, glTexEnv, glTexGen,
glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

glCopyTexSubImage2D

Copy a two-dimensional texture subimage

C Specification
void glCopyTexSubImage2D(GLenum target,

GLint level,
GLint xoffset,
GLint yoffset,
GLint x,
GLint y,
GLsizei width,
GLsizei height);

glCopyTexSubImage2D 855

C

Parameters
/target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_

POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_
POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.
yoffset Specifies a texel offset in the y direction within the texture array.
x, y Specify the window coordinates of the lower-left corner of the rectangular region of

pixels to be copied.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.

Description
glCopyTexSubImage2D replaces a rectangular portion of a two-dimensional texture image or

cube-map texture image with pixels from the current GL_READ_BUFFER (rather than from main
memory, as is the case for glTexSubImage2D).

The screen-aligned pixel rectangle with lower-left corner at (x,y) and with width width and
height height replaces the portion of the texture array with x indices xoffset through xoffset +
width – 1, inclusive, and y indices yoffset through yoffset + height – 1, inclusive, at the
mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the
process stops just before final conversion. At this point, all pixel component values are clamped to
the range [0,1] and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array
as it was originally specified. It is not an error to specify a subtexture with zero width or height, but
such a specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the
read window associated with the current rendering context, then the values obtained for those pixels
are undefined.

No change is made to the internalformat, width, height, or border parameters of the speci-
fied texture array or to texel values outside the specified subregion.

Notes
glCopyTexSubImage2D is available only if the GL version is 1.1 or greater.
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,

GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP are available only if the GL version is 1.3 or greater.

Texturing has no effect in color index mode.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.
When the ARB_imaging extension is supported, the RGBA components read from the frame-

buffer may be processed by the imaging pipeline. See glTexImage1D for specific details.

Errors
GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_2D.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage2D or glCopyTexImage2D operation.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level > log2 (max) , where max is the returned value of

GL_MAX_TEXTURE_SIZE.

glCopyTexSubImage2D856

GL_INVALID_VALUE is generated if xoffset <–b, (xoffset + width) > (w – b) , yoffset <–b, or
(yoffset + height) > (h – b) , where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT,
and b is the GL_TEXTURE_BORDER of the texture image being modified. Note that w and h include
twice the border width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage2D is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

See Also
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,

glCopyTexSubImage3D, glPixelStore, glPixelTransfer, glReadBuffer, glTexEnv, glTexGen,
glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

glCopyTexSubImage3D

Copy a three-dimensional texture subimage

C Specification
void glCopyTexSubImage3D(GLenum target,

GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLint x,
GLint y,
GLsizei width,
GLsizei height);

Parameters
/target Specifies the target texture. Must be GL_TEXTURE_3D
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.
xoffset Specifies a texel offset in the x direction within the texture array.
yoffset Specifies a texel offset in the y direction within the texture array.
zoffset Specifies a texel offset in the z direction within the texture array.
x, y Specify the window coordinates of the lower-left corner of the rectangular region of

pixels to be copied.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.

Description
glCopyTexSubImage3D replaces a rectangular portion of a three-dimensional texture image with

pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glTexSubImage3D).

The screen-aligned pixel rectangle with lower-left corner at (x,\ y) and with width width and
height height replaces the portion of the texture array with x indices xoffset through
xoffset + width – 1, inclusive, and y indices yoffset through yoffset + height – 1, inclusive,
at z index zoffset and at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the
process stops just before final conversion. At this point, all pixel component values are clamped to
the range [0,1] and then converted to the texture’s internal format for storage in the texel array.

glCopyTexSubImage3D 857

C

The destination rectangle in the texture array may not include any texels outside the texture array
as it was originally specified. It is not an error to specify a subtexture with zero width or height, but
such a specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the
read window associated with the current rendering context, then the values obtained for those pixels
are undefined.

No change is made to the internalformat, width, height, depth, or border parameters of
the specified texture array or to texel values outside the specified subregion.

Notes
glCopyTexSubImage3D is available only if the GL version is 1.2 or greater.
Texturing has no effect in color index mode.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.
When the ARB_imaging extension is supported, the RGBA components copied from the frame-

buffer may be processed by the imaging pipeline, as if they were a two-dimensional texture. See
glTexImage2D for specific details.

Errors
GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_3D.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage3D operation.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level > log2 (max) , where max is the returned value of

GL_MAX_3D_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if xoffset <– b, (xoffset + width) > (w – b) , yoffset <– b,

(yoffset + height) > (h – b) , zoffset <–b, or zoffset > (d – b) , where w is the
GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH, and b is the
GL_TEXTURE_BORDER of the texture image being modified. Note that w, h, and d include twice the
border width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage3D is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTexImage
glIsEnabled with argument GL_TEXTURE_3D

See Also
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,

glCopyTexSubImage2D, glPixelStore, glPixelTransfer, glReadBuffer, glTexEnv, glTexGen,
glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

glCreateProgram

Create a program object

C Specification
GLuint glCreateProgram(void);

Description
glCreateProgram creates an empty program object and returns a nonzero value by which it can

be referenced. A program object is an object to which shader objects can be attached. This provides a
mechanism to specify the shader objects that will be linked to create a program. It also provides a
means for checking the compatibility of the shaders that will be used to create a program (for
instance, checking the compatibility between a vertex shader and a fragment shader). When no
longer needed as part of a program object, shader objects can be detached.

glCreateProgram858

One or more executables are created in a program object by successfully attaching shader objects
to it with glAttachShader, successfully compiling the shader objects with glCompileShader, and
successfully linking the program object with glLinkProgram. These executables are made part of
current state when glUseProgram is called. Program objects can be deleted by calling
glDeleteProgram. The memory associated with the program object will be deleted when it is no
longer part of current rendering state for any context.

Notes
glCreateProgram is available only if the GL version is 2.0 or greater.

Like display lists and texture objects, the name space for program objects may be shared across a
set of contexts, as long as the server sides of the contexts share the same address space. If the name
space is shared across contexts, any attached objects and the data associated with those attached
objects are shared as well.

Applications are responsible for providing the synchronization across API calls when objects are
accessed from different execution threads.

Errors
This function returns 0 if an error occurs creating the program object.
GL_INVALID_OPERATION is generated if glCreateProgram is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with a valid program object and the index of an active attribute variable
glGetActiveUniform with a valid program object and the index of an active uniform variable
glGetAttachedShaders with a valid program object
glGetAttribLocation with a valid program object and the name of an attribute variable
glGetProgram with a valid program object and the parameter to be queried
glGetProgramInfoLog with a valid program object
glGetUniform with a valid program object and the location of a uniform variable
glGetUniformLocation with a valid program object and the name of a uniform variable
glIsProgram

See Also
glAttachShader, glBindAttribLocation, glCreateShader, glDeleteProgram,

glDetachShader, glLinkProgram, glUniform, glUseProgram, glValidateProgram

glCreateShader

Create a shader object

C Specification
GLuint glCreateShader(GLenum shaderType);

Parameters
shaderType Specifies the type of shader to be created. Must be either GL_VERTEX_SHADER or

GL_FRAGMENT_SHADER.
Description
glCreateShader creates an empty shader object and returns a nonzero value by which it can be

referenced. A shader object is used to maintain the source code strings that define a shader.
shaderType indicates the type of shader to be created. Two types of shaders are supported. A shader
of type GL_VERTEX_SHADER is a shader that is intended to run on the programmable vertex processor
and replace the fixed functionality vertex processing in OpenGL. A shader of type
GL_FRAGMENT_SHADER is a shader that is intended to run on the programmable fragment processor
and replace the fixed functionality fragment processing in OpenGL.

When created, a shader object’s GL_SHADER_TYPE parameter is set to either GL_VERTEX_SHADER
or GL_FRAGMENT_SHADER, depending on the value of shaderType.

glCreateShader 859

C

Notes
glCreateShader is available only if the GL version is 2.0 or greater.
Like display lists and texture objects, the name space for shader objects may be shared across a set

of contexts, as long as the server sides of the contexts share the same address space. If the name space
is shared across contexts, any attached objects and the data associated with those attached objects are
shared as well.

Applications are responsible for providing the synchronization across API calls when objects are
accessed from different execution threads.

Errors
This function returns 0 if an error occurs creating the shader object.
GL_INVALID_ENUM is generated if shaderType is not an accepted value.
GL_INVALID_OPERATION is generated if glCreateShader is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetShader with a valid shader object and the parameter to be queried
glGetShaderInfoLog with a valid shader object
glGetShaderSource with a valid shader object
glIsShader

See Also
glAttachShader, glCompileShader, glDeleteShader, glDetachShader, glShaderSource

glCullFace

Specify whether front- or back-facing facets can be culled

C Specification
void glCullFace(GLenum mode);

Parameters
mode Specifies whether front- or back-facing facets are candidates for culling. Symbolic

constants GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK are accepted. The initial value
is GL_BACK.

Description
glCullFace specifies whether front- or back-facing facets are culled (as specified by mode) when

facet culling is enabled. Facet culling is initially disabled. To enable and disable facet culling, call the
glEnable and glDisable commands with the argument GL_CULL_FACE. Facets include triangles,
quadrilaterals, polygons, and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front-facing and
back-facing. See glFrontFace.

Notes
If mode is GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as points and

lines are drawn.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if glCullFace is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glIsEnabled with argument GL_CULL_FACE
glGet with argument GL_CULL_FACE_MODE

See Also
glEnable, glFrontFace

glCullFace860

glDeleteBuffers

Delete named buffer objects

C Specification
void glDeleteBuffers(GLsizei n,

const GLuint * buffers);

Parameters
n Specifies the number of buffer objects to be deleted.
buffers Specifies an array of buffer objects to be deleted.

Description
glDeleteBuffers deletes n buffer objects named by the elements of the array buffers. After a

buffer object is deleted, it has no contents, and its name is free for reuse (for example by
glGenBuffers). If a buffer object that is currently bound is deleted, the binding reverts to 0 (the
absence of any buffer object, which reverts to client memory usage).

glDeleteBuffers silently ignores 0’s and names that do not correspond to existing buffer objects.

Notes
glDeleteBuffers is available only if the GL version is 1.5 or greater.

Errors
GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glDeleteBuffers is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glIsBuffer

See Also
glBindBuffer, glGenBuffers, glGet

glDeleteLists

Delete a contiguous group of display lists

C Specification
void glDeleteLists(GLuint list,

GLsizei range);

Parameters
list Specifies the integer name of the first display list to delete.
range Specifies the number of display lists to delete.

Description
glDeleteLists causes a contiguous group of display lists to be deleted. list is the name of the

first display list to be deleted, and range is the number of display lists to delete. All display lists d
with list <= d <= list + range – 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available
for reuse at a later time. Names within the range that do not have an associated display list are
ignored. If range is 0, nothing happens.

Errors
GL_INVALID_VALUE is generated if range is negative.
GL_INVALID_OPERATION is generated if glDeleteLists is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also
glCallList, glCallLists, glGenLists, glIsList, glNewList

glDeleteLists 861

C

glDeleteProgram

Delete a program object

C Specification
void glDeleteProgram(GLuint program);

Parameters
program Specifies the program object to be deleted.

Description
glDeleteProgram frees the memory and invalidates the name associated with the program

object specified by program. This command effectively undoes the effects of a call to
glCreateProgram.

If a program object is in use as part of current rendering state, it will be flagged for deletion, but it
will not be deleted until it is no longer part of current state for any rendering context. If a program
object to be deleted has shader objects attached to it, those shader objects will be automatically
detached but not deleted unless they have already been flagged for deletion by a previous call to
glDeleteShader. A value of 0 for program will be silently ignored.

To determine whether a program object has been flagged for deletion, call glGetProgram with
arguments program and GL_DELETE_STATUS.

Notes
glDeleteProgram is available only if the GL version is 2.0 or greater.

Errors
GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if glDeleteProgram is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_CURRENT_PROGRAM
glGetProgram with arguments program and GL_DELETE_STATUS
glIsProgram

See Also
glCreateShader, glDetachShader, glUseProgram

glDeleteQueries

Delete named query objects

C Specification
void glDeleteQueries(GLsizei n,

const GLuint * ids);

Parameters
n Specifies the number of query objects to be deleted.
ids Specifies an array of query objects to be deleted.

Description
glDeleteQueries deletes n query objects named by the elements of the array ids. After a query

object is deleted, it has no contents, and its name is free for reuse (for example by glGenQueries).
glDeleteQueries silently ignores 0’s and names that do not correspond to existing query

objects.

Notes
glDeleteQueries is available only if the GL version is 1.5 or greater.

glDeleteProgram862

Errors
GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glDeleteQueries is executed between the execution of

glBeginQuery and the corresponding execution of glEndQuery.
GL_INVALID_OPERATION is generated if glDeleteQueries is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glIsQuery

See Also
glBeginQuery, glEndQuery, glGenQueries, glGetQueryiv, glGetQueryObject

glDeleteShader

Delete a shader object

C Specification
void glDeleteShader(GLuint shader);

Parameters
shader Specifies the shader object to be deleted.

Description
glDeleteShader frees the memory and invalidates the name associated with the shader object

specified by shader. This command effectively undoes the effects of a call to glCreateShader.
If a shader object to be deleted is attached to a program object, it will be flagged for deletion, but

it will not be deleted until it is no longer attached to any program object, for any rendering context
(i.e., it must be detached from wherever it was attached before it will be deleted). A value of 0 for
shader will be silently ignored.

To determine whether an object has been flagged for deletion, call glGetShader with arguments
shader and GL_DELETE_STATUS.

Notes
glDeleteShader is available only if the GL version is 2.0 or greater.

Errors
GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if glDeleteShader is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetAttachedShaders with the program object to be queried
glGetShader with arguments shader and GL_DELETE_STATUS
glIsShader

See Also
glCreateProgram, glCreateShader, glDetachShader, glUseProgram

glDeleteTextures

Delete named textures

C Specification
void glDeleteTextures(GLsizei n,

const GLuint * textures);

glDeleteTextures 863

C

Parameters
n Specifies the number of textures to be deleted.
textures Specifies an array of textures to be deleted.

Description
glDeleteTextures deletes n textures named by the elements of the array textures. After a

texture is deleted, it has no contents or dimensionality, and its name is free for reuse (for example by
glGenTextures). If a texture that is currently bound is deleted, the binding reverts to 0 (the default
texture).

glDeleteTextures silently ignores 0’s and names that do not correspond to existing textures.

Notes
glDeleteTextures is available only if the GL version is 1.1 or greater.

Errors
GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glDeleteTextures is executed between the execution

of glBegin and the corresponding execution of glEnd.

Associated Gets
glIsTexture

See Also
glAreTexturesResident, glBindTexture, glCopyTexImage1D, glCopyTexImage2D,

glGenTextures, glGet, glGetTexParameter, glPrioritizeTextures, glTexImage1D,
glTexImage2D, glTexParameter

glDepthFunc

Specify the value used for depth buffer comparisons

C Specification
void glDepthFunc(GLenum func);

Parameters
func Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS,

GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are
accepted. The initial value is GL_LESS.

Description
glDepthFunc specifies the function used to compare each incoming pixel depth value with the

depth value present in the depth buffer. The comparison is performed only if depth testing is enabled.
(See glEnable and glDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison functions are
as follows:

GL_NEVER
Never passes.
GL_LESS
Passes if the incoming depth value is less than the stored depth value.
GL_EQUAL
Passes if the incoming depth value is equal to the stored depth value.
GL_LEQUAL
Passes if the incoming depth value is less than or equal to the stored depth value.
GL_GREATER
Passes if the incoming depth value is greater than the stored depth value.
GL_NOTEQUAL
Passes if the incoming depth value is not equal to the stored depth value.

glDepthFunc864

GL_GEQUAL
Passes if the incoming depth value is greater than or equal to the stored depth value.
GL_ALWAYS
Always passes.
The initial value of func is GL_LESS. Initially, depth testing is disabled.

Notes
Even if the depth buffer exists and the depth mask is nonzero, the depth buffer is not updated if

the depth test is disabled.

Errors
GL_INVALID_ENUM is generated if func is not an accepted value.
GL_INVALID_OPERATION is generated if glDepthFunc is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_DEPTH_FUNC
glIsEnabled with argument GL_DEPTH_TEST

See Also
glDepthRange, glEnable, glPolygonOffset

glDepthMask

Enable or disable writing into the depth buffer

C Specification
void glDepthMask(GLboolean flag);

Parameters
flag Specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE, depth

buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is
enabled.

Description
glDepthMask specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE,

depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

Errors
GL_INVALID_OPERATION is generated if glDepthMask is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_DEPTH_WRITEMASK

See Also
glColorMask, glDepthFunc, glDepthRange, glIndexMask, glStencilMask

glDepthRange

Specify mapping of depth values from normalized device coordinates to window coordinates

C Specification
void glDepthRange(GLclampd nearVal,

GLclampd farVal);

Parameters
nearVal Specifies the mapping of the near clipping plane to window coordinates. The initial

value is 0.
farVal Specifies the mapping of the far clipping plane to window coordinates. The initial value

is 1.

glDepthRange 865

C

Description
After clipping and division by w, depth coordinates range from -1 to 1, corresponding to the near

and far clipping planes. glDepthRange specifies a linear mapping of the normalized depth coordi-
nates in this range to window depth coordinates. Regardless of the actual depth buffer implementa-
tion, window coordinate depth values are treated as though they range from 0 through 1 (like color
components). Thus, the values accepted by glDepthRange are both clamped to this range before
they are accepted.

The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this mapping, the
depth buffer range is fully utilized.

Notes
It is not necessary that nearVal be less than farVal. Reverse mappings such as nearVal = 1,

and farVal = 0 are acceptable.

Errors
GL_INVALID_OPERATION is generated if glDepthRange is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_DEPTH_RANGE

See Also
glDepthFunc, glPolygonOffset, glViewport

glDetachShader

Detach a shader object from a program object to which it is attached

C Specification
void glDetachShader(GLuint program,

GLuint shader);

Parameters
program Specifies the program object from which to detach the shader object.
shader Specifies the shader object to be detached.

Description
glDetachShader detaches the shader object specified by shader from the program object speci-

fied by program. This command can be used to undo the effect of the command glAttachShader.
If shader has already been flagged for deletion by a call to glDeleteShader and it is not

attached to any other program object, it will be deleted after it has been detached.

Notes
glDetachShader is available only if the GL version is 2.0 or greater.

Errors
GL_INVALID_VALUE is generated if either program or shader is a value that was not generated

by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_OPERATION is generated if shader is not attached to program.
GL_INVALID_OPERATION is generated if glDetachShader is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGetAttachedShaders with the handle of a valid program object
glGetShader with arguments shader and GL_DELETE_STATUS

glDetachShader866

glIsProgram
glIsShader

See Also
glAttachShader

glDrawArrays

Render primitives from array data

C Specification
void glDrawArrays(GLenum mode,

GLint first,
GLsizei count);

Parameters
mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS,

GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are
accepted.

first Specifies the starting index in the enabled arrays.
count Specifies the number of indices to be rendered.

Description
glDrawArrays specifies multiple geometric primitives with very few subroutine calls. Instead of

calling a GL procedure to pass each individual vertex, normal, texture coordinate, edge flag, or color,
you can prespecify separate arrays of vertices, normals, and colors and use them to construct a
sequence of primitives with a single call to glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled array to
construct a sequence of geometric primitives, beginning with element first. mode specifies what
kind of primitives are constructed and how the array elements construct those primitives. If
GL_VERTEX_ARRAY is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawArrays have an unspecified value after
glDrawArrays returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is
undefined after glDrawArrays executes. Attributes that aren’t modified remain well defined.

Notes
glDrawArrays is available only if the GL version is 1.1 or greater.
glDrawArrays is included in display lists. If glDrawArrays is entered into a display list, the

necessary array data (determined by the array pointers and enables) is also entered into the display
list. Because the array pointers and enables are client-side state, their values affect display lists when
the lists are created, not when the lists are executed.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to an enabled

array and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if glDrawArrays is executed between the execution of

glBegin and the corresponding glEnd.

See Also
glArrayElement, glColorPointer, glDrawElements, glDrawRangeElements,

glEdgeFlagPointer, glFogCoordPointer, glGetPointerv, glIndexPointer,
glInterleavedArrays, glNormalPointer, glSecondaryColorPointer, glTexCoordPointer,
glVertexPointer

glDrawArrays 867

C

glDrawBuffer

Specify which color buffers are to be drawn into

C Specification
void glDrawBuffer(GLenum mode);

Parameters
mode Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE,

GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT,
GL_BACK, GL_LEFT, GL_RIGHT, GL_FRONT_AND_BACK, and GL_AUXi, where i is between 0
and the value of GL_AUX_BUFFERS minus 1, are accepted. (GL_AUX_BUFFERS is not the
upper limit; use glGet to query the number of available aux buffers.) The initial value is
GL_FRONT for single-buffered contexts, and GL_BACK for double-buffered contexts.

Description
When colors are written to the frame buffer, they are written into the color buffers specified by

glDrawBuffer. The specifications are as follows:
GL_NONE
No color buffers are written.
GL_FRONT_LEFT
Only the front left color buffer is written.
GL_FRONT_RIGHT
Only the front right color buffer is written.
GL_BACK_LEFT
Only the back left color buffer is written.
GL_BACK_RIGHT
Only the back right color buffer is written.
GL_FRONT
Only the front left and front right color buffers are written. If there is no front right color buffer,

only the front left color buffer is written.
GL_BACK
Only the back left and back right color buffers are written. If there is no back right color buffer,

only the back left color buffer is written.
GL_LEFT
Only the front left and back left color buffers are written. If there is no back left color buffer, only

the front left color buffer is written.
GL_RIGHT
Only the front right and back right color buffers are written. If there is no back right color buffer,

only the front right color buffer is written.
GL_FRONT_AND_BACK
All the front and back color buffers (front left, front right, back left, back right) are written. If

there are no back color buffers, only the front left and front right color buffers are written. If there are
no right color buffers, only the front left and back left color buffers are written. If there are no right
or back color buffers, only the front left color buffer is written.

GL_AUXi
Only auxiliary color buffer i is written.
If more than one color buffer is selected for drawing, then blending or logical operations are

computed and applied independently for each color buffer and can produce different results in each
buffer.

Monoscopic contexts include only left buffers, and stereoscopic contexts include both left and
right buffers. Likewise, single-buffered contexts include only front buffers, and double-buffered
contexts include both front and back buffers. The context is selected at GL initialization.

glDrawBuffer868

Notes
It is always the case that GL_AUXi = GL_AUX0 + i.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if none of the buffers indicated by mode exists.
GL_INVALID_OPERATION is generated if glDrawBuffer is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_DRAW_BUFFER
glGet with argument GL_AUX_BUFFERS

See Also
glBlendFunc, glColorMask, glIndexMask, glLogicOp, glReadBuffer

glDrawBuffers

Specify a list of color buffers to be drawn into

C Specification
void glDrawBuffers(GLsizei n,

const GLenum * bufs);

Parameters
n Specifies the number of buffers in bufs.
bufs Points to an array of symbolic constants specifying the buffers into which fragment colors

or data values will be written.

Description
glDrawBuffers defines an array of buffers into which fragment color values or fragment data

will be written. If no fragment shader is active, rendering operations will generate only one fragment
color per fragment and it will be written into each of the buffers specified by bufs. If a fragment
shader is active and it writes a value to the output variable gl_FragColor, then that value will be
written into each of the buffers specified by bufs. If a fragment shader is active and it writes a value
to one or more elements of the output array variable gl_FragData[], then the value of
gl_FragData[0] will be written into the first buffer specified by bufs, the value of
gl_FragData[1] will be written into the second buffer specified by bufs, and so on up to
gl_FragData[n-1]. The draw buffer used for gl_FragData[n] and beyond is implicitly set to be
GL_NONE.

The symbolic constants contained in bufs may be any of the following:
GL_NONE
The fragment color/data value is not written into any color buffer.
GL_FRONT_LEFT
The fragment color/data value is written into the front left color buffer.
GL_FRONT_RIGHT
The fragment color/data value is written into the front right color buffer.
GL_BACK_LEFT
The fragment color/data value is written into the back left color buffer.
GL_BACK_RIGHT
The fragment color/data value is written into the back right color buffer.
GL_AUXi
The fragment color/data value is written into auxiliary buffer i.
Except for GL_NONE, the preceding symbolic constants may not appear more than once in bufs.

The maximum number of draw buffers supported is implementation dependent and can be queried
by calling glGet with the argument GL_MAX_DRAW_BUFFERS. The number of auxiliary buffers can be
queried by calling glGet with the argument GL_AUX_BUFFERS.

glDrawBuffers 869

C

Notes
glDrawBuffers is available only if the GL version is 2.0 or greater.
It is always the case that GL_AUXi = GL_AUX0 + i.
The symbolic constants GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_FRONT_AND_BACK are

not allowed in the bufs array since they may refer to multiple buffers.
If a fragment shader writes to neither gl_FragColor nor gl_FragData, the values of the frag-

ment colors following shader execution are undefined. For each fragment generated in this situation,
a different value may be written into each of the buffers specified by bufs.

Errors
GL_INVALID_ENUM is generated if one of the values in bufs is not an accepted value.
GL_INVALID_ENUM is generated if n is less than 0.
GL_INVALID_OPERATION is generated if a symbolic constant other than GL_NONE appears more

than once in bufs.
GL_INVALID_OPERATION is generated if any of the entries in bufs (other than GL_NONE) indi-

cates a color buffer that does not exist in the current GL context.
GL_INVALID_VALUE is generated if n is greater than GL_MAX_DRAW_BUFFERS.
GL_INVALID_OPERATION is generated if glDrawBuffers is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_MAX_DRAW_BUFFERS
glGet with argument GL_DRAW_BUFFERSi where i indicates the number of the draw buffer

whose value is to be queried

See Also
glBlendFunc, glColorMask, glDrawBuffers, glIndexMask, glLogicOp, glReadBuffer

glDrawElements

Render primitives from array data

C Specification
void glDrawElements(GLenum mode,

GLsizei count,
GLenum type,
const GLvoid * indices);

Parameters
mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS,

GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and
GL_POLYGON are accepted.

count Specifies the number of elements to be rendered.
type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.
indices Specifies a pointer to the location where the indices are stored.

Description
glDrawElements specifies multiple geometric primitives with very few subroutine calls. Instead

of calling a GL function to pass each individual vertex, normal, texture coordinate, edge flag, or color,
you can prespecify separate arrays of vertices, normals, and so on, and use them to construct a
sequence of primitives with a single call to glDrawElements.

When glDrawElements is called, it uses count sequential elements from an enabled array, start-
ing at indices to construct a sequence of geometric primitives. mode specifies what kind of primi-
tives are constructed and how the array elements construct these primitives. If more than one array is
enabled, each is used. If GL_VERTEX_ARRAY is not enabled, no geometric primitives are constructed.

glDrawElements870

Vertex attributes that are modified by glDrawElements have an unspecified value after
glDrawElements returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color
is undefined after glDrawElements executes. Attributes that aren’t modified maintain their previous
values.

Notes
glDrawElements is available only if the GL version is 1.1 or greater.
glDrawElements is included in display lists. If glDrawElements is entered into a display list,

the necessary array data (determined by the array pointers and enables) is also entered into the
display list. Because the array pointers and enables are client-side state, their values affect display lists
when the lists are created, not when the lists are executed.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if glDrawElements is executed between the execution of

glBegin and the corresponding glEnd.

See Also
glArrayElement, glColorPointer, glDrawArrays, glDrawRangeElements,

glEdgeFlagPointer, glFogCoordPointer, glGetPointerv, glIndexPointer,
glInterleavedArrays, glNormalPointer, glSecondaryColorPointer, glTexCoordPointer,
glVertexPointer

glDrawPixels

Write a block of pixels to the frame buffer

C Specification
void glDrawPixels(GLsizei width,

GLsizei height,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters
width, height Specify the dimensions of the pixel rectangle to be written into the frame buffer.
format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX,

GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RGB, GL_BGR, GL_RGBA,
GL_BGRA, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for data. Symbolic constants GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

data Specifies a pointer to the pixel data.

glDrawPixels 871

C

Description
glDrawPixels reads pixel data from memory and writes it into the frame buffer relative to the

current raster position, provided that the raster position is valid. Use glRasterPos or glWindowPos
to set the current raster position; use glGet with argument GL_CURRENT_RASTER_POSITION_VALID
to determine if the specified raster position is valid, and glGet with argument
GL_CURRENT_RASTER_POSITION to query the raster position.

Several parameters define the encoding of pixel data in memory and control the processing of the
pixel data before it is placed in the frame buffer. These parameters are set with four commands:
glPixelStore, glPixelTransfer, glPixelMap, and glPixelZoom. This reference page describes
the effects on glDrawPixels of many, but not all, of the parameters specified by these four
commands.

Data is read from data as a sequence of signed or unsigned bytes, signed or unsigned shorts,
signed or unsigned integers, or single-precision floating-point values, depending on type. When
type is one of GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, or GL_FLOAT, each of these bytes, shorts, integers, or floating-point
values is interpreted as one color or depth component, or one index, depending on format. When
type is one of GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_INT_8_8_8_8,
or GL_UNSIGNED_INT_10_10_10_2, each unsigned value is interpreted as containing all the compo-
nents for a single pixel, with the color components arranged according to format. When type is
one of GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8_REV, or GL_UNSIGNED_INT_2_10_10_10_REV, each unsigned value is
interpreted as containing all color components, specified by format, for a single pixel in a reversed
order. Indices are always treated individually. Color components are treated as groups of one, two,
three, or four values, again based on format. Both individual indices and groups of components are
referred to as pixels. If type is GL_BITMAP, the data must be unsigned bytes, and format must be
either GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as eight 1-bit pixels,
with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

width × height pixels are read from memory, starting at location data. By default, these pixels
are taken from adjacent memory locations, except that after all width pixels are read, the read
pointer is advanced to the next four-byte boundary. The four-byte row alignment is specified by
glPixelStore with argument GL_UNPACK_ALIGNMENT, and it can be set to one, two, four, or eight
bytes. Other pixel store parameters specify different read pointer advancements, both before the first
pixel is read and after all width pixels are read. See the glPixelStore reference page for details on
these options.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a block of pixels is specified, data is treated as a byte offset into the buffer
object’s data store.

The width × height pixels that are read from memory are each operated on in the same way,
based on the values of several parameters specified by glPixelTransfer and glPixelMap. The
details of these operations, as well as the target buffer into which the pixels are drawn, are specific to
the format of the pixels, as specified by format. format can assume one of 13 symbolic values:

GL_COLOR_INDEX
Each pixel is a single value, a color index. It is converted to fixed-point format, with an unspeci-

fied number of bits to the right of the binary point, regardless of the memory data type. Floating-
point values convert to true fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0. Bitmap data convert to either 0 or 1.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits
fill otherwise unspecified bit locations in the result.

glDrawPixels872

If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel with the help of the
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode, and if GL_MAP_COLOR is true, the
index is replaced with the value that it references in lookup table GL_PIXEL_MAP_I_TO_I. Whether
the lookup replacement of the index is done or not, the integer part of the index is then ANDed with
2b – 1, where b is the number of bits in a color index buffer.

The GL then converts the resulting indices or RGBA colors to fragments by attaching the current
raster position z coordinate and texture coordinates to each pixel, then assigning x and y window
coordinates to the nth fragment such that

xn = xr + n % width

where (xr,yr) is the current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the frag-
ment operations are applied before the fragments are written to the frame buffer.

GL_STENCIL_INDEX
Each pixel is a single value, a stencil index. It is converted to fixed-point format, with an unspeci-

fied number of bits to the right of the binary point, regardless of the memory data type. Floating-
point values convert to true fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0. Bitmap data convert to either 0 or 1.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits, and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits
fill otherwise unspecified bit locations in the result. If GL_MAP_STENCIL is true, the index is replaced
with the value that it references in lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup
replacement of the index is done or not, the integer part of the index is then ANDed with 2b – 1,
where b is the number of bits in the stencil buffer. The resulting stencil indices are then written to the
stencil buffer such that the nth index is written to location

xn = xr + n % width

where (xr,yr) is the current raster position. Only the pixel ownership test, the scissor test, and the
stencil writemask affect these write operations.

GL_DEPTH_COMPONENT
Each pixel is a single-depth component. Floating-point data is converted directly to an internal

floating-point format with unspecified precision. Signed integer data is mapped linearly to the inter-
nal floating-point format such that the most positive representable integer value maps to 1.0, and the
most negative representable value maps to -1.0. Unsigned integer data is mapped similarly: the largest
integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point depth value is then multi-
plied by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1] .

The GL then converts the resulting depth components to fragments by attaching the current
raster position color or color index and texture coordinates to each pixel, then assigning x and y
window coordinates to the nth fragment such that

xn = xr + n % width

where (xr,yr) is the current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the frag-
ment operations are applied before the fragments are written to the frame buffer.

n= +
width

yn yr

n= +
width

yn yr

n= +
width

yn yr

glDrawPixels 873

C

GL_RGBA
GL_BGRA
Each pixel is a four-component group: For GL_RGBA, the red component is first, followed by

green, followed by blue, followed by alpha; for GL_BGRA the order is blue, green, red and then alpha.
Floating-point values are converted directly to an internal floating-point format with unspecified
precision. Signed integer values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most negative representable value
maps to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Unsigned integer data
is mapped similarly: The largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-
point color values are then multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,
GREEN, BLUE, and ALPHA for the respective color components. The results are clamped to the
range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. c is R, G, B, or A
respectively.

The GL then converts the resulting RGBA colors to fragments by attaching the current raster posi-
tion z coordinate and texture coordinates to each pixel, then assigning x and y window coordinates
to the nth fragment such that

xn = xr + n % width

where (xr,yr) is the current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the frag-
ment operations are applied before the fragments are written to the frame buffer.

GL_RED
Each pixel is a single red component. This component is converted to the internal floating-point

format in the same way the red component of an RGBA pixel is. It is then converted to an RGBA
pixel with green and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it
had been read as an RGBA pixel.

GL_GREEN
Each pixel is a single green component. This component is converted to the internal floating-

point format in the same way the green component of an RGBA pixel is. It is then converted to an
RGBA pixel with red and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as
if it had been read as an RGBA pixel.

GL_BLUE
Each pixel is a single blue component. This component is converted to the internal floating-point

format in the same way the blue component of an RGBA pixel is. It is then converted to an RGBA
pixel with red and green set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it
had been read as an RGBA pixel.

GL_ALPHA
Each pixel is a single alpha component. This component is converted to the internal floating-

point format in the same way the alpha component of an RGBA pixel is. It is then converted to an
RGBA pixel with red, green, and blue set to 0. After this conversion, the pixel is treated as if it had
been read as an RGBA pixel.

GL_RGB
GL_BGR
Each pixel is a three-component group: red first, followed by green, followed by blue; for GL_BGR,

the first component is blue, followed by green and then red. Each component is converted to the
internal floating-point format in the same way the red, green, and blue components of an RGBA pixel
are. The color triple is converted to an RGBA pixel with alpha set to 1. After this conversion, the pixel
is treated as if it had been read as an RGBA pixel.

n= +
width

yn yr

glDrawPixels874

GL_LUMINANCE
Each pixel is a single luminance component. This component is converted to the internal float-

ing-point format in the same way the red component of an RGBA pixel is. It is then converted to an
RGBA pixel with red, green, and blue set to the converted luminance value, and alpha set to 1. After
this conversion, the pixel is treated as if it had been read as an RGBA pixel.

GL_LUMINANCE_ALPHA
Each pixel is a two-component group: luminance first, followed by alpha. The two components

are converted to the internal floating-point format in the same way the red component of an RGBA
pixel is. They are then converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this conversion, the pixel is
treated as if it had been read as an RGBA pixel. The following table summarizes the meaning of the
valid constants for the type parameter:

Type Corresponding Type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_BYTE signed 8-bit integer

GL_BITMAP single bits in unsigned 8-bit integers

GL_UNSIGNED_SHORT unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT unsigned 32-bit integer

GL_INT 32-bit integer

GL_FLOAT single-precision floating-point

GL_UNSIGNED_BYTE_3_3_2 unsigned 8-bit integer

GL_UNSIGNED_BYTE_2_3_3_REV unsigned 8-bit integer with reversed component ordering

GL_UNSIGNED_SHORT_5_6_5 unsigned 16-bit integer

GL_UNSIGNED_SHORT_5_6_5_REV unsigned 16-bit integer with reversed component ordering

GL_UNSIGNED_SHORT_4_4_4_4 unsigned 16-bit integer

GL_UNSIGNED_SHORT_4_4_4_4_REV unsigned 16-bit integer with reversed component ordering

GL_UNSIGNED_SHORT_5_5_5_1 unsigned 16-bit integer

GL_UNSIGNED_SHORT_1_5_5_5_REV unsigned 16-bit integer with reversed component ordering

GL_UNSIGNED_INT_8_8_8_8 unsigned 32-bit integer

GL_UNSIGNED_INT_8_8_8_8_REV unsigned 32-bit integer with reversed component ordering

GL_UNSIGNED_INT_10_10_10_2 unsigned 32-bit integer

GL_UNSIGNED_INT_2_10_10_10_REV unsigned 32-bit integer with reversed component ordering

The rasterization described so far assumes pixel zoom factors of 1. If glPixelZoom is used to
change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr,yr) is the
current raster position, and a given pixel is in the nth column and mth row of the pixel rectangle,
then fragments are generated for pixels whose centers are in the rectangle with corners at

(xr + zoomx n,yr + zoomy m)
(xr + zoomx (n + 1) ,yr + zoomy (m + 1))
where zoomx is the value of GL_ZOOM_X and zoomy is the value of GL_ZOOM_Y.

Notes
GL_BGR and GL_BGRA are only valid for format if the GL version is 1.2 or greater.
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

glDrawPixels 875

C

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are only valid for type if the GL version is 1.2 or greater.

Errors
GL_INVALID_ENUM is generated if format or type is not one of the accepted values.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not either GL_COLOR_INDEX

or GL_STENCIL_INDEX.
GL_INVALID_VALUE is generated if either width or height is negative.
GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil

buffer.
GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,

GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL is in
color index mode.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glDrawPixels is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also
glAlphaFunc, glBlendFunc, glCopyPixels, glDepthFunc, glLogicOp, glPixelMap,

glPixelStore, glPixelTransfer, glPixelZoom, glRasterPos, glReadPixels, glScissor,
glStencilFunc, glWindowPos

glDrawRangeElements

Render primitives from array data

C Specification
void glDrawRangeElements(GLenum mode,

GLuint start,
GLuint end,
GLsizei count,
GLenum type,
const GLvoid * indices);

glDrawPixels876

Parameters
mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS,

GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

start Specifies the minimum array index contained in indices.
end Specifies the maximum array index contained in indices.
count Specifies the number of elements to be rendered.
type Specifies the type of the values in count. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.
indices Specifies a pointer to the location where the indices are stored.

Description
glDrawRangeElements is a restricted form of glDrawElements. mode, start, end, and count

match the corresponding arguments to glDrawElements, with the additional constraint that all
values in the arrays count must lie between start and end, inclusive.

Implementations denote recommended maximum amounts of vertex and index data, which may
be queried by calling glGet with argument GL_MAX_ELEMENTS_VERTICES and
GL_MAX_ELEMENTS_INDICES. If end – start + 1 is greater than the value of
GL_MAX_ELEMENTS_VERTICES, or if count is greater than the value of GL_MAX_ELEMENTS_INDICES,
then the call may operate at reduced performance. There is no requirement that all vertices in the
range [start,end] be referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

When glDrawRangeElements is called, it uses count sequential elements from an enabled array,
starting at start to construct a sequence of geometric primitives. mode specifies what kind of primi-
tives are constructed, and how the array elements construct these primitives. If more than one array is
enabled, each is used. If GL_VERTEX_ARRAY is not enabled, no geometric primitives are constructed.

Vertex attributes that are modified by glDrawRangeElements have an unspecified value after
glDrawRangeElements returns. For example, if GL_COLOR_ARRAY is enabled, the value of the
current color is undefined after glDrawRangeElements executes. Attributes that aren’t modified
maintain their previous values.

Notes
glDrawRangeElements is available only if the GL version is 1.2 or greater.
glDrawRangeElements is included in display lists. If glDrawRangeElements is entered into a

display list, the necessary array data (determined by the array pointers and enables) is also entered
into the display list. Because the array pointers and enables are client-side state, their values affect
display lists when the lists are created, not when the lists are executed.

Errors
It is an error for indices to lie outside the range [start,end], but implementations may not check

for this situation. Such indices cause implementation-dependent behavior.
GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_VALUE is generated if end < start.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if glDrawRangeElements is executed between the execu-

tion of glBegin and the corresponding glEnd.

Associated Gets
glGet with argument GL_MAX_ELEMENTS_VERTICES
glGet with argument GL_MAX_ELEMENTS_INDICES

glDrawRangeElements 877

C

See Also
glArrayElement, glColorPointer, glDrawArrays, glDrawElements, glEdgeFlagPointer,

glGetPointerv, glIndexPointer, glInterleavedArrays, glNormalPointer,
glSecondaryColorPointer, glTexCoordPointer, glVertexPointer

glEdgeFlag

Flag edges as either boundary or nonboundary

C Specification
void glEdgeFlag(GLboolean flag);

Parameters
flag Specifies the current edge flag value, either GL_TRUE or GL_FALSE. The initial value is

GL_TRUE.

C Specification
void glEdgeFlagv(const GLboolean * flag);

Parameters
flag Specifies a pointer to an array that contains a single boolean element, which replaces the

current edge flag value.

Description
Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a

glBegin/glEnd pair is marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the start of a boundary edge.
Otherwise, the vertex is marked as the start of a nonboundary edge. glEdgeFlag sets the edge flag
bit to GL_TRUE if flag is GL_TRUE and to GL_FALSE otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked as boundary,
regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_MODE is set
to GL_POINT or GL_LINE. See glPolygonMode.

Notes
The current edge flag can be updated at any time. In particular, glEdgeFlag can be called

between a call to glBegin and the corresponding call to glEnd.

Associated Gets
glGet with argument GL_EDGE_FLAG

See Also
glBegin, glEdgeFlagPointer, glPolygonMode

glEdgeFlagPointer

Define an array of edge flags

C Specification
void glEdgeFlagPointer(GLsizei stride,

const GLvoid * pointer);

Parameters
stride Specifies the byte offset between consecutive edge flags. If stride is 0, the edge flags

are understood to be tightly packed in the array. The initial value is 0.
pointer Specifies a pointer to the first edge flag in the array. The initial value is 0.

glEdgeFlag878

Description
glEdgeFlagPointer specifies the location and data format of an array of boolean edge flags to

use when rendering. stride specifies the byte stride from one edge flag to the next, allowing
vertices and attributes to be packed into a single array or stored in separate arrays.

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while an edge flag array is specified, pointer is treated as a byte offset into the buffer object’s data
store. Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as edge flag vertex array
client-side state (GL_EDGE_FLAG_ARRAY_BUFFER_BINDING).

When an edge flag array is specified, stride and pointer are saved as client-side state, in addi-
tion to the current vertex array buffer object binding.

To enable and disable the edge flag array, call glEnableClientState and
glDisableClientState with the argument GL_EDGE_FLAG_ARRAY. If enabled, the edge flag array is
used when glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements,
glDrawRangeElements, or glArrayElement is called.

Notes
glEdgeFlagPointer is available only if the GL version is 1.1 or greater.
Edge flags are not supported for interleaved vertex array formats (see glInterleavedArrays).
The edge flag array is initially disabled and isn’t accessed when glArrayElement,

glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glEdgeFlagPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error is gener-
ated, the operation is undefined.

glEdgeFlagPointer is typically implemented on the client side.
Edge flag array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors
GL_INVALID_ENUM is generated if stride is negative.

Associated Gets
glIsEnabled with argument GL_EDGE_FLAG_ARRAY
glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE
glGet with argument GL_EDGE_FLAG_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_EDGE_FLAG_ARRAY_POINTER

See Also
glArrayElement, glBindBuffer, glColorPointer, glDisableClientState, glDrawArrays,

glDrawElements, glDrawRangeElements, glEdgeFlag, glEnableClientState,
glFogCoordPointer, glIndexPointer, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormalPointer, glPopClientAttrib, glPushClientAttrib,
glSecondaryColorPointer, glTexCoordPointer, glVertexAttribPointer, glVertexPointer

glEnable

Enable or disable server-side GL capabilities

C Specification
void glEnable(GLenum cap);

Parameters
cap Specifies a symbolic constant indicating a GL capability.

glEnable 879

C

C Specification
void glDisable(GLenum cap);

Parameters
cap Specifies a symbolic constant indicating a GL capability.

Description
glEnable and glDisable enable and disable various capabilities. Use glIsEnabled or glGet to

determine the current setting of any capability. The initial value for each capability with the excep-
tion of GL_DITHER is GL_FALSE. The initial value for GL_DITHER is GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one of the
following values:

GL_ALPHA_TEST
If enabled, do alpha testing. See glAlphaFunc.
GL_AUTO_NORMAL
If enabled, generate normal vectors when either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is

used to generate vertices. See glMap2.
GL_BLEND
If enabled, blend the incoming RGBA color values with the values in the color buffers. See

glBlendFunc.
GL_CLIP_PLANEi
If enabled, clip geometry against user-defined clipping plane i. See glClipPlane.
GL_COLOR_LOGIC_OP
If enabled, apply the currently selected logical operation to the incoming RGBA color and color

buffer values. See glLogicOp.
GL_COLOR_MATERIAL
If enabled, have one or more material parameters track the current color. See glColorMaterial.
GL_COLOR_SUM
If enabled, add the secondary color value to the computed fragment color. See

glSecondaryColor.
GL_COLOR_TABLE
If enabled, perform a color table lookup on the incoming RGBA color values. See glColorTable.
GL_CONVOLUTION_1D
If enabled, perform a 1D convolution operation on incoming RGBA color values. See

glConvolutionFilter1D.
GL_CONVOLUTION_2D
If enabled, perform a 2D convolution operation on incoming RGBA color values. See

glConvolutionFilter2D.
GL_CULL_FACE
If enabled, cull polygons based on their winding in window coordinates. See glCullFace.
GL_DEPTH_TEST
If enabled, do depth comparisons and update the depth buffer. Note that even if the depth buffer

exists and the depth mask is nonzero, the depth buffer is not updated if the depth test is disabled. See
glDepthFunc and glDepthRange.

GL_DITHER
If enabled, dither color components or indices before they are written to the color buffer.
GL_FOG
If enabled, blend a fog color into the post-texturing color. See glFog.
GL_HISTOGRAM
If enabled, histogram incoming RGBA color values. See glHistogram.
GL_INDEX_LOGIC_OP
If enabled, apply the currently selected logical operation to the incoming index and color buffer

indices. See glLogicOp.

glEnable880

GL_LIGHTi
If enabled, include light i in the evaluation of the lighting equation. See glLightModel and

glLight.
GL_LIGHTING
If enabled, use the current lighting parameters to compute the vertex color or index. Otherwise,

simply associate the current color or index with each vertex. See glMaterial, glLightModel, and
glLight.

GL_LINE_SMOOTH
If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See glLineWidth.
GL_LINE_STIPPLE
If enabled, use the current line stipple pattern when drawing lines. See glLineStipple.
GL_MAP1_COLOR_4
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate RGBA values.

See glMap1.
GL_MAP1_INDEX
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate color indices.

See glMap1.
GL_MAP1_NORMAL
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate normals.

See glMap1.
GL_MAP1_TEXTURE_COORD_1
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s texture coordi-

nates. See glMap1.
GL_MAP1_TEXTURE_COORD_2
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s and t texture

coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_3
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, and r texture

coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_4
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, r, and q

texture coordinates. See glMap1.
GL_MAP1_VERTEX_3
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate x, y, and z vertex

coordinates. See glMap1.
GL_MAP1_VERTEX_4
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate homogeneous x,

y, z, and w vertex coordinates. See glMap1.
GL_MAP2_COLOR_4
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate RGBA values.

See glMap2.
GL_MAP2_INDEX
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate color indices.

See glMap2.
GL_MAP2_NORMAL
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate normals.

See glMap2.
GL_MAP2_TEXTURE_COORD_1
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s texture coordi-

nates. See glMap2.

glEnable 881

C

GL_MAP2_TEXTURE_COORD_2
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s and t texture

coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_3
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, and r texture

coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_4
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, r, and q

texture coordinates. See glMap2.
GL_MAP2_VERTEX_3
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate x, y, and z vertex

coordinates. See glMap2.
GL_MAP2_VERTEX_4
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate homogeneous x,

y, z, and w vertex coordinates. See glMap2.
GL_MINMAX
If enabled, compute the minimum and maximum values of incoming RGBA color values.

See glMinmax.
GL_MULTISAMPLE
If enabled, use multiple fragment samples in computing the final color of a pixel.

See glSampleCoverage.
GL_NORMALIZE
If enabled, normal vectors specified with glNormal are scaled to unit length after transformation.

See glNormal.
GL_POINT_SMOOTH
If enabled, draw points with proper filtering. Otherwise, draw aliased points. See glPointSize.
GL_POINT_SPRITE
If enabled, calculate texture coordinates for points based on texture environment and point para-

meter settings. Otherwise texture coordinates are constant across points.
GL_POLYGON_OFFSET_FILL
If enabled, and if the polygon is rendered in GL_FILL mode, an offset is added to depth values of

a polygon’s fragments before the depth comparison is performed. See glPolygonOffset.
GL_POLYGON_OFFSET_LINE
If enabled, and if the polygon is rendered in GL_LINE mode, an offset is added to depth values of

a polygon’s fragments before the depth comparison is performed. See glPolygonOffset.
GL_POLYGON_OFFSET_POINT
If enabled, an offset is added to depth values of a polygon’s fragments before the depth compari-

son is performed, if the polygon is rendered in GL_POINT mode. See glPolygonOffset.
GL_POLYGON_SMOOTH
If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. For correct

antialiased polygons, an alpha buffer is needed and the polygons must be sorted front to back.
GL_POLYGON_STIPPLE
If enabled, use the current polygon stipple pattern when rendering polygons.

See glPolygonStipple.
GL_POST_COLOR_MATRIX_COLOR_TABLE
If enabled, perform a color table lookup on RGBA color values after color matrix transformation.

See glColorTable.
GL_POST_CONVOLUTION_COLOR_TABLE
If enabled, perform a color table lookup on RGBA color values after convolution.

See glColorTable.

glEnable882

GL_RESCALE_NORMAL
If enabled, normal vectors specified with glNormal are scaled to unit length after transformation.

See glNormal.
GL_SAMPLE_ALPHA_TO_COVERAGE
If enabled, compute a temporary coverage value where each bit is determined by the alpha value

at the corresponding sample location. The temporary coverage value is then ANDed with the frag-
ment coverage value.

GL_SAMPLE_ALPHA_TO_ONE
If enabled, each sample alpha value is replaced by the maximum representable alpha value.
GL_SAMPLE_COVERAGE
If enabled, the fragment’s coverage is ANDed with the temporary coverage value. If

GL_SAMPLE_COVERAGE_INVERT is set to GL_TRUE, invert the coverage value. See
glSampleCoverage.

GL_SEPARABLE_2D
If enabled, perform a two-dimensional convolution operation using a separable convolution filter

on incoming RGBA color values. See glSeparableFilter2D.
GL_SCISSOR_TEST
If enabled, discard fragments that are outside the scissor rectangle. See glScissor.
GL_STENCIL_TEST
If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and

glStencilOp.
GL_TEXTURE_1D
If enabled, one-dimensional texturing is performed (unless two- or three-dimensional or cube-

mapped texturing is also enabled). See glTexImage1D.
GL_TEXTURE_2D
If enabled, two-dimensional texturing is performed (unless three-dimensional or cube-mapped

texturing is also enabled). See glTexImage2D.
GL_TEXTURE_3D
If enabled, three-dimensional texturing is performed (unless cube-mapped texturing is also

enabled). See glTexImage3D.
GL_TEXTURE_CUBE_MAP
If enabled, cube-mapped texturing is performed. See glTexImage2D.
GL_TEXTURE_GEN_Q
If enabled, the q texture coordinate is computed using the texture generation function defined

with glTexGen. Otherwise, the current q texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_R
If enabled, the r texture coordinate is computed using the texture generation function defined

with glTexGen. Otherwise, the current r texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_S
If enabled, the s texture coordinate is computed using the texture generation function defined

with glTexGen. Otherwise, the current s texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_T
If enabled, the t texture coordinate is computed using the texture generation function defined

with glTexGen. Otherwise, the current t texture coordinate is used. See glTexGen.
GL_VERTEX_PROGRAM_POINT_SIZE
If enabled, and a vertex shader is active, then the derived point size is taken from the (potentially

clipped) shader builtin gl_PointSize and clamped to the implementation-dependent point size range.
GL_VERTEX_PROGRAM_TWO_SIDE
If enabled, and a vertex shader is active, it specifies that the GL will choose between front and

back colors based on the polygon’s face direction of which the vertex being shaded is a part. It has no
effect on points or lines.

glEnable 883

C

Notes
GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, GL_POLYGON_OFFSET_POINT,

GL_COLOR_LOGIC_OP, and GL_INDEX_LOGIC_OP are available only if the GL version is 1.1 or greater.
GL_RESCALE_NORMAL, and GL_TEXTURE_3D are available only if the GL version is 1.2 or greater.
GL_MULTISAMPLE, GL_SAMPLE_ALPHA_TO_COVERAGE, GL_SAMPLE_ALPHA_TO_ONE,

GL_SAMPLE_COVERAGE, GL_TEXTURE_CUBE_MAP are available only if the GL version is 1.3 or greater.
GL_POINT_SPRITE, GL_VERTEX_PROGRAM_POINT_SIZE, and GL_VERTEX_PROGRAM_TWO_SIDE is

available only if the GL version is 2.0 or greater.
GL_COLOR_TABLE, GL_CONVOLUTION_1D, GL_CONVOLUTION_2D, GL_HISTOGRAM, GL_MINMAX,

GL_POST_COLOR_MATRIX_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, and
GL_SEPARABLE_2D are available only if ARB_imaging is returned from glGet with an argument of
GL_EXTENSIONS.

For OpenGL versions 1.3 and greater, or when ARB_multitexture is supported,
GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, and GL_TEXTURE_GEN_Q enable or disable the respective state for the active
texture unit specified with glActiveTexture.

Errors
GL_INVALID_ENUM is generated if cap is not one of the values listed previously.
GL_INVALID_OPERATION is generated if glEnable or glDisable is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

See Also
glActiveTexture, glAlphaFunc, glBlendFunc, glClipPlane, glColorMaterial,

glCullFace, glDepthFunc, glDepthRange, glEnableClientState, glFog, glGet, glIsEnabled,
glLight, glLightModel, glLineWidth, glLineStipple, glLogicOp, glMap1, glMap2,
glMaterial, glNormal, glPointSize, glPolygonMode, glPolygonOffset, glPolygonStipple,
glScissor, glStencilFunc, glStencilOp, glTexGen, glTexImage1D, glTexImage2D,
glTexImage3D

glEnableClientState

Enable or disable client-side capability

C Specification
void glEnableClientState(GLenum cap);

Parameters

cap Specifies the capability to enable. Symbolic constants GL_COLOR_ARRAY
GL_EDGE_FLAG_ARRAY, GL_FOG_COORD_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_SECONDARY_COLOR_ARRAY, GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY are
accepted.

C Specification
void glDisableClientState(GLenum cap);

Parameters
cap Specifies the capability to disable.

Description
glEnableClientState and glDisableClientState enable or disable individual client-side

capabilities. By default, all client-side capabilities are disabled. Both glEnableClientState and
glDisableClientState take a single argument, cap, which can assume one of the following values:

glEnableClientState884

GL_COLOR_ARRAY
If enabled, the color array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glColorPointer.

GL_EDGE_FLAG_ARRAY
If enabled, the edge flag array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glEdgeFlagPointer.

GL_FOG_COORD_ARRAY
If enabled, the fog coordinate array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glFogCoordPointer.

GL_INDEX_ARRAY
If enabled, the index array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glIndexPointer.

GL_NORMAL_ARRAY
If enabled, the normal array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glNormalPointer.

GL_SECONDARY_COLOR_ARRAY
If enabled, the secondary color array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glColorPointer.

GL_TEXTURE_COORD_ARRAY
If enabled, the texture coordinate array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glTexCoordPointer.

GL_VERTEX_ARRAY
If enabled, the vertex array is enabled for writing and used during rendering when

glArrayElement, glDrawArrays, glDrawElements, glDrawRangeElementsglMultiDrawArrays,
or glMultiDrawElements is called. See glVertexPointer.

Notes
glEnableClientState is available only if the GL version is 1.1 or greater.
GL_FOG_COORD_ARRAY and GL_SECONDARY_COLOR_ARRAY are available only if the GL version is

1.4 or greater.
For OpenGL versions 1.3 and greater, or when ARB_multitexture is supported, enabling and

disabling GL_TEXTURE_COORD_ARRAY affects the active client texture unit. The active client texture
unit is controlled with glClientActiveTexture.

Errors
GL_INVALID_ENUM is generated if cap is not an accepted value.
glEnableClientState is not allowed between the execution of glBegin and the corresponding

glEnd, but an error may or may not be generated. If no error is generated, the behavior is undefined.

See Also
glArrayElement, glClientActiveTexture, glColorPointer, glDrawArrays,

glDrawElements, glEdgeFlagPointer, glFogCoordPointer, glEnable, glGetPointerv,
glIndexPointer, glInterleavedArrays, glNormalPointer, glSecondaryColorPointer,
glTexCoordPointer, glVertexPointer

glEnableClientState 885

C

glEnableVertexAttribArray

Enable or disable a generic vertex attribute array

C Specification
void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

Parameters
index Specifies the index of the generic vertex attribute to be enabled or disabled.

Description
glEnableVertexAttribArray enables the generic vertex attribute array specified by index.

glDisableVertexAttribArray disables the generic vertex attribute array specified by index. By
default, all client-side capabilities are disabled, including all generic vertex attribute arrays. If enabled,
the values in the generic vertex attribute array will be accessed and used for rendering when calls are
made to vertex array commands such as glDrawArrays, glDrawElements, glDrawRangeElements,
glArrayElement, glMultiDrawElements, or glMultiDrawArrays.

Notes
glEnableVertexAttribArray and glDisableVertexAttribArray are available only if the GL

version is 2.0 or greater.

Errors
GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_OPERATION is generated if either glEnableVertexAttribArray or

glDisableVertexAttribArray is executed between the execution of glBegin and the correspond-
ing execution of glEnd.

Associated Gets
glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_ENABLED
glGetVertexAttribPointerv with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER

See Also
glArrayElement, glBindAttribLocation, glDrawArrays, glDrawElements,

glDrawRangeElements, glMultiDrawElements, glPopClientAttrib, glPushClientAttrib,
glVertexAttrib, glVertexAttribPointer

glEvalCoord

Evaluate enabled one- and two-dimensional maps

C Specification

void glEvalCoord1f(GLfloat u);
void glEvalCoord1d(GLdouble u);
void glEvalCoord2f(GLfloat u, GLfloat v);
void glEvalCoord2d(GLdouble u, GLdouble v);

Parameters

u Specifies a value that is the domain coordinate u to the basis function defined in a previous
glMap1 or glMap2 command.

v Specifies a value that is the domain coordinate v to the basis function defined in a previous
glMap2 command. This argument is not present in a glEvalCoord1 command.

glEnableVertexAttribArray886

C Specification
void glEvalCoord1fv(const GLfloat * u);
void glEvalCoord1dv(const GLdouble * u);
void glEvalCoord2fv(const GLfloat * u);
void glEvalCoord2dv(const GLdouble * u);

Parameters

u Specifies a pointer to an array containing either one or two domain coordinates. The first
coordinate is u. The second coordinate is v, which is present only in glEvalCoord2
versions.

Description

glEvalCoord1 evaluates enabled one-dimensional maps at argument u. glEvalCoord2 does the
same for two-dimensional maps using two domain values, u and v. To define a map, call glMap1 and
glMap2; to enable and disable it, call glEnable and glDisable.

When one of the glEvalCoord commands is issued, all currently enabled maps of the indicated
dimension are evaluated. Then, for each enabled map, it is as if the corresponding GL command had
been issued with the computed value. That is, if GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a
glIndex command is simulated. If GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor
command is simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector is
produced, and if any of GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_1,
GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, or GL_MAP2_TEXTURE_COORD_4 is
enabled, then an appropriate glTexCoord command is simulated.

For color, color index, normal, and texture coordinates the GL uses evaluated values instead of
current values for those evaluations that are enabled, and current values otherwise, However, the eval-
uated values do not update the current values. Thus, if glVertex commands are interspersed with
glEvalCoord commands, the color, normal, and texture coordinates associated with the glVertex
commands are not affected by the values generated by the glEvalCoord commands, but only by the
most recent glColor, glIndex, glNormal, and glTexCoord commands.

No commands are issued for maps that are not enabled. If more than one texture evaluation is
enabled for a particular dimension (for example, GL_MAP2_TEXTURE_COORD_1 and
GL_MAP2_TEXTURE_COORD_2), then only the evaluation of the map that produces the larger number
of coordinates (in this case, GL_MAP2_TEXTURE_COORD_2) is carried out. GL_MAP1_VERTEX_4 over-
rides GL_MAP1_VERTEX_3, and GL_MAP2_VERTEX_4 overrides GL_MAP2_VERTEX_3, in the same
manner. If neither a three- nor a four-component vertex map is enabled for the specified dimension,
the glEvalCoord command is ignored.

If you have enabled automatic normal generation, by calling glEnable with argument
GL_AUTO_NORMAL, glEvalCoord2 generates surface normals analytically, regardless of the contents
or enabling of the GL_MAP2_NORMAL map. Let

then the generated normal

If automatic normal generation is disabled, the corresponding normal map GL_MAP2_NORMAL, if
enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is
enabled, no normal is generated for glEvalCoord2 commands.

Associated Gets

glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4

mn is n =
m� �

p
u

p
v

m = �

glEvalCoord 887

C

glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4
glIsEnabled with argument GL_AUTO_NORMAL
glGetMap

See Also

glBegin, glColor, glEnable, glEvalMesh, glEvalPoint, glIndex, glMap1, glMap2,
glMapGrid, glNormal, glTexCoord, glVertex

glEvalMesh

Compute a one- or two-dimensional grid of points or lines

C Specification

void glEvalMesh1(GLenum mode,
GLint i1,
GLint i2);

Parameters

mode In glEvalMesh1, specifies whether to compute a one-dimensional mesh of points or
lines. Symbolic constants GL_POINT and GL_LINE are accepted.

i1, i2 Specify the first and last integer values for grid domain variable i.

C Specification

void glEvalMesh2(GLenum mode,
GLint i1,
GLint i2,
GLint j1,
GLint j2);

Parameters

mode In glEvalMesh2, specifies whether to compute a two-dimensional mesh of points, lines, or
polygons. Symbolic constants GL_POINT, GL_LINE, and GL_FILL are accepted.

i1, i2 Specify the first and last integer values for grid domain variable i.
j1, j2 Specify the first and last integer values for grid domain variable j.

Description

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a series of
evenly-spaced map domain values. glEvalMesh steps through the integer domain of a one- or

glEvalMesh888

two-dimensional grid, whose range is the domain of the evaluation maps specified by glMap1 and
glMap2. mode determines whether the resulting vertices are connected as points, lines, or filled
polygons.

In the one-dimensional case, glEvalMesh1, the mesh is generated as if the following code frag-
ment were executed:

glBegin(type);
for (i = i1; i <= i2; i += 1)

glEvalCoord1(i • ∆ u + u1);
glEnd();

where

and n, u1, and u2 are the arguments to the most recent glMapGrid1 command. type is
GL_POINTS if mode is GL_POINT, or GL_LINES if mode is GL_LINE.

The one absolute numeric requirement is that if i = n, then the value computed from i • ∆u + u1 is
exactly u2.

In the two-dimensional case, glEvalMesh2, let .cp

where n, u1, u2, m, v1, and v2 are the arguments to the most recent glMapGrid2 command. Then,
if mode is GL_FILL, the glEvalMesh2 command is equivalent to:

for (j = j1; j < j2; j += 1) {
glBegin(GL_QUAD_STRIP);
for (i = i1; i <= i2; i += 1) {

glEvalCoord2(i • ∆u + u1, j • ∆v + v1);
glEvalCoord2(i • ∆u + u1, (j + 1) • ∆v + v1);

}
glEnd();

}
If mode is GL_LINE, then a call to glEvalMesh2 is equivalent to:

for (j = j1; j <= j2; j += 1) {
glBegin(GL_LINE_STRIP);
for (i = i1; i <= i2; i += 1)

glEvalCoord2(i • ∆u + u1, j • ∆v + v1);
glEnd();

}

for (i = i1; i <= i2; i += 1) {
glBegin(GL_LINE_STRIP);
for (j = j1; j <= j1; j += 1)

glEvalCoord2(i • ∆u + u1, j • ∆v + v1);
glEnd();

}

And finally, if mode is GL_POINT, then a call to glEvalMesh2 is equivalent to:

glBegin(GL_POINTS);
for (j = j1; j <= j2; j += 1)

for (i = i1; i <= i2; i += 1)
glEvalCoord2(i • ∆u + u1, j • ∆v + v1);

glEnd();

� v =
(v2 – v1)

m

� u =
(u2 – u1)

n

� u =
(u2 – u1)

n

glEvalMesh 889

C

In all three cases, the only absolute numeric requirements are that if i = n, then the value
computed from i • ∆u + u1 is exactly u2, and if j = m, then the value computed from j • ∆v + v1 is
exactly v2.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if glEvalMesh is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also

glBegin, glEvalCoord, glEvalPoint, glMap1, glMap2, glMapGrid

glEvalPoint

Generate and evaluate a single point in a mesh

C Specification

void glEvalPoint1(GLint i);
void glEvalPoint2(GLint i, GLint j);

Parameters

i Specifies the integer value for grid domain variable i.
j Specifies the integer value for grid domain variable j (glEvalPoint2 only).

Description

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a series of
evenly spaced map domain values. glEvalPoint can be used to evaluate a single grid point in the
same gridspace that is traversed by glEvalMesh. Calling glEvalPoint1 is equivalent to calling
glEvalCoord1(i • ∆u + u1);

where

and n, u1, and u2 are the arguments to the most recent glMapGrid1 command. The one absolute
numeric requirement is that if i = n, then the value computed from i • ∆u + u1 is exactly u2.

In the two-dimensional case, glEvalPoint2, let

where n, u1, u2, m, v1, and v2 are the arguments to the most recent glMapGrid2 command. Then
the glEvalPoint2 command is equivalent to calling

glEvalCoord2 (i • ∆u + u1, j • ∆v + v1);
The only absolute numeric requirements are that if i = n, then the value computed from

i • ∆u + u1 is exactly u2, and if j = m, then the value computed from j • ∆v + v1 is exactly v2.

� v =
(v2 – v1)

m

� u =
(u2 – u1)

n

� u =
(u2 – u1)

n

glEvalPoint890

Associated Gets

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also

glEvalCoord, glEvalMesh, glMap1, glMap2, glMapGrid

glFeedbackBuffer

Controls feedback mode

C Specification

void glFeedbackBuffer(GLsizei size,
GLenum type,
GLfloat * buffer);

Parameters

size Specifies the maximum number of values that can be written into buffer.
type Specifies a symbolic constant that describes the information that will be returned

for each vertex. GL_2D, GL_3D, GL_3D_COLOR, GL_3D_COLOR_TEXTURE, and
GL_4D_COLOR_TEXTURE are accepted.

buffer Returns the feedback data.

Description

The glFeedbackBuffer function controls feedback. Feedback, like selection, is a GL mode. The
mode is selected by calling glRenderMode with GL_FEEDBACK. When the GL is in feedback mode, no
pixels are produced by rasterization. Instead, information about primitives that would have been
rasterized is fed back to the application using the GL.

glFeedbackBuffer has three arguments: buffer is a pointer to an array of floating-point values
into which feedback information is placed. size indicates the size of the array. type is a symbolic
constant describing the information that is fed back for each vertex. glFeedbackBuffer must be
issued before feedback mode is enabled (by calling glRenderMode with argument GL_FEEDBACK).
Setting GL_FEEDBACK without establishing the feedback buffer, or calling glFeedbackBuffer while
the GL is in feedback mode, is an error.

When glRenderMode is called while in feedback mode, it returns the number of entries placed in
the feedback array and resets the feedback array pointer to the base of the feedback buffer. The
returned value never exceeds size. If the feedback data required more room than was available in
buffer, glRenderMode returns a negative value. To take the GL out of feedback mode, call
glRenderMode with a parameter value other than GL_FEEDBACK.

While in feedback mode, each primitive, bitmap, or pixel rectangle that would be rasterized
generates a block of values that are copied into the feedback array. If doing so would cause the
number of entries to exceed the maximum, the block is partially written so as to fill the array (if there
is any room left at all), and an overflow flag is set. Each block begins with a code indicating the prim-
itive type, followed by values that describe the primitive’s vertices and associated data. Entries are also
written for bitmaps and pixel rectangles. Feedback occurs after polygon culling and glPolygonMode
interpretation of polygons has taken place, so polygons that are culled are not returned in the feed-
back buffer. It can also occur after polygons with more than three edges are broken up into triangles,
if the GL implementation renders polygons by performing this decomposition.

The glPassThrough command can be used to insert a marker into the feedback buffer.
See glPassThrough.

glFeedbackBuffer 891

C

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive
is indicated with a unique identifying value followed by some number of vertices. Polygon entries
include an integer value indicating how many vertices follow. A vertex is fed back as some number of
floating-point values, as determined by type. Colors are fed back as four values in RGBA mode and
one value in color index mode.

feedbackList ← feedbackItem feedbackList | feedbackItem
feedbackItem ← point | lineSegment | polygon | bitmap | pixelRectangle | passThru
point ← GL_POINT_TOKEN vertex
lineSegment ← GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex
polygon ← GL_POLYGON_TOKEN n polySpec
polySpec ← polySpec vertex | vertex vertex vertex
bitmap ← GL_BITMAP_TOKEN vertex
pixelRectangle ← GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex
passThru ← GL_PASS_THROUGH_TOKEN value
vertex ← 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
2d ← value value
3d ← value value value
3dColor ← value value value color
3dColorTexture ← value value value color tex
4dColorTexture ← value value value value color tex
color ← rgba | index
rgba ← value value value value
index ← value
tex ← value value value value
value is a floating-point number, and n is a floating-point integer giving the number of vertices

in the polygon. GL_POINT_TOKEN, GL_LINE_TOKEN, GL_LINE_RESET_TOKEN, GL_POLYGON_TOKEN,
GL_BITMAP_TOKEN, GL_DRAW_PIXEL_TOKEN, GL_COPY_PIXEL_TOKEN and
GL_PASS_THROUGH_TOKEN are symbolic floating-point constants. GL_LINE_RESET_TOKEN is returned
whenever the line stipple pattern is reset. The data returned as a vertex depends on the feedback
type.

The following table gives the correspondence between type and the number of values per vertex.
k is 1 in color index mode and 4 in RGBA mode.

Type Coordinates Color Texture Total Number of Values

GL_2D x, y 2

GL_3D x, y, z 3

GL_3D_COLOR x, y, z k 3 + k

GL_3D_COLOR_TEXTURE x, y, z, k 4 7 + k

GL_4D_COLOR_TEXTURE x, y, z, w k 4 8 + k

Feedback vertex coordinates are in window coordinates, except w, which is in clip coordinates.
Feedback colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if
texture coordinate generation is enabled. They are always transformed by the texture matrix.

Notes

glFeedbackBuffer, when used in a display list, is not compiled into the display list but is
executed immediately.

glFeedbackBuffer returns only the texture coordinate of texture unit GL_TEXTURE0.

glFeedbackBuffer892

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if size is negative.
GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the render mode is

GL_FEEDBACK, or if glRenderMode is called with argument GL_FEEDBACK before
glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is executed between the execution
of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_RENDER_MODE
glGet with argument GL_FEEDBACK_BUFFER_POINTER
glGet with argument GL_FEEDBACK_BUFFER_SIZE
glGet with argument GL_FEEDBACK_BUFFER_TYPE

See Also

glBegin, glLineStipple, glPassThrough, glPolygonMode, glRenderMode,
glSelectBuffer

glFinish

Block until all GL execution is complete

C Specification

void glFinish(void);

Description

glFinish does not return until the effects of all previously called GL commands are complete.
Such effects include all changes to GL state, all changes to connection state, and all changes to the
frame buffer contents.

Notes

glFinish requires a round trip to the server.

Errors

GL_INVALID_OPERATION is generated if glFinish is executed between the execution of
glBegin and the corresponding execution of glEnd.

See Also

glFlush

glFlush

Force execution of GL commands in finite time

C Specification

void glFlush(void);

Description

Different GL implementations buffer commands in several different locations, including network
buffers and the graphics accelerator itself. glFlush empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering engine. Though this
execution may not be completed in any particular time period, it does complete in finite time.

glFlush 893

C

Because any GL program might be executed over a network, or on an accelerator that buffers
commands, all programs should call glFlush whenever they count on having all of their previously
issued commands completed. For example, call glFlush before waiting for user input that depends
on the generated image.

Notes

glFlush can return at any time. It does not wait until the execution of all previously issued GL
commands is complete.

Errors

GL_INVALID_OPERATION is generated if glFlush is executed between the execution of glBegin
and the corresponding execution of glEnd.

See Also

glFinish

glFog

Specify fog parameters

C Specification

void glFogf(GLenum pname, GLfloat param);
void glFogi(GLenum pname, GLint param);

Parameters

pname Specifies a single-valued fog parameter. GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START,
GL_FOG_END, GL_FOG_INDEX, and GL_FOG_COORD_SRC are accepted.

param Specifies the value that pname will be set to.

C Specification

void glFogfv(GLenum pname,
const GLfloat * params);

void glFogiv(GLenum pname,
const GLint * params);

Parameters

pname Specifies a fog parameter. GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START,
GL_FOG_END, GL_FOG_INDEX, GL_FOG_COLOR, and GL_FOG_COORD_SRC are accepted.

params Specifies the value or values to be assigned to pname. GL_FOG_COLOR requires an array
of four values. All other parameters accept an array containing only a single value.

Description

Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and pixel blocks,
but not buffer clear operations. To enable and disable fog, call glEnable and glDisable with argu-
ment GL_FOG.

glFog assigns the value or values in params to the fog parameter specified by pname. The follow-
ing values are accepted for pname:

GL_FOG_MODE
params is a single integer or floating-point value that specifies the equation to be used to

compute the fog blend factor, f. Three symbolic constants are accepted: GL_LINEAR, GL_EXP, and
GL_EXP2. The equations corresponding to these symbolic constants are defined below. The initial fog
mode is GL_EXP.

glFog894

GL_FOG_DENSITY
params is a single integer or floating-point value that specifies density, the fog density used in

both exponential fog equations. Only nonnegative densities are accepted. The initial fog density is 1.
GL_FOG_START
params is a single integer or floating-point value that specifies start, the near distance used in

the linear fog equation. The initial near distance is 0.
GL_FOG_END
params is a single integer or floating-point value that specifies end, the far distance used in the

linear fog equation. The initial far distance is 1.
GL_FOG_INDEX
params is a single integer or floating-point value that specifies if, the fog color index. The initial

fog index is 0.
GL_FOG_COLOR
params contains four integer or floating-point values that specify Cf, the fog color. Integer values

are mapped linearly such that the most positive representable value maps to 1.0, and the most nega-
tive representable value maps to -1.0. Floating-point values are mapped directly. After conversion, all
color components are clamped to the range [0,1]. The initial fog color is (0, 0, 0, 0).

GL_FOG_COORD_SRC
params contains either of the following symbolic constants: GL_FOG_COORD or

GL_FRAGMENT_DEPTH. GL_FOG_COORD specifies that the current fog coordinate should be used as
distance value in the fog color computation. GL_FRAGMENT_DEPTH specifies that the current fragment
depth should be used as distance value in the fog computation.

Fog blends a fog color with each rasterized pixel fragment’s post-texturing color using a blending
factor f. Factor f is computed in one of three ways, depending on the fog mode. Let c be either the
distance in eye coordinate from the origin (in the case that the GL_FOG_COORD_SRC is
GL_FRAGMENT_DEPTH) or the current fog coordinate (in the case that GL_FOG_COORD_SRC is
GL_FOG_COORD). The equation for GL_LINEAR fog is

The equation for GL_EXP fog is
f = e – (density • c)

The equation for GL_EXP2 fog is
f = e – (density • c) 2

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed. Then, if the GL is
in RGBA color mode, the fragment’s red, green, and blue colors, represented by Cr, are replaced by

Cr
“ = f × Cr + (1 – f) × Cf

Fog does not affect a fragment’s alpha component.
In color index mode, the fragment’s color index ir is replaced by
ir

“ = ir + (1 – f) × if

Notes

GL_FOG_COORD_SRC is available only if the GL version is 1.4 or greater.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value, or if pname is GL_FOG_MODE
and params is not an accepted value.

GL_INVALID_VALUE is generated if pname is GL_FOG_DENSITY and params is negative.
GL_INVALID_OPERATION is generated if glFog is executed between the execution of glBegin

and the corresponding execution of glEnd.

end – c
end – start

f =

glFog 895

C

Associated Gets

glIsEnabled with argument GL_FOG
glGet with argument GL_FOG_COLOR
glGet with argument GL_FOG_INDEX
glGet with argument GL_FOG_DENSITY
glGet with argument GL_FOG_START
glGet with argument GL_FOG_END
glGet with argument GL_FOG_MODE

See Also

glEnable

glFogCoord

Set the current fog coordinates

C Specification

void glFogCoordd(GLfloat coord);
void glFogCoordf(GLfloat coord);

Parameters

coord Specify the fog distance.

C Specification

void glFogCoorddv(GLfloat * coord);
void glFogCoordfv(GLfloat * coord);

Parameters

coord Specifies a pointer to an array containing a single value representing the fog distance.

Description

glFogCoord specifies the fog coordinate that is associated with each vertex and the current raster
position. The value specified is interpolated and used in computing the fog color (see glFog).

Notes

glFogCoord is available only if the GL version is 1.4 or greater.
The current fog coordinate can be updated at any time. In particular, glFogCoord can be called

between a call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_FOG_COORD

See Also

glFog, glFogCoordPointer, glVertex

glFogCoordPointer

Define an array of fog coordinates

C Specification

void glFogCoordPointer(GLenum type,
GLsizei stride,
GLvoid * pointer);

glFogCoord896

Parameters

type Specifies the data type of each fog coordinate. Symbolic constants GL_FLOAT, or
GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive fog coordinates. If stride is 0, the array
elements are understood to be tightly packed. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first fog coordinate in the array. The
initial value is 0.

Description

glFogCoordPointer specifies the location and data format of an array of fog coordinates to use
when rendering. type specifies the data type of each fog coordinate, and stride specifies the byte
stride from one fog coordinate to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays.

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a fog coordinate array is specified, pointer is treated as a byte offset into the buffer object’s
data store. Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as fog coordinate
vertex array client-side state (GL_FOG_COORD_ARRAY_BUFFER_BINDING).

When a fog coordinate array is specified, type, stride, and pointer are saved as client-side
state, in addition to the current vertex array buffer object binding.

To enable and disable the fog coordinate array, call glEnableClientState and
glDisableClientState with the argument GL_FOG_COORD_ARRAY. If enabled, the fog coordinate
array is used when glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, glDrawRangeElements, or glArrayElement is called.

Notes

glFogCoordPointer is available only if the GL version is 1.4 or greater.
Fog coordinates are not supported for interleaved vertex array formats (see

glInterleavedArrays).
The fog coordinate array is initially disabled and isn’t accessed when glArrayElement,

glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glFogCoordPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error is gener-
ated, the operation is undefined.

glFogCoordPointer is typically implemented on the client side with no protocol.
Fog coordinate array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_ENUM is generated if type is not either GL_FLOAT or GL_DOUBLE.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_FOG_COORD_ARRAY
glGet with argument GL_FOG_COORD_ARRAY_STRIDE
glGet with argument GL_FOG_COORD_ARRAY_TYPE
glGet with argument GL_FOG_COORD_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_FOG_COORD_ARRAY_POINTER

glFogCoordPointer 897

C

See Also

glArrayElement, glBindBuffer, glColorPointer, glDisableClientState, glDrawArrays,
glDrawElements, glDrawRangeElements, glEdgeFlagPointer, glEnableClientState,
glFogCoord, glIndexPointer, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormalPointer, glPopClientAttrib, glPushClientAttrib,
glSecondaryColorPointer, glTexCoordPointer, glVertexAttribPointer, glVertexPointer

glFrontFace

Define front- and back-facing polygons

C Specification

void glFrontFace(GLenum mode);

Parameters

mode Specifies the orientation of front-facing polygons. GL_CW and GL_CCW are accepted.
The initial value is GL_CCW.

Description

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible.
Eliminating these invisible polygons has the obvious benefit of speeding up the rendering of the
image. To enable and disable elimination of back-facing polygons, call glEnable and glDisable
with argument GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an imagi-
nary object following the path from its first vertex, its second vertex, and so on, to its last vertex, and
finally back to its first vertex, moves in a clockwise direction about the interior of the polygon. The
polygon’s winding is said to be counterclockwise if the imaginary object following the same path
moves in a counterclockwise direction about the interior of the polygon. glFrontFace specifies
whether polygons with clockwise winding in window coordinates, or counterclockwise winding in
window coordinates, are taken to be front-facing. Passing GL_CCW to mode selects counterclockwise
polygons as front-facing; GL_CW selects clockwise polygons as front-facing. By default, counterclock-
wise polygons are taken to be front-facing.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if glFrontFace is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_FRONT_FACE

See Also

glCullFace, glLightModel

glFrustum

Multiply the current matrix by a perspective matrix

C Specification

void glFrustum(GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble nearVal,
GLdouble farVal);

glFrontFace898

Parameters

left, right Specify the coordinates for the left and right vertical clipping planes.
bottom, top Specify the coordinates for the bottom and top horizontal clipping planes.
nearVal, farVal Specify the distances to the near and far depth clipping planes. Both distances

must be positive.

Description

glFrustum describes a perspective matrix that produces a perspective projection. The current
matrix (see glMatrixMode) is multiplied by this matrix and the result replaces the current matrix, as
if glMultMatrix were called with the following matrix as its argument:

Typically, the matrix mode is GL_PROJECTION, and (left, bottom, -nearVal) and
(right, top, -nearVal) specify the points on the near clipping plane that are mapped to the lower
left and upper-right corners of the window, assuming that the eye is located at (0, 0, 0). -farVal spec-
ifies the location of the far clipping plane. Both nearVal and farVal must be positive.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Notes

Depth buffer precision is affected by the values specified for nearVal and farVal. The greater
the ratio of farVal to nearVal is, the less effective the depth buffer will be at distinguishing
between surfaces that are near each other. If

roughly log2 (r) bits of depth buffer precision are lost. Because r approaches infinity as nearVal
approaches 0, nearVal must never be set to 0.

Errors

GL_INVALID_VALUE is generated if nearVal or farVal is not positive, or if left = right, or
bottom = top.

GL_INVALID_OPERATION is generated if glFrustum is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX

farVal
nearVal

r =

2 farVal nearVal
farVal – nearVal

D = –

farVal + nearVal
farVal – nearVal

C = –

top + bottom
top – bottom

B =

right + left
right – left

A =

2 nearVal
right – left

0 0A

2 nearVal
top – bottom

0 0B

0 0
0 0–10

DC

glFrustum 899

C

glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX
glGet with argument GL_COLOR_MATRIX

See Also

glOrtho, glMatrixMode, glMultMatrix, glPushMatrix, glViewport

glGenBuffers

Generate buffer object names

C Specification

void glGenBuffers(GLsizei n,
GLuint * buffers);

Parameters

n Specifies the number of buffer object names to be generated.
buffers Specifies an array in which the generated buffer object names are stored.

Description

glGenBuffers returns n buffer object names in buffers. There is no guarantee that the names
form a contiguous set of integers; however, it is guaranteed that none of the returned names was in
use immediately before the call to glGenBuffers.

Buffer object names returned by a call to glGenBuffers are not returned by subsequent calls,
unless they are first deleted with glDeleteBuffers.

No buffer objects are associated with the returned buffer object names until they are first bound
by calling glBindBuffer.

Notes

glGenBuffers is available only if the GL version is 1.5 or greater.

Errors

GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glGenBuffers is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsBuffer

See Also

glBindBuffer, glDeleteBuffers, glGet

glGenLists

Generate a contiguous set of empty display lists

C Specification

GLuint glGenLists(GLsizei range);

Parameters

range Specifies the number of contiguous empty display lists to be generated.

glGenBuffers900

Description

glGenLists has one argument, range. It returns an integer n such that range contiguous empty
display lists, named n, n + 1,..., n + range – 1, are created. If range is 0, if there is no group of range
contiguous names available, or if any error is generated, no display lists are generated, and 0 is
returned.

Errors

GL_INVALID_VALUE
is generated if range is negative.
GL_INVALID_OPERATION is generated if glGenLists is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsList

See Also

glCallList, glCallLists, glDeleteLists, glNewList

glGenQueries

Generate query object names

C Specification

void glGenQueries(GLsizei n, GLuint * ids);

Parameters

n Specifies the number of query object names to be generated.
ids Specifies an array in which the generated query object names are stored.

Description

glGenQueries returns n query object names in ids. There is no guarantee that the names form a
contiguous set of integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to glGenQueries.

Query object names returned by a call to glGenQueries are not returned by subsequent calls,
unless they are first deleted with glDeleteQueries.

No query objects are associated with the returned query object names until they are first used by
calling glBeginQuery.

Notes

glGenQueries is available only if the GL version is 1.5 or greater.

Errors

GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glGenQueries is executed between the execution of

glBeginQuery and the corresponding execution of glEndQuery.
GL_INVALID_OPERATION is generated if glGenQueries is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsQuery

See Also

glBeginQuery, glDeleteQueries, glEndQuery

glGenQueries 901

C

glGenTextures

Generate texture names

C Specification

void glGenTextures(GLsizei n,
GLuint * textures);

Parameters

n Specifies the number of texture names to be generated.
textures Specifies an array in which the generated texture names are stored.

Description

glGenTextures returns n texture names in textures. There is no guarantee that the names
form a contiguous set of integers; however, it is guaranteed that none of the returned names was in
use immediately before the call to glGenTextures.

The generated textures have no dimensionality; they assume the dimensionality of the texture
target to which they are first bound (see glBindTexture).

Texture names returned by a call to glGenTextures are not returned by subsequent calls, unless
they are first deleted with glDeleteTextures.

Notes

glGenTextures is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glGenTextures is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsTexture

See Also

glBindTexture, glCopyTexImage1D, glCopyTexImage2D, glDeleteTextures, glGet,
glGetTexParameter, glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter

glGet

Return the value or values of a selected parameter

C Specification

void glGetBooleanv(GLenum pname,
GLboolean * params);

C Specification

void glGetDoublev(GLenum pname,
GLdouble * params);

C Specification

void glGetFloatv(GLenum pname,
GLfloat * params);

C Specification

void glGetIntegerv(GLenum pname,
GLint * params);

glGenTextures902

Parameters

pname Specifies the parameter value to be returned. The symbolic constants in the list below
are accepted.

params Returns the value or values of the specified parameter.

Description

These four commands return values for simple state variables in GL. pname is a symbolic constant
indicating the state variable to be returned, and params is a pointer to an array of the indicated type
in which to place the returned data.

Type conversion is performed if params has a different type than the state variable value being
requested. If glGetBooleanv is called, a floating-point (or integer) value is converted to GL_FALSE if
and only if it is 0.0 (or 0). Otherwise, it is converted to GL_TRUE. If glGetIntegerv is called,
boolean values are returned as GL_TRUE or GL_FALSE, and most floating-point values are rounded to
the nearest integer value. Floating-point colors and normals, however, are returned with a linear
mapping that maps 1.0 to the most positive representable integer value and -1.0 to the most negative
representable integer value. If glGetFloatv or glGetDoublev is called, boolean values are returned
as GL_TRUE or GL_FALSE, and integer values are converted to floating-point values.

The following symbolic constants are accepted by pname:
GL_ACCUM_ALPHA_BITS
params returns one value, the number of alpha bitplanes in the accumulation buffer.
GL_ACCUM_BLUE_BITS
params returns one value, the number of blue bitplanes in the accumulation buffer.
GL_ACCUM_CLEAR_VALUE
params returns four values: the red, green, blue, and alpha values used to clear the accumulation

buffer. Integer values, if requested, are linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. The initial value is (0, 0, 0, 0). See glClearAccum.

GL_ACCUM_GREEN_BITS
params returns one value, the number of green bitplanes in the accumulation buffer.
GL_ACCUM_RED_BITS
params returns one value, the number of red bitplanes in the accumulation buffer.
GL_ACTIVE_TEXTURE
params returns a single value indicating the active multitexture unit. The initial value is

GL_TEXTURE0. See glActiveTexture.
GL_ALIASED_POINT_SIZE_RANGE
params returns two values, the smallest and largest supported sizes for aliased points.
GL_ALIASED_LINE_WIDTH_RANGE
params returns two values, the smallest and largest supported widths for aliased lines.
GL_ALPHA_BIAS
params returns one value, the alpha bias factor used during pixel transfers. The initial value is 0.

See glPixelTransfer.
GL_ALPHA_BITS
params returns one value, the number of alpha bitplanes in each color buffer.
GL_ALPHA_SCALE
params returns one value, the alpha scale factor used during pixel transfers. The initial value is 1.

See glPixelTransfer.
GL_ALPHA_TEST
params returns a single boolean value indicating whether alpha testing of fragments is enabled.

The initial value is GL_FALSE. See glAlphaFunc.
GL_ALPHA_TEST_FUNC
params returns one value, the symbolic name of the alpha test function. The initial value is

GL_ALWAYS. See glAlphaFunc.

glGet 903

C

GL_ALPHA_TEST_REF
params returns one value, the reference value for the alpha test. The initial value is 0. See

glAlphaFunc. An integer value, if requested, is linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns the
most negative representable integer value.

GL_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the target

GL_ARRAY_BUFFER. If no buffer object is bound to this target, 0 is returned. The initial value is 0.
See glBindBuffer.

GL_ATTRIB_STACK_DEPTH
params returns one value, the depth of the attribute stack. If the stack is empty, 0 is returned.

The initial value is 0. See glPushAttrib.
GL_AUTO_NORMAL
params returns a single boolean value indicating whether 2D map evaluation automatically

generates surface normals. The initial value is GL_FALSE. See glMap2.
GL_AUX_BUFFERS
params returns one value, the number of auxiliary color buffers available.
GL_BLEND
params returns a single boolean value indicating whether blending is enabled. The initial value is

GL_FALSE. See glBlendFunc.
GL_BLEND_COLOR
params returns four values, the red, green, blue, and alpha values which are the components of

the blend color. See glBlendColor.
GL_BLEND_DST_ALPHA
params returns one value, the symbolic constant identifying the alpha destination blend func-

tion. The initial value is GL_ZERO. See glBlendFunc and glBlendFuncSeparate.
GL_BLEND_DST_RGB
params returns one value, the symbolic constant identifying the RGB destination blend function.

The initial value is GL_ZERO. See glBlendFunc and glBlendFuncSeparate.
GL_BLEND_EQUATION_RGB
params returns one value, a symbolic constant indicating whether the RGB blend equation is

GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN or GL_MAX. See
glBlendEquationSeparate.

GL_BLEND_EQUATION_ALPHA
params returns one value, a symbolic constant indicating whether the Alpha blend equation is

GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN or GL_MAX. See
glBlendEquationSeparate.

GL_BLEND_SRC_ALPHA
params returns one value, the symbolic constant identifying the alpha source blend function.

The initial value is GL_ONE. See glBlendFunc and glBlendFuncSeparate.
GL_BLEND_SRC_RGB
params returns one value, the symbolic constant identifying the RGB source blend function. The

initial value is GL_ONE. See glBlendFunc and glBlendFuncSeparate.
GL_BLUE_BIAS
params returns one value, the blue bias factor used during pixel transfers. The initial value is 0.

See glPixelTransfer.
GL_BLUE_BITS
params returns one value, the number of blue bitplanes in each color buffer.
GL_BLUE_SCALE
params returns one value, the blue scale factor used during pixel transfers. The initial value is 1.

See glPixelTransfer.

glGet904

GL_CLIENT_ACTIVE_TEXTURE
params returns a single integer value indicating the current client active multitexture unit. The

initial value is GL_TEXTURE0. See glClientActiveTexture.
GL_CLIENT_ATTRIB_STACK_DEPTH
params returns one value indicating the depth of the attribute stack. The initial value is 0. See

glPushClientAttrib.
GL_CLIP_PLANEi
params returns a single boolean value indicating whether the specified clipping plane is enabled.

The initial value is GL_FALSE. See glClipPlane.
GL_COLOR_ARRAY
params returns a single boolean value indicating whether the color array is enabled. The initial

value is GL_FALSE. See glColorPointer.
GL_COLOR_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the color array. This

buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the most recent
call to glColorPointer. If no buffer object was bound to this target, 0 is returned. The initial value
is 0. See glBindBuffer.

GL_COLOR_ARRAY_SIZE
params returns one value, the number of components per color in the color array. The initial

value is 4. See glColorPointer.
GL_COLOR_ARRAY_STRIDE
params returns one value, the byte offset between consecutive colors in the color array. The

initial value is 0. See glColorPointer.
GL_COLOR_ARRAY_TYPE
params returns one value, the data type of each component in the color array. The initial value is

GL_FLOAT. See glColorPointer.
GL_COLOR_CLEAR_VALUE
params returns four values: the red, green, blue, and alpha values used to clear the color buffers.

Integer values, if requested, are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. The initial value is (0, 0, 0, 0). See glClearColor.

GL_COLOR_LOGIC_OP
params returns a single boolean value indicating whether a fragment’s RGBA color values are

merged into the framebuffer using a logical operation. The initial value is GL_FALSE. See glLogicOp.
GL_COLOR_MATERIAL
params returns a single boolean value indicating whether one or more material parameters are

tracking the current color. The initial value is GL_FALSE. See glColorMaterial.
GL_COLOR_MATERIAL_FACE
params returns one value, a symbolic constant indicating which materials have a parameter that

is tracking the current color. The initial value is GL_FRONT_AND_BACK. See glColorMaterial.
GL_COLOR_MATERIAL_PARAMETER
params returns one value, a symbolic constant indicating which material parameters are tracking

the current color. The initial value is GL_AMBIENT_AND_DIFFUSE. See glColorMaterial.
GL_COLOR_MATRIX
params returns sixteen values: the color matrix on the top of the color matrix stack. Initially this

matrix is the identity matrix. See glPushMatrix.
GL_COLOR_MATRIX_STACK_DEPTH
params returns one value, the maximum supported depth of the projection matrix stack. The

value must be at least 2. See glPushMatrix.
GL_COLOR_SUM
params returns a single boolean value indicating whether primary and secondary color sum is

enabled. See glSecondaryColor.

glGet 905

C

GL_COLOR_TABLE
params returns a single boolean value indicating whether the color table lookup is enabled. See

glColorTable.
GL_COLOR_WRITEMASK
params returns four boolean values: the red, green, blue, and alpha write enables for the color

buffers. The initial value is (GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE). See glColorMask.
GL_COMPRESSED_TEXTURE_FORMATS
params returns a GL_NUM_COMPRESSED_TEXTURE_FORMATS of symbolic constants indicating

which compressed texture formats are available. See glCompressedTexImage2D.
GL_CONVOLUTION_1D
params returns a single boolean value indicating whether 1D convolution is enabled. The initial

value is GL_FALSE. See glConvolutionFilter1D.
GL_CONVOLUTION_2D
params returns a single boolean value indicating whether 2D convolution is enabled. The initial

value is GL_FALSE. See glConvolutionFilter2D.
GL_CULL_FACE
params returns a single boolean value indicating whether polygon culling is enabled. The initial

value is GL_FALSE. See glCullFace.
GL_CULL_FACE_MODE
params returns one value, a symbolic constant indicating which polygon faces are to be culled.

The initial value is GL_BACK. See glCullFace.
GL_CURRENT_COLOR
params returns four values: the red, green, blue, and alpha values of the current color. Integer

values, if requested, are linearly mapped from the internal floating-point representation such that 1.0
returns the most positive representable integer value, and -1.0 returns the most negative representable
integer value. The initial value is (1, 1, 1, 1). See glColor.

GL_CURRENT_FOG_COORD
params returns one value, the current fog coordinate. The initial value is 0. See glFogCoord.
GL_CURRENT_INDEX
params returns one value, the current color index. The initial value is 1. See glIndex.
GL_CURRENT_NORMAL
params returns three values: the x, y, and z values of the current normal. Integer values, if

requested, are linearly mapped from the internal floating-point representation such that 1.0 returns
the most positive representable integer value, and -1.0 returns the most negative representable integer
value. The initial value is (0, 0, 1). See glNormal.

GL_CURRENT_PROGRAM
params returns one value, the name of the program object that is currently active, or 0 if no

program object is active. See glUseProgram.
GL_CURRENT_RASTER_COLOR
params returns four values: the red, green, blue, and alpha color values of the current raster posi-

tion. Integer values, if requested, are linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. The initial value is (1, 1, 1, 1). See glRasterPos.

GL_CURRENT_RASTER_DISTANCE
params returns one value, the distance from the eye to the current raster position. The initial

value is 0. See glRasterPos.
GL_CURRENT_RASTER_INDEX
params returns one value, the color index of the current raster position. The initial value is 1. See

glRasterPos.
GL_CURRENT_RASTER_POSITION
params returns four values: the x, y, z, and w components of the current raster position. x, y, and

z are in window coordinates, and w is in clip coordinates. The initial value is (0, 0, 0, 1). See
glRasterPos.

glGet906

GL_CURRENT_RASTER_POSITION_VALID
params returns a single boolean value indicating whether the current raster position is valid. The

initial value is GL_TRUE. See glRasterPos.
GL_CURRENT_RASTER_SECONDARY_COLOR
params returns four values: the red, green, blue, and alpha secondary color values of the current

raster position. Integer values, if requested, are linearly mapped from the internal floating-point repre-
sentation such that 1.0 returns the most positive representable integer value, and -1.0 returns the
most negative representable integer value. The initial value is (1, 1, 1, 1). See glRasterPos.

GL_CURRENT_RASTER_TEXTURE_COORDS
params returns four values: the s, t, r, and q texture coordinates of the current raster position. The

initial value is (0, 0, 0, 1). See glRasterPos and glMultiTexCoord.
GL_CURRENT_SECONDARY_COLOR
params returns four values: the red, green, blue, and alpha values of the current secondary color.

Integer values, if requested, are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. The initial value is (0, 0, 0, 0). See glSecondaryColor.

GL_CURRENT_TEXTURE_COORDS
params returns four values: the s, t, r, and q current texture coordinates. The initial value is (0, 0,

0, 1). See glMultiTexCoord.
GL_DEPTH_BIAS
params returns one value, the depth bias factor used during pixel transfers. The initial value is 0.

See glPixelTransfer.
GL_DEPTH_BITS
params returns one value, the number of bitplanes in the depth buffer.
GL_DEPTH_CLEAR_VALUE
params returns one value, the value that is used to clear the depth buffer. Integer values, if

requested, are linearly mapped from the internal floating-point representation such that 1.0 returns
the most positive representable integer value, and -1.0 returns the most negative representable integer
value. The initial value is 1. See glClearDepth.

GL_DEPTH_FUNC
params returns one value, the symbolic constant that indicates the depth comparison function.

The initial value is GL_LESS. See glDepthFunc.
GL_DEPTH_RANGE
params returns two values: the near and far mapping limits for the depth buffer. Integer values, if

requested, are linearly mapped from the internal floating-point representation such that 1.0 returns
the most positive representable integer value, and -1.0 returns the most negative representable integer
value. The initial value is (0, 1). See glDepthRange.

GL_DEPTH_SCALE
params returns one value, the depth scale factor used during pixel transfers. The initial value is 1.

See glPixelTransfer.
GL_DEPTH_TEST
params returns a single boolean value indicating whether depth testing of fragments is enabled.

The initial value is GL_FALSE. See glDepthFunc and glDepthRange.
GL_DEPTH_WRITEMASK
params returns a single boolean value indicating if the depth buffer is enabled for writing. The

initial value is GL_TRUE. See glDepthMask.
GL_DITHER
params returns a single boolean value indicating whether dithering of fragment colors and

indices is enabled. The initial value is GL_TRUE.
GL_DOUBLEBUFFER
params returns a single boolean value indicating whether double buffering is supported.

glGet 907

C

GL_DRAW_BUFFER
params returns one value, a symbolic constant indicating which buffers are being drawn to. See

glDrawBuffer. The initial value is GL_BACK if there are back buffers, otherwise it is GL_FRONT.
GL_DRAW_BUFFERi
params returns one value, a symbolic constant indicating which buffers are being drawn to by

the corresponding output color. See glDrawBuffers. The initial value of GL_DRAW_BUFFER0 is
GL_BACK if there are back buffers, otherwise it is GL_FRONT. The initial values of draw buffers for all
other output colors is GL_NONE.

GL_EDGE_FLAG
params returns a single boolean value indicating whether the current edge flag is GL_TRUE or

GL_FALSE. The initial value is GL_TRUE. See glEdgeFlag.
GL_EDGE_FLAG_ARRAY
params returns a single boolean value indicating whether the edge flag array is enabled. The

initial value is GL_FALSE. See glEdgeFlagPointer.
GL_EDGE_FLAG_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the edge flag array.

This buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the most
recent call to glEdgeFlagPointer. If no buffer object was bound to this target, 0 is returned. The
initial value is 0. See glBindBuffer.

GL_EDGE_FLAG_ARRAY_STRIDE
params returns one value, the byte offset between consecutive edge flags in the edge flag array.

The initial value is 0. See glEdgeFlagPointer.
GL_ELEMENT_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the target

GL_ELEMENT_ARRAY_BUFFER. If no buffer object is bound to this target, 0 is returned. The initial
value is 0. See glBindBuffer.

GL_FEEDBACK_BUFFER_SIZE
params returns one value, the size of the feedback buffer. See glFeedbackBuffer.
GL_FEEDBACK_BUFFER_TYPE
params returns one value, the type of the feedback buffer. See glFeedbackBuffer.
GL_FOG
params returns a single boolean value indicating whether fogging is enabled. The initial value is

GL_FALSE. See glFog.
GL_FOG_COORD_ARRAY
params returns a single boolean value indicating whether the fog coordinate array is enabled. The

initial value is GL_FALSE. See glFogCoordPointer.
GL_FOG_COORD_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the fog coordinate

array. This buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the
most recent call to glFogCoordPointer. If no buffer object was bound to this target, 0 is returned.
The initial value is 0. See glBindBuffer.

GL_FOG_COORD_ARRAY_STRIDE
params returns one value, the byte offset between consecutive fog coordinates in the fog coordi-

nate array. The initial value is 0. See glFogCoordPointer.
GL_FOG_COORD_ARRAY_TYPE
params returns one value, the type of the fog coordinate array. The initial value is GL_FLOAT.

See glFogCoordPointer.
GL_FOG_COORD_SRC
params returns one value, a symbolic constant indicating the source of the fog coordinate. The

initial value is GL_FRAGMENT_DEPTH. See glFog.

glGet908

GL_FOG_COLOR
params returns four values: the red, green, blue, and alpha components of the fog color. Integer

values, if requested, are linearly mapped from the internal floating-point representation such that 1.0
returns the most positive representable integer value, and -1.0 returns the most negative representable
integer value. The initial value is (0, 0, 0, 0). See glFog.

GL_FOG_DENSITY
params returns one value, the fog density parameter. The initial value is 1. See glFog.
GL_FOG_END
params returns one value, the end factor for the linear fog equation. The initial value is 1.

See glFog.
GL_FOG_HINT
params returns one value, a symbolic constant indicating the mode of the fog hint. The initial

value is GL_DONT_CARE. See glHint.
GL_FOG_INDEX
params returns one value, the fog color index. The initial value is 0. See glFog.
GL_FOG_MODE
params returns one value, a symbolic constant indicating which fog equation is selected. The

initial value is GL_EXP. See glFog.
GL_FOG_START
params returns one value, the start factor for the linear fog equation. The initial value is 0.

See glFog.
GL_FRAGMENT_SHADER_DERIVATIVE_HINT
params returns one value, a symbolic constant indicating the mode of the derivative accuracy

hint for fragment shaders. The initial value is GL_DONT_CARE. See glHint.
GL_FRONT_FACE
params returns one value, a symbolic constant indicating whether clockwise or counterclockwise

polygon winding is treated as front-facing. The initial value is GL_CCW. See glFrontFace.
GL_GENERATE_MIPMAP_HINT
params returns one value, a symbolic constant indicating the mode of the mipmap generation

filtering hint. The initial value is GL_DONT_CARE. See glHint.
GL_GREEN_BIAS
params returns one value, the green bias factor used during pixel transfers. The initial value is 0.
GL_GREEN_BITS
params returns one value, the number of green bitplanes in each color buffer.
GL_GREEN_SCALE
params returns one value, the green scale factor used during pixel transfers. The initial value is 1.

See glPixelTransfer.
GL_HISTOGRAM
params returns a single boolean value indicating whether histogram is enabled. The initial value

is GL_FALSE. See glHistogram.
GL_INDEX_ARRAY
params returns a single boolean value indicating whether the color index array is enabled. The

initial value is GL_FALSE. See glIndexPointer.
GL_INDEX_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the color index array.

This buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the most
recent call to glIndexPointer. If no buffer object was bound to this target, 0 is returned. The initial
value is 0. See glBindBuffer.

GL_INDEX_ARRAY_STRIDE
params returns one value, the byte offset between consecutive color indexes in the color index

array. The initial value is 0. See glIndexPointer.

glGet 909

C

GL_INDEX_ARRAY_TYPE
params returns one value, the data type of indexes in the color index array. The initial value is

GL_FLOAT. See glIndexPointer.
GL_INDEX_BITS
params returns one value, the number of bitplanes in each color index buffer.
GL_INDEX_CLEAR_VALUE
params returns one value, the color index used to clear the color index buffers. The initial value

is 0. See glClearIndex.
GL_INDEX_LOGIC_OP
params returns a single boolean value indicating whether a fragment’s index values are merged

into the framebuffer using a logical operation. The initial value is GL_FALSE. See glLogicOp.
GL_INDEX_MODE
params returns a single boolean value indicating whether the GL is in color index mode

(GL_TRUE) or RGBA mode (GL_FALSE).
GL_INDEX_OFFSET
params returns one value, the offset added to color and stencil indices during pixel transfers. The

initial value is 0. See glPixelTransfer.
GL_INDEX_SHIFT
params returns one value, the amount that color and stencil indices are shifted during pixel

transfers. The initial value is 0. See glPixelTransfer.
GL_INDEX_WRITEMASK
params returns one value, a mask indicating which bitplanes of each color index buffer can be

written. The initial value is all 1’s. See glIndexMask.
GL_LIGHTi
params returns a single boolean value indicating whether the specified light is enabled. The

initial value is GL_FALSE. See glLight and glLightModel.
GL_LIGHTING
params returns a single boolean value indicating whether lighting is enabled. The initial value is

GL_FALSE. See glLightModel.
GL_LIGHT_MODEL_AMBIENT
params returns four values: the red, green, blue, and alpha components of the ambient intensity

of the entire scene. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns the
most negative representable integer value. The initial value is (0.2, 0.2, 0.2, 1.0). See glLightModel.

GL_LIGHT_MODEL_COLOR_CONTROL
params returns single enumerated value indicating whether specular reflection calculations are

separated from normal lighting computations. The initial value is GL_SINGLE_COLOR.
GL_LIGHT_MODEL_LOCAL_VIEWER
params returns a single boolean value indicating whether specular reflection calculations treat

the viewer as being local to the scene. The initial value is GL_FALSE. See glLightModel.
GL_LIGHT_MODEL_TWO_SIDE
params returns a single boolean value indicating whether separate materials are used to compute

lighting for front- and back-facing polygons. The initial value is GL_FALSE. See glLightModel.
GL_LINE_SMOOTH
params returns a single boolean value indicating whether antialiasing of lines is enabled. The

initial value is GL_FALSE. See glLineWidth.
GL_LINE_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the line antialiasing hint.

The initial value is GL_DONT_CARE. See glHint.
GL_LINE_STIPPLE
params returns a single boolean value indicating whether stippling of lines is enabled. The initial

value is GL_FALSE. See glLineStipple.

glGet910

GL_LINE_STIPPLE_PATTERN
params returns one value, the 16-bit line stipple pattern. The initial value is all 1’s.

See glLineStipple.
GL_LINE_STIPPLE_REPEAT
params returns one value, the line stipple repeat factor. The initial value is 1.

See glLineStipple.
GL_LINE_WIDTH
params returns one value, the line width as specified with glLineWidth. The initial value is 1.
GL_LINE_WIDTH_GRANULARITY
params returns one value, the width difference between adjacent supported widths for antialiased

lines. See glLineWidth.
GL_LINE_WIDTH_RANGE
params returns two values: the smallest and largest supported widths for antialiased lines. See

glLineWidth.
GL_LIST_BASE
params returns one value, the base offset added to all names in arrays presented to

glCallLists. The initial value is 0. See glListBase.
GL_LIST_INDEX
params returns one value, the name of the display list currently under construction. 0 is returned

if no display list is currently under construction. The initial value is 0. See glNewList.
GL_LIST_MODE
params returns one value, a symbolic constant indicating the construction mode of the display

list currently under construction. The initial value is 0. See glNewList.
GL_LOGIC_OP_MODE
params returns one value, a symbolic constant indicating the selected logic operation mode. The

initial value is GL_COPY. See glLogicOp.
GL_MAP1_COLOR_4
params returns a single boolean value indicating whether 1D evaluation generates colors. The

initial value is GL_FALSE. See glMap1.
GL_MAP1_GRID_DOMAIN
params returns two values: the endpoints of the 1D map’s grid domain. The initial value is (0, 1).

See glMapGrid.
GL_MAP1_GRID_SEGMENTS
params returns one value, the number of partitions in the 1D map’s grid domain. The initial

value is 1. See glMapGrid.
GL_MAP1_INDEX
params returns a single boolean value indicating whether 1D evaluation generates color indices.

The initial value is GL_FALSE. See glMap1.
GL_MAP1_NORMAL
params returns a single boolean value indicating whether 1D evaluation generates normals. The

initial value is GL_FALSE. See glMap1.
GL_MAP1_TEXTURE_COORD_1
params returns a single boolean value indicating whether 1D evaluation generates 1D texture

coordinates. The initial value is GL_FALSE. See glMap1.
GL_MAP1_TEXTURE_COORD_2
params returns a single boolean value indicating whether 1D evaluation generates 2D texture

coordinates. The initial value is GL_FALSE. See glMap1.
GL_MAP1_TEXTURE_COORD_3
params returns a single boolean value indicating whether 1D evaluation generates 3D texture

coordinates. The initial value is GL_FALSE. See glMap1.
GL_MAP1_TEXTURE_COORD_4
params returns a single boolean value indicating whether 1D evaluation generates 4D texture

coordinates. The initial value is GL_FALSE. See glMap1.

glGet 911

C

GL_MAP1_VERTEX_3
params returns a single boolean value indicating whether 1D evaluation generates 3D vertex

coordinates. The initial value is GL_FALSE. See glMap1.
GL_MAP1_VERTEX_4
params returns a single boolean value indicating whether 1D evaluation generates 4D vertex

coordinates. The initial value is GL_FALSE. See glMap1.
GL_MAP2_COLOR_4
params returns a single boolean value indicating whether 2D evaluation generates colors. The

initial value is GL_FALSE. See glMap2.
GL_MAP2_GRID_DOMAIN
params returns four values: the endpoints of the 2D map’s i and j grid domains. The initial value

is (0,1; 0,1). See glMapGrid.
GL_MAP2_GRID_SEGMENTS
params returns two values: the number of partitions in the 2D map’s i and j grid domains. The

initial value is (1,1). See glMapGrid.
GL_MAP2_INDEX
params returns a single boolean value indicating whether 2D evaluation generates color indices.

The initial value is GL_FALSE. See glMap2.
GL_MAP2_NORMAL
params returns a single boolean value indicating whether 2D evaluation generates normals. The

initial value is GL_FALSE. See glMap2.
GL_MAP2_TEXTURE_COORD_1
params returns a single boolean value indicating whether 2D evaluation generates 1D texture

coordinates. The initial value is GL_FALSE. See glMap2.
GL_MAP2_TEXTURE_COORD_2
params returns a single boolean value indicating whether 2D evaluation generates 2D texture

coordinates. The initial value is GL_FALSE. See glMap2.
GL_MAP2_TEXTURE_COORD_3
params returns a single boolean value indicating whether 2D evaluation generates 3D texture

coordinates. The initial value is GL_FALSE. See glMap2.
GL_MAP2_TEXTURE_COORD_4
params returns a single boolean value indicating whether 2D evaluation generates 4D texture

coordinates. The initial value is GL_FALSE. See glMap2.
GL_MAP2_VERTEX_3
params returns a single boolean value indicating whether 2D evaluation generates 3D vertex

coordinates. The initial value is GL_FALSE. See glMap2.
GL_MAP2_VERTEX_4
params returns a single boolean value indicating whether 2D evaluation generates 4D vertex

coordinates. The initial value is GL_FALSE. See glMap2.
GL_MAP_COLOR
params returns a single boolean value indicating if colors and color indices are to be replaced by

table lookup during pixel transfers. The initial value is GL_FALSE. See glPixelTransfer.
GL_MAP_STENCIL
params returns a single boolean value indicating if stencil indices are to be replaced by table

lookup during pixel transfers. The initial value is GL_FALSE. See glPixelTransfer.
GL_MATRIX_MODE
params returns one value, a symbolic constant indicating which matrix stack is currently the

target of all matrix operations. The initial value is GL_MODELVIEW. See glMatrixMode.
GL_MAX_3D_TEXTURE_SIZE
params returns one value, a rough estimate of the largest 3D texture that the GL can handle. If

the GL version is 1.2 or greater, use GL_PROXY_TEXTURE_3D to determine if a texture is too large. See
glTexImage3D.

glGet912

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH
params returns one value indicating the maximum supported depth of the client attribute stack.

See glPushClientAttrib.
GL_MAX_ATTRIB_STACK_DEPTH
params returns one value, the maximum supported depth of the attribute stack. The value must

be at least 16. See glPushAttrib.
GL_MAX_CLIP_PLANES
params returns one value, the maximum number of application-defined clipping planes. The

value must be at least 6. See glClipPlane.
GL_MAX_COLOR_MATRIX_STACK_DEPTH
params returns one value, the maximum supported depth of the color matrix stack. The value

must be at least 2. See glPushMatrix.
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used to access

texture maps from the vertex shader and the fragment processor combined. If both the vertex shader
and the fragment processing stage access the same texture image unit, then that counts as using two
texture image units against this limit. The value must be at least 2. See glActiveTexture.

GL_MAX_CUBE_MAP_TEXTURE_SIZE
params returns one value. The value gives a rough estimate of the largest cube-map texture that

the GL can handle. If the GL version is 1.3 or greater, use GL_PROXY_TEXTURE_CUBE_MAP to deter-
mine if a texture is too large. See glTexImage2D.

GL_MAX_DRAW_BUFFERS
params returns one value, the maximum number of simultaneous output colors allowed from a

fragment shader using the gl_FragData built-in array. The value must be at least 1. See
glDrawBuffers.

GL_MAX_ELEMENTS_INDICES
params returns one value, the recommended maximum number of vertex array indices. See

glDrawRangeElements.
GL_MAX_ELEMENTS_VERTICES
params returns one value, the recommended maximum number of vertex array vertices. See

glDrawRangeElements.
GL_MAX_EVAL_ORDER
params returns one value, the maximum equation order supported by 1D and 2D evaluators. The

value must be at least 8. See glMap1 and glMap2.
GL_MAX_FRAGMENT_UNIFORM_COMPONENTS
params returns one value, the maximum number of individual floating-point, integer, or boolean

values that can be held in uniform variable storage for a fragment shader. The value must be at least
64. See glUniform.

GL_MAX_LIGHTS
params returns one value, the maximum number of lights. The value must be at least 8. See

glLight.
GL_MAX_LIST_NESTING
params returns one value, the maximum recursion depth allowed during display-list traversal.

The value must be at least 64. See glCallList.
GL_MAX_MODELVIEW_STACK_DEPTH
params returns one value, the maximum supported depth of the modelview matrix stack. The

value must be at least 32. See glPushMatrix.
GL_MAX_NAME_STACK_DEPTH
params returns one value, the maximum supported depth of the selection name stack. The value

must be at least 64. See glPushName.
GL_MAX_PIXEL_MAP_TABLE
params returns one value, the maximum supported size of a glPixelMap lookup table. The value

must be at least 32. See glPixelMap.

glGet 913

C

GL_MAX_PROJECTION_STACK_DEPTH
params returns one value, the maximum supported depth of the projection matrix stack. The

value must be at least 2. See glPushMatrix.
GL_MAX_TEXTURE_COORDS
params returns one value, the maximum number of texture coordinate sets available to vertex

and fragment shaders. The value must be at least 2. See glActiveTexture and
glClientActiveTexture.

GL_MAX_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used to access

texture maps from the fragment shader. The value must be at least 2. See glActiveTexture.
GL_MAX_TEXTURE_LOD_BIAS
params returns one value, the maximum, absolute value of the texture level-of-detail bias. The

value must be at least 4.
GL_MAX_TEXTURE_SIZE
params returns one value. The value gives a rough estimate of the largest texture that the GL can

handle. If the GL version is 1.1 or greater, use GL_PROXY_TEXTURE_1D or GL_PROXY_TEXTURE_2D to
determine if a texture is too large. See glTexImage1D and glTexImage2D.

GL_MAX_TEXTURE_STACK_DEPTH
params returns one value, the maximum supported depth of the texture matrix stack. The value

must be at least 2. See glPushMatrix.
GL_MAX_TEXTURE_UNITS
params returns a single value indicating the number of conventional texture units supported.

Each conventional texture unit includes both a texture coordinate set and a texture image unit.
Conventional texture units may be used for fixed-function (non-shader) rendering. The value must be
at least 2. Additional texture coordinate sets and texture image units may be accessed from vertex and
fragment shaders. See glActiveTexture and glClientActiveTexture.

GL_MAX_VARYING_FLOATS
params returns one value, the maximum number of interpolators available for processing varying

variables used by vertex and fragment shaders. This value represents the number of individual float-
ing-point values that can be interpolated; varying variables declared as vectors, matrices, and arrays
will all consume multiple interpolators. The value must be at least 32.

GL_MAX_VERTEX_ATTRIBS
params returns one value, the maximum number of 4-component generic vertex attributes acces-

sible to a vertex shader. The value must be at least 16. See glVertexAttrib.
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used to access

texture maps from the vertex shader. The value may be 0. See glActiveTexture.
GL_MAX_VERTEX_UNIFORM_COMPONENTS
params returns one value, the maximum number of individual floating-point, integer, or boolean

values that can be held in uniform variable storage for a vertex shader. The value must be at least 512.
See glUniform.

GL_MAX_VIEWPORT_DIMS
params returns two values: the maximum supported width and height of the viewport. These

must be at least as large as the visible dimensions of the display being rendered to. See glViewport.
GL_MINMAX
params returns a single boolean value indicating whether pixel minmax values are computed.

The initial value is GL_FALSE. See glMinmax.
GL_MODELVIEW_MATRIX
params returns sixteen values: the modelview matrix on the top of the modelview matrix stack.

Initially this matrix is the identity matrix. See glPushMatrix.
GL_MODELVIEW_STACK_DEPTH
params returns one value, the number of matrices on the modelview matrix stack. The initial

value is 1. See glPushMatrix.

glGet914

GL_NAME_STACK_DEPTH
params returns one value, the number of names on the selection name stack. The initial value is

0. See glPushName.
GL_NORMAL_ARRAY
params returns a single boolean value, indicating whether the normal array is enabled. The initial

value is GL_FALSE. See glNormalPointer.
GL_NORMAL_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the normal array.

This buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the most
recent call to glNormalPointer. If no buffer object was bound to this target, 0 is returned. The
initial value is 0. See glBindBuffer.

GL_NORMAL_ARRAY_STRIDE
params returns one value, the byte offset between consecutive normals in the normal array. The

initial value is 0. See glNormalPointer.
GL_NORMAL_ARRAY_TYPE
params returns one value, the data type of each coordinate in the normal array. The initial value

is GL_FLOAT. See glNormalPointer.
GL_NORMALIZE
params returns a single boolean value indicating whether normals are automatically scaled to

unit length after they have been transformed to eye coordinates. The initial value is GL_FALSE. See
glNormal.

GL_NUM_COMPRESSED_TEXTURE_FORMATS
params returns a single integer value indicating the number of available compressed texture

formats. The minimum value is 0. See glCompressedTexImage2D.
GL_PACK_ALIGNMENT
params returns one value, the byte alignment used for writing pixel data to memory. The initial

value is 4. See glPixelStore.
GL_PACK_IMAGE_HEIGHT
params returns one value, the image height used for writing pixel data to memory. The initial

value is 0. See glPixelStore.
GL_PACK_LSB_FIRST
params returns a single boolean value indicating whether single-bit pixels being written to

memory are written first to the least significant bit of each unsigned byte. The initial value is
GL_FALSE. See glPixelStore.

GL_PACK_ROW_LENGTH
params returns one value, the row length used for writing pixel data to memory. The initial value

is 0. See glPixelStore.
GL_PACK_SKIP_IMAGES
params returns one value, the number of pixel images skipped before the first pixel is written

into memory. The initial value is 0. See glPixelStore.
GL_PACK_SKIP_PIXELS
params returns one value, the number of pixel locations skipped before the first pixel is written

into memory. The initial value is 0. See glPixelStore.
GL_PACK_SKIP_ROWS
params returns one value, the number of rows of pixel locations skipped before the first pixel is

written into memory. The initial value is 0. See glPixelStore.
GL_PACK_SWAP_BYTES
params returns a single boolean value indicating whether the bytes of two-byte and four-byte

pixel indices and components are swapped before being written to memory. The initial value is
GL_FALSE. See glPixelStore.

GL_PERSPECTIVE_CORRECTION_HINT
params returns one value, a symbolic constant indicating the mode of the perspective correction

hint. The initial value is GL_DONT_CARE. See glHint.

glGet 915

C

GL_PIXEL_MAP_A_TO_A_SIZE
params returns one value, the size of the alpha-to-alpha pixel translation table. The initial value

is 1. See glPixelMap.
GL_PIXEL_MAP_B_TO_B_SIZE
params returns one value, the size of the blue-to-blue pixel translation table. The initial value is

1. See glPixelMap.
GL_PIXEL_MAP_G_TO_G_SIZE
params returns one value, the size of the green-to-green pixel translation table. The initial value

is 1. See glPixelMap.
GL_PIXEL_MAP_I_TO_A_SIZE
params returns one value, the size of the index-to-alpha pixel translation table. The initial value

is 1. See glPixelMap.
GL_PIXEL_MAP_I_TO_B_SIZE
params returns one value, the size of the index-to-blue pixel translation table. The initial value is

1. See glPixelMap.
GL_PIXEL_MAP_I_TO_G_SIZE
params returns one value, the size of the index-to-green pixel translation table. The initial value

is 1. See glPixelMap.
GL_PIXEL_MAP_I_TO_I_SIZE
params returns one value, the size of the index-to-index pixel translation table. The initial value

is 1. See glPixelMap.
GL_PIXEL_MAP_I_TO_R_SIZE
params returns one value, the size of the index-to-red pixel translation table. The initial value is

1. See glPixelMap.
GL_PIXEL_MAP_R_TO_R_SIZE
params returns one value, the size of the red-to-red pixel translation table. The initial value is 1.

See glPixelMap.
GL_PIXEL_MAP_S_TO_S_SIZE
params returns one value, the size of the stencil-to-stencil pixel translation table. The initial value

is 1. See glPixelMap.
GL_PIXEL_PACK_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the target

GL_PIXEL_PACK_BUFFER. If no buffer object is bound to this target, 0 is returned. The initial value is
0. See glBindBuffer.

GL_PIXEL_UNPACK_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the target

GL_PIXEL_UNPACK_BUFFER. If no buffer object is bound to this target, 0 is returned. The initial value
is 0. See glBindBuffer.

GL_POINT_DISTANCE_ATTENUATION
params returns three values, the coefficients for computing the attenuation value for points.

See glPointParameter.
GL_POINT_FADE_THRESHOLD_SIZE
params returns one value, the point size threshold for determining the point size. See

glPointParameter.
GL_POINT_SIZE
params returns one value, the point size as specified by glPointSize. The initial value is 1.
GL_POINT_SIZE_GRANULARITY
params returns one value, the size difference between adjacent supported sizes for antialiased

points. See glPointSize.
GL_POINT_SIZE_MAX
params returns one value, the upper bound for the attenuated point sizes. The initial value is 0.0.

See glPointParameter.

glGet916

GL_POINT_SIZE_MIN
params returns one value, the lower bound for the attenuated point sizes. The initial value is 1.0.

See glPointParameter.
GL_POINT_SIZE_RANGE
params returns two values: the smallest and largest supported sizes for antialiased points. The

smallest size must be at most 1, and the largest size must be at least 1. See glPointSize.
GL_POINT_SMOOTH
params returns a single boolean value indicating whether antialiasing of points is enabled. The

initial value is GL_FALSE. See glPointSize.
GL_POINT_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the point antialiasing hint.

The initial value is GL_DONT_CARE. See glHint.
GL_POINT_SPRITE
params returns a single boolean value indicating whether point sprite is enabled. The initial value

is GL_FALSE.
GL_POLYGON_MODE
params returns two values: symbolic constants indicating whether front-facing and back-facing

polygons are rasterized as points, lines, or filled polygons. The initial value is GL_FILL. See
glPolygonMode.

GL_POLYGON_OFFSET_FACTOR
params returns one value, the scaling factor used to determine the variable offset that is added to

the depth value of each fragment generated when a polygon is rasterized. The initial value is 0. See
glPolygonOffset.

GL_POLYGON_OFFSET_UNITS
params returns one value. This value is multiplied by an implementation-specific value and then

added to the depth value of each fragment generated when a polygon is rasterized. The initial value is
0. See glPolygonOffset.

GL_POLYGON_OFFSET_FILL
params returns a single boolean value indicating whether polygon offset is enabled for polygons

in fill mode. The initial value is GL_FALSE. See glPolygonOffset.
GL_POLYGON_OFFSET_LINE
params returns a single boolean value indicating whether polygon offset is enabled for polygons

in line mode. The initial value is GL_FALSE. See glPolygonOffset.
GL_POLYGON_OFFSET_POINT
params returns a single boolean value indicating whether polygon offset is enabled for polygons

in point mode. The initial value is GL_FALSE. See glPolygonOffset.
GL_POLYGON_SMOOTH
params returns a single boolean value indicating whether antialiasing of polygons is enabled. The

initial value is GL_FALSE. See glPolygonMode.
GL_POLYGON_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the polygon antialiasing

hint. The initial value is GL_DONT_CARE. See glHint.
GL_POLYGON_STIPPLE
params returns a single boolean value indicating whether polygon stippling is enabled. The

initial value is GL_FALSE. See glPolygonStipple.
GL_POST_COLOR_MATRIX_COLOR_TABLE
params returns a single boolean value indicating whether post color matrix transformation

lookup is enabled. The initial value is GL_FALSE. See glColorTable.
GL_POST_COLOR_MATRIX_RED_BIAS
params returns one value, the red bias factor applied to RGBA fragments after color matrix trans-

formations. The initial value is 0. See glPixelTransfer.

glGet 917

C

GL_POST_COLOR_MATRIX_GREEN_BIAS
params returns one value, the green bias factor applied to RGBA fragments after color matrix

transformations. The initial value is 0. See glPixelTransfer.
GL_POST_COLOR_MATRIX_BLUE_BIAS
params returns one value, the blue bias factor applied to RGBA fragments after color matrix

transformations. The initial value is 0. See glPixelTransfer.
GL_POST_COLOR_MATRIX_ALPHA_BIAS
params returns one value, the alpha bias factor applied to RGBA fragments after color matrix

transformations. The initial value is 0. See glPixelTransfer.
GL_POST_COLOR_MATRIX_RED_SCALE
params returns one value, the red scale factor applied to RGBA fragments after color matrix trans-

formations. The initial value is 1. See glPixelTransfer.
GL_POST_COLOR_MATRIX_GREEN_SCALE
params returns one value, the green scale factor applied to RGBA fragments after color matrix

transformations. The initial value is 1. See glPixelTransfer.
GL_POST_COLOR_MATRIX_BLUE_SCALE
params returns one value, the blue scale factor applied to RGBA fragments after color matrix

transformations. The initial value is 1. See glPixelTransfer.
GL_POST_COLOR_MATRIX_ALPHA_SCALE
params returns one value, the alpha scale factor applied to RGBA fragments after color matrix

transformations. The initial value is 1. See glPixelTransfer.
GL_POST_CONVOLUTION_COLOR_TABLE
params returns a single boolean value indicating whether post convolution lookup is enabled.

The initial value is GL_FALSE. See glColorTable.
GL_POST_CONVOLUTION_RED_BIAS
params returns one value, the red bias factor applied to RGBA fragments after convolution. The

initial value is 0. See glPixelTransfer.
GL_POST_CONVOLUTION_GREEN_BIAS
params returns one value, the green bias factor applied to RGBA fragments after convolution. The

initial value is 0. See glPixelTransfer.
GL_POST_CONVOLUTION_BLUE_BIAS
params returns one value, the blue bias factor applied to RGBA fragments after convolution. The

initial value is 0. See glPixelTransfer.
GL_POST_CONVOLUTION_ALPHA_BIAS
params returns one value, the alpha bias factor applied to RGBA fragments after convolution. The

initial value is 0. See glPixelTransfer.
GL_POST_CONVOLUTION_RED_SCALE
params returns one value, the red scale factor applied to RGBA fragments after convolution. The

initial value is 1. See glPixelTransfer.
GL_POST_CONVOLUTION_GREEN_SCALE
params returns one value, the green scale factor applied to RGBA fragments after convolution.

The initial value is 1. See glPixelTransfer.
GL_POST_CONVOLUTION_BLUE_SCALE
params returns one value, the blue scale factor applied to RGBA fragments after convolution. The

initial value is 1. See glPixelTransfer.
GL_POST_CONVOLUTION_ALPHA_SCALE
params returns one value, the alpha scale factor applied to RGBA fragments after convolution.

The initial value is 1. See glPixelTransfer.
GL_PROJECTION_MATRIX
params returns sixteen values: the projection matrix on the top of the projection matrix stack.

Initially this matrix is the identity matrix. See glPushMatrix.

glGet918

GL_PROJECTION_STACK_DEPTH
params returns one value, the number of matrices on the projection matrix stack. The initial

value is 1. See glPushMatrix.
GL_READ_BUFFER
params returns one value, a symbolic constant indicating which color buffer is selected for

reading. The initial value is GL_BACK if there is a back buffer, otherwise it is GL_FRONT. See
glReadPixels and glAccum.

GL_RED_BIAS
params returns one value, the red bias factor used during pixel transfers. The initial value is 0.
GL_RED_BITS
params returns one value, the number of red bitplanes in each color buffer.
GL_RED_SCALE
params returns one value, the red scale factor used during pixel transfers. The initial value is 1.

See glPixelTransfer.
GL_RENDER_MODE
params returns one value, a symbolic constant indicating whether the GL is in render, select, or

feedback mode. The initial value is GL_RENDER. See glRenderMode.
GL_RESCALE_NORMAL
params returns single boolean value indicating whether normal rescaling is enabled. See

glEnable.
GL_RGBA_MODE
params returns a single boolean value indicating whether the GL is in RGBA mode (true) or color

index mode (false). See glColor.
GL_SAMPLE_BUFFERS
params returns a single integer value indicating the number of sample buffers associated with the

framebuffer. See glSampleCoverage.
GL_SAMPLE_COVERAGE_VALUE
params returns a single positive floating-point value indicating the current sample coverage

value. See glSampleCoverage.
GL_SAMPLE_COVERAGE_INVERT
params returns a single boolean value indicating if the temporary coverage value should be

inverted. See glSampleCoverage.
GL_SAMPLES
params returns a single integer value indicating the coverage mask size. See glSampleCoverage.
GL_SCISSOR_BOX
params returns four values: the x and y window coordinates of the scissor box, followed by its

width and height. Initially the x and y window coordinates are both 0 and the width and height are
set to the size of the window. See glScissor.

GL_SCISSOR_TEST
params returns a single boolean value indicating whether scissoring is enabled. The initial value

is GL_FALSE. See glScissor.
GL_SECONDARY_COLOR_ARRAY
params returns a single boolean value indicating whether the secondary color array is enabled.

The initial value is GL_FALSE. See glSecondaryColorPointer.
GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the secondary color

array. This buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the
most recent call to glSecondaryColorPointer. If no buffer object was bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_SECONDARY_COLOR_ARRAY_SIZE
params returns one value, the number of components per color in the secondary color array. The

initial value is 3. See glSecondaryColorPointer.

glGet 919

C

GL_SECONDARY_COLOR_ARRAY_STRIDE
params returns one value, the byte offset between consecutive colors in the secondary color array.

The initial value is 0. See glSecondaryColorPointer.
GL_SECONDARY_COLOR_ARRAY_TYPE
params returns one value, the data type of each component in the secondary color array. The

initial value is GL_FLOAT. See glSecondaryColorPointer.
GL_SELECTION_BUFFER_SIZE
params return one value, the size of the selection buffer. See glSelectBuffer.
GL_SEPARABLE_2D
params returns a single boolean value indicating whether 2D separable convolution is enabled.

The initial value is GL_FALSE. See glSeparableFilter2D.
GL_SHADE_MODEL
params returns one value, a symbolic constant indicating whether the shading mode is flat or

smooth. The initial value is GL_SMOOTH. See glShadeModel.
GL_SMOOTH_LINE_WIDTH_RANGE
params returns two values, the smallest and largest supported widths for antialiased lines. See

glLineWidth.
GL_SMOOTH_LINE_WIDTH_GRANULARITY
params returns one value, the granularity of widths for antialiased lines. See glLineWidth.
GL_SMOOTH_POINT_SIZE_RANGE
params returns two values, the smallest and largest supported widths for antialiased points. See

glPointSize.
GL_SMOOTH_POINT_SIZE_GRANULARITY
params returns one value, the granularity of sizes for antialiased points. See glPointSize.
GL_STENCIL_BACK_FAIL
params returns one value, a symbolic constant indicating what action is taken for back-facing

polygons when the stencil test fails. The initial value is GL_KEEP. See glStencilOpSeparate.
GL_STENCIL_BACK_FUNC
params returns one value, a symbolic constant indicating what function is used for back-facing

polygons to compare the stencil reference value with the stencil buffer value. The initial value is
GL_ALWAYS. See glStencilFuncSeparate.

GL_STENCIL_BACK_PASS_DEPTH_FAIL
params returns one value, a symbolic constant indicating what action is taken for back-facing

polygons when the stencil test passes, but the depth test fails. The initial value is GL_KEEP. See
glStencilOpSeparate.

GL_STENCIL_BACK_PASS_DEPTH_PASS
params returns one value, a symbolic constant indicating what action is taken for back-facing

polygons when the stencil test passes and the depth test passes. The initial value is GL_KEEP. See
glStencilOpSeparate.

GL_STENCIL_BACK_REF
params returns one value, the reference value that is compared with the contents of the stencil

buffer for back-facing polygons. The initial value is 0. See glStencilFuncSeparate.
GL_STENCIL_BACK_VALUE_MASK
params returns one value, the mask that is used for back-facing polygons to mask both the stencil

reference value and the stencil buffer value before they are compared. The initial value is all 1’s. See
glStencilFuncSeparate.

GL_STENCIL_BACK_WRITEMASK
params returns one value, the mask that controls writing of the stencil bitplanes for back-facing

polygons. The initial value is all 1’s. See glStencilMaskSeparate.
GL_STENCIL_BITS
params returns one value, the number of bitplanes in the stencil buffer.

glGet920

GL_STENCIL_CLEAR_VALUE
params returns one value, the index to which the stencil bitplanes are cleared. The initial value is

0. See glClearStencil.
GL_STENCIL_FAIL
params returns one value, a symbolic constant indicating what action is taken when the stencil

test fails. The initial value is GL_KEEP. See glStencilOp. If the GL version is 2.0 or greater, this
stencil state only affects non-polygons and front-facing polygons. Back-facing polygons use separate
stencil state. See glStencilOpSeparate.

GL_STENCIL_FUNC
params returns one value, a symbolic constant indicating what function is used to compare the

stencil reference value with the stencil buffer value. The initial value is GL_ALWAYS. See
glStencilFunc. If the GL version is 2.0 or greater, this stencil state only affects non-polygons and
front-facing polygons. Back-facing polygons use separate stencil state. See glStencilFuncSeparate.

GL_STENCIL_PASS_DEPTH_FAIL
params returns one value, a symbolic constant indicating what action is taken when the stencil

test passes, but the depth test fails. The initial value is GL_KEEP. See glStencilOp. If the GL version
is 2.0 or greater, this stencil state only affects non-polygons and front-facing polygons. Back-facing
polygons use separate stencil state. See glStencilOpSeparate.

GL_STENCIL_PASS_DEPTH_PASS
params returns one value, a symbolic constant indicating what action is taken when the stencil

test passes and the depth test passes. The initial value is GL_KEEP. See glStencilOp. If the GL
version is 2.0 or greater, this stencil state only affects non-polygons and front-facing polygons. Back-
facing polygons use separate stencil state. See glStencilOpSeparate.

GL_STENCIL_REF
params returns one value, the reference value that is compared with the contents of the stencil

buffer. The initial value is 0. See glStencilFunc. If the GL version is 2.0 or greater, this stencil state
only affects non-polygons and front-facing polygons. Back-facing polygons use separate stencil state.
See glStencilFuncSeparate.

GL_STENCIL_TEST
params returns a single boolean value indicating whether stencil testing of fragments is enabled.

The initial value is GL_FALSE. See glStencilFunc and glStencilOp.
GL_STENCIL_VALUE_MASK
params returns one value, the mask that is used to mask both the stencil reference value and the

stencil buffer value before they are compared. The initial value is all 1’s. See glStencilFunc. If the
GL version is 2.0 or greater, this stencil state only affects non-polygons and front-facing polygons.
Back-facing polygons use separate stencil state. See glStencilFuncSeparate.

GL_STENCIL_WRITEMASK
params returns one value, the mask that controls writing of the stencil bitplanes. The initial

value is all 1’s. See glStencilMask. If the GL version is 2.0 or greater, this stencil state only affects
non-polygons and front-facing polygons. Back-facing polygons use separate stencil state. See
glStencilMaskSeparate.

GL_STEREO
params returns a single boolean value indicating whether stereo buffers (left and right) are

supported.
GL_SUBPIXEL_BITS
params returns one value, an estimate of the number of bits of subpixel resolution that are used

to position rasterized geometry in window coordinates. The initial value is 4.
GL_TEXTURE_1D
params returns a single boolean value indicating whether 1D texture mapping is enabled. The

initial value is GL_FALSE. See glTexImage1D.
GL_TEXTURE_BINDING_1D
params returns a single value, the name of the texture currently bound to the target

GL_TEXTURE_1D. The initial value is 0. See glBindTexture.

glGet 921

C

GL_TEXTURE_2D
params returns a single boolean value indicating whether 2D texture mapping is enabled. The

initial value is GL_FALSE. See glTexImage2D.
GL_TEXTURE_BINDING_2D
params returns a single value, the name of the texture currently bound to the target

GL_TEXTURE_2D. The initial value is 0. See glBindTexture.
GL_TEXTURE_3D
params returns a single boolean value indicating whether 3D texture mapping is enabled. The

initial value is GL_FALSE. See glTexImage3D.
GL_TEXTURE_BINDING_3D
params returns a single value, the name of the texture currently bound to the target

GL_TEXTURE_3D. The initial value is 0. See glBindTexture.
GL_TEXTURE_BINDING_CUBE_MAP
params returns a single value, the name of the texture currently bound to the target

GL_TEXTURE_CUBE_MAP. The initial value is 0. See glBindTexture.
GL_TEXTURE_COMPRESSION_HINT
params returns a single value indicating the mode of the texture compression hint. The initial

value is GL_DONT_CARE.
GL_TEXTURE_COORD_ARRAY
params returns a single boolean value indicating whether the texture coordinate array is enabled.

The initial value is GL_FALSE. See glTexCoordPointer.
GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the texture coordi-

nate array. This buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of
the most recent call to glTexCoordPointer. If no buffer object was bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_TEXTURE_COORD_ARRAY_SIZE
params returns one value, the number of coordinates per element in the texture coordinate array.

The initial value is 4. See glTexCoordPointer.
GL_TEXTURE_COORD_ARRAY_STRIDE
params returns one value, the byte offset between consecutive elements in the texture coordinate

array. The initial value is 0. See glTexCoordPointer.
GL_TEXTURE_COORD_ARRAY_TYPE
params returns one value, the data type of the coordinates in the texture coordinate array. The

initial value is GL_FLOAT. See glTexCoordPointer.
GL_TEXTURE_CUBE_MAP
params returns a single boolean value indicating whether cube-mapped texture coordinate gener-

ation is enabled. The initial value is GL_FALSE. See glTexGen.
GL_TEXTURE_GEN_Q
params returns a single boolean value indicating whether automatic generation of the q texture

coordinate is enabled. The initial value is GL_FALSE. See glTexGen.
GL_TEXTURE_GEN_R
params returns a single boolean value indicating whether automatic generation of the r texture

coordinate is enabled. The initial value is GL_FALSE. See glTexGen.
GL_TEXTURE_GEN_S
params returns a single boolean value indicating whether automatic generation of the S texture

coordinate is enabled. The initial value is GL_FALSE. See glTexGen.
GL_TEXTURE_GEN_T
params returns a single boolean value indicating whether automatic generation of the T texture

coordinate is enabled. The initial value is GL_FALSE. See glTexGen.
GL_TEXTURE_MATRIX
params returns sixteen values: the texture matrix on the top of the texture matrix stack. Initially

this matrix is the identity matrix. See glPushMatrix.

glGet922

GL_TEXTURE_STACK_DEPTH
params returns one value, the number of matrices on the texture matrix stack. The initial value is

1. See glPushMatrix.
GL_TRANSPOSE_COLOR_MATRIX
params returns 16 values, the elements of the color matrix in row-major order. See

glLoadTransposeMatrix.
GL_TRANSPOSE_MODELVIEW_MATRIX
params returns 16 values, the elements of the modelview matrix in row-major order. See

glLoadTransposeMatrix.
GL_TRANSPOSE_PROJECTION_MATRIX
params returns 16 values, the elements of the projection matrix in row-major order. See

glLoadTransposeMatrix.
GL_TRANSPOSE_TEXTURE_MATRIX
params returns 16 values, the elements of the texture matrix in row-major order. See

glLoadTransposeMatrix.
GL_UNPACK_ALIGNMENT
params returns one value, the byte alignment used for reading pixel data from memory. The

initial value is 4. See glPixelStore.
GL_UNPACK_IMAGE_HEIGHT
params returns one value, the image height used for reading pixel data from memory. The initial

is 0. See glPixelStore.
GL_UNPACK_LSB_FIRST
params returns a single boolean value indicating whether single-bit pixels being read from

memory are read first from the least significant bit of each unsigned byte. The initial value is
GL_FALSE. See glPixelStore.

GL_UNPACK_ROW_LENGTH
params returns one value, the row length used for reading pixel data from memory. The initial

value is 0. See glPixelStore.
GL_UNPACK_SKIP_IMAGES
params returns one value, the number of pixel images skipped before the first pixel is read from

memory. The initial value is 0. See glPixelStore.
GL_UNPACK_SKIP_PIXELS
params returns one value, the number of pixel locations skipped before the first pixel is read

from memory. The initial value is 0. See glPixelStore.
GL_UNPACK_SKIP_ROWS
params returns one value, the number of rows of pixel locations skipped before the first pixel is

read from memory. The initial value is 0. See glPixelStore.
GL_UNPACK_SWAP_BYTES
params returns a single boolean value indicating whether the bytes of two-byte and four-byte

pixel indices and components are swapped after being read from memory. The initial value is
GL_FALSE. See glPixelStore.

GL_VERTEX_ARRAY
params returns a single boolean value indicating whether the vertex array is enabled. The initial

value is GL_FALSE. See glVertexPointer.
GL_VERTEX_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object associated with the vertex array. This

buffer object would have been bound to the target GL_ARRAY_BUFFER at the time of the most recent
call to glVertexPointer. If no buffer object was bound to this target, 0 is returned. The initial value
is 0. See glBindBuffer.

GL_VERTEX_ARRAY_SIZE
params returns one value, the number of coordinates per vertex in the vertex array. The initial

value is 4. See glVertexPointer.

glGet 923

C

GL_VERTEX_ARRAY_STRIDE
params returns one value, the byte offset between consecutive vertices in the vertex array. The

initial value is 0. See glVertexPointer.
GL_VERTEX_ARRAY_TYPE
params returns one value, the data type of each coordinate in the vertex array. The initial value is

GL_FLOAT. See glVertexPointer.
GL_VERTEX_PROGRAM_POINT_SIZE
params returns a single boolean value indicating whether vertex program point size mode is

enabled. If enabled, and a vertex shader is active, then the point size is taken from the shader built-in
gl_PointSize. If disabled, and a vertex shader is active, then the point size is taken from the point
state as specified by glPointSize. The initial value is GL_FALSE.

GL_VERTEX_PROGRAM_TWO_SIDE
params returns a single boolean value indicating whether vertex program two-sided color mode is

enabled. If enabled, and a vertex shader is active, then the GL chooses the back color output for back-
facing polygons, and the front color output for non-polygons and front-facing polygons. If disabled,
and a vertex shader is active, then the front color output is always selected. The initial value is
GL_FALSE.

GL_VIEWPORT
params returns four values: the x and y window coordinates of the viewport, followed by its

width and height. Initially the x and y window coordinates are both set to 0, and the width and
height are set to the width and height of the window into which the GL will do its rendering. See
glViewport.

GL_ZOOM_X
params returns one value, the x pixel zoom factor. The initial value is 1. See glPixelZoom.
GL_ZOOM_Y
params returns one value, the y pixel zoom factor. The initial value is 1. See glPixelZoom.
Many of the boolean parameters can also be queried more easily using glIsEnabled.

Notes

GL_COLOR_LOGIC_OP, GL_COLOR_ARRAY, GL_COLOR_ARRAY_SIZE, GL_COLOR_ARRAY_STRIDE,
GL_COLOR_ARRAY_TYPE, GL_EDGE_FLAG_ARRAY, GL_EDGE_FLAG_ARRAY_STRIDE, GL_INDEX_ARRAY,
GL_INDEX_ARRAY_STRIDE, GL_INDEX_ARRAY_TYPE, GL_INDEX_LOGIC_OP, GL_NORMAL_ARRAY,
GL_NORMAL_ARRAY_STRIDE, GL_NORMAL_ARRAY_TYPE, GL_POLYGON_OFFSET_UNITS,
GL_POLYGON_OFFSET_FACTOR, GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_TEXTURE_COORD_ARRAY, GL_TEXTURE_COORD_ARRAY_SIZE,
GL_TEXTURE_COORD_ARRAY_STRIDE, GL_TEXTURE_COORD_ARRAY_TYPE, GL_VERTEX_ARRAY,
GL_VERTEX_ARRAY_SIZE, GL_VERTEX_ARRAY_STRIDE, and GL_VERTEX_ARRAY_TYPE are available
only if the GL version is 1.1 or greater.

GL_ALIASED_POINT_SIZE_RANGE, GL_FEEDBACK_BUFFER_SIZE, GL_FEEDBACK_BUFFER_TYPE,
GL_LIGHT_MODEL_AMBIENT, GL_LIGHT_MODEL_COLOR_CONTROL, GL_MAX_3D_TEXTURE_SIZE,
GL_MAX_ELEMENTS_INDICES, GL_MAX_ELEMENTS_VERTICES, GL_PACK_IMAGE_HEIGHT,
GL_PACK_SKIP_IMAGES, GL_RESCALE_NORMAL, GL_SELECTION_BUFFER_SIZE,
GL_SMOOTH_LINE_WIDTH_GRANULARITY, GL_SMOOTH_LINE_WIDTH_RANGE,
GL_SMOOTH_POINT_SIZE_GRANULARITY, GL_SMOOTH_POINT_SIZE_RANGE, GL_TEXTURE_3D,
GL_TEXTURE_BINDING_3D, GL_UNPACK_IMAGE_HEIGHT, and GL_UNPACK_SKIP_IMAGES are available
only if the GL version is 1.2 or greater.

GL_COMPRESSED_TEXTURE_FORMATS, GL_NUM_COMPRESSED_TEXTURE_FORMATS,
GL_TEXTURE_BINDING_CUBE_MAP, and GL_TEXTURE_COMPRESSION_HINT are available only if the
GL version is 1.3 or greater.

GL_BLEND_DST_ALPHA, GL_BLEND_DST_RGB, GL_BLEND_SRC_ALPHA, GL_BLEND_SRC_RGB,
GL_CURRENT_FOG_COORD, GL_CURRENT_SECONDARY_COLOR, GL_FOG_COORD_ARRAY_STRIDE,
GL_FOG_COORD_ARRAY_TYPE, GL_FOG_COORD_SRC, GL_MAX_TEXTURE_LOD_BIAS,

glGet924

GL_POINT_SIZE_MIN, GL_POINT_SIZE_MAX, GL_POINT_FADE_THRESHOLD_SIZE,
GL_POINT_DISTANCE_ATTENUATION, GL_SECONDARY_COLOR_ARRAY_SIZE,
GL_SECONDARY_COLOR_ARRAY_STRIDE, and GL_SECONDARY_COLOR_ARRAY_TYPE are available only
if the GL version is 1.4 or greater.

GL_ARRAY_BUFFER_BINDING, GL_COLOR_ARRAY_BUFFER_BINDING,
GL_EDGE_FLAG_ARRAY_BUFFER_BINDING, GL_ELEMENT_ARRAY_BUFFER_BINDING,
GL_FOG_COORD_ARRAY_BUFFER_BINDING, GL_INDEX_ARRAY_BUFFER_BINDING,
GL_NORMAL_ARRAY_BUFFER_BINDING, GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING,
GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING, and GL_VERTEX_ARRAY_BUFFER_BINDING are avail-
able only if the GL version is 1.5 or greater.

GL_BLEND_EQUATION_ALPHA, GL_BLEND_EQUATION_RGB, GL_DRAW_BUFFERi,
GL_FRAGMENT_SHADER_DERIVATIVE_HINT, GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS,
GL_MAX_DRAW_BUFFERS, GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, GL_MAX_TEXTURE_COORDS,
GL_MAX_TEXTURE_IMAGE_UNITS, GL_MAX_VARYING_FLOATS, GL_MAX_VERTEX_ATTRIBS,
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, GL_MAX_VERTEX_UNIFORM_COMPONENTS,
GL_POINT_SPRITE, GL_STENCIL_BACK_FAIL, GL_STENCIL_BACK_FUNC,
GL_STENCIL_BACK_PASS_DEPTH_FAIL, GL_STENCIL_BACK_PASS_DEPTH_PASS,
GL_STENCIL_BACK_REF, GL_STENCIL_BACK_VALUE_MASK, GL_STENCIL_BACK_WRITEMASK,
GL_VERTEX_PROGRAM_POINT_SIZE, and GL_VERTEX_PROGRAM_TWO_SIDE are available only if the
GL version is 2.0 or greater.

GL_CURRENT_RASTER_SECONDARY_COLOR, GL_PIXEL_PACK_BUFFER_BINDING and
GL_PIXEL_UNPACK_BUFFER_BINDING are available only if the GL version is 2.1 or greater.

GL_LINE_WIDTH_GRANULARITY was deprecated in GL version 1.2. Its functionality was replaced
by GL_SMOOTH_LINE_WIDTH_GRANULARITY.

GL_LINE_WIDTH_RANGE was deprecated in GL version 1.2. Its functionality was replaced by
GL_SMOOTH_LINE_WIDTH_RANGE.

GL_POINT_SIZE_GRANULARITY was deprecated in GL version 1.2. Its functionality was replaced
by GL_SMOOTH_POINT_SIZE_GRANULARITY.

GL_POINT_SIZE_RANGE was deprecated in GL version 1.2. Its functionality was replaced by
GL_SMOOTH_POINT_SIZE_RANGE.

GL_BLEND_EQUATION was deprecated in GL version 2.0. Its functionality was replaced by
GL_BLEND_EQUATION_RGB and GL_BLEND_EQUATION_ALPHA.

GL_COLOR_MATRIX, GL_COLOR_MATRIX_STACK_DEPTH, GL_COLOR_TABLE, GL_CONVOLUTION_1D,
GL_CONVOLUTION_2D, GL_HISTOGRAM, GL_MAX_COLOR_MATRIX_STACK_DEPTH, GL_MINMAX,
GL_POST_COLOR_MATRIX_COLOR_TABLE, GL_POST_COLOR_MATRIX_RED_BIAS,
GL_POST_COLOR_MATRIX_GREEN_BIAS, GL_POST_COLOR_MATRIX_BLUE_BIAS,
GL_POST_COLOR_MATRIX_ALPHA_BIAS, GL_POST_COLOR_MATRIX_RED_SCALE,
GL_POST_COLOR_MATRIX_GREEN_SCALE, GL_POST_COLOR_MATRIX_BLUE_SCALE,
GL_POST_COLOR_MATRIX_ALPHA_SCALE, GL_POST_CONVOLUTION_COLOR_TABLE, GL_POST_
CONVOLUTION_RED_BIAS, GL_POST_CONVOLUTION_GREEN_BIAS,
GL_POST_CONVOLUTION_BLUE_BIAS, GL_POST_CONVOLUTION_ALPHA_BIAS, GL_POST_
CONVOLUTION_RED_SCALE, GL_POST_CONVOLUTION_GREEN_SCALE,
GL_POST_CONVOLUTION_BLUE_SCALE, GL_POST_CONVOLUTION_ALPHA_SCALE, and GL_
SEPARABLE_2D are available only if ARB_imaging is returned from glGet when called with the
argument GL_EXTENSIONS.

When the ARB_multitexture extension is supported, or the GL version is 1.3 or greater, the
following parameters return the associated value for the active texture unit:
GL_CURRENT_RASTER_TEXTURE_COORDS, GL_TEXTURE_1D, GL_TEXTURE_BINDING_1D,
GL_TEXTURE_2D, GL_TEXTURE_BINDING_2D, GL_TEXTURE_3D, GL_TEXTURE_BINDING_3D,
GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, GL_TEXTURE_GEN_Q,
GL_TEXTURE_MATRIX, and GL_TEXTURE_STACK_DEPTH. Likewise, the following parameters return
the associated value for the active client texture unit: GL_TEXTURE_COORD_ARRAY,

glGet 925

C

GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING, GL_TEXTURE_COORD_ARRAY_SIZE,
GL_TEXTURE_COORD_ARRAY_STRIDE, GL_TEXTURE_COORD_ARRAY_TYPE.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGet is executed between the execution of glBegin

and the corresponding execution of glEnd.

See Also

glGetActiveAttrib, glGetActiveUniform, glGetAttachedShaders,
glGetAttribLocation, glGetBufferParameteriv, glGetBufferPointerv,
glGetBufferSubData, glGetClipPlane, glGetColorTable, glGetColorTableParameter,
glGetCompressedTexImage, glGetConvolutionFilter, glGetConvolutionParameter,
glGetError, glGetHistogram, glGetHistogramParameter, glGetLight, glGetMap,
glGetMaterial, glGetMinmax, glGetMinmaxParameter, glGetPixelMap, glGetPointerv,
glGetPolygonStipple, glGetProgram, glGetProgramInfoLog, glGetQueryiv,
glGetQueryObject, glGetSeparableFilter, glGetShader, glGetShaderInfoLog,
glGetShaderSource, glGetString, glGetTexEnv, glGetTexGen, glGetTexImage,
glGetTexLevelParameter, glGetTexParameter, glGetUniform, glGetUniformLocation,
glGetVertexAttrib, glGetVertexAttribPointerv, glIsEnabled

glGetActiveAttrib

Return information about an active attribute variable for the specified program object

C Specification

void glGetActiveAttrib(GLuint program,
GLuint index,
GLsizei bufSize,
GLsizei * length,
GLint * size,
GLenum * type,
GLchar * name);

Parameters

program Specifies the program object to be queried.
index Specifies the index of the attribute variable to be queried.
bufSize Specifies the maximum number of characters OpenGL is allowed to write in the charac-

ter buffer indicated by name.
length Returns the number of characters actually written by OpenGL in the string indicated by

name (excluding the null terminator) if a value other than NULL is passed.
size Returns the size of the attribute variable.
type Returns the data type of the attribute variable.
name Returns a null terminated string containing the name of the attribute variable.

Description

glGetActiveAttrib returns information about an active attribute variable in the program
object specified by program. The number of active attributes can be obtained by calling
glGetProgram with the value GL_ACTIVE_ATTRIBUTES. A value of 0 for index selects the first
active attribute variable. Permissible values for index range from 0 to the number of active attribute
variables minus 1.

glGetActiveAttrib926

A vertex shader may use either built-in attribute variables, user-defined attribute variables, or
both. Built-in attribute variables have a prefix of “gl_” and reference conventional OpenGL vertex
attribtes (e.g., gl_Vertex, gl_Normal, etc., see the OpenGL Shading Language specification for a
complete list.) User-defined attribute variables have arbitrary names and obtain their values through
numbered generic vertex attributes. An attribute variable (either built-in or user-defined) is considered
active if it is determined during the link operation that it may be accessed during program execution.
Therefore, program should have previously been the target of a call to glLinkProgram, but it is not
necessary for it to have been linked successfully.

The size of the character buffer required to store the longest attribute variable name in program
can be obtained by calling glGetProgram with the value GL_ACTIVE_ATTRIBUTE_MAX_LENGTH. This
value should be used to allocate a buffer of sufficient size to store the returned attribute name. The
size of this character buffer is passed in bufSize, and a pointer to this character buffer is passed in
name.

glGetActiveAttrib returns the name of the attribute variable indicated by index, storing it in
the character buffer specified by name. The string returned will be null terminated. The actual number
of characters written into this buffer is returned in length, and this count does not include the null
termination character. If the length of the returned string is not required, a value of NULL can be
passed in the length argument.

The type argument will return a pointer to the attribute variable’s data type. The symbolic
constants GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4, GL_FLOAT_MAT2,
GL_FLOAT_MAT3, GL_FLOAT_MAT4, GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2,
GL_FLOAT_MAT3x4, GL_FLOAT_MAT4x2, or GL_FLOAT_MAT4x3 may be returned. The size argument
will return the size of the attribute, in units of the type returned in type.

The list of active attribute variables may include both built-in attribute variables (which begin
with the prefix “gl_”) as well as user-defined attribute variable names.

This function will return as much information as it can about the specified active attribute vari-
able. If no information is available, length will be 0, and name will be an empty string. This situa-
tion could occur if this function is called after a link operation that failed. If an error occurs, the
return values length, size, type, and name will be unmodified.

Notes

glGetActiveAttrib is available only if the GL version is 2.0 or greater.
GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2, GL_FLOAT_MAT3x4,

GL_FLOAT_MAT4x2, and GL_FLOAT_MAT4x3 will only be returned as a type if the GL version is 2.1 or
greater.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if index is greater than or equal to the number of active

attribute variables in program.
GL_INVALID_OPERATION is generated if glGetActiveAttrib is executed between the execution

of glBegin and the corresponding execution of glEnd.
GL_INVALID_VALUE is generated if bufSize is less than 0.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS.
glGetProgram with argument GL_ACTIVE_ATTRIBUTES or

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH.
glIsProgram

See Also

glBindAttribLocation, glLinkProgram, glVertexAttrib, glVertexAttribPointer

glGetActiveAttrib 927

C

glGetActiveUniform

Return information about an active uniform variable for the specified program object

C Specification

void glGetActiveUniform(GLuint program,
GLuint index,
GLsizei bufSize,
GLsizei * length,
GLint * size,
GLenum * type,
GLchar * name);

Parameters

program Specifies the program object to be queried.
index Specifies the index of the uniform variable to be queried.
bufSize Specifies the maximum number of characters OpenGL is allowed to write in the char-

acter buffer indicated by name.
length Returns the number of characters actually written by OpenGL in the string indicated

by name (excluding the null terminator) if a value other than NULL is passed.
size Returns the size of the uniform variable.
type Returns the data type of the uniform variable.
name Returns a null terminated string containing the name of the uniform variable.

Description

glGetActiveUniform returns information about an active uniform variable in the program
object specified by program. The number of active uniform variables can be obtained by calling
glGetProgram with the value GL_ACTIVE_UNIFORMS. A value of 0 for index selects the first active
uniform variable. Permissible values for index range from 0 to the number of active uniform vari-
ables minus 1.

Shaders may use either built-in uniform variables, user-defined uniform variables, or both. Built-
in uniform variables have a prefix of “gl_” and reference existing OpenGL state or values derived from
such state (e.g., gl_Fog, gl_ModelViewMatrix, etc., see the OpenGL Shading Language specification
for a complete list.) User-defined uniform variables have arbitrary names and obtain their values from
the application through calls to glUniform. A uniform variable (either built-in or user-defined) is
considered active if it is determined during the link operation that it may be accessed during program
execution. Therefore, program should have previously been the target of a call to glLinkProgram,
but it is not necessary for it to have been linked successfully.

The size of the character buffer required to store the longest uniform variable name in program can
be obtained by calling glGetProgram with the value GL_ACTIVE_UNIFORM_MAX_LENGTH. This value
should be used to allocate a buffer of sufficient size to store the returned uniform variable name. The size
of this character buffer is passed in bufSize, and a pointer to this character buffer is passed in name.

glGetActiveUniform returns the name of the uniform variable indicated by index, storing it in
the character buffer specified by name. The string returned will be null terminated. The actual number
of characters written into this buffer is returned in length, and this count does not include the null
termination character. If the length of the returned string is not required, a value of NULL can be
passed in the length argument.

The type argument will return a pointer to the uniform variable’s data type. The symbolic
constants GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4, GL_INT, GL_INT_VEC2,
GL_INT_VEC3, GL_INT_VEC4, GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4,
GL_FLOAT_MAT2, GL_FLOAT_MAT3, GL_FLOAT_MAT4, GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4,
GL_FLOAT_MAT3x2, GL_FLOAT_MAT3x4, GL_FLOAT_MAT4x2, GL_FLOAT_MAT4x3, GL_SAMPLER_1D,
GL_SAMPLER_2D, GL_SAMPLER_3D, GL_SAMPLER_CUBE, GL_SAMPLER_1D_SHADOW, or
GL_SAMPLER_2D_SHADOW may be returned.

glGetActiveUniform928

If one or more elements of an array are active, the name of the array is returned in name, the type
is returned in type, and the size parameter returns the highest array element index used, plus one,
as determined by the compiler and/or linker. Only one active uniform variable will be reported for a
uniform array.

Uniform variables that are declared as structures or arrays of structures will not be returned
directly by this function. Instead, each of these uniform variables will be reduced to its fundamental
components containing the “.” and “[]” operators such that each of the names is valid as an argu-
ment to glGetUniformLocation. Each of these reduced uniform variables is counted as one active
uniform variable and is assigned an index. A valid name cannot be a structure, an array of structures,
or a subcomponent of a vector or matrix.

The size of the uniform variable will be returned in size. Uniform variables other than arrays will
have a size of 1. Structures and arrays of structures will be reduced as described earlier, such that each
of the names returned will be a data type in the earlier list. If this reduction results in an array, the
size returned will be as described for uniform arrays; otherwise, the size returned will be 1.

The list of active uniform variables may include both built-in uniform variables (which begin
with the prefix “gl_”) as well as user-defined uniform variable names.

This function will return as much information as it can about the specified active uniform vari-
able. If no information is available, length will be 0, and name will be an empty string. This situa-
tion could occur if this function is called after a link operation that failed. If an error occurs, the
return values length, size, type, and name will be unmodified.

Notes

glGetActiveUniform is available only if the GL version is 2.0 or greater.
GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2, GL_FLOAT_MAT3x4,

GL_FLOAT_MAT4x2, and GL_FLOAT_MAT4x3 will only be returned as a type if the GL version is 2.1
or greater.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if index is greater than or equal to the number of active

uniform variables in program.
GL_INVALID_OPERATION is generated if glGetActiveUniform is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.
GL_INVALID_VALUE is generated if bufSize is less than 0.

Associated Gets

glGet with argument GL_MAX_VERTEX_UNIFORM_COMPONENTS or
GL_MAX_FRAGMENT_UNIFORM_COMPONENTS.

glGetProgram with argument GL_ACTIVE_UNIFORMS or GL_ACTIVE_UNIFORM_MAX_LENGTH.
glIsProgram

See Also

glGetUniform, glGetUniformLocation, glLinkProgram, glUniform, glUseProgram

glGetAttachedShaders

Return the handles of the shader objects attached to a program object

C Specification

void glGetAttachedShaders(GLuint program,
GLsizei maxCount,
GLsizei * count,
GLuint * shaders);

glGetAttachedShaders 929

C

Parameters

program Specifies the program object to be queried.
maxCount Specifies the size of the array for storing the returned object names.
count Returns the number of names actually returned in objects.
shaders Specifies an array that is used to return the names of attached shader objects.

Description

glGetAttachedShaders returns the names of the shader objects attached to program. The
names of shader objects that are attached to program will be returned in shaders. The actual
number of shader names written into shaders is returned in count. If no shader objects are attached
to program, count is set to 0. The maximum number of shader names that may be returned in
shaders is specified by maxCount.

If the number of names actually returned is not required (for instance, if it has just been obtained
by calling glGetProgram), a value of NULL may be passed for count. If no shader objects are attached
to program, a value of 0 will be returned in count. The actual number of attached shaders can be
obtained by calling glGetProgram with the value GL_ATTACHED_SHADERS.

Notes

glGetAttachedShaders is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if maxCount is less than 0.
GL_INVALID_OPERATION is generated if glGetAttachedShaders is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetProgram with argument GL_ATTACHED_SHADERS
glIsProgram

See Also

glAttachShader, glDetachShader

glGetAttribLocation

Return the location of an attribute variable

C Specification

GLint glGetAttribLocation(GLuint program,
const GLchar * name);

Parameters

program Specifies the program object to be queried.
name Points to a null terminated string containing the name of the attribute variable

whose location is to be queried.

Description

glGetAttribLocation queries the previously linked program object specified by program for
the attribute variable specified by name and returns the index of the generic vertex attribute that is
bound to that attribute variable. If name is a matrix attribute variable, the index of the first column of
the matrix is returned. If the named attribute variable is not an active attribute in the specified
program object or if name starts with the reserved prefix “gl_”, a value of -1 is returned.

glGetAttribLocation930

The association between an attribute variable name and a generic attribute index can be specified
at any time by calling glBindAttribLocation. Attribute bindings do not go into effect until
glLinkProgram is called. After a program object has been linked successfully, the index values for
attribute variables remain fixed until the next link command occurs. The attribute values can only be
queried after a link if the link was successful. glGetAttribLocation returns the binding that actu-
ally went into effect the last time glLinkProgram was called for the specified program object.
Attribute bindings that have been specified since the last link operation are not returned by
glGetAttribLocation.

Notes

glGetAttribLocation is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_OPERATION is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program has not been successfully linked.
GL_INVALID_OPERATION is generated if glGetAttribLocation is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetActiveAttrib with argument program and the index of an active attribute
glIsProgram

See Also

glBindAttribLocation, glLinkProgram, glVertexAttrib, glVertexAttribPointer

glGetBufferParameteriv

Return parameters of a buffer object

C Specification

void glGetBufferParameteriv(GLenum target,
GLenum value,
GLint * data);

Parameters

target Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

value Specifies the symbolic name of a buffer object parameter. Accepted values are
GL_BUFFER_ACCESS, GL_BUFFER_MAPPED, GL_BUFFER_SIZE, or GL_BUFFER_USAGE.

data Returns the requested parameter.

Description

glGetBufferParameteriv returns in data a selected parameter of the buffer object specified by
target.

value names a specific buffer object parameter, as follows:
GL_BUFFER_ACCESS
params returns the access policy set while mapping the buffer object. The initial value is

GL_READ_WRITE.
GL_BUFFER_MAPPED
params returns a flag indicating whether the buffer object is currently mapped. The initial value

is GL_FALSE.

glGetBufferParameteriv 931

C

GL_BUFFER_SIZE
params returns the size of the buffer object, measured in bytes. The initial value is 0.
GL_BUFFER_USAGE
params returns the buffer object’s usage pattern. The initial value is GL_STATIC_DRAW.

Notes

If an error is generated, no change is made to the contents of data.
glGetBufferParameteriv is available only if the GL version is 1.5 or greater.
Targets GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL

version is 2.1 or greater.

Errors

GL_INVALID_ENUM is generated if target or value is not an accepted value.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if glGetBufferParameteriv is executed between the

execution of glBegin and the corresponding execution of glEnd.

See Also

glBindBuffer, glBufferData, glMapBuffer, glUnmapBuffer

glGetBufferPointerv

Return the pointer to a mapped buffer object’s data store

C Specification

void glGetBufferPointerv(GLenum target,
GLenum pname,
GLvoid ** params);

Parameters

target Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

pname Specifies the pointer to be returned. The symbolic constant must be
GL_BUFFER_MAP_POINTER.

params Returns the pointer value specified by pname.

Description

glGetBufferPointerv returns pointer information. pname is a symbolic constant indicating the
pointer to be returned, which must be GL_BUFFER_MAP_POINTER, the pointer to which the buffer
object’s data store is mapped. If the data store is not currently mapped, NULL is returned. params is a
pointer to a location in which to place the returned pointer value.

Notes

If an error is generated, no change is made to the contents of params.
glGetBufferPointerv is available only if the GL version is 1.5 or greater.
Targets GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL

version is 2.1 or greater.
The initial value for the pointer is NULL.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.

glGetBufferPointerv932

GL_INVALID_OPERATION is generated if glGetBufferParameteriv is executed between the
execution of glBegin and the corresponding execution of glEnd.

See Also

glBindBuffer, glMapBuffer

glGetBufferSubData

Return a subset of a buffer object’s data store

C Specification

void glGetBufferSubData(GLenum target,
GLintptr offset,
GLsizeiptr size,
GLvoid * data);

Parameters

target Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

offset Specifies the offset into the buffer object’s data store from which data will be returned,
measured in bytes.

size Specifies the size in bytes of the data store region being returned.
data Specifies a pointer to the location where buffer object data is returned.

Description

glGetBufferSubData returns some or all of the data from the buffer object currently bound to
target. Data starting at byte offset offset and extending for size bytes is copied from the data
store to the memory pointed to by data. An error is thrown if the buffer object is currently mapped,
or if offset and size together define a range beyond the bounds of the buffer object’s data store.

Notes

If an error is generated, no change is made to the contents of data.
glGetBufferSubData is available only if the GL version is 1.5 or greater.
Targets GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL

version is 2.1 or greater.

Errors

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_VALUE is generated if offset or size is negative, or if together they define a
region of memory that extends beyond the buffer object’s allocated data store.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if the buffer object being queried is mapped.
GL_INVALID_OPERATION is generated if glGetBufferSubData is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

See Also

glBindBuffer, glBufferData, glBufferSubData, glMapBuffer, glUnmapBuffer

glGetBufferSubData 933

C

glGetClipPlane

Return the coefficients of the specified clipping plane

C Specification

void glGetClipPlane(GLenum plane,
GLdouble * equation);

Parameters

plane Specifies a clipping plane. The number of clipping planes depends on the implemen-
tation, but at least six clipping planes are supported. They are identified by symbolic
names of the form GL_CLIP_PLANEi where i ranges from 0 to the value of
GL_MAX_CLIP_PLANES - 1.

equation Returns four double-precision values that are the coefficients of the plane equation
of plane in eye coordinates. The initial value is (0, 0, 0, 0).

Description

glGetClipPlane returns in equation the four coefficients of the plane equation for plane.

Notes

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.
If an error is generated, no change is made to the contents of equation.

Errors

GL_INVALID_ENUM is generated if plane is not an accepted value.
GL_INVALID_OPERATION is generated if glGetClipPlane is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glClipPlane

glGetColorTable

Retrieve contents of a color lookup table

C Specification

void glGetColorTable(GLenum target,
GLenum format,
GLenum type,
GLvoid * table);

Parameters

target Must be GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or
GL_POST_COLOR_MATRIX_COLOR_TABLE.

format The format of the pixel data in table. The possible values are GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR,
GL_RGBA, and GL_BGRA.

type The type of the pixel data in table. Symbolic constants GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

glGetClipPlane934

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV are
accepted.

table Pointer to a one-dimensional array of pixel data containing the contents of the color
table.

Description

glGetColorTable returns in table the contents of the color table specified by target. No pixel
transfer operations are performed, but pixel storage modes that are applicable to glReadPixels are
performed.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a histogram table is requested, table is treated as a byte offset into the buffer
object’s data store.

Color components that are requested in the specified format, but which are not included in the
internal format of the color lookup table, are returned as zero. The assignments of internal color
components to the components requested by format are

Internal Component Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance Red

Intensity Red

Notes

glGetColorTable is present only if ARB_imaging is returned when glGetString is called with
an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and table is not evenly divisible into the number of bytes needed to
store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetColorTable is executed between the execution of
glBegin and the corresponding execution of glEnd.

glGetColorTable 935

C

Associated Gets

glGetColorTableParameter
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glColorTable, glColorTableParameter

glGetColorTableParameter

Get color lookup table parameters

C Specification

void glGetColorTableParameterfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetColorTableParameteriv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target The target color table. Must be GL_COLOR_TABLE,
GL_POST_CONVOLUTION_COLOR_TABLE, GL_POST_COLOR_MATRIX_COLOR_TABLE,
GL_PROXY_COLOR_TABLE, GL_PROXY_POST_CONVOLUTION_COLOR_TABLE, or
GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

pname The symbolic name of a color lookup table parameter. Must be one of
GL_COLOR_TABLE_BIAS, GL_COLOR_TABLE_SCALE, GL_COLOR_TABLE_FORMAT,
GL_COLOR_TABLE_WIDTH, GL_COLOR_TABLE_RED_SIZE, GL_COLOR_TABLE_GREEN_SIZE,
GL_COLOR_TABLE_BLUE_SIZE, GL_COLOR_TABLE_ALPHA_SIZE,
GL_COLOR_TABLE_LUMINANCE_SIZE, or GL_COLOR_TABLE_INTENSITY_SIZE.

params A pointer to an array where the values of the parameter will be stored.

Description

Returns parameters specific to color table target.
When pname is set to GL_COLOR_TABLE_SCALE or GL_COLOR_TABLE_BIAS,

glGetColorTableParameter returns the color table scale or bias parameters for the table specified
by target. For these queries, target must be set to GL_COLOR_TABLE,
GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE and params
points to an array of four elements, which receive the scale or bias factors for red, green, blue, and
alpha, in that order.

glGetColorTableParameter can also be used to retrieve the format and size parameters for a
color table. For these queries, set target to either the color table target or the proxy color table
target. The format and size parameters are set by glColorTable.

The following table lists the format and size parameters that may be queried. For each symbolic
constant listed below for pname, params must point to an array of the given length and receive the
values indicated.

Parameter N Meaning

GL_COLOR_TABLE_FORMAT 1 Internal format (e.g., GL_RGBA)

GL_COLOR_TABLE_WIDTH 1 Number of elements in table

GL_COLOR_TABLE_RED_SIZE 1 Size of red component, in bits

GL_COLOR_TABLE_GREEN_SIZE 1 Size of green component

GL_COLOR_TABLE_BLUE_SIZE 1 Size of blue component

glGetColorTableParameter936

Parameter N Meaning

GL_COLOR_TABLE_ALPHA_SIZE 1 Size of alpha component

GL_COLOR_TABLE_LUMINANCE_SIZE 1 Size of luminance component

GL_COLOR_TABLE_INTENSITY_SIZE 1 Size of intensity component

Notes

glGetColorTableParameter is present only if ARB_imaging is returned when glGetString is
called with an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.
GL_INVALID_OPERATION is generated if glGetColorTableParameter is executed between the

execution of glBegin and the corresponding execution of glEnd.

See Also

glColorTable, glTexParameter, glColorTableParameter

glGetCompressedTexImage

Return a compressed texture image

C Specification

void glGetCompressedTexImage(GLenum target,
GLint lod,
GLvoid * img);

Parameters

target Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_TEXTURE_2D, and
GL_TEXTURE_3DGL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGA-
TIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are
accepted.

lod Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

img Returns the compressed texture image.

Description

glGetCompressedTexImage returns the compressed texture image associated with target and
lod into img. img should be an array of GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes. target spec-
ifies whether the desired texture image was one specified by glTexImage1D (GL_TEXTURE_1D),
glTexImage2D (GL_TEXTURE_2D or any of GL_TEXTURE_CUBE_MAP_*), or glTexImage3D
(GL_TEXTURE_3D). lod specifies the level-of-detail number of the desired image.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a texture image is requested, img is treated as a byte offset into the buffer
object’s data store.

To minimize errors, first verify that the texture is compressed by calling
glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED. If the texture is compressed,
then determine the amount of memory required to store the compressed texture by calling
glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED_IMAGE_SIZE. Finally, retrieve
the internal format of the texture by calling glGetTexLevelParameter with argument
GL_TEXTURE_INTERNAL_FORMAT. To store the texture for later use, associate the internal format and
size with the retrieved texture image. These data can be used by the respective texture or subtexture
loading routine used for loading target textures.

glGetCompressedTexImage 937

C

Notes

glGetCompressedTexImage is available only if the GL version is 1.3 or greater.

Errors

GL_INVALID_VALUE is generated if lod is less than zero or greater than the maximum number of
LODs permitted by the implementation.

GL_INVALID_OPERATION is generated if glGetCompressedTexImage is used to retrieve a texture
that is in an uncompressed internal format.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if glGetCompressedTexImage is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED
glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glGetTexLevelParameter with argument GL_TEXTURE_INTERNAL_FORMAT
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glCompressedTexSubImage3D, glDrawPixels, glReadPixels, glTexEnv, glTexGen,
glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

glGetConvolutionFilter

Get current 1D or 2D convolution filter kernel

C Specification

void glGetConvolutionFilter(GLenum target,
GLenum format,
GLenum type,
GLvoid * image);

Parameters

target The filter to be retrieved. Must be one of GL_CONVOLUTION_1D or
GL_CONVOLUTION_2D.

format Format of the output image. Must be one of GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA.

type Data type of components in the output image. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

glGetConvolutionFilter938

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

image Pointer to storage for the output image.

Description

glGetConvolutionFilter returns the current 1D or 2D convolution filter kernel as an image.
The one- or two-dimensional image is placed in image according to the specifications in format and
type. No pixel transfer operations are performed on this image, but the relevant pixel storage modes
are applied.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a convolution filter is requested, image is treated as a byte offset into the
buffer object’s data store.

Color components that are present in format but not included in the internal format of the filter
are returned as zero. The assignments of internal color components to the components of format are
as follows.

Internal Component Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance Red

Intensity Red

Notes

glGetConvolutionFilter is present only if ARB_imaging is returned when glGetString is
called with an argument of GL_EXTENSIONS.

The current separable 2D filter must be retrieved with glGetSeparableFilter rather than
glGetConvolutionFilter.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

glGetConvolutionFilter 939

C

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and image is not evenly divisible into the number of bytes needed to
store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetConvolutionFilter is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetConvolutionParameter
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glGetSeparableFilter, glConvolutionParameter, glConvolutionFilter1D,
glConvolutionFilter2D

glGetConvolutionParameter

Get convolution parameters

C Specification

void glGetConvolutionParameterfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetConvolutionParameteriv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target The filter whose parameters are to be retrieved. Must be one of GL_CONVOLUTION_1D,
GL_CONVOLUTION_2D, or GL_SEPARABLE_2D.

pname The parameter to be retrieved. Must be one of GL_CONVOLUTION_BORDER_MODE,
GL_CONVOLUTION_BORDER_COLOR, GL_CONVOLUTION_FILTER_SCALE, GL_
CONVOLUTION_FILTER_BIAS, GL_CONVOLUTION_FORMAT, GL_CONVOLUTION_WIDTH,
GL_CONVOLUTION_HEIGHT, GL_MAX_CONVOLUTION_WIDTH, or GL_MAX_
CONVOLUTION_HEIGHT.

params Pointer to storage for the parameters to be retrieved.

Description

glGetConvolutionParameter retrieves convolution parameters. target determines which
convolution filter is queried. pname determines which parameter is returned:

GL_CONVOLUTION_BORDER_MODE
The convolution border mode. See glConvolutionParameter for a list of border modes.
GL_CONVOLUTION_BORDER_COLOR
The current convolution border color. params must be a pointer to an array of four elements,

which will receive the red, green, blue, and alpha border colors.
GL_CONVOLUTION_FILTER_SCALE
The current filter scale factors. params must be a pointer to an array of four elements, which will

receive the red, green, blue, and alpha filter scale factors in that order.
GL_CONVOLUTION_FILTER_BIAS
The current filter bias factors. params must be a pointer to an array of four elements, which will

receive the red, green, blue, and alpha filter bias terms in that order.
GL_CONVOLUTION_FORMAT
The current internal format. See glConvolutionFilter1D, glConvolutionFilter2D, and

glSeparableFilter2D for lists of allowable formats.

glGetConvolutionParameter940

GL_CONVOLUTION_WIDTH
The current filter image width.
GL_CONVOLUTION_HEIGHT
The current filter image height.
GL_MAX_CONVOLUTION_WIDTH
The maximum acceptable filter image width.
GL_MAX_CONVOLUTION_HEIGHT
The maximum acceptable filter image height.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if pname is not one of the allowable values.
GL_INVALID_ENUM is generated if target is GL_CONVOLUTION_1D and pname is

GL_CONVOLUTION_HEIGHT or GL_MAX_CONVOLUTION_HEIGHT.
GL_INVALID_OPERATION is generated if glGetConvolutionParameter is executed between the

execution of glBegin and the corresponding execution of glEnd.

See Also

glGetConvolutionFilter, glGetSeparableFilter, glConvolutionParameter

glGetError

Return error information

C Specification

GLenum glGetError(void);

Description

glGetError returns the value of the error flag. Each detectable error is assigned a numeric code
and symbolic name. When an error occurs, the error flag is set to the appropriate error code value. No
other errors are recorded until glGetError is called, the error code is returned, and the flag is reset to
GL_NO_ERROR. If a call to glGetError returns GL_NO_ERROR, there has been no detectable error
since the last call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag
has recorded an error, the value of that flag is returned and that flag is reset to GL_NO_ERROR when
glGetError is called. If more than one flag has recorded an error, glGetError returns and clears an
arbitrary error flag value. Thus, glGetError should always be called in a loop, until it returns
GL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.
The following errors are currently defined:
GL_NO_ERROR
No error has been recorded. The value of this symbolic constant is guaranteed to be 0.
GL_INVALID_ENUM
An unacceptable value is specified for an enumerated argument. The offending command is

ignored and has no other side effect than to set the error flag.
GL_INVALID_VALUE
A numeric argument is out of range. The offending command is ignored and has no other side

effect than to set the error flag.
GL_INVALID_OPERATION
The specified operation is not allowed in the current state. The offending command is ignored

and has no other side effect than to set the error flag.

glGetError 941

C

GL_STACK_OVERFLOW
This command would cause a stack overflow. The offending command is ignored and has no

other side effect than to set the error flag.
GL_STACK_UNDERFLOW
This command would cause a stack underflow. The offending command is ignored and has no

other side effect than to set the error flag.
GL_OUT_OF_MEMORY
There is not enough memory left to execute the command. The state of the GL is undefined,

except for the state of the error flags, after this error is recorded.
GL_TABLE_TOO_LARGE
The specified table exceeds the implementation’s maximum supported table size. The offending

command is ignored and has no other side effect than to set the error flag.
When an error flag is set, results of a GL operation are undefined only if GL_OUT_OF_MEMORY has

occurred. In all other cases, the command generating the error is ignored and has no effect on the GL
state or frame buffer contents. If the generating command returns a value, it returns 0. If glGetError
itself generates an error, it returns 0.

Notes

GL_TABLE_TOO_LARGE was introduced in GL version 1.2.

Errors

GL_INVALID_OPERATION is generated if glGetError is executed between the execution of
glBegin and the corresponding execution of glEnd. In this case, glGetError returns 0.

glGetHistogram

Get histogram table

C Specification

void glGetHistogram(GLenum target,
GLboolean reset,
GLenum format,
GLenum type,
GLvoid * values);

Parameters

target Must be GL_HISTOGRAM.
reset If GL_TRUE, each component counter that is actually returned is reset to zero. (Other

counters are unaffected.) If GL_FALSE, none of the counters in the histogram table is
modified.

format The format of values to be returned in values. Must be one of GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA.

type The type of values to be returned in values. Symbolic constants GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV are
accepted.

values A pointer to storage for the returned histogram table.

glGetHistogram942

Description

glGetHistogram returns the current histogram table as a one-dimensional image with the same
width as the histogram. No pixel transfer operations are performed on this image, but pixel storage
modes that are applicable to 1D images are honored.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a histogram table is requested, values is treated as a byte offset into the buffer
object’s data store.

Color components that are requested in the specified format, but which are not included in the
internal format of the histogram, are returned as zero. The assignments of internal color components
to the components requested by format are:

Internal Component Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance Red

Notes

glGetHistogram is present only if ARB_imaging is returned when glGetString is called with
an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not GL_HISTOGRAM.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and values is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetHistogram is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetHistogramParameter
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glHistogram, glResetHistogram,

glGetHistogram 943

C

glGetHistogramParameter

Get histogram parameters

C Specification

void glGetHistogramParameterfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetHistogramParameteriv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target Must be one of GL_HISTOGRAM or GL_PROXY_HISTOGRAM.
pname The name of the parameter to be retrieved. Must be one of GL_HISTOGRAM_WIDTH,

GL_HISTOGRAM_FORMAT, GL_HISTOGRAM_RED_SIZE, GL_HISTOGRAM_GREEN_SIZE,
GL_HISTOGRAM_BLUE_SIZE, GL_HISTOGRAM_ALPHA_SIZE, GL_HISTOGRAM_
LUMINANCE_SIZE, or GL_HISTOGRAM_SINK.

params Pointer to storage for the returned values.

Description

glGetHistogramParameter is used to query parameter values for the current histogram or for a
proxy. The histogram state information may be queried by calling glGetHistogramParameter with
a target of GL_HISTOGRAM (to obtain information for the current histogram table) or
GL_PROXY_HISTOGRAM (to obtain information from the most recent proxy request) and one of the
following values for the pname argument:

Parameter Description

GL_HISTOGRAM_WIDTH Histogram table width

GL_HISTOGRAM_FORMAT Internal format

GL_HISTOGRAM_RED_SIZE Red component counter size, in bits

GL_HISTOGRAM_GREEN_SIZE Green component counter size, in bits

GL_HISTOGRAM_BLUE_SIZE Blue component counter size, in bits

GL_HISTOGRAM_ALPHA_SIZE Alpha component counter size, in bits

GL_HISTOGRAM_LUMINANCE_SIZE Luminance component counter size, in bits

GL_HISTOGRAM_SINK Value of the sink parameter

Notes

glGetHistogramParameter is present only if ARB_imaging is returned when glGetString is
called with an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if pname is not one of the allowable values.
GL_INVALID_OPERATION is generated if glGetHistogramParameter is executed between the

execution of glBegin and the corresponding execution of glEnd.

See Also

glGetHistogram, glHistogram

glGetHistogramParameter944

glGetLight

Return light source parameter values

C Specification

void glGetLightfv(GLenum light,
GLenum pname,
GLfloat * params);

void glGetLightiv(GLenum light,
GLenum pname,
GLint * params);

Parameters

light Specifies a light source. The number of possible lights depends on the implementation,
but at least eight lights are supported. They are identified by symbolic names of the
form GL_LIGHTi where i ranges from 0 to the value of GL_MAX_LIGHTS - 1.

pname Specifies a light source parameter for light. Accepted symbolic names are
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION, GL_SPOT_DIRECTION,
GL_SPOT_EXPONENT, GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION.

params Returns the requested data.

Description

glGetLight returns in params the value or values of a light source parameter. light names the
light and is a symbolic name of the form GL_LIGHTi where i ranges from 0 to the value of
GL_MAX_LIGHTS - 1. GL_MAX_LIGHTS is an implementation dependent constant that is greater than
or equal to eight. pname specifies one of ten light source parameters, again by symbolic name.

The following parameters are defined:
GL_AMBIENT
params returns four integer or floating-point values representing the ambient intensity of the

light source. Integer values, when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to
the most negative representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined. The initial value is (0, 0, 0, 1).

GL_DIFFUSE
params returns four integer or floating-point values representing the diffuse intensity of the light

source. Integer values, when requested, are linearly mapped from the internal floating-point represen-
tation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to the most
negative representable integer value. If the internal value is outside the range [-1,1], the correspond-
ing integer return value is undefined. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights,
the initial value is (0, 0, 0, 0).

GL_SPECULAR
params returns four integer or floating-point values representing the specular intensity of the

light source. Integer values, when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to
the most negative representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for
other lights, the initial value is (0, 0, 0, 0).

GL_POSITION
params returns four integer or floating-point values representing the position of the light source.

Integer values, when requested, are computed by rounding the internal floating-point values to the
nearest integer value. The returned values are those maintained in eye coordinates. They will not be

glGetLight 945

C

equal to the values specified using glLight, unless the modelview matrix was identity at the time
glLight was called. The initial value is (0, 0, 1, 0).

GL_SPOT_DIRECTION
params returns three integer or floating-point values representing the direction of the light

source. Integer values, when requested, are computed by rounding the internal floating-point values
to the nearest integer value. The returned values are those maintained in eye coordinates. They will
not be equal to the values specified using glLight, unless the modelview matrix was identity at the
time glLight was called. Although spot direction is normalized before being used in the lighting
equation, the returned values are the transformed versions of the specified values prior to normaliza-
tion. The initial value is (0,0,-1).

GL_SPOT_EXPONENT
params returns a single integer or floating-point value representing the spot exponent of the

light. An integer value, when requested, is computed by rounding the internal floating-point repre-
sentation to the nearest integer. The initial value is 0.

GL_SPOT_CUTOFF
params returns a single integer or floating-point value representing the spot cutoff angle of the

light. An integer value, when requested, is computed by rounding the internal floating-point repre-
sentation to the nearest integer. The initial value is 180.

GL_CONSTANT_ATTENUATION
params returns a single integer or floating-point value representing the constant (not distance-

related) attenuation of the light. An integer value, when requested, is computed by rounding the
internal floating-point representation to the nearest integer. The initial value is 1.

GL_LINEAR_ATTENUATION
params returns a single integer or floating-point value representing the linear attenuation of the

light. An integer value, when requested, is computed by rounding the internal floating-point repre-
sentation to the nearest integer. The initial value is 0.

GL_QUADRATIC_ATTENUATION
params returns a single integer or floating-point value representing the quadratic attenuation of

the light. An integer value, when requested, is computed by rounding the internal floating-point
representation to the nearest integer. The initial value is 0.

Notes

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.
If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_ENUM is generated if light or pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetLight is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glLight

glGetMap

Return evaluator parameters

C Specification

void glGetMapdv(GLenum target,
GLenum query,
GLdouble * v);

glGetLight946

void glGetMapfv(GLenum target,
GLenum query,
GLfloat * v);

void glGetMapiv(GLenum target,
GLenum query,
GLint * v);

Parameters

target Specifies the symbolic name of a map. Accepted values are GL_MAP1_COLOR_4,
GL_MAP1_INDEX, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1,
GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3,
GL_MAP1_TEXTURE_COORD_4, GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4,
GL_MAP2_COLOR_4, GL_MAP2_INDEX, GL_MAP2_NORMAL, GL_MAP2_TEXTURE_COORD_1,
GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3,
GL_MAP2_TEXTURE_COORD_4, GL_MAP2_VERTEX_3, and GL_MAP2_VERTEX_4.

query Specifies which parameter to return. Symbolic names GL_COEFF, GL_ORDER, and
GL_DOMAIN are accepted.

v Returns the requested data.
Description
glMap1 and glMap2 define evaluators. glGetMap returns evaluator parameters. target chooses a

map, query selects a specific parameter, and v points to storage where the values will be returned.
The acceptable values for the target parameter are described in the glMap1 and glMap2 refer-

ence pages.
query can assume the following values:
GL_COEFF
v returns the control points for the evaluator function. One-dimensional evaluators return order

control points, and two-dimensional evaluators return uorder×vorder control points. Each control
point consists of one, two, three, or four integer, single-precision floating-point, or double-precision
floating-point values, depending on the type of the evaluator. The GL returns two-dimensional
control points in row-major order, incrementing the uorder index quickly and the vorder index
after each row. Integer values, when requested, are computed by rounding the internal floating-point
values to the nearest integer values.

GL_ORDER
v returns the order of the evaluator function. One-dimensional evaluators return a single value,

order. The initial value is 1. Two-dimensional evaluators return two values, uorder and vorder. The
initial value is 1,1.

GL_DOMAIN
v returns the linear u and v mapping parameters. One-dimensional evaluators return two values,

u1 and u2, as specified by glMap1. Two-dimensional evaluators return four values (u1, u2, v1, and
v2) as specified by glMap2. Integer values, when requested, are computed by rounding the internal
floating-point values to the nearest integer values.

Notes

If an error is generated, no change is made to the contents of v.

Errors

GL_INVALID_ENUM is generated if either target or query is not an accepted value.
GL_INVALID_OPERATION is generated if glGetMap is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glEvalCoord, glMap1, glMap2

glGetMap 947

C

glGetMaterial

Return material parameters

C Specification

void glGetMaterialfv(GLenum face,
GLenum pname,
GLfloat * params);

void glGetMaterialiv(GLenum face,
GLenum pname,
GLint * params);

Parameters

face Specifies which of the two materials is being queried. GL_FRONT or GL_BACK are accepted,
representing the front and back materials, respectively.

pname Specifies the material parameter to return. GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_EMISSION, GL_SHININESS, and GL_COLOR_INDEXES are accepted.

params Returns the requested data.

Description

glGetMaterial returns in params the value or values of parameter pname of material face. Six
parameters are defined:

GL_AMBIENT
params returns four integer or floating-point values representing the ambient reflectance of the

material. Integer values, when requested, are linearly mapped from the internal floating-point repre-
sentation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to the
most negative representable integer value. If the internal value is outside the range [-1,1], the corre-
sponding integer return value is undefined. The initial value is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE
params returns four integer or floating-point values representing the diffuse reflectance of the

material. Integer values, when requested, are linearly mapped from the internal floating-point repre-
sentation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to the
most negative representable integer value. If the internal value is outside the range [-1,1], the corre-
sponding integer return value is undefined. The initial value is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR
params returns four integer or floating-point values representing the specular reflectance of the

material. Integer values, when requested, are linearly mapped from the internal floating-point repre-
sentation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to the
most negative representable integer value. If the internal value is outside the range [-1,1], the corre-
sponding integer return value is undefined. The initial value is (0, 0, 0, 1).

GL_EMISSION
params returns four integer or floating-point values representing the emitted light intensity of

the material. Integer values, when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable integer value, and -1.0 maps to
the most negative representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined. The initial value is (0, 0, 0, 1).

GL_SHININESS
params returns one integer or floating-point value representing the specular exponent of the

material. Integer values, when requested, are computed by rounding the internal floating-point value
to the nearest integer value. The initial value is 0.

glGetMaterial948

GL_COLOR_INDEXES
params returns three integer or floating-point values representing the ambient, diffuse, and spec-

ular indices of the material. These indices are used only for color index lighting. (All the other para-
meters are used only for RGBA lighting.) Integer values, when requested, are computed by rounding
the internal floating-point values to the nearest integer values.

Notes

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_ENUM is generated if face or pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetMaterial is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glMaterial

glGetMinmax

Get minimum and maximum pixel values

C Specification

void glGetMinmax(GLenum target,
GLboolean reset,
GLenum format,
GLenum types,
GLvoid * values);

Parameters

target Must be GL_MINMAX.
reset If GL_TRUE, all entries in the minmax table that are actually returned are reset to their

initial values. (Other entries are unaltered.) If GL_FALSE, the minmax table is unaltered.
format The format of the data to be returned in values. Must be one of GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA.

types The type of the data to be returned in values. Symbolic constants GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV are
accepted.

values A pointer to storage for the returned values.

Description

glGetMinmax returns the accumulated minimum and maximum pixel values (computed on a
per-component basis) in a one-dimensional image of width 2. The first set of return values are the
minima, and the second set of return values are the maxima. The format of the return values is deter-
mined by format, and their type is determined by types.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while minimum and maximum pixel values are requested, values is treated as a
byte offset into the buffer object’s data store.

glGetMinmax 949

C

No pixel transfer operations are performed on the return values, but pixel storage modes that are
applicable to one-dimensional images are performed. Color components that are requested in the
specified format, but that are not included in the internal format of the minmax table, are returned
as zero. The assignment of internal color components to the components requested by format are as
follows:

Internal Component Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance Red

If reset is GL_TRUE, the minmax table entries corresponding to the return values are reset to
their initial values. Minimum and maximum values that are not returned are not modified, even if
reset is GL_TRUE.

Notes

glGetMinmax is present only if ARB_imaging is returned when glGetString is called with an
argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not GL_MINMAX.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if types is not one of the allowable values.
GL_INVALID_OPERATION is generated if types is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if types is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and values is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetMinmax is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetMinmaxParameter
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glMinmax, glResetMinmax

glGetMinmax950

glGetMinmaxParameter

Get minmax parameters

C Specification

void glGetMinmaxParameterfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetMinmaxParameteriv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target Must be GL_MINMAX.
pname The parameter to be retrieved. Must be one of GL_MINMAX_FORMAT or

GL_MINMAX_SINK.
params A pointer to storage for the retrieved parameters.

Description

glGetMinmaxParameter retrieves parameters for the current minmax table by setting pname to
one of the following values:

Parameter Description

GL_MINMAX_FORMAT Internal format of minmax table

GL_MINMAX_SINK Value of the sink parameter

Notes

glGetMinmaxParameter is present only if ARB_imaging is returned when glGetString is
called with an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not GL_MINMAX.
GL_INVALID_ENUM is generated if pname is not one of the allowable values.
GL_INVALID_OPERATION is generated if glGetMinmaxParameter is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

See Also

glMinmax, glGetMinmax

glGetPixelMap

Return the specified pixel map

C Specification

void glGetPixelMapfv(GLenum map,
GLfloat * data);

void glGetPixelMapuiv(GLenum map,
GLuint * data);

void glGetPixelMapusv(GLenum map,
GLushort * data);

glGetPixelMap 951

C

Parameters

map Specifies the name of the pixel map to return. Accepted values are
GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A,
GL_PIXEL_MAP_R_TO_R, GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, and
GL_PIXEL_MAP_A_TO_A.

data Returns the pixel map contents.

Description

See the glPixelMap reference page for a description of the acceptable values for the map parame-
ter. glGetPixelMap returns in data the contents of the pixel map specified in map. Pixel maps are
used during the execution of glReadPixels, glDrawPixels, glCopyPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, and
glCopyTexSubImage3D. to map color indices, stencil indices, color components, and depth compo-
nents to other values.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a pixel map is requested, data is treated as a byte offset into the buffer object’s
data store.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or floating-
point representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to 0.
Return unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required size of map, call glGet with the appropriate symbolic constant.

Notes

If an error is generated, no change is made to the contents of data.

Errors

GL_INVALID_ENUM is generated if map is not an accepted value.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the

GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated by glGetPixelMapfv if a nonzero buffer object name is
bound to the GL_PIXEL_PACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a GLfloat datum.

GL_INVALID_OPERATION is generated by glGetPixelMapuiv if a nonzero buffer object name is
bound to the GL_PIXEL_PACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a GLuint datum.

GL_INVALID_OPERATION is generated by glGetPixelMapusv if a nonzero buffer object name is
bound to the GL_PIXEL_PACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a GLushort datum.

GL_INVALID_OPERATION is generated if glGetPixelMap is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE

glGetPixelMap952

glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glColorSubTable, glColorTable, glConvolutionFilter1D, glConvolutionFilter2D,
glCopyColorSubTable, glCopyColorTable, glCopyPixels, glCopyTexImage1D,
glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D,
glDrawPixels, glGetHistogram, glGetMinmax, glGetTexImage, glPixelMap,
glPixelTransfer, glReadPixels, glSeparableFilter2D, glTexImage1D, glTexImage1D,
glTexImage2DglTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D

glGetPointerv

Return the address of the specified pointer

C Specification

void glGetPointerv(GLenum pname,
GLvoid ** params);

Parameters

pname Specifies the array or buffer pointer to be returned. Symbolic constants
GL_COLOR_ARRAY_POINTER, GL_EDGE_FLAG_ARRAY_POINTER,
GL_FOG_COORD_ARRAY_POINTER, GL_FEEDBACK_BUFFER_POINTER,
GL_INDEX_ARRAY_POINTER, GL_NORMAL_ARRAY_POINTER,
GL_SECONDARY_COLOR_ARRAY_POINTER, GL_SELECTION_BUFFER_POINTER,
GL_TEXTURE_COORD_ARRAY_POINTER, or GL_VERTEX_ARRAY_POINTER are accepted.

params Returns the pointer value specified by pname.

Description

glGetPointerv returns pointer information. pname is a symbolic constant indicating the pointer
to be returned, and params is a pointer to a location in which to place the returned data.

For all pname arguments except GL_FEEDBACK_BUFFER_POINTER and
GL_SELECTION_BUFFER_POINTER, if a nonzero named buffer object was bound to the
GL_ARRAY_BUFFER target (see glBindBuffer) when the desired pointer was previously specified, the
pointer returned is a byte offset into the buffer object’s data store. Buffer objects are only available in
OpenGL versions 1.5 and greater.

Notes

glGetPointerv is available only if the GL version is 1.1 or greater.
GL_FOG_COORD_ARRAY_POINTER and GL_SECONDARY_COLOR_ARRAY_POINTER are available only

if the GL version is 1.4 or greater.
The pointers are all client-side state.
The initial value for each pointer is 0.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

querying the GL_TEXTURE_COORD_ARRAY_POINTER returns the value for the active client texture unit.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.

glGetPointerv 953

C

See Also

glBindBuffer, glClientActiveTexture, glColorPointer, glEdgeFlagPointer,
glFogCoordPointer, glFeedbackBuffer, glGetVertexAttribPointerv, glIndexPointer,
glNormalPointer, glSecondaryColorPointer, glSelectBuffer, glTexCoordPointer,
glVertexAttribPointer, glVertexPointer

glGetPolygonStipple

Return the polygon stipple pattern

C Specification

void glGetPolygonStipple(GLubyte * pattern);

Parameters

pattern Returns the stipple pattern. The initial value is all 1’s.

Description

glGetPolygonStipple returns to pattern a 32 × 32 polygon stipple pattern. The pattern is
packed into memory as if glReadPixels with both height and width of 32, type of GL_BITMAP,
and format of GL_COLOR_INDEX were called, and the stipple pattern were stored in an internal 32 ×
32 color index buffer. Unlike glReadPixels, however, pixel transfer operations (shift, offset, pixel
map) are not applied to the returned stipple image.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a polygon stipple pattern is requested, pattern is treated as a byte offset into
the buffer object’s data store.

Notes

If an error is generated, no change is made to the contents of pattern.

Errors

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if glGetPolygonStipple is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glPixelStore, glPixelTransfer, glPolygonStipple, glReadPixels

glGetProgramiv

Return a parameter from a program object

C Specification

void glGetProgramiv(GLuint program,
GLenum pname,
GLint * params);

glGetPolygonStipple954

Parameters

program Specifies the program object to be queried.
pname Specifies the object parameter. Accepted symbolic names are GL_DELETE_STATUS,

GL_LINK_STATUS, GL_VALIDATE_STATUS, GL_INFO_LOG_LENGTH,
GL_ATTACHED_SHADERS, GL_ACTIVE_ATTRIBUTES,
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, GL_ACTIVE_UNIFORMS,
GL_ACTIVE_UNIFORM_MAX_LENGTH.

params Returns the requested object parameter.

Description

glGetProgram returns in params the value of a parameter for a specific program object. The
following parameters are defined:

GL_DELETE_STATUS
params returns GL_TRUE if program is currently flagged for deletion, and GL_FALSE otherwise.
GL_LINK_STATUS
params returns GL_TRUE if the last link operation on program was successful, and GL_FALSE

otherwise.
GL_VALIDATE_STATUS
params returns GL_TRUE or if the last validation operation on program was successful, and

GL_FALSE otherwise.
GL_INFO_LOG_LENGTH
params returns the number of characters in the information log for program including the null

termination character (i.e., the size of the character buffer required to store the information log).
If program has no information log, a value of 0 is returned.

GL_ATTACHED_SHADERS
params returns the number of shader objects attached to program.
GL_ACTIVE_ATTRIBUTES
params returns the number of active attribute variables for program.
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH
params returns the length of the longest active attribute name for program, including the null

termination character (i.e., the size of the character buffer required to store the longest attribute
name). If no active attributes exist, 0 is returned.

GL_ACTIVE_UNIFORMS
params returns the number of active uniform variables for program.
GL_ACTIVE_UNIFORM_MAX_LENGTH
params returns the length of the longest active uniform variable name for program, including

the null termination character (i.e., the size of the character buffer required to store the longest
uniform variable name). If no active uniform variables exist, 0 is returned.

Notes

glGetProgram is available only if the GL version is 2.0 or greater.
If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program does not refer to a program object.
GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetProgram is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetActiveAttrib with argument program

glGetProgramiv 955

C

glGetActiveUniform with argument program
glGetAttachedShaders with argument program
glGetProgramInfoLog with argument program
glIsProgram

See Also

glAttachShader, glCreateProgram, glDeleteProgram, glGetShader, glLinkProgram,
glValidateProgram

glGetProgramInfoLog

Return the information log for a program object

C Specification

void glGetProgramInfoLog(GLuint program,
GLsizei maxLength,
GLsizei * length,
GLchar * infoLog);

Parameters

program Specifies the program object whose information log is to be queried.
maxLength Specifies the size of the character buffer for storing the returned information log.
length Returns the length of the string returned in infoLog (excluding the null

terminator).
infoLog Specifies an array of characters that is used to return the information log.

Description

glGetProgramInfoLog returns the information log for the specified program object. The infor-
mation log for a program object is modified when the program object is linked or validated. The
string that is returned will be null terminated.

glGetProgramInfoLog returns in infoLog as much of the information log as it can, up to a
maximum of maxLength characters. The number of characters actually returned, excluding the null
termination character, is specified by length. If the length of the returned string is not required, a
value of NULL can be passed in the length argument. The size of the buffer required to store the
returned information log can be obtained by calling glGetProgram with the value
GL_INFO_LOG_LENGTH.

The information log for a program object is either an empty string, or a string containing infor-
mation about the last link operation, or a string containing information about the last validation
operation. It may contain diagnostic messages, warning messages, and other information. When a
program object is created, its information log will be a string of length 0.

Notes

glGetProgramInfoLog is available only if the GL version is 2.0 or greater.
The information log for a program object is the OpenGL implementer’s primary mechanism for

conveying information about linking and validating. Therefore, the information log can be helpful to
application developers during the development process, even when these operations are successful.
Application developers should not expect different OpenGL implementations to produce identical
information logs.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.

glGetProgramInfoLog956

GL_INVALID_VALUE is generated if maxLength is less than 0.
GL_INVALID_OPERATION is generated if glGetProgramInfoLog is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetProgram with argument GL_INFO_LOG_LENGTH
glIsProgram

See Also

glCompileShader, glGetShaderInfoLog, glLinkProgram, glValidateProgram

glGetQueryiv

Return parameters of a query object target

C Specification

void glGetQueryiv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target Specifies a query object target. Must be GL_SAMPLES_PASSED.
pname Specifies the symbolic name of a query object target parameter. Accepted values

are GL_CURRENT_QUERY or GL_QUERY_COUNTER_BITS.
params Returns the requested data.

Description

glGetQueryiv returns in params a selected parameter of the query object target specified by
target.

pname names a specific query object target parameter. When target is GL_SAMPLES_PASSED,
pname can be as follows:

GL_CURRENT_QUERY
params returns the name of the currently active occlusion query object. If no occlusion query is

active, 0 is returned. The initial value is 0.
GL_QUERY_COUNTER_BITS
params returns the number of bits in the query counter used to accumulate passing samples. If

the number of bits returned is 0, the implementation does not support a query counter, and the
results obtained from glGetQueryObject are useless.

Notes

If an error is generated, no change is made to the contents of params.
glGetQueryiv is available only if the GL version is 1.5 or greater.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetQueryiv is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glGetQueryObject, glIsQuery

glGetQueryiv 957

C

glGetQueryObject

Return parameters of a query object

C Specification

void glGetQueryObjectiv(GLuint id,
GLenum pname,
GLint * params);

void glGetQueryObjectuiv(GLuint id,
GLenum pname,
GLuint * params);

Parameters

id Specifies the name of a query object.
pname Specifies the symbolic name of a query object parameter. Accepted values are

GL_QUERY_RESULT or GL_QUERY_RESULT_AVAILABLE.
params Returns the requested data.

Description

glGetQueryObject returns in params a selected parameter of the query object specified by id.
pname names a specific query object parameter. pname can be as follows:
GL_QUERY_RESULT
params returns the value of the query object’s passed samples counter. The initial value is 0.
GL_QUERY_RESULT_AVAILABLE
params returns whether the passed samples counter is immediately available. If a delay would

occur waiting for the query result, GL_FALSE is returned. Otherwise, GL_TRUE is returned, which also
indicates that the results of all previous queries are available as well.

Notes

If an error is generated, no change is made to the contents of params.
glGetQueryObject implicitly flushes the GL pipeline so that any incomplete rendering delim-

ited by the occlusion query completes in finite time.
If multiple queries are issued using the same query object id before calling glGetQueryObject,

the results of the most recent query will be returned. In this case, when issuing a new query, the
results of the previous query are discarded.

glGetQueryObject is available only if the GL version is 1.5 or greater.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if id is not the name of a query object.
GL_INVALID_OPERATION is generated if id is the name of a currently active query object.
GL_INVALID_OPERATION is generated if glGetQueryObject is executed between the execution

of glBegin and the corresponding execution of glEnd.

See Also

glBeginQuery, glEndQuery, glGetQueryiv, glIsQuery

glGetQueryObject958

glGetSeparableFilter

Get separable convolution filter kernel images

C Specification

void glGetSeparableFilter(GLenum target,
GLenum format,
GLenum type,
GLvoid * row,
GLvoid * column,
GLvoid * span);

Parameters

target The separable filter to be retrieved. Must be GL_SEPARABLE_2D.
format Format of the output images. Must be one of GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,

GL_RGB, GL_BGRGL_RGBA, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA.
type Data type of components in the output images. Symbolic constants

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

row Pointer to storage for the row filter image.
column Pointer to storage for the column filter image.
span Pointer to storage for the span filter image (currently unused).

Description

glGetSeparableFilter returns the two one-dimensional filter kernel images for the current
separable 2D convolution filter. The row image is placed in row and the column image is placed in
column according to the specifications in format and type. (In the current implementation, span is
not affected in any way.) No pixel transfer operations are performed on the images, but the relevant
pixel storage modes are applied.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a separable convolution filter is requested, row, column, and span are treated
as a byte offset into the buffer object’s data store.

Color components that are present in format but not included in the internal format of the
filters are returned as zero. The assignments of internal color components to the components of
format are as follows:

Internal Component Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance Red

Intensity Red

glGetSeparableFilter 959

C

Notes

glGetSeparableFilter is present only if ARB_imaging is returned when glGetString is
called with an argument of GL_EXTENSIONS.

Non-separable 2D filters must be retrieved with glGetConvolutionFilter.

Errors

GL_INVALID_ENUM is generated if target is not GL_SEPARABLE_2D.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and row or column is not evenly divisible into the number of bytes
needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetSeparableFilter is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetConvolutionParameter
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glGetConvolutionFilter, glConvolutionParameter, glSeparableFilter2D

glGetShaderiv

Return a parameter from a shader object

C Specification

void glGetShaderiv(GLuint shader,
GLenum pname,
GLint * params);

Parameters

shader Specifies the shader object to be queried.
pname Specifies the object parameter. Accepted symbolic names are GL_SHADER_TYPE,

GL_DELETE_STATUS, GL_COMPILE_STATUS, GL_INFO_LOG_LENGTH,
GL_SHADER_SOURCE_LENGTH.

params Returns the requested object parameter.

glGetShaderiv960

Description

glGetShader returns in params the value of a parameter for a specific shader object. The follow-
ing parameters are defined:

GL_SHADER_TYPE
params returns GL_VERTEX_SHADER if shader is a vertex shader object, and

GL_FRAGMENT_SHADER if shader is a fragment shader object.
GL_DELETE_STATUS
params returns GL_TRUE if shader is currently flagged for deletion, and GL_FALSE otherwise.
GL_COMPILE_STATUS
params returns GL_TRUE if the last compile operation on shader was successful, and GL_FALSE

otherwise.
GL_INFO_LOG_LENGTH
params returns the number of characters in the information log for shader including the null

termination character (i.e., the size of the character buffer required to store the information log). If
shader has no information log, a value of 0 is returned.

GL_SHADER_SOURCE_LENGTH
params returns the length of the concatenation of the source strings that make up the shader

source for the shader, including the null termination character. (i.e., the size of the character buffer
required to store the shader source). If no source code exists, 0 is returned.

Notes

glGetShader is available only if the GL version is 2.0 or greater.
If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader does not refer to a shader object.
GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetShader is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetShaderInfoLog with argument shader
glGetShaderSource with argument shader
glIsShader

See Also

glCompileShader, glCreateShader, glDeleteShader, glGetProgram, glShaderSource

glGetShaderInfoLog

Return the information log for a shader object

C Specification

void glGetShaderInfoLog(GLuint shader,
GLsizei maxLength,
GLsizei * length,
GLchar * infoLog);

Parameters

shader Specifies the shader object whose information log is to be queried.
maxLength Specifies the size of the character buffer for storing the returned information log.

glGetShaderInfoLog 961

C

length Returns the length of the string returned in infoLog (excluding the null
terminator).

infoLog Specifies an array of characters that is used to return the information log.

Description

glGetShaderInfoLog returns the information log for the specified shader object. The informa-
tion log for a shader object is modified when the shader is compiled. The string that is returned will
be null terminated.

glGetShaderInfoLog returns in infoLog as much of the information log as it can, up to a
maximum of maxLength characters. The number of characters actually returned, excluding the null
termination character, is specified by length. If the length of the returned string is not required, a
value of NULL can be passed in the length argument. The size of the buffer required to store the
returned information log can be obtained by calling glGetShader with the value
GL_INFO_LOG_LENGTH.

The information log for a shader object is a string that may contain diagnostic messages, warning
messages, and other information about the last compile operation. When a shader object is created,
its information log will be a string of length 0.

Notes

glGetShaderInfoLog is available only if the GL version is 2.0 or greater.
The information log for a shader object is the OpenGL implementer’s primary mechanism for

conveying information about the compilation process. Therefore, the information log can be helpful
to application developers during the development process, even when compilation is successful.
Application developers should not expect different OpenGL implementations to produce identical
information logs.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_VALUE is generated if maxLength is less than 0.
GL_INVALID_OPERATION is generated if glGetShaderInfoLog is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetShader with argument GL_INFO_LOG_LENGTH
glIsShader

See Also

glCompileShader, glGetProgramInfoLog, glLinkProgram, glValidateProgram

glGetShaderSource

Return the source code string from a shader object

C Specification

void glGetShaderSource(GLuint shader,
GLsizei bufSize,
GLsizei * length,
GLchar * source);

Parameters

Shader Specifies the shader object to be queried.
bufSize Specifies the size of the character buffer for storing the returned source code string.

glGetShaderSource962

Length Returns the length of the string returned in source (excluding the null terminator).
Source Specifies an array of characters that is used to return the source code string.

Description

glGetShaderSource returns the concatenation of the source code strings from the shader object
specified by shader. The source code strings for a shader object are the result of a previous call to
glShaderSource. The string returned by the function will be null terminated.

glGetShaderSource returns in source as much of the source code string as it can, up to a
maximum of bufSize characters. The number of characters actually returned, excluding the null
termination character, is specified by length. If the length of the returned string is not required, a
value of NULL can be passed in the length argument. The size of the buffer required to store the
returned source code string can be obtained by calling glGetShader with the value
GL_SHADER_SOURCE_LENGTH.

Notes

glGetShaderSource is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_VALUE is generated if bufSize is less than 0.
GL_INVALID_OPERATION is generated if glGetShaderSource is executed between the execution

of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetShader with argument GL_SHADER_SOURCE_LENGTH
glIsShader

See Also

glCreateShader, glShaderSource

glGetString

Return a string describing the current GL connection

C Specification

const GLubyte* glGetString(GLenum name);

Parameters

name Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER, GL_VERSION,
GL_SHADING_LANGUAGE_VERSION, or GL_EXTENSIONS.

Description

glGetString returns a pointer to a static string describing some aspect of the current GL
connection. name can be one of the following:

GL_VENDOR
Returns the company responsible for this GL implementation. This name does not change from

release to release.
GL_RENDERER
Returns the name of the renderer. This name is typically specific to a particular configuration of a

hardware platform. It does not change from release to release.
GL_VERSION
Returns a version or release number.

glGetString 963

C

GL_SHADING_LANGUAGE_VERSION
Returns a version or release number for the shading language.
GL_EXTENSIONS
Returns a space-separated list of supported extensions to GL.
Because the GL does not include queries for the performance characteristics of an implementa-

tion, some applications are written to recognize known platforms and modify their GL usage based
on known performance characteristics of these platforms. Strings GL_VENDOR and GL_RENDERER
together uniquely specify a platform. They do not change from release to release and should be used
by platform-recognition algorithms.

Some applications want to make use of features that are not part of the standard GL. These
features may be implemented as extensions to the standard GL. The GL_EXTENSIONS string is a space-
separated list of supported GL extensions. (Extension names never contain a space character.)

The GL_VERSION and GL_SHADING_LANGUAGE_VERSION strings begin with a version number.
The version number uses one of these forms:

major_number.minor_numbermajor_number.minor_number.release_number
Vendor-specific information may follow the version number. Its format depends on the imple-

mentation, but a space always separates the version number and the vendor-specific information.
All strings are null-terminated.

Notes

If an error is generated, glGetString returns 0.
The client and server may support different versions or extensions. glGetString always returns a

compatible version number or list of extensions. The release number always describes the server.
GL_SHADING_LANGUAGE_VERSION is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_ENUM is generated if name is not an accepted value.
GL_INVALID_OPERATION is generated if glGetString is executed between the execution of

glBegin and the corresponding execution of glEnd.

glGetTexEnv

Return texture environment parameters

C Specification

void glGetTexEnvfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetTexEnviv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target Specifies a texture environment. May be GL_TEXTURE_ENV,
GL_TEXTURE_FILTER_CONTROL, or GL_POINT_SPRITE.

pname Specifies the symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR, GL_TEXTURE_LOD_BIAS,
GL_COMBINE_RGB, GL_COMBINE_ALPHA, GL_SRC0_RGB, GL_SRC1_RGB,
GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA, GL_SRC2_ALPHA,
GL_OPERAND0_RGB, GL_OPERAND1_RGB, GL_OPERAND2_RGB, GL_OPERAND0_ALPHA,
GL_OPERAND1_ALPHA, GL_OPERAND2_ALPHA, GL_RGB_SCALE, GL_ALPHA_SCALE, or
GL_COORD_REPLACE.

params Returns the requested data.

glGetTexEnv964

Description

glGetTexEnv returns in params selected values of a texture environment that was specified with
glTexEnv. target specifies a texture environment.

When target is GL_TEXTURE_FILTER_CONTROL, pname must be GL_TEXTURE_LOD_BIAS. When
target is GL_POINT_SPRITE, pname must be GL_COORD_REPLACE. When target is
GL_TEXTURE_ENV, pname can be GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR,
GL_COMBINE_RGB, GL_COMBINE_ALPHA, RGB_SCALE, ALPHA_SCALE, SRC0_RGB, SRC1_RGB,
SRC2_RGB, SRC0_ALPHA, SRC1_ALPHA, or SRC2_ALPHA.

pname names a specific texture environment parameter, as follows:
GL_TEXTURE_ENV_MODE
params returns the single-valued texture environment mode, a symbolic constant. The initial

value is GL_MODULATE.
GL_TEXTURE_ENV_COLOR
params returns four integer or floating-point values that are the texture environment color.

Integer values, when requested, are linearly mapped from the internal floating-point representation
such that 1.0 maps to the most positive representable integer, and -1.0 maps to the most negative
representable integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_LOD_BIAS
params returns a single floating-point value that is the texture level-of-detail bias. The initial

value is 0.
GL_COMBINE_RGB
params returns a single symbolic constant value representing the current RGB combine mode.

The initial value is GL_MODULATE.
GL_COMBINE_ALPHA
params returns a single symbolic constant value representing the current alpha combine mode.

The initial value is GL_MODULATE.
GL_SRC0_RGB
params returns a single symbolic constant value representing the texture combiner zero’s RGB

source. The initial value is GL_TEXTURE.
GL_SRC1_RGB
params returns a single symbolic constant value representing the texture combiner one’s RGB

source. The initial value is GL_PREVIOUS.
GL_SRC2_RGB
params returns a single symbolic constant value representing the texture combiner two’s RGB

source. The initial value is GL_CONSTANT.
GL_SRC0_ALPHA
params returns a single symbolic constant value representing the texture combiner zero’s alpha

source. The initial value is GL_TEXTURE.
GL_SRC1_ALPHA
params returns a single symbolic constant value representing the texture combiner one’s alpha

source. The initial value is GL_PREVIOUS.
GL_SRC2_ALPHA
params returns a single symbolic constant value representing the texture combiner two’s alpha

source. The initial value is GL_CONSTANT.
GL_OPERAND0_RGB
params returns a single symbolic constant value representing the texture combiner zero’s RGB

operand. The initial value is GL_SRC_COLOR.
GL_OPERAND1_RGB
params returns a single symbolic constant value representing the texture combiner one’s RGB

operand. The initial value is GL_SRC_COLOR.

glGetTexEnv 965

C

GL_OPERAND2_RGB
params returns a single symbolic constant value representing the texture combiner two’s RGB

operand. The initial value is GL_SRC_ALPHA.
GL_OPERAND0_ALPHA
params returns a single symbolic constant value representing the texture combiner zero’s alpha

operand. The initial value is GL_SRC_ALPHA.
GL_OPERAND1_ALPHA
params returns a single symbolic constant value representing the texture combiner one’s alpha

operand. The initial value is GL_SRC_ALPHA.
GL_OPERAND2_ALPHA
params returns a single symbolic constant value representing the texture combiner two’s alpha

operand. The initial value is GL_SRC_ALPHA.
GL_RGB_SCALE
params returns a single floating-point value representing the current RGB texture combiner

scaling factor. The initial value is 1.0.
GL_ALPHA_SCALE
params returns a single floating-point value representing the current alpha texture combiner

scaling factor. The initial value is 1.0.
GL_COORD_REPLACE
params returns a single boolean value representing the current point sprite texture coordinate

replacement enable state. The initial value is GL_FALSE.

Notes

If an error is generated, no change is made to the contents of params.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

glGetTexEnv returns the texture environment parameters for the active texture unit.
GL_COMBINE_RGB, GL_COMBINE_ALPHA, GL_SRC0_RGB, GL_SRC1_RGB, GL_SRC2_RGB,

GL_SRC0_ALPHA, GL_SRC1_ALPHA, GL_SRC2_ALPHA, GL_OPERAND0_RGB, GL_OPERAND1_RGB,
GL_OPERAND2_RGB, GL_OPERAND0_ALPHA, GL_OPERAND1_ALPHA, GL_OPERAND2_ALPHA,
GL_RGB_SCALE, and GL_ALPHA_SCALE are available only if the GL version is 1.3 or greater.

GL_TEXTURE_FILTER_CONTROL and GL_TEXTURE_LOD_BIAS are available only if the GL version
is 1.4 or greater.

GL_POINT_SPRITE and GL_COORD_REPLACE are available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetTexEnv is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glActiveTexture, glTexEnv

glGetTexGen

Return texture coordinate generation parameters

C Specification

void glGetTexGendv(GLenum coord,
GLenum pname,
GLdouble * params);

void glGetTexGenfv(GLenum coord,
GLenum pname,
GLfloat * params);

glGetTexGen966

void glGetTexGeniv(GLenum coord,
GLenum pname,
GLint * params);

Parameters

coord Specifies a texture coordinate. Must be GL_S, GL_T, GL_R, or GL_Q.
pname Specifies the symbolic name of the value(s) to be returned. Must be either

GL_TEXTURE_GEN_MODE or the name of one of the texture generation plane equations:
GL_OBJECT_PLANE or GL_EYE_PLANE.

params Returns the requested data.

Description

glGetTexGen returns in params selected parameters of a texture coordinate generation function
that was specified using glTexGen. coord names one of the (s, t, r, q) texture coordinates, using the
symbolic constant GL_S, GL_T, GL_R, or GL_Q.

pname specifies one of three symbolic names:
GL_TEXTURE_GEN_MODE
params returns the single-valued texture generation function, a symbolic constant. The initial

value is GL_EYE_LINEAR.
GL_OBJECT_PLANE
params returns the four plane equation coefficients that specify object linear-coordinate genera-

tion. Integer values, when requested, are mapped directly from the internal floating-point representa-
tion.

GL_EYE_PLANE
params returns the four plane equation coefficients that specify eye linear-coordinate generation.

Integer values, when requested, are mapped directly from the internal floating-point representation.
The returned values are those maintained in eye coordinates. They are not equal to the values speci-
fied using glTexGen, unless the modelview matrix was identity when glTexGen was called.

Notes

If an error is generated, no change is made to the contents of params.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

glGetTexGen returns the texture coordinate generation parameters for the active texture unit.

Errors

GL_INVALID_ENUM is generated if coord or pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetTexGen is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glActiveTexture, glTexGen

glGetTexImage

Return a texture image

C Specification

void glGetTexImage(GLenum target,
GLint level,
GLenum format,
GLenum type,
GLvoid * img);

glGetTexImage 967

C

Parameters

target Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are accepted.

level Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

format Specifies a pixel format for the returned data. The supported formats are GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE,
and GL_LUMINANCE_ALPHA.

type Specifies a pixel type for the returned data. The supported types are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

img Returns the texture image. Should be a pointer to an array of the type specified
by type.

Description

glGetTexImage returns a texture image into img. target specifies whether the desired texture
image is one specified by glTexImage1D (GL_TEXTURE_1D), glTexImage2D (GL_TEXTURE_2D or any
of GL_TEXTURE_CUBE_MAP_*), or glTexImage3D (GL_TEXTURE_3D). level specifies the level-of-
detail number of the desired image. format and type specify the format and type of the desired
image array. See the reference pages glTexImage1D and glDrawPixels for a description of the
acceptable values for the format and type parameters, respectively.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a texture image is requested, img is treated as a byte offset into the buffer
object’s data store.

To understand the operation of glGetTexImage, consider the selected internal four-component
texture image to be an RGBA color buffer the size of the image. The semantics of glGetTexImage are
then identical to those of glReadPixels, with the exception that no pixel transfer operations are
performed, when called with the same format and type, with x and y set to 0, width set to the width
of the texture image (including border if one was specified), and height set to 1 for 1D images, or to
the height of the texture image (including border if one was specified) for 2D images. Because the
internal texture image is an RGBA image, pixel formats GL_COLOR_INDEX, GL_STENCIL_INDEX, and
GL_DEPTH_COMPONENT are not accepted, and pixel type GL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings are
applied. Single-component textures are treated as RGBA buffers with red set to the single-component
value, green set to 0, blue set to 0, and alpha set to 1. Two-component textures are treated as RGBA
buffers with red set to the value of component zero, alpha set to the value of component one, and
green and blue set to 0. Finally, three-component textures are treated as RGBA buffers with red set to
component zero, green set to component one, blue set to component two, and alpha set to 1.

To determine the required size of img, use glGetTexLevelParameter to determine the dimen-
sions of the internal texture image, then scale the required number of pixels by the storage required
for each pixel, based on format and type. Be sure to take the pixel storage parameters into account,
especially GL_PACK_ALIGNMENT.

glGetTexImage968

Notes

If an error is generated, no change is made to the contents of img.
The types GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2,
GL_UNSIGNED_INT_2_10_10_10_REV, and the formats GL_BGR, and GL_BGRA are available only if
the GL version is 1.2 or greater.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glGetTexImage returns the texture image for the active texture unit.

Errors

GL_INVALID_ENUM is generated if target, format, or type is not an accepted value.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2 (max), where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_OPERATION is returned if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is returned if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV, and format is neither GL_RGBA or GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and img is not evenly divisible into the number of bytes needed to
store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetTexImage is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexLevelParameter with argument GL_TEXTURE_WIDTH
glGetTexLevelParameter with argument GL_TEXTURE_HEIGHT
glGetTexLevelParameter with argument GL_TEXTURE_BORDER
glGetTexLevelParameter with argument GL_TEXTURE_INTERNAL_FORMAT
glGet with arguments GL_PACK_ALIGNMENT and others
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glActiveTexture, glDrawPixels, glReadPixels, glTexEnv, glTexGen, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D,
glTexParameter

glGetTexImage 969

C

glGetTexLevelParameter

Return texture parameter values for a specific level of detail

C Specification

void glGetTexLevelParameterfv(GLenum target,
GLint level,
GLenum pname,
GLfloat * params);

void glGetTexLevelParameteriv(GLenum target,
GLint level,
GLenum pname,
GLint * params);

Parameters

target Specifies the symbolic name of the target texture, either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D,
GL_PROXY_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

pname Specifies the symbolic name of a texture parameter. GL_TEXTURE_WIDTH,
GL_TEXTURE_HEIGHT, GL_TEXTURE_DEPTH, GL_TEXTURE_INTERNAL_FORMAT,
GL_TEXTURE_BORDER, GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE, GL_TEXTURE_LUMINANCE_SIZE,
GL_TEXTURE_INTENSITY_SIZE, GL_TEXTURE_DEPTH_SIZE,
GL_TEXTURE_COMPRESSED, and GL_TEXTURE_COMPRESSED_IMAGE_SIZE are accepted.

params Returns the requested data.

Description

glGetTexLevelParameter returns in params texture parameter values for a specific level-of-
detail value, specified as level. target defines the target texture, either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D,
GL_PROXY_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGA-
TIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

GL_MAX_TEXTURE_SIZE, and GL_MAX_3D_TEXTURE_SIZE are not really descriptive enough. It
has to report the largest square texture image that can be accommodated with mipmaps and borders,
but a long skinny texture, or a texture without mipmaps and borders, may easily fit in texture
memory. The proxy targets allow the user to more accurately query whether the GL can accommodate
a texture of a given configuration. If the texture cannot be accommodated, the texture state variables,
which may be queried with glGetTexLevelParameter, are set to 0. If the texture can be accommo-
dated, the texture state values will be set as they would be set for a non-proxy target.

pname specifies the texture parameter whose value or values will be returned.
The accepted parameter names are as follows:
GL_TEXTURE_WIDTH
params returns a single value, the width of the texture image. This value includes the border of

the texture image. The initial value is 0.

glGetTexLevelParameter970

GL_TEXTURE_HEIGHT
params returns a single value, the height of the texture image. This value includes the border of

the texture image. The initial value is 0.
GL_TEXTURE_DEPTH
params returns a single value, the depth of the texture image. This value includes the border of

the texture image. The initial value is 0.
GL_TEXTURE_INTERNAL_FORMAT
params returns a single value, the internal format of the texture image.
GL_TEXTURE_BORDER
params returns a single value, the width in pixels of the border of the texture image. The initial

value is 0.
GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE,
GL_TEXTURE_INTENSITY_SIZE,
GL_TEXTURE_DEPTH_SIZE
The internal storage resolution of an individual component. The resolution chosen by the GL will

be a close match for the resolution requested by the user with the component argument of
glTexImage1D, glTexImage2D, glTexImage3D, glCopyTexImage1D, and glCopyTexImage2D. The
initial value is 0.

GL_TEXTURE_COMPRESSED
params returns a single boolean value indicating if the texture image is stored in a compressed

internal format. The initiali value is GL_FALSE.
GL_TEXTURE_COMPRESSED_IMAGE_SIZE
params returns a single integer value, the number of unsigned bytes of the compressed texture

image that would be returned from glGetCompressedTexImage.

Notes

If an error is generated, no change is made to the contents of params.
GL_TEXTURE_INTERNAL_FORMAT is available only if the GL version is 1.1 or greater. In version

1.0, use GL_TEXTURE_COMPONENTS instead.
GL_PROXY_TEXTURE_1D and GL_PROXY_TEXTURE_2D are available only if the GL version is 1.1 or

greater.
GL_TEXTURE_3D, GL_PROXY_TEXTURE_3D, and GL_TEXTURE_DEPTH are available only if the GL

version is 1.2 or greater.
GL_TEXTURE_COMPRESSED, GL_TEXTURE_COMPRESSED_IMAGE_SIZE,

GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, and
GL_PROXY_TEXTURE_CUBE_MAP are available only if the GL version is 1.3 or greater.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glGetTexLevelParameter returns the texture level parameters for the active texture unit.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_OPERATION is generated if glGetTexLevelParameter is executed between the

execution of glBegin and the corresponding execution of glEnd.

glGetTexLevelParameter 971

C

GL_INVALID_OPERATION is generated if GL_TEXTURE_COMPRESSED_IMAGE_SIZE is queried on
texture images with an uncompressed internal format or on proxy targets.

See Also

glActiveTexture, glGetTexParameter, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glTexEnv, glTexGen,
glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D, glTexParameter

glGetTexParameter

Return texture parameter values

C Specification

void glGetTexParameterfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetTexParameteriv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target Specifies the symbolic name of the target texture. GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, and GL_TEXTURE_CUBE_MAP are accepted.

pname Specifies the symbolic name of a texture parameter. GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R, GL_TEXTURE_BORDER_COLOR,
GL_TEXTURE_PRIORITY, GL_TEXTURE_RESIDENT, GL_TEXTURE_COMPARE_MODE,
GL_TEXTURE_COMPARE_FUNC, GL_DEPTH_TEXTURE_MODE, and GL_GENERATE_MIPMAP
are accepted.

params Returns the texture parameters.

Description

glGetTexParameter returns in params the value or values of the texture parameter specified as
pname. target defines the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D, to specify one-, two-, or three-dimensional texturing. pname accepts the same
symbols as glTexParameter, with the same interpretations:

GL_TEXTURE_MAG_FILTER
Returns the single-valued texture magnification filter, a symbolic constant. The initial value is

GL_LINEAR.
GL_TEXTURE_MIN_FILTER
Returns the single-valued texture minification filter, a symbolic constant. The initial value is

GL_NEAREST_MIPMAP_LINEAR.
GL_TEXTURE_MIN_LOD
Returns the single-valued texture minimum level-of-detail value. The initial value is -1000.
GL_TEXTURE_MAX_LOD
Returns the single-valued texture maximum level-of-detail value. The initial value is 1000.
GL_TEXTURE_BASE_LEVEL
Returns the single-valued base texture mipmap level. The initial value is 0.

glGetTexParameter972

GL_TEXTURE_MAX_LEVEL
Returns the single-valued maximum texture mipmap array level. The initial value is 1000.
GL_TEXTURE_WRAP_S
Returns the single-valued wrapping function for texture coordinate s, a symbolic constant. The

initial value is GL_REPEAT.
GL_TEXTURE_WRAP_T
Returns the single-valued wrapping function for texture coordinate t, a symbolic constant. The

initial value is GL_REPEAT.
GL_TEXTURE_WRAP_R
Returns the single-valued wrapping function for texture coordinate r, a symbolic constant. The

initial value is GL_REPEAT.
GL_TEXTURE_BORDER_COLOR
Returns four integer or floating-point numbers that comprise the RGBA color of the texture border.

Floating-point values are returned in the range [0,1]. Integer values are returned as a linear mapping of
the internal floating-point representation such that 1.0 maps to the most positive representable integer
and –1.0 maps to the most negative representable integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_PRIORITY
Returns the residence priority of the target texture (or the named texture bound to it). The initial

value is 1. See glPrioritizeTextures.
GL_TEXTURE_RESIDENT
Returns the residence status of the target texture. If the value returned in params is GL_TRUE, the

texture is resident in texture memory. See glAreTexturesResident.
GL_TEXTURE_COMPARE_MODE
Returns a single-valued texture comparison mode, a symbolic constant. The initial value is

GL_NONE. See glTexParameter.
GL_TEXTURE_COMPARE_FUNC
Returns a single-valued texture comparison function, a symbolic constant. The initial value is

GL_LEQUAL. See glTexParameter.
GL_DEPTH_TEXTURE_MODE
Returns a single-valued texture format indicating how the depth values should be converted into

color components. The initial value is GL_LUMINANCE. See glTexParameter.
GL_GENERATE_MIPMAP
Returns a single boolean value indicating if automatic mipmap level updates are enabled. See

glTexParameter.

Notes

GL_TEXTURE_PRIORITY and GL_TEXTURE_RESIDENT are available only if the GL version is 1.1 or
greater.

GL_TEXTURE_3D, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL,
GL_TEXTURE_MAX_LEVEL, and GL_TEXTURE_WRAP_R are available only if the GL version is 1.2 or
greater.

GL_TEXTURE_COMPARE_MODE, GL_TEXTURE_COMPARE_FUNC, and GL_GENERATE_MIPMAP is avail-
able only if the GL version is 1.4 or greater.

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_OPERATION is generated if glGetTexParameter is executed between the execution

of glBegin and the corresponding execution of glEnd.

See Also

glAreTexturesResident, glPrioritizeTextures, glTexParameter

glGetTexParameter 973

C

glGetUniform

Return the value of a uniform variable

C Specification

void glGetUniformfv(GLuint program,
GLint location,
GLfloat * params);

void glGetUniformiv(GLuint program,
GLint location,
GLint * params);

Parameters

program Specifies the program object to be queried.
location Specifies the location of the uniform variable to be queried.
params Returns the value of the specified uniform variable.

Description

glGetUniform returns in params the value(s) of the specified uniform variable. The type of the
uniform variable specified by location determines the number of values returned. If the uniform
variable is defined in the shader as a boolean, int, or float, a single value will be returned. If it is
defined as a vec2, ivec2, or bvec2, two values will be returned. If it is defined as a vec3, ivec3, or
bvec3, three values will be returned, and so on. To query values stored in uniform variables declared
as arrays, call glGetUniform for each element of the array. To query values stored in uniform vari-
ables declared as structures, call glGetUniform for each field in the structure. The values for uniform
variables declared as a matrix will be returned in column major order.

The locations assigned to uniform variables are not known until the program object is linked.
After linking has occurred, the command glGetUniformLocation can be used to obtain the loca-
tion of a uniform variable. This location value can then be passed to glGetUniform in order to query
the current value of the uniform variable. After a program object has been linked successfully, the
index values for uniform variables remain fixed until the next link command occurs. The uniform
variable values can only be queried after a link if the link was successful.

Notes

glGetUniform is available only if the GL version is 2.0 or greater.
If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program has not been successfully linked.
GL_INVALID_OPERATION is generated if location does not correspond to a valid uniform vari-

able location for the specified program object.
GL_INVALID_OPERATION is generated if glGetUniform is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetActiveUniform with arguments program and the index of an active uniform variable
glGetProgram with arguments program and GL_ACTIVE_UNIFORMS or

GL_ACTIVE_UNIFORM_MAX_LENGTH
glGetUniformLocation with arguments program and the name of a uniform variable
glIsProgram

See Also

glCreateProgram, glLinkProgram, glUniform

glGetUniform974

glGetUniformLocation

Return the location of a uniform variable

C Specification

GLint glGetUniformLocation(GLuint program,
const GLchar * name);

Parameters

program Specifies the program object to be queried.
name Points to a null terminated string containing the name of the uniform variable

whose location is to be queried.

Description

glGetUniformLocation returns an integer that represents the location of a specific uniform
variable within a program object. name must be a null terminated string that contains no white space.
name must be an active uniform variable name in program that is not a structure, an array of struc-
tures, or a subcomponent of a vector or a matrix. This function returns -1 if name does not corre-
spond to an active uniform variable in program or if name starts with the reserved prefix “gl_”.

Uniform variables that are structures or arrays of structures may be queried by calling
glGetUniformLocation for each field within the structure. The array element operator “[]” and the
structure field operator “.” may be used in name in order to select elements within an array or fields
within a structure. The result of using these operators is not allowed to be another structure, an array
of structures, or a subcomponent of a vector or a matrix. Except if the last part of name indicates a
uniform variable array, the location of the first element of an array can be retrieved by using the
name of the array, or by using the name appended by “[0]”.

The actual locations assigned to uniform variables are not known until the program object is
linked successfully. After linking has occurred, the command glGetUniformLocation can be used to
obtain the location of a uniform variable. This location value can then be passed to glUniform to set
the value of the uniform variable or to glGetUniform in order to query the current value of the
uniform variable. After a program object has been linked successfully, the index values for uniform
variables remain fixed until the next link command occurs. Uniform variable locations and values can
only be queried after a link if the link was successful.

Notes

glGetUniformLocation is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program has not been successfully linked.
GL_INVALID_OPERATION is generated if glGetUniformLocation is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetActiveUniform with arguments program and the index of an active uniform variable
glGetProgram with arguments program and GL_ACTIVE_UNIFORMS or

GL_ACTIVE_UNIFORM_MAX_LENGTH
glGetUniform with arguments program and the name of a uniform variable
glIsProgram

See Also

glLinkProgram, glUniform

glGetUniformLocation 975

C

glGetVertexAttrib

Return a generic vertex attribute parameter

C Specification

void glGetVertexAttribdv(GLuint index,
GLenum pname,
GLdouble * params);

void glGetVertexAttribfv(GLuint index,
GLenum pname,
GLfloat * params);

void glGetVertexAttribiv(GLuint index,
GLenum pname,
GLint * params);

Parameters

index Specifies the generic vertex attribute parameter to be queried.
pname Specifies the symbolic name of the vertex attribute parameter to be queried. Accepted

values are GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
GL_VERTEX_ATTRIB_ARRAY_ENABLED, GL_VERTEX_ATTRIB_ARRAY_SIZE,
GL_VERTEX_ATTRIB_ARRAY_STRIDE, GL_VERTEX_ATTRIB_ARRAY_TYPE,
GL_VERTEX_ATTRIB_ARRAY_NORMALIZED, or GL_CURRENT_VERTEX_ATTRIB.

params Returns the requested data.

Description

glGetVertexAttrib returns in params the value of a generic vertex attribute parameter. The
generic vertex attribute to be queried is specified by index, and the parameter to be queried is speci-
fied by pname.

The accepted parameter names are as follows:
GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the binding point

corresponding to generic vertex attribute array index. If no buffer object is bound, 0 is returned. The
initial value is 0.

GL_VERTEX_ATTRIB_ARRAY_ENABLED
params returns a single value that is nonzero (true) if the vertex attribute array for index is

enabled and 0 (false) if it is disabled. The initial value is GL_FALSE.
GL_VERTEX_ATTRIB_ARRAY_SIZE
params returns a single value, the size of the vertex attribute array for index. The size is the

number of values for each element of the vertex attribute array, and it will be 1, 2, 3, or 4. The initial
value is 4.

GL_VERTEX_ATTRIB_ARRAY_STRIDE
params returns a single value, the array stride for (number of bytes between successive elements

in) the vertex attribute array for index. A value of 0 indicates that the array elements are stored
sequentially in memory. The initial value is 0.

GL_VERTEX_ATTRIB_ARRAY_TYPE
params returns a single value, a symbolic constant indicating the array type for the vertex

attribute array for index. Possible values are GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, and GL_DOUBLE. The initial value is
GL_FLOAT.

GL_VERTEX_ATTRIB_ARRAY_NORMALIZED
params returns a single value that is nonzero (true) if fixed-point data types for the vertex

attribute array indicated by index are normalized when they are converted to floating point, and 0
(false) otherwise. The initial value is GL_FALSE.

glGetVertexAttrib976

GL_CURRENT_VERTEX_ATTRIB
params returns four values that represent the current value for the generic vertex attribute speci-

fied by index. Generic vertex attribute 0 is unique in that it has no current state, so an error will be
generated if index is 0. The initial value for all other generic vertex attributes is (0,0,0,1).

All of the parameters except GL_CURRENT_VERTEX_ATTRIB represent client-side state.

Notes

glGetVertexAttrib is available only if the GL version is 2.0 or greater.
If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if index is 0 and pname is GL_CURRENT_VERTEX_ATTRIB.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetVertexAttribPointerv with arguments index and

GL_VERTEX_ATTRIB_ARRAY_POINTER

See Also

glBindAttribLocation, glBindBuffer, glDisableVertexAttribArray,
glEnableVertexAttribArray, glVertexAttrib, glVertexAttribPointer

glGetVertexAttribPointerv

Return the address of the specified generic vertex attribute pointer

C Specification

void glGetVertexAttribPointerv(GLuint index,
GLenum pname,
GLvoid ** pointer);

Parameters

index Specifies the generic vertex attribute parameter to be returned.
pname Specifies the symbolic name of the generic vertex attribute parameter to be returned.

Must be GL_VERTEX_ATTRIB_ARRAY_POINTER.
pointer Returns the pointer value.

Description

glGetVertexAttribPointerv returns pointer information. index is the generic vertex attribute
to be queried, pname is a symbolic constant indicating the pointer to be returned, and params is a
pointer to a location in which to place the returned data.

If a nonzero named buffer object was bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) when the desired pointer was previously specified, the pointer returned is a byte
offset into the buffer object’s data store.

Notes

glGetVertexAttribPointerv is available only if the GL version is 2.0 or greater.
The pointer returned is client-side state.
The initial value for each pointer is 0.

glGetVertexAttribPointerv 977

C

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_ENUM is generated if pname is not an accepted value.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS

See Also

glGetVertexAttrib, glVertexAttribPointer

glHint

Specify implementation-specific hints

C Specification

void glHint(GLenum target, GLenum mode);

Parameters

target Specifies a symbolic constant indicating the behavior to be controlled. GL_FOG_HINT,
GL_GENERATE_MIPMAP_HINT, GL_LINE_SMOOTH_HINT,
GL_PERSPECTIVE_CORRECTION_HINT, GL_POINT_SMOOTH_HINT,
GL_POLYGON_SMOOTH_HINT, GL_TEXTURE_COMPRESSION_HINT, and
GL_FRAGMENT_SHADER_DERIVATIVE_HINT are accepted.

mode Specifies a symbolic constant indicating the desired behavior. GL_FASTEST, GL_NICEST, and
GL_DONT_CARE are accepted.

Description

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with
hints. A hint is specified with two arguments. target is a symbolic constant indicating the behavior
to be controlled, and mode is another symbolic constant indicating the desired behavior. The initial
value for each target is GL_DONT_CARE. mode can be one of the following:

GL_FASTEST
The most efficient option should be chosen.
GL_NICEST
The most correct, or highest quality, option should be chosen.
GL_DONT_CARE
No preference.
Though the implementation aspects that can be hinted are well defined, the interpretation of the

hints depends on the implementation. The hint aspects that can be specified with target, along
with suggested semantics, are as follows:

GL_FOG_HINT
Indicates the accuracy of fog calculation. If per-pixel fog calculation is not efficiently supported

by the GL implementation, hinting GL_DONT_CARE or GL_FASTEST can result in per-vertex calcula-
tion of fog effects.

GL_FRAGMENT_SHADER_DERIVATIVE_HINT
Indicates the accuracy of the derivative calculation for the GL shading language fragment process-

ing built-in functions: dFdx, dFdy, and fwidth.
GL_GENERATE_MIPMAP_HINT
Indicates the quality of filtering when generating mipmap images.
GL_LINE_SMOOTH_HINT
Indicates the sampling quality of antialiased lines. If a larger filter function is applied, hinting

GL_NICEST can result in more pixel fragments being generated during rasterization.

glHint978

GL_PERSPECTIVE_CORRECTION_HINT
Indicates the quality of color, texture coordinate, and fog coordinate interpolation. If perspective-

corrected parameter interpolation is not efficiently supported by the GL implementation, hinting
GL_DONT_CARE or GL_FASTEST can result in simple linear interpolation of colors and/or texture
coordinates.

GL_POINT_SMOOTH_HINT
Indicates the sampling quality of antialiased points. If a larger filter function is applied, hinting

GL_NICEST can result in more pixel fragments being generated during rasterization.
GL_POLYGON_SMOOTH_HINT
Indicates the sampling quality of antialiased polygons. Hinting GL_NICEST can result in more

pixel fragments being generated during rasterization, if a larger filter function is applied.
GL_TEXTURE_COMPRESSION_HINT
Indicates the quality and performance of the compressing texture images. Hinting GL_FASTEST

indicates that texture images should be compressed as quickly as possible, while GL_NICEST indicates
that texture images should be compressed with as little image quality loss as possible. GL_NICEST
should be selected if the texture is to be retrieved by glGetCompressedTexImage for reuse.

Notes

The interpretation of hints depends on the implementation. Some implementations ignore
glHint settings.

GL_TEXTURE_COMPRESSION_HINT is available only if the GL version is 1.3 or greater.
GL_GENERATE_MIPMAP_HINT is available only if the GL version is 1.4 or greater.
GL_FRAGMENT_SHADER_DERIVATIVE_HINT is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_ENUM is generated if either target or mode is not an accepted value.
GL_INVALID_OPERATION is generated if glHint is executed between the execution of glBegin

and the corresponding execution of glEnd.

glHistogram

Define histogram table

C Specification

void glHistogram(GLenum target,
GLsizei width,
GLenum internalformat,
GLboolean sink);

Parameters

target The histogram whose parameters are to be set. Must be one of GL_HISTOGRAM or
GL_PROXY_HISTOGRAM.

width The number of entries in the histogram table. Must be a power of 2.
internalformat The format of entries in the histogram table. Must be one of GL_ALPHA,

GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_R3_G3_B2,
GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16.

glHistogram 979

C

sink If GL_TRUE, pixels will be consumed by the histogramming process and no
drawing or texture loading will take place. If GL_FALSE, pixels will proceed to
the minmax process after histogramming.

Description

When GL_HISTOGRAM is enabled, RGBA color components are converted to histogram table
indices by clamping to the range [0,1], multiplying by the width of the histogram table, and rounding
to the nearest integer. The table entries selected by the RGBA indices are then incremented. (If the
internal format of the histogram table includes luminance, then the index derived from the R color
component determines the luminance table entry to be incremented.) If a histogram table entry is
incremented beyond its maximum value, then its value becomes undefined. (This is not an error.)

Histogramming is performed only for RGBA pixels (though these may be specified originally as
color indices and converted to RGBA by index table lookup). Histogramming is enabled with
glEnable and disabled with glDisable.

When target is GL_HISTOGRAM, glHistogram redefines the current histogram table to have
width entries of the format specified by internalformat. The entries are indexed 0 through width
– 1, and all entries are initialized to zero. The values in the previous histogram table, if any, are lost. If
sink is GL_TRUE, then pixels are discarded after histogramming; no further processing of the pixels
takes place, and no drawing, texture loading, or pixel readback will result.

When target is GL_PROXY_HISTOGRAM, glHistogram computes all state information as if the
histogram table were to be redefined, but does not actually define the new table. If the requested
histogram table is too large to be supported, then the state information will be set to zero. This
provides a way to determine if a histogram table with the given parameters can be supported.

Notes

glHistogram is present only if ARB_imaging is returned when glGetString is called with an
argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero or is not a power of 2.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_TABLE_TOO_LARGE is generated if target is GL_HISTOGRAM and the histogram table specified

is too large for the implementation.
GL_INVALID_OPERATION is generated if glHistogram is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetHistogramParameter

See Also

glGetHistogram, glResetHistogram

glIndex

Set the current color index

C Specification

void glIndexs(GLshort c);
void glIndexi(GLint c);
void glIndexf(GLfloat c);
void glIndexd(GLdouble c);
void glIndexub(GLubyte c);

glHistogram980

Parameters

c Specifies the new value for the current color index.

C Specification

void glIndexsv(const GLshort * c);
void glIndexiv(const GLint * c);
void glIndexfv(const GLfloat * c);
void glIndexdv(const GLdouble * c);
void glIndexubv(const GLubyte * c);

Parameters

c Specifies a pointer to a one-element array that contains the new value for the current color
index.

Description

glIndex updates the current (single-valued) color index. It takes one argument, the new value for
the current color index.

The current index is stored as a floating-point value. Integer values are converted directly to float-
ing-point values, with no special mapping. The initial value is 1.

Index values outside the representable range of the color index buffer are not clamped. However,
before an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point
format. Any bits in the integer portion of the resulting fixed-point value that do not correspond to
bits in the frame buffer are masked out.

Notes

glIndexub and glIndexubv are available only if the GL version is 1.1 or greater.
The current index can be updated at any time. In particular, glIndex can be called between a call

to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_INDEX

See Also

glColor, glIndexPointer

glIndexMask

Control the writing of individual bits in the color index buffers

C Specification

void glIndexMask(GLuint mask);

Parameters

mask Specifies a bit mask to enable and disable the writing of individual bits in the color index
buffers. Initially, the mask is all 1’s.

Description

glIndexMask controls the writing of individual bits in the color index buffers. The least signifi-
cant n bits of mask, where n is the number of bits in a color index buffer, specify a mask. Where a 1
(one) appears in the mask, it’s possible to write to the corresponding bit in the color index buffer (or
buffers). Where a 0 (zero) appears, the corresponding bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for
writing (see glDrawBuffer). Initially, all bits are enabled for writing.

glIndexMask 981

C

Errors

GL_INVALID_OPERATION is generated if glIndexMask is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_INDEX_WRITEMASK

See Also

glColorMask, glDepthMask, glDrawBuffer, glIndex, glIndexPointer, glStencilMask

glIndexPointer

Define an array of color indexes

C Specification

void glIndexPointer(GLenum type,
GLsizei stride,
const GLvoid * pointer);

Parameters

type Specifies the data type of each color index in the array. Symbolic constants
GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE are accepted. The
initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive color indexes. If stride is 0, the color
indexes are understood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first index in the array. The initial value is 0.

Description

glIndexPointer specifies the location and data format of an array of color indexes to use when
rendering. type specifies the data type of each color index and stride specifies the byte stride from
one color index to the next, allowing vertices and attributes to be packed into a single array or stored
in separate arrays.

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a color index array is specified, pointer is treated as a byte offset into the buffer object’s data
store. Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as color index vertex
array client-side state (GL_INDEX_ARRAY_BUFFER_BINDING).

When a color index array is specified, type, stride, and pointer are saved as client-side state,
in addition to the current vertex array buffer object binding.

To enable and disable the color index array, call glEnableClientState and
glDisableClientState with the argument GL_INDEX_ARRAY. If enabled, the color index array is
used when glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements,
glDrawRangeElements, or glArrayElement is called.

Notes

glIndexPointer is available only if the GL version is 1.1 or greater.
Color indexes are not supported for interleaved vertex array formats (see

glInterleavedArrays).
The color index array is initially disabled and isn’t accessed when glArrayElement,

glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

glIndexPointer982

Execution of glIndexPointer is not allowed between glBegin and the corresponding glEnd,
but an error may or may not be generated. If an error is not generated, the operation is undefined.

glIndexPointer is typically implemented on the client side.
Color index array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_INDEX_ARRAY
glGet with argument GL_INDEX_ARRAY_TYPE
glGet with argument GL_INDEX_ARRAY_STRIDE
glGet with argument GL_INDEX_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_INDEX_ARRAY_POINTER

See Also

glArrayElement, glBindBuffer, glColorPointer, glDisableClientState, glDrawArrays,
glDrawElements, glDrawRangeElements, glEdgeFlagPointer, glEnableClientState,
glFogCoordPointer, glIndex, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormalPointer, glPopClientAttrib, glPushClientAttrib,
glSecondaryColorPointer, glTexCoordPointer, glVertexAttribPointer, glVertexPointer

glInitNames

Initialize the name stack

C Specification

void glInitNames(void);

Description

The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers. glInitNames causes the name
stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glInitNames
while the render mode is not GL_SELECT are ignored.

Errors

GL_INVALID_OPERATION is generated if glInitNames is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

See Also

glLoadName, glPushName, glRenderMode, glSelectBuffer

glInitNames 983

C

glInterleavedArrays

Simultaneously specify and enable several interleaved arrays

C Specification

void glInterleavedArrays(GLenum format,
GLsizei stride,
const GLvoid * pointer);

Parameters

format Specifies the type of array to enable. Symbolic constants GL_V2F, GL_V3F, GL_C4UB_V2F,
GL_C4UB_V3F, GL_C3F_V3F, GL_N3F_V3F, GL_C4F_N3F_V3F, GL_T2F_V3F, GL_T4F_V4F,
GL_T2F_C4UB_V3F, GL_T2F_C3F_V3F, GL_T2F_N3F_V3F, GL_T2F_C4F_N3F_V3F, and
GL_T4F_C4F_N3F_V4F are accepted.

stride Specifies the offset in bytes between each aggregate array element.

Description

glInterleavedArrays lets you specify and enable individual color, normal, texture and vertex
arrays whose elements are part of a larger aggregate array element. For some implementations, this is
more efficient than specifying the arrays separately.

If stride is 0, the aggregate elements are stored consecutively. Otherwise, stride bytes occur
between the beginning of one aggregate array element and the beginning of the next aggregate array
element.

format serves as a “key’’ describing the extraction of individual arrays from the aggregate array. If
format contains a T, then texture coordinates are extracted from the interleaved array. If C is present,
color values are extracted. If N is present, normal coordinates are extracted. Vertex coordinates are
always extracted.

The digits 2, 3, and 4 denote how many values are extracted. F indicates that values are extracted
as floating-point values. Colors may also be extracted as 4 unsigned bytes if 4UB follows the C. If a
color is extracted as 4 unsigned bytes, the vertex array element which follows is located at the first
possible floating-point aligned address.

Notes

glInterleavedArrays is available only if the GL version is 1.1 or greater.
If glInterleavedArrays is called while compiling a display list, it is not compiled into the list,

and it is executed immediately.
Execution of glInterleavedArrays is not allowed between the execution of glBegin and the

corresponding execution of glEnd, but an error may or may not be generated. If no error is gener-
ated, the operation is undefined.

glInterleavedArrays is typically implemented on the client side.
Vertex array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

glInterleavedArrays only updates the texture coordinate array for the client active texture unit.
The texture coordinate state for other client texture units is not updated, regardless of whether the
client texture unit is enabled or not.

Secondary color values are not supported in interleaved vertex array formats.

Errors

GL_INVALID_ENUM is generated if format is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

glInterleavedArrays984

See Also

glArrayElement, glClientActiveTexture, glColorPointer, glDrawArrays,
glDrawElements, glEdgeFlagPointer, glEnableClientState, glGetPointerv,
glIndexPointer, glNormalPointer, glSecondaryColorPointer, glTexCoordPointer,
glVertexPointer

glIsBuffer

Determine if a name corresponds to a buffer object

C Specification

GLboolean glIsBuffer(GLuint buffer);

Parameters

buffer Specifies a value that may be the name of a buffer object.

Description

glIsBuffer returns GL_TRUE if buffer is currently the name of a buffer object. If buffer is
zero, or is a nonzero value that is not currently the name of a buffer object, or if an error occurs,
glIsBuffer returns GL_FALSE.

A name returned by glGenBuffers, but not yet associated with a buffer object by calling
glBindBuffer, is not the name of a buffer object.

Notes

glIsBuffer is available only if the GL version is 1.5 or greater.

Errors

GL_INVALID_OPERATION is generated if glIsBuffer is executed between the execution of
glBegin and the corresponding execution of glEnd.

See Also

glBindBuffer, glDeleteBuffers, glGenBuffers, glGet

glIsEnabled

Test whether a capability is enabled

C Specification

GLboolean glIsEnabled(GLenum cap);

Parameters

cap Specifies a symbolic constant indicating a GL capability.

Description

glIsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FALSE otherwise.
Initially all capabilities except GL_DITHER are disabled; GL_DITHER is initially enabled.

The following capabilities are accepted for cap:

Constant See

GL_ALPHA_TEST glAlphaFunc

GL_AUTO_NORMAL glEvalCoord

GL_BLEND glBlendFunc, glLogicOp

GL_CLIP_PLANEi glClipPlane

glIsEnabled 985

C

GL_COLOR_ARRAY glColorPointer

GL_COLOR_LOGIC_OP glLogicOp

GL_COLOR_MATERIAL glColorMaterial

GL_COLOR_SUM glSecondaryColor

GL_COLOR_TABLE glColorTable

GL_CONVOLUTION_1D glConvolutionFilter1D

GL_CONVOLUTION_2D glConvolutionFilter2D

GL_CULL_FACE glCullFace

GL_DEPTH_TEST glDepthFunc, glDepthRange

GL_DITHER glEnable

GL_EDGE_FLAG_ARRAY glEdgeFlagPointer

GL_FOG glFog

GL_FOG_COORD_ARRAY glFogCoordPointer

GL_HISTOGRAM glHistogram

GL_INDEX_ARRAY glIndexPointer

GL_INDEX_LOGIC_OP glLogicOp

GL_LIGHTi glLightModel, glLight

GL_LIGHTING glMaterial, glLightModel, glLight

GL_LINE_SMOOTH glLineWidth

GL_LINE_STIPPLE glLineStipple

GL_MAP1_COLOR_4 glMap1

GL_MAP1_INDEX glMap1

GL_MAP1_NORMAL glMap1

GL_MAP1_TEXTURE_COORD_1 glMap1

GL_MAP1_TEXTURE_COORD_2 glMap1

GL_MAP1_TEXTURE_COORD_3 glMap1

GL_MAP1_TEXTURE_COORD_4 glMap1

GL_MAP2_COLOR_4 glMap2

GL_MAP2_INDEX glMap2

GL_MAP2_NORMAL glMap2

GL_MAP2_TEXTURE_COORD_1 glMap2

GL_MAP2_TEXTURE_COORD_2 glMap2

GL_MAP2_TEXTURE_COORD_3 glMap2

GL_MAP2_TEXTURE_COORD_4 glMap2

GL_MAP2_VERTEX_3 glMap2

GL_MAP2_VERTEX_4 glMap2

GL_MINMAX glMinmax

GL_MULTISAMPLE glSampleCoverage

GL_NORMAL_ARRAY glNormalPointer

GL_NORMALIZE glNormal

GL_POINT_SMOOTH glPointSize

GL_POINT_SPRITE glEnable

GL_POLYGON_SMOOTH glPolygonMode

glIsEnabled986

Constant See

GL_POLYGON_OFFSET_FILL glPolygonOffset

GL_POLYGON_OFFSET_LINE glPolygonOffset

GL_POLYGON_OFFSET_POINT glPolygonOffset

GL_POLYGON_STIPPLE glPolygonStipple

GL_POST_COLOR_MATRIX_COLOR_TABLE glColorTable

GL_POST_CONVOLUTION_COLOR_TABLE glColorTable

GL_RESCALE_NORMAL glNormal

GL_SAMPLE_ALPHA_TO_COVERAGE glSampleCoverage

GL_SAMPLE_ALPHA_TO_ONE glSampleCoverage

GL_SAMPLE_COVERAGE glSampleCoverage

GL_SCISSOR_TEST glScissor

GL_SECONDARY_COLOR_ARRAY glSecondaryColorPointer

GL_SEPARABLE_2D glSeparableFilter2D

GL_STENCIL_TEST glStencilFunc, glStencilOp

GL_TEXTURE_1D glTexImage1D

GL_TEXTURE_2D glTexImage2D

GL_TEXTURE_3D glTexImage3D

GL_TEXTURE_COORD_ARRAY glTexCoordPointer

GL_TEXTURE_CUBE_MAP glTexGen

GL_TEXTURE_GEN_Q glTexGen

GL_TEXTURE_GEN_R glTexGen

GL_TEXTURE_GEN_S glTexGen

GL_TEXTURE_GEN_T glTexGen

GL_VERTEX_ARRAY glVertexPointer

GL_VERTEX_PROGRAM_POINT_SIZE glEnable

GL_VERTEX_PROGRAM_TWO_SIDE glEnable

Notes

If an error is generated, glIsEnabled returns 0.
GL_COLOR_LOGIC_OP, GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY, GL_INDEX_ARRAY,

GL_INDEX_LOGIC_OP, GL_NORMAL_ARRAY, GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY are available only
if the GL version is 1.1 or greater.

GL_RESCALE_NORMAL, and GL_TEXTURE_3D are available only if the GL version is 1.2 or greater.
GL_MULTISAMPLE, GL_SAMPLE_ALPHA_TO_COVERAGE, GL_SAMPLE_ALPHA_TO_ONE,

GL_SAMPLE_COVERAGE, GL_TEXTURE_CUBE_MAP are available only if the GL version is 1.3 or greater.
GL_FOG_COORD_ARRAY and GL_SECONDARY_COLOR_ARRAY are available only if the GL version is

1.4 or greater.
GL_POINT_SPRITE, GL_VERTEX_PROGRAM_POINT_SIZE, and GL_VERTEX_PROGRAM_TWO_SIDE

are available only if the GL version is 2.0 or greater.
GL_COLOR_TABLE, GL_CONVOLUTION_1D, GL_CONVOLUTION_2D, GL_HISTOGRAM, GL_MINMAX,

GL_POST_COLOR_MATRIX_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, and GL_SEPARA-
BLE_2D are available only if ARB_imaging is returned when glGet is called with GL_EXTENSIONS.

glIsEnabled 987

C

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
the following parameters return the associated value for the active texture unit: GL_TEXTURE_1D,
GL_TEXTURE_BINDING_1D, GL_TEXTURE_2D, GL_TEXTURE_BINDING_2D, GL_TEXTURE_3D,
GL_TEXTURE_BINDING_3D, GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R,
GL_TEXTURE_GEN_Q, GL_TEXTURE_MATRIX, and GL_TEXTURE_STACK_DEPTH. Likewise, the following
parameters return the associated value for the active client texture unit: GL_TEXTURE_COORD_ARRAY,
GL_TEXTURE_COORD_ARRAY_SIZE, GL_TEXTURE_COORD_ARRAY_STRIDE,
GL_TEXTURE_COORD_ARRAY_TYPE.

Errors

GL_INVALID_ENUM is generated if cap is not an accepted value.
GL_INVALID_OPERATION is generated if glIsEnabled is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glEnable, glEnableClientState, glGet

glIsList

Determine if a name corresponds to a display list

C Specification

GLboolean glIsList(GLuint list);

Parameters

list Specifies a potential display list name.

Description

glIsList returns GL_TRUE if list is the name of a display list and returns GL_FALSE if it is not,
or if an error occurs.

A name returned by glGenLists, but not yet associated with a display list by calling glNewList,
is not the name of a display list.

Errors

GL_INVALID_OPERATION is generated if glIsList is executed between the execution of
glBegin and the corresponding execution of glEnd.

See Also

glCallList, glCallLists, glDeleteLists, glGenLists, glNewList

glIsProgram

Determine if a name corresponds to a program object

C Specification

GLboolean glIsProgram(GLuint program);

Parameters

program Specifies a potential program object.

Description

glIsProgram returns GL_TRUE if program is the name of a program object previously created
with glCreateProgram and not yet deleted with glDeleteProgram. If program is zero or a
nonzero value that is not the name of a program object, or if an error occurs, glIsProgram returns
GL_FALSE.

glIsList988

Notes

glIsProgram is available only if the GL version is 2.0 or greater.
No error is generated if program is not a valid program object name.
A program object marked for deletion with glDeleteProgram but still in use as part of current

rendering state is still considered a program object and glIsProgram will return GL_TRUE.

Errors

GL_INVALID_OPERATION is generated if glIsProgram is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with arguments program and the index of an active attribute variable
glGetActiveUniform with arguments program and the index of an active uniform variable
glGetAttachedShaders with argument program
glGetAttribLocation with arguments program and the name of an attribute variable
glGetProgram with arguments program and the parameter to be queried
glGetProgramInfoLog with argument program
glGetUniform with arguments program and the location of a uniform variable
glGetUniformLocation with arguments program and the name of a uniform variable

See Also

glAttachShader, glBindAttribLocation, glCreateProgram, glDeleteProgram,
glDetachShader, glLinkProgram, glUniform, glUseProgram, glValidateProgram

glIsQuery

Determine if a name corresponds to a query object

C Specification

GLboolean glIsQuery(GLuint id);

Parameters

id Specifies a value that may be the name of a query object.

Description

glIsQuery returns GL_TRUE if id is currently the name of a query object. If id is zero, or is a
nonzero value that is not currently the name of a query object, or if an error occurs, glIsQuery
returns GL_FALSE.

A name returned by glGenQueries, but not yet associated with a query object by calling
glBeginQuery, is not the name of a query object.

Notes

glIsQuery is available only if the GL version is 1.5 or greater.

Errors

GL_INVALID_OPERATION is generated if glIsQuery is executed between the execution of
glBegin and the corresponding execution of glEnd.

See Also

glBeginQuery, glDeleteQueries, glEndQuery, glGenQueries

glIsQuery 989

C

glIsShader

Determine if a name corresponds to a shader object

C Specification

GLboolean glIsShader(GLuint shader);

Parameters

shader Specifies a potential shader object.

Description

glIsShader returns GL_TRUE if shader is the name of a shader object previously created with
glCreateShader and not yet deleted with glDeleteShader. If shader is zero or a nonzero value
that is not the name of a shader object, or if an error occurs, glIsShader returns GL_FALSE.

Notes

glIsShader is available only if the GL version is 2.0 or greater.
No error is generated if shader is not a valid shader object name.
A shader object marked for deletion with glDeleteShader but still attached to a program object

is still considered a shader object and glIsShader will return GL_TRUE.

Errors

GL_INVALID_OPERATION is generated if glIsShader is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetAttachedShaders with a valid program object
glGetShader with arguments shader and a parameter to be queried
glGetShaderInfoLog with argument object
glGetShaderSource with argument object

See Also

glAttachShader, glCompileShader, glCreateShader, glDeleteShader, glDetachShader,
glLinkProgram, glShaderSource

glIsTexture

Determine if a name corresponds to a texture

C Specification

GLboolean glIsTexture(GLuint texture);

Parameters

texture Specifies a value that may be the name of a texture.

Description

glIsTexture returns GL_TRUE if texture is currently the name of a texture. If texture is zero,
or is a nonzero value that is not currently the name of a texture, or if an error occurs, glIsTexture
returns GL_FALSE.

A name returned by glGenTextures, but not yet associated with a texture by calling
glBindTexture, is not the name of a texture.

Notes

glIsTexture is available only if the GL version is 1.1 or greater.

glIsShader990

Errors

GL_INVALID_OPERATION is generated if glIsTexture is executed between the execution of
glBegin and the corresponding execution of glEnd.

See Also

glBindTexture, glCopyTexImage1D, glCopyTexImage2D, glDeleteTextures,
glGenTextures, glGet, glGetTexParameter, glTexImage1D, glTexImage2D, glTexImage3D,
glTexParameter

glLight

Set light source parameters

C Specification

void glLightf(GLenum light,
GLenum pname,
GLfloat param);

void glLighti(GLenum light,
GLenum pname,
GLint param);

Parameters

light Specifies a light. The number of lights depends on the implementation, but at least
eight lights are supported. They are identified by symbolic names of the form
GL_LIGHTi, where i ranges from 0 to the value of GL_MAX_LIGHTS - 1.

pname Specifies a single-valued light source parameter for light. GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION are accepted.

param Specifies the value that parameter pname of light source light will be set to.

C Specification

void glLightfv(GLenum light,
GLenum pname,
const GLfloat * params);

void glLightiv(GLenum light,
GLenum pname,
const GLint * params);

Parameters

light Specifies a light. The number of lights depends on the implementation, but at least eight
lights are supported. They are identified by symbolic names of the form GL_LIGHTi,
where i ranges from 0 to the value of GL_MAX_LIGHTS - 1.

pname Specifies a light source parameter for light. GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_POSITION, GL_SPOT_CUTOFF, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUA-
TION are accepted.

params Specifies a pointer to the value or values that parameter pname of light source light will
be set to.

Description

glLight sets the values of individual light source parameters. light names the light and is a
symbolic name of the form GL_LIGHTi, where i ranges from 0 to the value of GL_MAX_LIGHTS - 1.
pname specifies one of ten light source parameters, again by symbolic name. params is either a single
value or a pointer to an array that contains the new values.

glLight 991

C

To enable and disable lighting calculation, call glEnable and glDisable with argument
GL_LIGHTING. Lighting is initially disabled. When it is enabled, light sources that are enabled
contribute to the lighting calculation. Light source i is enabled and disabled using glEnable and
glDisable with argument GL_LIGHTi.

The ten light parameters are as follows:
GL_AMBIENT
params contains four integer or floating-point values that specify the ambient RGBA intensity of

the light. Integer values are mapped linearly such that the most positive representable value maps to
1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped
directly. Neither integer nor floating-point values are clamped. The initial ambient light intensity is
(0, 0, 0, 1).

GL_DIFFUSE
params contains four integer or floating-point values that specify the diffuse RGBA intensity of

the light. Integer values are mapped linearly such that the most positive representable value maps to
1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped
directly. Neither integer nor floating-point values are clamped. The initial value for GL_LIGHT0 is (1,
1, 1, 1); for other lights, the initial value is (0, 0, 0, 1).

GL_SPECULAR
params contains four integer or floating-point values that specify the specular RGBA intensity of

the light. Integer values are mapped linearly such that the most positive representable value maps to
1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped
directly. Neither integer nor floating-point values are clamped. The initial value for GL_LIGHT0 is (1,
1, 1, 1); for other lights, the initial value is (0, 0, 0, 1).

GL_POSITION
params contains four integer or floating-point values that specify the position of the light in

homogeneous object coordinates. Both integer and floating-point values are mapped directly. Neither
integer nor floating-point values are clamped.

The position is transformed by the modelview matrix when glLight is called (just as if it were a
point), and it is stored in eye coordinates. If the w component of the position is 0, the light is treated
as a directional source. Diffuse and specular lighting calculations take the light’s direction, but not its
actual position, into account, and attenuation is disabled. Otherwise, diffuse and specular lighting
calculations are based on the actual location of the light in eye coordinates, and attenuation is
enabled. The initial position is (0, 0, 1, 0); thus, the initial light source is directional, parallel to, and
in the direction of the –z axis.

GL_SPOT_DIRECTION
params contains three integer or floating-point values that specify the direction of the light in

homogeneous object coordinates. Both integer and floating-point values are mapped directly. Neither
integer nor floating-point values are clamped.

The spot direction is transformed by the inverse of the modelview matrix when glLight is called
(just as if it were a normal), and it is stored in eye coordinates. It is significant only when
GL_SPOT_CUTOFF is not 180, which it is initially. The initial direction is (0,0,-1).

GL_SPOT_EXPONENT
params is a single integer or floating-point value that specifies the intensity distribution of the

light. Integer and floating-point values are mapped directly. Only values in the range [0,128] are
accepted.

Effective light intensity is attenuated by the cosine of the angle between the direction of the light
and the direction from the light to the vertex being lighted, raised to the power of the spot exponent.
Thus, higher spot exponents result in a more focused light source, regardless of the spot cutoff angle
(see GL_SPOT_CUTOFF, next paragraph). The initial spot exponent is 0, resulting in uniform light
distribution.

glLight992

GL_SPOT_CUTOFF
params is a single integer or floating-point value that specifies the maximum spread angle of a

light source. Integer and floating-point values are mapped directly. Only values in the range [0,90]
and the special value 180 are accepted. If the angle between the direction of the light and the direc-
tion from the light to the vertex being lighted is greater than the spot cutoff angle, the light is
completely masked. Otherwise, its intensity is controlled by the spot exponent and the attenuation
factors. The initial spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION
params is a single integer or floating-point value that specifies one of the three light attenuation

factors. Integer and floating-point values are mapped directly. Only nonnegative values are accepted.
If the light is positional, rather than directional, its intensity is attenuated by the reciprocal of the
sum of the constant factor, the linear factor times the distance between the light and the vertex being
lighted, and the quadratic factor times the square of the same distance. The initial attenuation factors
are (1, 0, 0), resulting in no attenuation.

Notes

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

Errors

GL_INVALID_ENUM is generated if either light or pname is not an accepted value.
GL_INVALID_VALUE is generated if a spot exponent value is specified outside the range [0,128], or

if spot cutoff is specified outside the range [0,90] (except for the special value 180), or if a negative
attenuation factor is specified.

GL_INVALID_OPERATION is generated if glLight is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets

glGetLight
glIsEnabled with argument GL_LIGHTING

See Also

glColorMaterial, glLightModel, glMaterial

glLightModel

Set the lighting model parameters

C Specification

void glLightModelf(GLenum pname,
GLfloat param);

void glLightModeli(GLenum pname,
GLint param);

Parameters

pname Specifies a single-valued lighting model parameter. GL_LIGHT_MODEL_LOCAL_VIEWER,
GL_LIGHT_MODEL_COLOR_CONTROL, and GL_LIGHT_MODEL_TWO_SIDE are accepted.

param Specifies the value that param will be set to.

C Specification

void glLightModelfv(GLenum pname,
const GLfloat * params);

void glLightModeliv(GLenum pname,
const GLint * params);

glLightModel 993

C

Parameters

pname Specifies a lighting model parameter. GL_LIGHT_MODEL_AMBIENT,
GL_LIGHT_MODEL_COLOR_CONTROL, GL_LIGHT_MODEL_LOCAL_VIEWER, and
GL_LIGHT_MODEL_TWO_SIDE are accepted.

params Specifies a pointer to the value or values that params will be set to.

Description

glLightModel sets the lighting model parameter. pname names a parameter and params gives
the new value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT
params contains four integer or floating-point values that specify the ambient RGBA intensity of

the entire scene. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The initial ambient scene
intensity is (0.2, 0.2, 0.2, 1.0).

GL_LIGHT_MODEL_COLOR_CONTROL
params must be either GL_SEPARATE_SPECULAR_COLOR or GL_SINGLE_COLOR.

GL_SINGLE_COLOR specifies that a single color is generated from the lighting computation for a
vertex. GL_SEPARATE_SPECULAR_COLOR specifies that the specular color computation of lighting be
stored separately from the remainder of the lighting computation. The specular color is summed into
the generated fragment’s color after the application of texture mapping (if enabled). The initial value
is GL_SINGLE_COLOR.

GL_LIGHT_MODEL_LOCAL_VIEWER
params is a single integer or floating-point value that specifies how specular reflection angles are

computed. If params is 0 (or 0.0), specular reflection angles take the view direction to be parallel to
and in the direction of the -z axis, regardless of the location of the vertex in eye coordinates.
Otherwise, specular reflections are computed from the origin of the eye coordinate system. The initial
value is 0.

GL_LIGHT_MODEL_TWO_SIDE
params is a single integer or floating-point value that specifies whether one- or two-sided lighting

calculations are done for polygons. It has no effect on the lighting calculations for points, lines, or
bitmaps. If params is 0 (or 0.0), one-sided lighting is specified, and only the front material parameters
are used in the lighting equation. Otherwise, two-sided lighting is specified. In this case, vertices of
back-facing polygons are lighted using the back material parameters and have their normals reversed
before the lighting equation is evaluated. Vertices of front-facing polygons are always lighted using
the front material parameters, with no change to their normals. The initial value is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the
product of the material ambient reflectance and the lighting model full-scene ambient intensity, and
the contribution of each enabled light source. Each light source contributes the sum of three terms:
ambient, diffuse, and specular. The ambient light source contribution is the product of the material
ambient reflectance and the light’s ambient intensity. The diffuse light source contribution is the
product of the material diffuse reflectance, the light’s diffuse intensity, and the dot product of the
vertex’s normal with the normalized vector from the vertex to the light source. The specular light
source contribution is the product of the material specular reflectance, the light’s specular intensity,
and the dot product of the normalized vertex-to-eye and vertex-to-light vectors, raised to the power
of the shininess of the material. All three light source contributions are attenuated equally based on
the distance from the vertex to the light source and on light source direction, spread exponent, and
spread cutoff angle. All dot products are replaced with 0 if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material
diffuse reflectance.

glLightModel994

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the
specular values passed to glMaterial using GL_COLOR_INDEXES. Diffuse and specular coefficients,
computed with a (.30, .59, .11) weighting of the lights’ colors, the shininess of the material, and the
same reflection and attenuation equations as in the RGBA case, determine how much above ambient
the resulting index is.

Notes

GL_LIGHT_MODEL_COLOR_CONTROL is available only if the GL version is 1.2 or greater.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_ENUM is generated if pname is GL_LIGHT_MODEL_COLOR_CONTROL and params is

not one of GL_SINGLE_COLOR or GL_SEPARATE_SPECULAR_COLOR.
GL_INVALID_OPERATION is generated if glLightModel is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LIGHT_MODEL_AMBIENT
glGet with argument GL_LIGHT_MODEL_COLOR_CONTROL
glGet with argument GL_LIGHT_MODEL_LOCAL_VIEWER
glGet with argument GL_LIGHT_MODEL_TWO_SIDE
glIsEnabled with argument GL_LIGHTING

See Also

glLight, glMaterial

glLineStipple

Specify the line stipple pattern

C Specification

void glLineStipple(GLint factor,
GLushort pattern);

Parameters

factor Specifies a multiplier for each bit in the line stipple pattern. If factor is 3, for
example, each bit in the pattern is used three times before the next bit in the pattern is
used. factor is clamped to the range [1, 256] and defaults to 1.

pattern Specifies a 16-bit integer whose bit pattern determines which fragments of a line will be
drawn when the line is rasterized. Bit zero is used first; the default pattern is all 1’s.

Description

Line stippling masks out certain fragments produced by rasterization; those fragments will not be
drawn. The masking is achieved by using three parameters: the 16-bit line stipple pattern pattern,
the repeat count factor, and an integer stipple counter s.

Counter s is reset to 0 whenever glBegin is called and before each line segment of a
glBegin(GL_LINES)/glEnd sequence is generated. It is incremented after each fragment of a unit
width aliased line segment is generated or after each i fragments of an i width line segment are gener-
ated. The i fragments associated with count s are masked out if

is 0, otherwise these fragments are sent to the frame buffer. Bit zero of pattern is the least signif-
icant bit.

s
factor

pattern bit % 16()

glLineStipple 995

C

Antialiased lines are treated as a sequence of 1 × width rectangles for purposes of stippling.
Whether rectangle s is rasterized or not depends on the fragment rule described for aliased lines,
counting rectangles rather than groups of fragments.

To enable and disable line stippling, call glEnable and glDisable with argument
GL_LINE_STIPPLE. When enabled, the line stipple pattern is applied as described above. When
disabled, it is as if the pattern were all 1’s. Initially, line stippling is disabled.

Errors

GL_INVALID_OPERATION is generated if glLineStipple is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LINE_STIPPLE_PATTERN
glGet with argument GL_LINE_STIPPLE_REPEAT
glIsEnabled with argument GL_LINE_STIPPLE

See Also

glLineWidth, glPolygonStipple

glLineWidth

Specify the width of rasterized lines

C Specification

void glLineWidth(GLfloat width);

Parameters

width Specifies the width of rasterized lines. The initial value is 1.

Description

glLineWidth specifies the rasterized width of both aliased and antialiased lines. Using a line
width other than 1 has different effects, depending on whether line antialiasing is enabled. To enable
and disable line antialiasing, call glEnable and glDisable with argument GL_LINE_SMOOTH. Line
antialiasing is initially disabled.

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to
the nearest integer. (If the rounding results in the value 0, it is as if the line width were 1.)
If | ∆x | >= | ∆y |, i pixels are filled in each column that is rasterized, where i is the rounded value
of width. Otherwise, i pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that inter-
sects the region lying within the rectangle having width equal to the current line width, length equal
to the actual length of the line, and centered on the mathematical line segment. The coverage value
for each fragment is the window coordinate area of the intersection of the rectangular region with the
corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is
requested, the nearest supported width is used. Only width 1 is guaranteed to be supported; others
depend on the implementation. Likewise, there is a range for aliased line widths as well. To query the
range of supported widths and the size difference between supported widths within the range, call
glGet with arguments GL_ALIASED_LINE_WIDTH_RANGE, GL_SMOOTH_LINE_WIDTH_RANGE, and
GL_SMOOTH_LINE_WIDTH_GRANULARITY.

Notes

The line width specified by glLineWidth is always returned when GL_LINE_WIDTH is queried.
Clamping and rounding for aliased and antialiased lines have no effect on the specified value.

glLineWidth996

Nonantialiased line width may be clamped to an implementation-dependent maximum. Call
glGet with GL_ALIASED_LINE_WIDTH_RANGE to determine the maximum width.

In OpenGL 1.2, the tokens GL_LINE_WIDTH_RANGE and GL_LINE_WIDTH_GRANULARITY were
replaced by GL_ALIASED_LINE_WIDTH_RANGE, GL_SMOOTH_LINE_WIDTH_RANGE, and
GL_SMOOTH_LINE_WIDTH_GRANULARITY. The old names are retained for backward compatibility, but
should not be used in new code.

Errors

GL_INVALID_VALUE is generated if width is less than or equal to 0.
GL_INVALID_OPERATION is generated if glLineWidth is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LINE_WIDTH
glGet with argument GL_ALIASED_LINE_WIDTH_RANGE
glGet with argument GL_SMOOTH_LINE_WIDTH_RANGE
glGet with argument GL_SMOOTH_LINE_WIDTH_GRANULARITY
glIsEnabled with argument GL_LINE_SMOOTH

See Also

glEnable

glLinkProgram

Link a program object

C Specification

void glLinkProgram(GLuint program);

Parameters

program Specifies the handle of the program object to be linked.

Description

glLinkProgram links the program object specified by program. If any shader objects of type
GL_VERTEX_SHADER are attached to program, they will be used to create an executable that will run
on the programmable vertex processor. If any shader objects of type GL_FRAGMENT_SHADER are
attached to program, they will be used to create an executable that will run on the programmable
fragment processor.

The status of the link operation will be stored as part of the program object’s state. This value will
be set to GL_TRUE if the program object was linked without errors and is ready for use, and GL_FALSE
otherwise. It can be queried by calling glGetProgram with arguments program and
GL_LINK_STATUS.

As a result of a successful link operation, all active user-defined uniform variables belonging to
program will be initialized to 0, and each of the program object’s active uniform variables will be
assigned a location that can be queried by calling glGetUniformLocation. Also, any active user-
defined attribute variables that have not been bound to a generic vertex attribute index will be bound
to one at this time.

Linking of a program object can fail for a number of reasons as specified in the OpenGL Shading
Language Specification. The following lists some of the conditions that will cause a link error.

• The number of active attribute variables supported by the implementation has been exceeded.
• The storage limit for uniform variables has been exceeded.
• The number of active uniform variables supported by the implementation has been exceeded.
• The main function is missing for the vertex shader or the fragment shader.

glLinkProgram 997

C

• A varying variable actually used in the fragment shader is not declared in the same way (or is
not declared at all) in the vertex shader.

• A reference to a function or variable name is unresolved.
• A shared global is declared with two different types or two different initial values.
• One or more of the attached shader objects has not been successfully compiled.
• Binding a generic attribute matrix caused some rows of the matrix to fall outside the allowed

maximum of GL_MAX_VERTEX_ATTRIBS.
• Not enough contiguous vertex attribute slots could be found to bind attribute matrices.

When a program object has been successfully linked, the program object can be made part of
current state by calling glUseProgram. Whether or not the link operation was successful, the
program object’s information log will be overwritten. The information log can be retrieved by calling
glGetProgramInfoLog.

glLinkProgram will also install the generated executables as part of the current rendering state if
the link operation was successful and the specified program object is already currently in use as a
result of a previous call to glUseProgram. If the program object currently in use is relinked unsuc-
cessfully, its link status will be set to GL_FALSE , but the executables and associated state will remain
part of the current state until a subsequent call to glUseProgram removes it from use. After it is
removed from use, it cannot be made part of current state until it has been successfully relinked.

If program contains shader objects of type GL_VERTEX_SHADER but does not contain shader
objects of type GL_FRAGMENT_SHADER, the vertex shader will be linked against the implicit interface
for fixed functionality fragment processing. Similarly, if program contains shader objects of type
GL_FRAGMENT_SHADER but it does not contain shader objects of type GL_VERTEX_SHADER, the frag-
ment shader will be linked against the implicit interface for fixed functionality vertex processing.

The program object’s information log is updated and the program is generated at the time of the
link operation. After the link operation, applications are free to modify attached shader objects,
compile attached shader objects, detach shader objects, delete shader objects, and attach additional
shader objects. None of these operations affects the information log or the program that is part of the
program object.

Notes

glLinkProgram is available only if the GL version is 2.0 or greater.
If the link operation is unsuccessful, any information about a previous link operation on program

is lost (i.e., a failed link does not restore the old state of program). Certain information can still be
retrieved from program even after an unsuccessful link operation. See for instance
glGetActiveAttrib and glGetActiveUniform.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if glLinkProgram is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with argument program and the index of an active attribute variable
glGetActiveUniform with argument program and the index of an active uniform variable
glGetAttachedShaders with argument program
glGetAttribLocation with argument program and an attribute variable name
glGetProgram with arguments program and GL_LINK_STATUS
glGetProgramInfoLog with argument program
glGetUniform with argument program and a uniform variable location

glLinkProgram998

glGetUniformLocation with argument program and a uniform variable name
glIsProgram

See Also

glAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram,
glDeleteProgram, glDetachShader, glUniform, glUseProgram, glValidateProgram

glListBase

Set the display-list base for glCallLists

C Specification

void glListBase(GLuint base);

Parameters

base Specifies an integer offset that will be added to glCallLists offsets to generate display-
list names. The initial value is 0.

Description

glCallLists specifies an array of offsets. Display-list names are generated by adding base to
each offset. Names that reference valid display lists are executed; the others are ignored.

Errors

GL_INVALID_OPERATION is generated if glListBase is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LIST_BASE

See Also

glCallLists

glLoadIdentity

Replace the current matrix with the identity matrix

C Specification

void glLoadIdentity(void);

Description

glLoadIdentity replaces the current matrix with the identity matrix. It is semantically
equivalent to calling glLoadMatrix with the identity matrix

but in some cases it is more efficient.

Errors

GL_INVALID_OPERATION is generated if glLoadIdentity is executed between the execution of
glBegin and the corresponding execution of glEnd.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

glLoadIdentity 999

C

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadMatrix, glLoadTransposeMatrix, glMatrixMode, glMultMatrix,
glMultTransposeMatrix, glPushMatrix

glLoadMatrix

Replace the current matrix with the specified matrix

C Specification

void glLoadMatrixd(const GLdouble * m);
void glLoadMatrixf(const GLfloat * m);

Parameters

m Specifies a pointer to 16 consecutive values, which are used as the elements of a 4 × 4 column-
major matrix.

Description

glLoadMatrix replaces the current matrix with the one whose elements are specified by m. The
current matrix is the projection matrix, modelview matrix, or texture matrix, depending on the
current matrix mode (see glMatrixMode).

The current matrix, M, defines a transformation of coordinates. For instance, assume M refers to
the modelview matrix. If v = (v[0], v[1], v[2], v[3]) is the set of object coordinates of a vertex, and m
points to an array of 16 single- or double-precision floating-point values m = {m[0], m[1], ..., m[15]},
then the modelview transformation M(v) does the following:

Projection and texture transformations are similarly defined.

Notes

While the elements of the matrix may be specified with single or double precision, the GL imple-
mentation may store or operate on these values in less than single precision.

Errors

GL_INVALID_OPERATION is generated if glLoadMatrix is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

M (v) =

m
m
m
m

m
m
m
m

[0]
[1]
[2]
[3]

m
m
m
m

[4]
[5]
[?]
[7]

m
m
m
m

[8]
[9]
[1 0]
[1 1]

v
v
v
v

[0]
[1]
[2]
[3]

[1 2]
[1 3]
[1 4]
[1 5]

glLoadMatrix1000

See Also

glLoadIdentity, glMatrixMode, glMultMatrix, glMultTransposeMatrix, glPushMatrix

glLoadName

Load a name onto the name stack

C Specification

void glLoadName(GLuint name);

Parameters

name Specifies a name that will replace the top value on the name stack.

Description

The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers and is initially empty.

glLoadName causes name to replace the value on the top of the name stack.
The name stack is always empty while the render mode is not GL_SELECT. Calls to glLoadName

while the render mode is not GL_SELECT are ignored.

Errors

GL_INVALID_OPERATION is generated if glLoadName is called while the name stack is empty.
GL_INVALID_OPERATION is generated if glLoadName is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

See Also

glInitNames, glPushName, glRenderMode, glSelectBuffer

glLoadTransposeMatrix

Replace the current matrix with the specified row-major ordered matrix

C Specification

void glLoadTransposeMatrixd(const GLdouble * m[16]);
void glLoadTransposeMatrixf(const GLfloat * m[16]);

Parameters

m[16] Specifies a pointer to 16 consecutive values, which are used as the elements of a 4 × 4
row-major matrix.

Description

glLoadTransposeMatrix replaces the current matrix with the one whose elements are specified
by m[16]. The current matrix is the projection matrix, modelview matrix, or texture matrix, depend-
ing on the current matrix mode (see glMatrixMode).

The current matrix, M, defines a transformation of coordinates. For instance, assume M refers to
the modelview matrix. If v = (v[0], v[1], v[2], v[3]) is the set of object coordinates of a vertex, and
m[16] points to an array of 16 single- or double-precision floating-point values m = {m[0], m[1],...,
m[15]}, then the modelview transformation M(v) does the following:

glLoadTransposeMatrix 1001

C

Projection and texture transformations are similarly defined.
Calling glLoadTransposeMatrix with matrix M is identical in operation to glLoadMatrix with

MT, where T represents the transpose.

Notes

glLoadTransposeMatrix is available only if the GL version is 1.3 or greater.
While the elements of the matrix may be specified with single or double precision, the GL imple-

mentation may store or operate on these values in less than single precision.

Errors

GL_INVALID_OPERATION is generated if glLoadTransposeMatrix is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadIdentity, glLoadMatrix, glMatrixMode, glMultMatrix, glMultTransposeMatrix,
glPushMatrix

glLogicOp

Specify a logical pixel operation for color index rendering

C Specification

void glLogicOp(GLenum opcode);

Parameters

opcode Specifies a symbolic constant that selects a logical operation. The following symbols are
accepted: GL_CLEAR, GL_SET, GL_COPY, GL_COPY_INVERTED, GL_NOOP, GL_INVERT,
GL_AND, GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE,
GL_AND_INVERTED, GL_OR_REVERSE, and GL_OR_INVERTED. The initial value is
GL_COPY.

Description

glLogicOp specifies a logical operation that, when enabled, is applied between the incoming
color index or RGBA color and the color index or RGBA color at the corresponding location in the
frame buffer. To enable or disable the logical operation, call glEnable and glDisable using the
symbolic constant GL_COLOR_LOGIC_OP for RGBA mode or GL_INDEX_LOGIC_OP for color index
mode. The initial value is disabled for both operations.

Opcode Resulting Operation

GL_CLEAR 0

GL_SET 1

GL_COPY s

M (v) =

m
m
m
m

m
m
m
m

[0]
[4]
[8]
[1 2]

m
m
m
m

[1]
[5]
[9]
[1 3]

m
m
m
m

[2]
[6]
[1 0]
[1 4]

v
v
v
v

[0]
[1]
[2]
[3]

[3]
[7]
[1 1]
[1 5]

glLogicOp1002

Opcode Resulting Operation

GL_COPY_INVERTED ~s

GL_NOOP d

GL_INVERT ~d

GL_AND s & d

GL_NAND ~(s & d)

GL_OR s | d

GL_NOR ~(s | d)

GL_XOR s ^ d

GL_EQUIV ~(s ^ d)

GL_AND_REVERSE s & ~d

GL_AND_INVERTED ~s & d

GL_OR_REVERSE s | ~d

GL_OR_INVERTED ~s | d

opcode is a symbolic constant chosen from the list above. In the explanation of the logical opera-
tions, s represents the incoming color index and d represents the index in the frame buffer. Standard
C-language operators are used. As these bitwise operators suggest, the logical operation is applied
independently to each bit pair of the source and destination indices or colors.

Notes

Color index logical operations are always supported. RGBA logical operations are supported only
if the GL version is 1.1 or greater.

When more than one RGBA color or index buffer is enabled for drawing, logical operations are
performed separately for each enabled buffer, using for the destination value the contents of that
buffer (see glDrawBuffer).

Errors

GL_INVALID_ENUM is generated if opcode is not an accepted value.
GL_INVALID_OPERATION is generated if glLogicOp is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_LOGIC_OP_MODE.
glIsEnabled with argument GL_COLOR_LOGIC_OP or GL_INDEX_LOGIC_OP.

See Also

glAlphaFunc, glBlendFunc, glDrawBuffer, glEnable, glStencilOp

glMap1

Define a one-dimensional evaluator

C Specification

void glMap1f(GLenum target,
GLfloat u1,
GLfloat u2,
GLint stride,
GLint order,
const GLfloat * points);

glMap1 1003

C

void glMap1d(GLenum target,
GLdouble u1,
GLdouble u2,
GLint stride,
GLint order,
const GLdouble * points);

Parameters

target Specifies the kind of values that are generated by the evaluator. Symbolic constants
GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4, GL_MAP1_INDEX, GL_MAP1_COLOR_4,
GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, and GL_MAP1_TEXTURE_COORD_4 are accepted.

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord1, to û, the variable that is
evaluated by the equations specified by this command.

stride Specifies the number of floats or doubles between the beginning of one control point and
the beginning of the next one in the data structure referenced in points. This allows
control points to be embedded in arbitrary data structures. The only constraint is that the
values for a particular control point must occupy contiguous memory locations.

order Specifies the number of control points. Must be positive.
points Specifies a pointer to the array of control points.

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices,
normals, texture coordinates, and colors. The values produced by an evaluator are sent to further
stages of GL processing just as if they had been presented using glVertex, glNormal, glTexCoord,
and glColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree
supported by the GL implementation) can be described using evaluators. These include almost all
splines used in computer graphics: B-splines, Bezier curves, Hermite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define p(û) as

where Ri is a control point and Bi
n(û) is the ith Bernstein polynomial of degree n (order = n + 1):

Recall that

glMap1 is used to define the basis and to specify what kind of values are produced. Once defined,
a map can be enabled and disabled by calling glEnable and glDisable with the map name, one of
the nine predefined values for target described below. glEvalCoord1 evaluates the one-dimen-
sional maps that are enabled. When glEvalCoord1 presents a value u, the Bernstein functions are
evaluated using û, where

target is a symbolic constant that indicates what kind of control points are provided in points,
and what output is generated when the map is evaluated. It can assume one of nine predefined
values:

GL_MAP1_VERTEX_3
Each control point is three floating-point values representing x, y, and z. Internal glVertex3

commands are generated when the map is evaluated.

u = u u1–
u2 u1 –

^

00 == 1 and == 1
n
0

Bi
n (u) = ui (1 – u)n – in

i
^ ^ ^

=
i = 0

p (u)
n

Bi
n (u) Ri

^ ^

glMap11004

GL_MAP1_VERTEX_4
Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4

commands are generated when the map is evaluated.
GL_MAP1_INDEX
Each control point is a single floating-point value representing a color index. Internal glIndex

commands are generated when the map is evaluated but the current index is not updated with the
value of these glIndex commands.

GL_MAP1_COLOR_4
Each control point is four floating-point values representing red, green, blue, and alpha. Internal

glColor4 commands are generated when the map is evaluated but the current color is not updated
with the value of these glColor4 commands.

GL_MAP1_NORMAL
Each control point is three floating-point values representing the x, y, and z components of a

normal vector. Internal glNormal commands are generated when the map is evaluated but the
current normal is not updated with the value of these glNormal commands.

GL_MAP1_TEXTURE_COORD_1
Each control point is a single floating-point value representing the s texture coordinate. Internal

glTexCoord1 commands are generated when the map is evaluated but the current texture coordi-
nates are not updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_2
Each control point is two floating-point values representing the s and t texture coordinates.

Internal glTexCoord2 commands are generated when the map is evaluated but the current texture
coordinates are not updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_3
Each control point is three floating-point values representing the s, t, and r texture coordinates.

Internal glTexCoord3 commands are generated when the map is evaluated but the current texture
coordinates are not updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t, r, and q texture coordinates.

Internal glTexCoord4 commands are generated when the map is evaluated but the current texture
coordinates are not updated with the value of these glTexCoord commands.

stride, order, and points define the array addressing for accessing the control points. points
is the location of the first control point, which occupies one, two, three, or four contiguous memory
locations, depending on which map is being defined. order is the number of control points in the
array. stride specifies how many float or double locations to advance the internal memory pointer
to reach the next control point.

Notes

As is the case with all GL commands that accept pointers to data, it is as if the contents of
points were copied by glMap1 before glMap1 returns. Changes to the contents of points have no
effect after glMap1 is called.

Errors

GL_INVALID_ENUM is generated if target is not an accepted value.
GL_INVALID_VALUE is generated if u1 is equal to u2.
GL_INVALID_VALUE is generated if stride is less than the number of values in a control point.
GL_INVALID_VALUE is generated if order is less than 1 or greater than the return value of

GL_MAX_EVAL_ORDER.
GL_INVALID_OPERATION is generated if glMap1 is executed between the execution of glBegin

and the corresponding execution of glEnd.
GL_INVALID_OPERATION is generated if glMap1 is called and the value of GL_ACTIVE_TEXTURE

is not GL_TEXTURE0.

glMap1 1005

C

Associated Gets

glGetMap
glGet with argument GL_MAX_EVAL_ORDER
glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4
glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4

See Also

glBegin, glColor, glEnable, glEvalCoord, glEvalMesh, glEvalPoint, glMap2, glMapGrid,
glNormal, glTexCoord, glVertex

glMap2

Define a two-dimensional evaluator

C Specification

void glMap2f(GLenum target,
GLfloat u1,
GLfloat u2,
GLint ustride,
GLint uorder,
GLfloat v1,
GLfloat v2,
GLint vstride,
GLint vorder,
const GLfloat * points);

void glMap2d(GLenum target,
GLdouble u1,
GLdouble u2,
GLint ustride,
GLint uorder,
GLdouble v1,
GLdouble v2,
GLint vstride,
GLint vorder,
const GLdouble * points);

Parameters

target Specifies the kind of values that are generated by the evaluator. Symbolic constants
GL_MAP2_VERTEX_3, GL_MAP2_VERTEX_4, GL_MAP2_INDEX, GL_MAP2_COLOR_4,
GL_MAP2_NORMAL, GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, and GL_MAP2_TEXTURE_COORD_4 are accepted.

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord2, to û, one of the two
variables that are evaluated by the equations specified by this command. Initially, u1 is
0 and u2 is 1.

glMap21006

ustride Specifies the number of floats or doubles between the beginning of control point Rij
and the beginning of control point R(i+1)j, where i and j are the u and v control point
indices, respectively. This allows control points to be embedded in arbitrary data struc-
tures. The only constraint is that the values for a particular control point must occupy
contiguous memory locations. The initial value of ustride is 0.

uorder Specifies the dimension of the control point array in the u axis. Must be positive. The
initial value is 1.

v1, v2 Specify a linear mapping of v, as presented to glEvalCoord2, to v̂, one of the two
variables that are evaluated by the equations specified by this command. Initially, v1 is
0 and v2 is 1.

vstride Specifies the number of floats or doubles between the beginning of control point Rij
and the beginning of control point Ri(j+1), where i and j are the u and v control point
indices, respectively. This allows control points to be embedded in arbitrary data struc-
tures. The only constraint is that the values for a particular control point must occupy
contiguous memory locations. The initial value of vstride is 0.

vorder Specifies the dimension of the control point array in the v axis. Must be positive. The
initial value is 1.

points Specifies a pointer to the array of control points.

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices,
normals, texture coordinates, and colors. The values produced by an evaluator are sent on to further
stages of GL processing just as if they had been presented using glVertex, glNormal, glTexCoord,
and glColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree
supported by the GL implementation) can be described using evaluators. These include almost all
surfaces used in computer graphics, including B-spline surfaces, NURBS surfaces, Bezier surfaces, and
so on.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define p (û, v̂) as

where Rij is a control point, Bi
n(û) is the ith Bernstein polynomial of degree n (uorder = n + 1)

and Bj
m(v̂) is the jth Bernstein polynomial of degree m (vorder = m + 1)

Recall that and
glMap2 is used to define the basis and to specify what kind of values are produced. Once defined,

a map can be enabled and disabled by calling glEnable and glDisable with the map name, one of
the nine predefined values for target, described below. When glEvalCoord2 presents values u and
v, the bivariate Bernstein polynomials are evaluated using û and v̂, where

target is a symbolic constant that indicates what kind of control points are provided in points,
and what output is generated when the map is evaluated. It can assume one of nine predefined
values:

v = v vl–
v2 vl–

^

u = u ul–
u2 ul –

^

 == 1
n
000 == 1

Bj
m (v) = vj (1 – v)m – jm

j
^ ^ ^

Bi
n (u) = ui (1 – u)n – in

i
^ ^ ^

=
i = 0 j = 0

p (u,v)
n m

Bi
n (u) Bj

m (v) Rij
^ ^ ^ ^

glMap2 1007

C

GL_MAP2_VERTEX_3
Each control point is three floating-point values representing x, y, and z. Internal glVertex3

commands are generated when the map is evaluated.
GL_MAP2_VERTEX_4
Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4

commands are generated when the map is evaluated.
GL_MAP2_INDEX
Each control point is a single floating-point value representing a color index. Internal glIndex

commands are generated when the map is evaluated but the current index is not updated with the
value of these glIndex commands.

GL_MAP2_COLOR_4
Each control point is four floating-point values representing red, green, blue, and alpha. Internal

glColor4 commands are generated when the map is evaluated but the current color is not updated
with the value of these glColor4 commands.

GL_MAP2_NORMAL
Each control point is three floating-point values representing the x, y, and z components of a

normal vector. Internal glNormal commands are generated when the map is evaluated but the
current normal is not updated with the value of these glNormal commands.

GL_MAP2_TEXTURE_COORD_1
Each control point is a single floating-point value representing the s texture coordinate. Internal

glTexCoord1 commands are generated when the map is evaluated but the current texture coordi-
nates are not updated with the value of these glTexCoord commands.

GL_MAP2_TEXTURE_COORD_2
Each control point is two floating-point values representing the s and t texture coordinates.

Internal glTexCoord2 commands are generated when the map is evaluated but the current texture
coordinates are not updated with the value of these glTexCoord commands.

GL_MAP2_TEXTURE_COORD_3
Each control point is three floating-point values representing the s, t, and r texture coordinates.

Internal glTexCoord3 commands are generated when the map is evaluated but the current texture
coordinates are not updated with the value of these glTexCoord commands.

GL_MAP2_TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t, r, and q texture coordinates.

Internal glTexCoord4 commands are generated when the map is evaluated but the current texture
coordinates are not updated with the value of these glTexCoord commands.

ustride, uorder, vstride, vorder, and points define the array addressing for accessing the
control points. points is the location of the first control point, which occupies one, two, three, or
four contiguous memory locations, depending on which map is being defined. There are uorder ×
vorder control points in the array. ustride specifies how many float or double locations are skipped
to advance the internal memory pointer from control point Rij to control point R(i+1)j. vstride speci-
fies how many float or double locations are skipped to advance the internal memory pointer from
control point Rij to control point Ri(j+1).

Notes

As is the case with all GL commands that accept pointers to data, it is as if the contents of
points were copied by glMap2 before glMap2 returns. Changes to the contents of points have no
effect after glMap2 is called.

Initially, GL_AUTO_NORMAL is enabled. If GL_AUTO_NORMAL is enabled, normal vectors are gener-
ated when either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is used to generate vertices.

Errors

GL_INVALID_ENUM is generated if target is not an accepted value.
GL_INVALID_VALUE is generated if u1 is equal to u2, or if v1 is equal to v2.

glMap21008

GL_INVALID_VALUE is generated if either ustride or vstride is less than the number of values
in a control point.

GL_INVALID_VALUE is generated if either uorder or vorder is less than 1 or greater than the
return value of GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION is generated if glMap2 is executed between the execution of glBegin
and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if glMap2 is called and the value of GL_ACTIVE_TEXTURE
is not GL_TEXTURE0.

Associated Gets

glGetMap
glGet with argument GL_MAX_EVAL_ORDER
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4

See Also

glBegin, glColor, glEnable, glEvalCoord, glEvalMesh, glEvalPoint, glMap1, glMapGrid,
glNormal, glTexCoord, glVertex

glMapBuffer

Map a buffer object’s data store

C Specification

void * glMapBuffer(GLenum target,
GLenum access);

Parameters

target Specifies the target buffer object being mapped. The symbolic constant must be
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

access Specifies the access policy, indicating whether it will be possible to read from, write to,
or both read from and write to the buffer object’s mapped data store. The symbolic
constant must be GL_READ_ONLY, GL_WRITE_ONLY, or GL_READ_WRITE.

C Specification

GLboolean glUnmapBuffer(GLenum target);

Parameters

target Specifies the target buffer object being unmapped. The symbolic constant must be
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

Description

glMapBuffer maps to the client’s address space the entire data store of the buffer object
currently bound to target. The data can then be directly read and/or written relative to the returned
pointer, depending on the specified access policy. If the GL is unable to map the buffer object’s data

glMapBuffer 1009

C

store, glMapBuffer generates an error and returns NULL. This may occur for system-specific reasons,
such as low virtual memory availability.

If a mapped data store is accessed in a way inconsistent with the specified access policy, no error
is generated, but performance may be negatively impacted and system errors, including program
termination, may result. Unlike the usage parameter of glBufferData, access is not a hint, and
does in fact constrain the usage of the mapped data store on some GL implementations. In order to
achieve the highest performance available, a buffer object’s data store should be used in ways consis-
tent with both its specified usage and access parameters.

A mapped data store must be unmapped with glUnmapBuffer before its buffer object is used.
Otherwise an error will be generated by any GL command that attempts to dereference the buffer
object’s data store. When a data store is unmapped, the pointer to its data store becomes invalid.
glUnmapBuffer returns GL_TRUE unless the data store contents have become corrupt during the
time the data store was mapped. This can occur for system-specific reasons that affect the availability
of graphics memory, such as screen mode changes. In such situations, GL_FALSE is returned and the
data store contents are undefined. An application must detect this rare condition and reinitialize the
data store.

A buffer object’s mapped data store is automatically unmapped when the buffer object is deleted
or its data store is recreated with glBufferData.

Notes

If an error is generated, glMapBuffer returns NULL, and glUnmapBuffer returns GL_FALSE.
glMapBuffer and glUnmapBuffer are available only if the GL version is 1.5 or greater.
GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL version is 2.1
or greater.

Parameter values passed to GL commands may not be sourced from the returned pointer. No error
will be generated, but results will be undefined and will likely vary across GL implementations.

Errors

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_ENUM is generated if access is not GL_READ_ONLY, GL_WRITE_ONLY, or
GL_READ_WRITE.

GL_OUT_OF_MEMORY is generated when glMapBuffer is executed if the GL is unable to map the
buffer object’s data store. This may occur for a variety of system-specific reasons, such as the absence
of sufficient remaining virtual memory.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if glMapBuffer is executed for a buffer object whose data

store is already mapped.
GL_INVALID_OPERATION is generated if glUnmapBuffer is executed for a buffer object whose

data store is not currently mapped.
GL_INVALID_OPERATION is generated if glMapBuffer or glUnmapBuffer is executed between

the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetBufferPointerv with argument GL_BUFFER_MAP_POINTER
glGetBufferParameteriv with argument GL_BUFFER_MAPPED, GL_BUFFER_ACCESS, or

GL_BUFFER_USAGE

See Also

glBindBuffer, glBufferData, glBufferSubData, glDeleteBuffers

glMapBuffer1010

glMapGrid

Define a one- or two-dimensional mesh

C Specification

void glMapGrid1d(GLint un,
GLdouble u1,
GLdouble u2);

void glMapGrid1f(GLint un,
GLfloat u1,
GLfloat u2);

void glMapGrid2d(GLint un,
GLdouble u1,
GLdouble u2,
GLint vn,
GLdouble v1,
GLdouble v2);

void glMapGrid2f(GLint un,
GLfloat u1,
GLfloat u2,
GLint vn,
GLfloat v1,
GLfloat v2);

Parameters

un Specifies the number of partitions in the grid range interval [u1, u2]. Must be positive.
u1, u2 Specify the mappings for integer grid domain values i = 0 and i = un.
vn Specifies the number of partitions in the grid range interval [v1, v2] (glMapGrid2 only).
v1, v2 Specify the mappings for integer grid domain values j = 0 and j = vn (glMapGrid2 only).

Description

glMapGrid and glEvalMesh are used together to efficiently generate and evaluate a series of
evenly-spaced map domain values. glEvalMesh steps through the integer domain of a one- or two-
dimensional grid, whose range is the domain of the evaluation maps specified by glMap1 and
glMap2.

glMapGrid1 and glMapGrid2 specify the linear grid mappings between the i (or i and j) integer
grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See glMap1 and
glMap2 for details of how u and v coordinates are evaluated.

glMapGrid1 specifies a single linear mapping such that integer grid coordinate 0 maps exactly to
u1, and integer grid coordinate un maps exactly to u2. All other integer grid coordinates i are mapped
so that

glMapGrid2 specifies two such linear mappings. One maps integer grid coordinate i = 0 exactly
to u1, and integer grid coordinate i = un exactly to u2. The other maps integer grid coordinate j = 0
exactly to v1, and integer grid coordinate j = vn exactly to v2. Other integer grid coordinates i and j
are mapped such that

The mappings specified by glMapGrid are used identically by glEvalMesh and glEvalPoint.

vn
v vl=

j (v2 vl)–

un
u ul=

i (u2 ul)–

un
u ul=

i (u2 ul)–

glMapGrid 1011

C

Errors

GL_INVALID_VALUE is generated if either un or vn is not positive.
GL_INVALID_OPERATION is generated if glMapGrid is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also

glEvalCoord, glEvalMesh, glEvalPoint, glMap1, glMap2

glMaterial

Specify material parameters for the lighting model

C Specification

void glMaterialf(GLenum face,
GLenum pname,
GLfloat param);

void glMateriali(GLenum face,
GLenum pname,
GLint param);

Parameters

face Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK,
or GL_FRONT_AND_BACK.

pname Specifies the single-valued material parameter of the face or faces that is being
updated. Must be GL_SHININESS.

param Specifies the value that parameter GL_SHININESS will be set to.

C Specification

void glMaterialfv(GLenum face,
GLenum pname,
const GLfloat * params);

void glMaterialiv(GLenum face,
GLenum pname,
const GLint * params);

Parameters

face Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

pname Specifies the material parameter of the face or faces that is being updated. Must be one
of GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS,
GL_AMBIENT_AND_DIFFUSE, or GL_COLOR_INDEXES.

params Specifies a pointer to the value or values that pname will be set to.

Description

glMaterial assigns values to material parameters. There are two matched sets of material para-
meters. One, the front-facing set, is used to shade points, lines, bitmaps, and all polygons (when two-
sided lighting is disabled), or just front-facing polygons (when two-sided lighting is enabled). The

glMaterial1012

other set, back-facing, is used to shade back-facing polygons only when two-sided lighting is enabled.
Refer to the glLightModel reference page for details concerning one- and two-sided lighting
calculations.

glMaterial takes three arguments. The first, face, specifies whether the GL_FRONT materials,
the GL_BACK materials, or both GL_FRONT_AND_BACK materials will be modified. The second, pname,
specifies which of several parameters in one or both sets will be modified. The third, params, specifies
what value or values will be assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex.
The equation is discussed in the glLightModel reference page. The parameters that can be specified
using glMaterial, and their interpretations by the lighting equation, are as follows:

GL_AMBIENT
params contains four integer or floating-point values that specify the ambient RGBA reflectance

of the material. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The initial ambient
reflectance for both front- and back-facing materials is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE
params contains four integer or floating-point values that specify the diffuse RGBA reflectance of

the material. Integer values are mapped linearly such that the most positive representable value maps
to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped
directly. Neither integer nor floating-point values are clamped. The initial diffuse reflectance for both
front- and back-facing materials is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR
params contains four integer or floating-point values that specify the specular RGBA reflectance

of the material. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The initial specular
reflectance for both front- and back-facing materials is (0, 0, 0, 1).

GL_EMISSION
params contains four integer or floating-point values that specify the RGBA emitted light inten-

sity of the material. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The initial emission intensity
for both front- and back-facing materials is (0, 0, 0, 1).

GL_SHININESS
params is a single integer or floating-point value that specifies the RGBA specular exponent of

the material. Integer and floating-point values are mapped directly. Only values in the range [0,128]
are accepted. The initial specular exponent for both front- and back-facing materials is 0.

GL_AMBIENT_AND_DIFFUSE
Equivalent to calling glMaterial twice with the same parameter values, once with GL_AMBIENT

and once with GL_DIFFUSE.
GL_COLOR_INDEXES
params contains three integer or floating-point values specifying the color indices for ambient,

diffuse, and specular lighting. These three values, and GL_SHININESS, are the only material values
used by the color index mode lighting equation. Refer to the glLightModel reference page for a
discussion of color index lighting.

Notes

The material parameters can be updated at any time. In particular, glMaterial can be called
between a call to glBegin and the corresponding call to glEnd. If only a single material parameter is
to be changed per vertex, however, glColorMaterial is preferred over glMaterial (see
glColorMaterial).

glMaterial 1013

C

While the ambient, diffuse, specular and emission material parameters all have alpha compo-
nents, only the diffuse alpha component is used in the lighting computation.

Errors

GL_INVALID_ENUM is generated if either face or pname is not an accepted value.
GL_INVALID_VALUE is generated if a specular exponent outside the range [0,128] is specified.

Associated Gets

glGetMaterial

See Also

glColorMaterial, glLight, glLightModel

glMatrixMode

Specify which matrix is the current matrix

C Specification

void glMatrixMode(GLenum mode);

Parameters

mode Specifies which matrix stack is the target for subsequent matrix operations. Three values are
accepted: GL_MODELVIEW, GL_PROJECTION, and GL_TEXTURE. The initial value is
GL_MODELVIEW. Additionally, if the ARB_imaging extension is supported, GL_COLOR is also
accepted.

Description

glMatrixMode sets the current matrix mode. mode can assume one of four values:
GL_MODELVIEW
Applies subsequent matrix operations to the modelview matrix stack.
GL_PROJECTION
Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE
Applies subsequent matrix operations to the texture matrix stack.
GL_COLOR
Applies subsequent matrix operations to the color matrix stack.
To find out which matrix stack is currently the target of all matrix operations, call glGet with

argument GL_MATRIX_MODE. The initial value is GL_MODELVIEW.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if glMatrixMode is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE

See Also

glLoadMatrix, glLoadTransposeMatrix, glMultMatrix, glMultTransposeMatrix,
glPopMatrix, glPushMatrix

glMatrixMode1014

glMinmax

Define minmax table

C Specification

void glMinmax(GLenum target,
GLenum internalformat,
GLboolean sink);

Parameters

target The minmax table whose parameters are to be set. Must be GL_MINMAX.
internalformat The format of entries in the minmax table. Must be one of GL_ALPHA,

GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_R3_G3_B2,
GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16.

sink If GL_TRUE, pixels will be consumed by the minmax process and no drawing
or texture loading will take place. If GL_FALSE, pixels will proceed to the final
conversion process after minmax.

Description

When GL_MINMAX is enabled, the RGBA components of incoming pixels are compared to the
minimum and maximum values for each component, which are stored in the two-element minmax
table. (The first element stores the minima, and the second element stores the maxima.) If a pixel
component is greater than the corresponding component in the maximum element, then the
maximum element is updated with the pixel component value. If a pixel component is less than
the corresponding component in the minimum element, then the minimum element is updated with
the pixel component value. (In both cases, if the internal format of the minmax table includes lumi-
nance, then the R color component of incoming pixels is used for comparison.) The contents of the
minmax table may be retrieved at a later time by calling glGetMinmax. The minmax operation is
enabled or disabled by calling glEnable or glDisable, respectively, with an argument of
GL_MINMAX.

glMinmax redefines the current minmax table to have entries of the format specified by inter-
nalformat. The maximum element is initialized with the smallest possible component values, and
the minimum element is initialized with the largest possible component values. The values in the
previous minmax table, if any, are lost. If sink is GL_TRUE, then pixels are discarded after minmax;
no further processing of the pixels takes place, and no drawing, texture loading, or pixel readback will
result.

Notes

glMinmax is present only if ARB_imaging is returned when glGetString is called with an argu-
ment of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_OPERATION is generated if glMinmax is executed between the execution of

glBegin and the corresponding execution of glEnd.

glMinmax 1015

C

Associated Gets

glGetMinmaxParameter

See Also

glGetMinmax, glResetMinmax

glMultiDrawArrays

Render multiple sets of primitives from array data

C Specification

void glMultiDrawArrays(GLenum mode,
GLint * first,
GLsizei * count,
GLsizei primcount);

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and
GL_POLYGON are accepted.

first Points to an array of starting indices in the enabled arrays.
count Points to an array of the number of indices to be rendered.
primcount Specifies the size of the first and count.

Description

glMultiDrawArrays specifies multiple sets of geometric primitives with very few subroutine
calls. Instead of calling a GL procedure to pass each individual vertex, normal, texture coordinate,
edge flag, or color, you can prespecify separate arrays of vertices, normals, and colors and use them to
construct a sequence of primitives with a single call to glMultiDrawArrays.

glMultiDrawArrays behaves identically to glDrawArrays except that primcount separate
ranges of elements are specified instead.

When glMultiDrawArrays is called, it uses count sequential elements from each enabled array
to construct a sequence of geometric primitives, beginning with element first. mode specifies what
kind of primitives are constructed, and how the array elements construct those primitives. If
GL_VERTEX_ARRAY is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glMultiDrawArrays have an unspecified value after
glMultiDrawArrays returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current
color is undefined after glMultiDrawArrays executes. Attributes that aren’t modified remain well
defined.

Notes

glMultiDrawArrays is available only if the GL version is 1.4 or greater.
glMultiDrawArrays is included in display lists. If glMultiDrawArrays is entered into a display

list, the necessary array data (determined by the array pointers and enables) is also entered into the
display list. Because the array pointers and enables are client-side state, their values affect display lists
when the lists are created, not when the lists are executed.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if primcount is negative.

glMultiDrawArrays1016

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to an enabled
array and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if glMultiDrawArrays is executed between the execution
of glBegin and the corresponding glEnd.

See Also

glArrayElement, glColorPointer, glDrawElements, glDrawRangeElements,
glEdgeFlagPointer, glFogCoordPointer, glGetPointerv, glIndexPointer,
glInterleavedArrays, glNormalPointer, glSecondaryColorPointer, glTexCoordPointer,
glVertexPointer

glMultiDrawElements

Render multiple sets of primitives by specifying indices of array data elements

C Specification

void glMultiDrawElements(GLenum mode,
const GLsizei * count,
GLenum type,
const GLvoid ** indices,
GLsizei primcount);

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and
GL_POLYGON are accepted.

count Points to an array of the elements’ counts.
type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.
indices Specifies a pointer to the location where the indices are stored.
primcount Specifies the size of the count array.

Description

glMultiDrawElements specifies multiple sets of geometric primitives with very few subroutine
calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate, edge
flag, or color, you can prespecify separate arrays of vertices, normals, and so on, and use them to
construct a sequence of primitives with a single call to glMultiDrawElements.

glMultiDrawElements is identical in operation to glDrawElements except that primcount
separate lists of elements are specified.

Vertex attributes that are modified by glMultiDrawElements have an unspecified value after
glMultiDrawElements returns. For example, if GL_COLOR_ARRAY is enabled, the value of the
current color is undefined after glMultiDrawElements executes. Attributes that aren’t modified
maintain their previous values.

Notes

glMultiDrawElements is available only if the GL version is 1.4 or greater.
glMultiDrawElements is included in display lists. If glMultiDrawElements is entered into a

display list, the necessary array data (determined by the array pointers and enables) is also entered
into the display list. Because the array pointers and enables are client-side state, their values affect
display lists when the lists are created, not when the lists are executed.

glMultiDrawElements 1017

C

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if primcount is negative.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if glMultiDrawElements is executed between the execu-

tion of glBegin and the corresponding glEnd.

See Also

glArrayElement, glColorPointer, glDrawArrays, glDrawRangeElements,
glEdgeFlagPointer, glFogCoordPointer, glGetPointerv, glIndexPointer,
glInterleavedArrays, glNormalPointer, glSecondaryColorPointer, glTexCoordPointer,
glVertexPointer

glMultiTexCoord

Set the current texture coordinates

C Specification

void glMultiTexCoord1s(GLenum target,
GLshort s);

void glMultiTexCoord1i(GLenum target,
GLint s);

void glMultiTexCoord1f(GLenum target,
GLfloat s);

void glMultiTexCoord1d(GLenum target,
GLdouble s);

void glMultiTexCoord2s(GLenum target,
GLshort s,
GLshort t);

void glMultiTexCoord2i(GLenum target,
GLint s,
GLint t);

void glMultiTexCoord2f(GLenum target,
GLfloat s,
GLfloat t);

void glMultiTexCoord2d(GLenum target,
GLdouble s,
GLdouble t);

void glMultiTexCoord3s(GLenum target,
GLshort s,
GLshort t,
GLshort r);

void glMultiTexCoord3i(GLenum target,
GLint s,
GLint t,
GLint r);

void glMultiTexCoord3f(GLenum target,
GLfloat s,
GLfloat t,
GLfloat r);

glMultiTexCoord1018

void glMultiTexCoord3d(GLenum target,
GLdouble s,
GLdouble t,
GLdouble r);

void glMultiTexCoord4s(GLenum target,
GLshort s,
GLshort t,
GLshort r,
GLshort q);

void glMultiTexCoord4i(GLenum target,
GLint s,
GLint t,
GLint r,
GLint q);

void glMultiTexCoord4f(GLenum target,
GLfloat s,
GLfloat t,
GLfloat r,
GLfloat q);

void glMultiTexCoord4d(GLenum target,
GLdouble s,
GLdouble t,
GLdouble r,
GLdouble q);

Parameters

target Specifies the texture unit whose coordinates should be modified. The number of
texture units is implementation dependent, but must be at least two. Symbolic
constant must be one of GL_TEXTUREi, where i ranges from 0 to
GL_MAX_TEXTURE_COORDS - 1, which is an implementation-dependent value.

s, t, r, q Specify s, t, r, and q texture coordinates for target texture unit. Not all parameters
are present in all forms of the command.

C Specification

void glMultiTexCoord1sv(GLenum target,
const GLshort * v);

void glMultiTexCoord1iv(GLenum target,
const GLint * v);

void glMultiTexCoord1fv(GLenum target,
const GLfloat * v);

void glMultiTexCoord1dv(GLenum target,
const GLdouble * v);

void glMultiTexCoord2sv(GLenum target,
const GLshort * v);

void glMultiTexCoord2iv(GLenum target,
const GLint * v);

void glMultiTexCoord2fv(GLenum target,
const GLfloat * v);

void glMultiTexCoord2dv(GLenum target,
const GLdouble * v);

void glMultiTexCoord3sv(GLenum target,
const GLshort * v);

glMultiTexCoord 1019

C

void glMultiTexCoord3iv(GLenum target,
const GLint * v);

void glMultiTexCoord3fv(GLenum target,
const GLfloat * v);

void glMultiTexCoord3dv(GLenum target,
const GLdouble * v);

void glMultiTexCoord4sv(GLenum target,
const GLshort * v);

void glMultiTexCoord4iv(GLenum target,
const GLint * v);

void glMultiTexCoord4fv(GLenum target,
const GLfloat * v);

void glMultiTexCoord4dv(GLenum target,
const GLdouble * v);

Parameters

target Specifies the texture unit whose coordinates should be modified. The number of texture
units is implementation dependent, but must be at least two. Symbolic constant must be
one of GL_TEXTUREi, where i ranges from 0 to GL_MAX_TEXTURE_COORDS - 1, which is
an implementation-dependent value.

v Specifies a pointer to an array of one, two, three, or four elements, which in turn specify
the s, t, r, and q texture coordinates.

Description

glMultiTexCoord specifies texture coordinates in one, two, three, or four dimensions.
glMultiTexCoord1 sets the current texture coordinates to (s,0,0,1); a call to glMultiTexCoord2
sets them to (s,t,0,1). Similarly, glMultiTexCoord3 specifies the texture coordinates as (s,t,r,1),
and glMultiTexCoord4 defines all four components explicitly as (s,t,r,q).

The current texture coordinates are part of the data that is associated with each vertex and with
the current raster position. Initially, the values for (s,t,r,q) are (0,0,0,1).

Notes

glMultiTexCoord is only supported if the GL version is 1.3 or greater, or if ARB_multitexture
is included in the string returned by glGetString when called with the argument GL_EXTENSIONS.

The current texture coordinates can be updated at any time. In particular, glMultiTexCoord can
be called between a call to glBegin and the corresponding call to glEnd.

It is always the case that GL_TEXTUREi = GL_TEXTURE0 + i.

Associated Gets

glGet with argument GL_CURRENT_TEXTURE_COORDS with appropriate texture unit selected.
glGet with argument GL_MAX_TEXTURE_COORDS

See Also

glActiveTexture, glClientActiveTexture, glTexCoord, glTexCoordPointer, glVertex

glMultMatrix

Multiply the current matrix with the specified matrix

C Specification

void glMultMatrixd(const GLdouble * m);
void glMultMatrixf(const GLfloat * m);

glMultiTexCoord1020

Parameters

m Points to 16 consecutive values that are used as the elements of a 4 × 4 column-major
matrix.

Description

glMultMatrix multiplies the current matrix with the one specified using m, and replaces the
current matrix with the product.

The current matrix is determined by the current matrix mode (see glMatrixMode). It is either the
projection matrix, modelview matrix, or the texture matrix.

Examples

If the current matrix is C and the coordinates to be transformed are v = (v[0], v[1], v[2], v[3]), then
the current transformation is C × v, or

Calling glMultMatrix with an argument of m = {m[0], m[1], ..., m[15]} replaces the current trans-
formation with (C × M) × v, or

Where v is represented as a 4 × 1 matrix.

Notes

While the elements of the matrix may be specified with single or double precision, the GL may
store or operate on these values in less-than-single precision.

In many computer languages, 4 × 4 arrays are represented in row-major order. The transforma-
tions just described represent these matrices in column-major order. The order of the multiplication is
important. For example, if the current transformation is a rotation, and glMultMatrix is called with
a translation matrix, the translation is done directly on the coordinates to be transformed, while the
rotation is done on the results of that translation.

Errors

GL_INVALID_OPERATION is generated if glMultMatrix is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadIdentity, glLoadMatrix, glLoadTransposeMatrix, glMatrixMode,
glMultTransposeMatrix, glPushMatrix

m
m
m
m

m
m
m
m

[0]
[1]
[2]
[3]

m
m
m
m

[4]
[5]
[6]
[7]

m
m
m
m

[8]
[9]
[1 0]
[1 1]

v
v
v
v

[0]
[1]
[2]
[3]

[1 2]
[1 3]
[1 4]
[1 5]

c
c
c
c

c
c
c
c

[0]
[1]
[2]
[3]

c
c
c
c

[4]
[5]
[6]
[7]

c
c
c
c

[8]
[9]
[1 0]
[1 1]

[1 2]
[1 3]
[1 4]
[1 5]

c
c
c
c

c
c
c
c

[0]
[1]
[2]
[3]

c
c
c
c

[4]
[5]
[6]
[7]

c
c
c
c

[8]
[9]
[1 0]
[1 1]

v
v
v
v

[0]
[1]
[2]
[3]

[1 2]
[1 3]
[1 4]
[1 5]

glMultMatrix 1021

C

glMultTransposeMatrix

Multiply the current matrix with the specified row-major ordered matrix

C Specification

void glMultTransposeMatrixd(const GLdouble * m);
void glMultTransposeMatrixf(const GLfloat * m);

Parameters

m[16] Points to 16 consecutive values that are used as the elements of a 4 × 4 row-major
matrix.

Description

glMultTransposeMatrix multiplies the current matrix with the one specified using m[16], and
replaces the current matrix with the product.

The current matrix is determined by the current matrix mode (see glMatrixMode). It is either the
projection matrix, modelview matrix, or the texture matrix.

Examples

If the current matrix is C and the coordinates to be transformed are v = (v[0], v[1], v[2], v[3]), then
the current transformation is C × v, or

Calling glMultTransposeMatrix with an argument of m[16] = {m[0], m[1], ..., m[15]} replaces
the current transformation with (C × M) × v, or

Where v is represented as a 4 × 1 matrix.
Calling glMultTransposeMatrix with matrix M is identical in operation to glMultMatrix with

MT, where T represents the transpose.

Notes

glMultTransposeMatrix is available only if the GL version is 1.3 or greater.
While the elements of the matrix may be specified with single or double precision, the GL may

store or operate on these values in less-than-single precision.
The order of the multiplication is important. For example, if the current transformation is a rota-

tion, and glMultTransposeMatrix is called with a translation matrix, the translation is done
directly on the coordinates to be transformed, while the rotation is done on the results of that trans-
lation.

Errors

GL_INVALID_OPERATION is generated if glMultTransposeMatrix is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX

m
m
m
m

m
m
m
m

[0]
[4]
[8]
[1 2]

m
m
m
m

[1]
[5]
[9]
[1 3]

m
m
m
m

[2]
[6]
[1 0]
[1 4]

v
v
v
v

[0]
[1]
[2]
[3]

[3]
[7]
[1 1]
[1 5]

c
c
c
c

c
c
c
c

[0]
[1]
[2]
[3]

c
c
c
c

[4]
[5]
[6]
[7]

c
c
c
c

[8]
[9]
[1 0]
[1 1]

[1 2]
[1 3]
[1 4]
[1 5]

c
c
c
c

c
c
c
c

[0]
[1]
[2]
[3]

c
c
c
c

[4]
[5]
[6]
[7]

c
c
c
c

[8]
[9]
[1 0]
[1 1]

v
v
v
v

[0]
[1]
[2]
[3]

[1 2]
[1 3]
[1 4]
[1 5]

glMultTransposeMatrix1022

glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glLoadIdentity, glLoadMatrix, glLoadTransposeMatrix, glMatrixMode, glPushMatrix

glNewList

Create or replace a display list

C Specification

void glNewList(GLuint list, GLenum mode);

Parameters

list Specifies the display-list name.
mode Specifies the compilation mode, which can be GL_COMPILE or

GL_COMPILE_AND_EXECUTE.

C Specification

void glEndList(void);

Description

Display lists are groups of GL commands that have been stored for subsequent execution. Display
lists are created with glNewList. All subsequent commands are placed in the display list, in the order
issued, until glEndList is called.

glNewList has two arguments. The first argument, list, is a positive integer that becomes the
unique name for the display list. Names can be created and reserved with glGenLists and tested for
uniqueness with glIsList. The second argument, mode, is a symbolic constant that can assume one
of two values:

GL_COMPILE
Commands are merely compiled.
GL_COMPILE_AND_EXECUTE
Commands are executed as they are compiled into the display list.
Certain commands are not compiled into the display list but are executed immediately, regardless

of the display-list mode. These commands are glAreTexturesResident, glColorPointer,
glDeleteLists, glDeleteTextures, glDisableClientState, glEdgeFlagPointer,
glEnableClientState, glFeedbackBuffer, glFinish, glFlush, glGenLists, glGenTextures,
glIndexPointer, glInterleavedArrays, glIsEnabled, glIsList, glIsTexture,
glNormalPointer, glPopClientAttrib, glPixelStore, glPushClientAttrib, glReadPixels,
glRenderMode, glSelectBuffer, glTexCoordPointer, glVertexPointer, and all of the glGet
commands.

Similarly, glTexImage1D, glTexImage2D, and glTexImage3D are executed immediately and not
compiled into the display list when their first argument is GL_PROXY_TEXTURE_1D,
GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_3D, respectively.

When the ARB_imaging extension is supported, glHistogram executes immediately when its
argument is GL_PROXY_HISTOGRAM. Similarly, glColorTable executes immediately when its first
argument is glPROXY_COLOR_TABLE, glPROXY_POST_CONVOLUTION_COLOR_TABLE, or
glPROXY_POST_COLOR_MATRIX_COLOR_TABLE.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glClientActiveTexture is not compiled into display lists, but executed immediately.

When glEndList is encountered, the display-list definition is completed by associating the list
with the unique name list (specified in the glNewList command). If a display list with name list
already exists, it is replaced only when glEndList is called.

glNewList 1023

C

Notes

glCallList and glCallLists can be entered into display lists. Commands in the display list or
lists executed by glCallList or glCallLists are not included in the display list being created,
even if the list creation mode is GL_COMPILE_AND_EXECUTE.

A display list is just a group of commands and arguments, so errors generated by commands in a
display list must be generated when the list is executed. If the list is created in GL_COMPILE mode,
errors are not generated until the list is executed.

Errors

GL_INVALID_VALUE is generated if list is 0.
GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if glEndList is called without a preceding glNewList, or

if glNewList is called while a display list is being defined.
GL_INVALID_OPERATION is generated if glNewList or glEndList is executed between the

execution of glBegin and the corresponding execution of glEnd.
GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the display list. If the

GL version is 1.1 or greater, no change is made to the previous contents of the display list, if any,
and no other change is made to the GL state. (It is as if no attempt had been made to create the new
display list.)

Associated Gets

glIsList
glGet with argument GL_LIST_INDEX
glGet with argument GL_LIST_MODE

See Also

glCallList, glCallLists, glDeleteLists, glGenLists

glNormal

Set the current normal vector

C Specification

void glNormal3b(GLbyte nx,
GLbyte ny,
GLbyte nz);

void glNormal3d(GLdouble nx,
GLdouble ny,
GLdouble nz);

void glNormal3f(GLfloat nx,
GLfloat ny,
GLfloat nz);

void glNormal3i(GLint nx, GLint ny, GLint nz);
void glNormal3s(GLshort nx,

GLshort ny,
GLshort nz);

Parameters

nx, ny, nz Specify the x, y, and z coordinates of the new current normal. The initial value of
the current normal is the unit vector, (0, 0, 1).

glNormal1024

C Specification

void glNormal3bv(const GLbyte * v);
void glNormal3dv(const GLdouble * v);
void glNormal3fv(const GLfloat * v);
void glNormal3iv(const GLint * v);
void glNormal3sv(const GLshort * v);

Parameters

v Specifies a pointer to an array of three elements: the x, y, and z coordinates of the new
current normal.

Description

The current normal is set to the given coordinates whenever glNormal is issued. Byte, short, or
integer arguments are converted to floating-point format with a linear mapping that maps the most
positive representable integer value to 1.0 and the most negative representable integer value to -1.0.

Normals specified with glNormal need not have unit length. If GL_NORMALIZE is enabled, then
normals of any length specified with glNormal are normalized after transformation. If
GL_RESCALE_NORMAL is enabled, normals are scaled by a scaling factor derived from the modelview
matrix. GL_RESCALE_NORMAL requires that the originally specified normals were of unit length, and
that the modelview matrix contain only uniform scales for proper results. To enable and disable
normalization, call glEnable and glDisable with either GL_NORMALIZE or GL_RESCALE_NORMAL.
Normalization is initially disabled.

Notes

The current normal can be updated at any time. In particular, glNormal can be called between a
call to glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_NORMAL
glIsEnabled with argument GL_NORMALIZE
glIsEnabled with argument GL_RESCALE_NORMAL

See Also

glBegin, glColor, glIndex, glMultiTexCoord, glNormalPointer, glTexCoord, glVertex

glNormalPointer

Define an array of normals

C Specification

void glNormalPointer(GLenum type,
GLsizei stride,
const GLvoid * pointer);

Parameters

type Specifies the data type of each coordinate in the array. Symbolic constants GL_BYTE,
GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE are accepted. The initial value is
GL_FLOAT.

stride Specifies the byte offset between consecutive normals. If stride is 0, the normals are
understood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first normal in the array. The initial
value is 0.

glNormalPointer 1025

C

Description

glNormalPointer specifies the location and data format of an array of normals to use when
rendering. type specifies the data type of each normal coordinate, and stride specifies the byte
stride from one normal to the next, allowing vertices and attributes to be packed into a single array or
stored in separate arrays. (Single-array storage may be more efficient on some implementations; see
glInterleavedArrays.)

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a normal array is specified, pointer is treated as a byte offset into the buffer object’s data store.
Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as normal vertex array client-
side state (GL_NORMAL_ARRAY_BUFFER_BINDING).

When a normal array is specified, type, stride, and pointer are saved as client-side state, in
addition to the current vertex array buffer object binding.

To enable and disable the normal array, call glEnableClientState and
glDisableClientState with the argument GL_NORMAL_ARRAY. If enabled, the normal array is used
when glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements,
glDrawRangeElements, or glArrayElement is called.

Notes

glNormalPointer is available only if the GL version is 1.1 or greater.
The normal array is initially disabled and isn’t accessed when glArrayElement,

glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glNormalPointer is not allowed between glBegin and the corresponding glEnd,
but an error may or may not be generated. If an error is not generated, the operation is undefined.

glNormalPointer is typically implemented on the client side.
Normal array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_NORMAL_ARRAY
glGet with argument GL_NORMAL_ARRAY_TYPE
glGet with argument GL_NORMAL_ARRAY_STRIDE
glGet with argument GL_NORMAL_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_NORMAL_ARRAY_POINTER

See Also

glArrayElement, glBindBuffer, glColorPointer, glDisableClientState, glDrawArrays,
glDrawElements, glDrawRangeElements, glEdgeFlagPointer, glEnableClientState,
glFogCoordPointer, glIndexPointer, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormal, glPopClientAttrib, glPushClientAttrib,
glSecondaryColorPointer, glTexCoordPointer, glVertexAttribPointer, glVertexPointer

glNormalPointer1026

glOrtho

Multiply the current matrix with an orthographic matrix

C Specification

void glOrtho(GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble nearVal,
GLdouble farVal);

Parameters

left, right Specify the coordinates for the left and right vertical clipping planes.
bottom, top Specify the coordinates for the bottom and top horizontal clipping planes.
nearVal, farVal Specify the distances to the nearer and farther depth clipping planes. These

values are negative if the plane is to be behind the viewer.

Description

glOrtho describes a transformation that produces a parallel projection. The current matrix (see
glMatrixMode) is multiplied by this matrix and the result replaces the current matrix, as if
glMultMatrix were called with the following matrix as its argument:

where

Typically, the matrix mode is GL_PROJECTION, and (left, bottom, –nearVal) and (right, top,
–nearVal) specify the points on the near clipping plane that are mapped to the lower-left and upper-
right corners of the window, respectively, assuming that the eye is located at (0, 0, 0). –farVal speci-
fies the location of the far clipping plane. Both nearVal and farVal can be either positive or
negative.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Errors

GL_INVALID_OPERATION is generated if glOrtho is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX

farVal + nearVal
farVal – nearVal

tz = –

top + bottom
top – bottom

ty = –

right + left
right – left

tx = –

2
right – left

0 tx

2
top – bottom

-2
farVal – nearVal

0 0

0

ty

0 0

0 0 10

tz

glOrtho 1027

C

glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glFrustum, glMatrixMode, glMultMatrix, glPushMatrix, glViewport

glPassThrough

Place a marker in the feedback buffer

C Specification

void glPassThrough(GLfloat token);

Parameters

token Specifies a marker value to be placed in the feedback buffer following a
GL_PASS_THROUGH_TOKEN.

Description

Feedback is a GL render mode. The mode is selected by calling glRenderMode with
GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasterization. Instead,
information about primitives that would have been rasterized is fed back to the application using the
GL. See the glFeedbackBuffer reference page for a description of the feedback buffer and the values
in it.

glPassThrough inserts a user-defined marker in the feedback buffer when it is executed in feed-
back mode. token is returned as if it were a primitive; it is indicated with its own unique identifying
value: GL_PASS_THROUGH_TOKEN. The order of glPassThrough commands with respect to the speci-
fication of graphics primitives is maintained.

Notes

glPassThrough is ignored if the GL is not in feedback mode.

Errors

GL_INVALID_OPERATION is generated if glPassThrough is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_RENDER_MODE

See Also

glFeedbackBuffer, glRenderMode

glPixelMap

Set up pixel transfer maps

C Specification

void glPixelMapfv(GLenum map,
GLsizei mapsize,
const GLfloat * values);

void glPixelMapuiv(GLenum map,
GLsizei mapsize,
const GLuint * values);

glPassThrough1028

void glPixelMapusv(GLenum map,
GLsizei mapsize,
const GLushort * values);

Parameters

map Specifies a symbolic map name. Must be one of the following: GL_PIXEL_MAP_I_TO_I,
GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A, GL_PIXEL_MAP_R_TO_R,
GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, or GL_PIXEL_MAP_A_TO_A.

mapsize Specifies the size of the map being defined.
values Specifies an array of mapsize values.

Description

glPixelMap sets up translation tables, or maps, used by glCopyPixels, glCopyTexImage1D,
glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D,
glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, and glTexSubImage3D. Additionally, if the ARB_imaging
subset is supported, the routines glColorTable, glColorSubTable, glConvolutionFilter1D,
glConvolutionFilter2D, glHistogram, glMinmax, and glSeparableFilter2D. Use of these
maps is described completely in the glPixelTransfer reference page, and partly in the reference
pages for the pixel and texture image commands. Only the specification of the maps is described in
this reference page.

map is a symbolic map name, indicating one of ten maps to set. mapsize specifies the number of
entries in the map, and values is a pointer to an array of mapsize map values.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a pixel transfer map is specified, values is treated as a byte offset into the
buffer object’s data store.

The ten maps are as follows:
GL_PIXEL_MAP_I_TO_I
Maps color indices to color indices.
GL_PIXEL_MAP_S_TO_S
Maps stencil indices to stencil indices.
GL_PIXEL_MAP_I_TO_R
Maps color indices to red components.
GL_PIXEL_MAP_I_TO_G
Maps color indices to green components.
GL_PIXEL_MAP_I_TO_B
Maps color indices to blue components.
GL_PIXEL_MAP_I_TO_A
Maps color indices to alpha components.
GL_PIXEL_MAP_R_TO_R
Maps red components to red components.
GL_PIXEL_MAP_G_TO_G
Maps green components to green components.
GL_PIXEL_MAP_B_TO_B
Maps blue components to blue components.
GL_PIXEL_MAP_A_TO_A
Maps alpha components to alpha components.
The entries in a map can be specified as single-precision floating-point numbers, unsigned short

integers, or unsigned int integers. Maps that store color component values (all but
GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S) retain their values in floating-point format,
with unspecified mantissa and exponent sizes. Floating-point values specified by glPixelMapfv are

glPixelMap 1029

C

converted directly to the internal floating-point format of these maps, then clamped to the range
[0,1]. Unsigned integer values specified by glPixelMapusv and glPixelMapuiv are converted
linearly such that the largest representable integer maps to 1.0, and 0 maps to 0.0.

Maps that store indices, GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S, retain their values
in fixed-point format, with an unspecified number of bits to the right of the binary point. Floating-
point values specified by glPixelMapfv are converted directly to the internal fixed-point format of
these maps. Unsigned integer values specified by glPixelMapusv and glPixelMapuiv specify
integer values, with all 0’s to the right of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that are indexed
by either color or stencil indices must have mapsize = 2n for some n or the results are undefined. The
maximum allowable size for each map depends on the implementation and can be determined by
calling glGet with argument GL_MAX_PIXEL_MAP_TABLE. The single maximum applies to all maps;
it is at least 32.

map Lookup Lookup Initial Initial
Index Value Size Value

GL_PIXEL_MAP_I_TO_I color index color index 1 0

GL_PIXEL_MAP_S_TO_S stencil index stencil index 1 0

GL_PIXEL_MAP_I_TO_R color index R 1 0

GL_PIXEL_MAP_I_TO_G color index G 1 0

GL_PIXEL_MAP_I_TO_B color index B 1 0

GL_PIXEL_MAP_I_TO_A color index A 1 0

GL_PIXEL_MAP_R_TO_R R R 1 0

GL_PIXEL_MAP_G_TO_G G G 1 0

GL_PIXEL_MAP_B_TO_B B B 1 0

GL_PIXEL_MAP_A_TO_A A A 1 0

Errors

GL_INVALID_ENUM is generated if map is not an accepted value.
GL_INVALID_VALUE is generated if mapsize is less than one or larger than

GL_MAX_PIXEL_MAP_TABLE.
GL_INVALID_VALUE is generated if map is GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S,

GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, or
GL_PIXEL_MAP_I_TO_A, and mapsize is not a power of two.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated by glPixelMapfv if a nonzero buffer object name is
bound to the GL_PIXEL_UNPACK_BUFFER target and values is not evenly divisible into the number
of bytes needed to store in memory a GLfloat datum.

GL_INVALID_OPERATION is generated by glPixelMapuiv if a nonzero buffer object name is
bound to the GL_PIXEL_UNPACK_BUFFER target and values is not evenly divisible into the number
of bytes needed to store in memory a GLuint datum.

GL_INVALID_OPERATION is generated by glPixelMapusv if a nonzero buffer object name is
bound to the GL_PIXEL_UNPACK_BUFFER target and values is not evenly divisible into the number
of bytes needed to store in memory a GLushort datum.

glPixelMap1030

GL_INVALID_OPERATION is generated if glPixelMap is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetPixelMap
glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glColorTable, glColorSubTable, glConvolutionFilter1D, glConvolutionFilter2D,
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glDrawPixels, glHistogram, glMinmax, glPixelStore,
glPixelTransfer, glReadPixels, glSeparableFilter2D, glTexImage1D, glTexImage2D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

glPixelStore

Set pixel storage modes

C Specification

void glPixelStoref(GLenum pname,
GLfloat param);

void glPixelStorei(GLenum pname,
GLint param);

Parameters

pname Specifies the symbolic name of the parameter to be set. Six values affect the packing of
pixel data into memory: GL_PACK_SWAP_BYTES, GL_PACK_LSB_FIRST,
GL_PACK_ROW_LENGTH, GL_PACK_IMAGE_HEIGHT, GL_PACK_SKIP_PIXELS,
GL_PACK_SKIP_ROWS, GL_PACK_SKIP_IMAGES, and GL_PACK_ALIGNMENT. Six more
affect the unpacking of pixel data from memory: GL_UNPACK_SWAP_BYTES,
GL_UNPACK_LSB_FIRST, GL_UNPACK_ROW_LENGTH, GL_UNPACK_IMAGE_HEIGHT,
GL_UNPACK_SKIP_PIXELS, GL_UNPACK_SKIP_ROWS, GL_UNPACK_SKIP_IMAGES, and
GL_UNPACK_ALIGNMENT.

param Specifies the value that pname is set to.

Description

glPixelStore sets pixel storage modes that affect the operation of subsequent glDrawPixels
and glReadPixels as well as the unpacking of polygon stipple patterns (see glPolygonStipple),
bitmaps (see glBitmap), texture patterns (see glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D). Additionally, if the ARB_imaging
extension is supported, pixel storage modes affect convolution filters (see glConvolutionFilter1D,

glPixelStore 1031

C

glConvolutionFilter2D, and glSeparableFilter2D, color table (see glColorTable, and
glColorSubTable, and unpacking histogram (See glHistogram), and minmax (See glMinmax) data.

pname is a symbolic constant indicating the parameter to be set, and param is the new value. Six
of the twelve storage parameters affect how pixel data is returned to client memory. They are as
follows:

GL_PACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color indices, or stencil

indices is reversed. That is, if a four-byte component consists of bytes b0, b1, b2, b3, it is stored in
memory as b3, b2, b1, b0 if GL_PACK_SWAP_BYTES is true. GL_PACK_SWAP_BYTES has no effect on the
memory order of components within a pixel, only on the order of bytes within components or
indices. For example, the three components of a GL_RGB format pixel are always stored with red first,
green second, and blue third, regardless of the value of GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the first

bit in each byte is the most significant one. This parameter is significant for bitmap data only.
GL_PACK_ROW_LENGTH
If greater than 0, GL_PACK_ROW_LENGTH defines the number of pixels in a row. If the first pixel of

a row is placed at location p in memory, then the location of the first pixel of the next row is
obtained by skipping

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0, the width argument to the
pixel routine otherwise), a is the value of GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single
component (if a<s, then it is as if a = s). In the case of 1-bit values, the location of the next row is
obtained by skipping

components or indices.
The word component in this description refers to the nonindex values red, green, blue, alpha, and

depth. Storage format GL_RGB, for example, has three components per pixel: first red, then green, and
finally blue.

GL_PACK_IMAGE_HEIGHT
If greater than 0, GL_PACK_IMAGE_HEIGHT defines the number of pixels in an image three-

dimensional texture volume, where “image” is defined by all pixels sharing the same third dimension
index. If the first pixel of a row is placed at location p in memory, then the location of the first pixel
of the next row is obtained by skipping

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0, the width argument to
glTexImage3d otherwise), h is the number of rows in a pixel image (GL_PACK_IMAGE_HEIGHT if it is
greater than 0, the height argument to the glTexImage3D routine otherwise), a is the value of
GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single component (if a<s, then it is as if a = s).

The word component in this description refers to the nonindex values red, green, blue, alpha, and
depth. Storage format GL_RGB, for example, has three components per pixel: first red, then green, and
finally blue.

k =

n l h
a
s

s >= a
s < a

s n l h
a

k = 8 a n l
8 a

k =

n l
a
s

s >= a
s < as n l

a

glPixelStore1032

GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, and GL_PACK_SKIP_IMAGES
These values are provided as a convenience to the programmer; they provide no functionality

that cannot be duplicated simply by incrementing the pointer passed to glReadPixels. Setting
GL_PACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by in components or indices,
where n is the number of components or indices in each pixel. Setting GL_PACK_SKIP_ROWS to j is
equivalent to incrementing the pointer by jm components or indices, where m is the number of
components or indices per row, as just computed in the GL_PACK_ROW_LENGTH section. Setting
GL_PACK_SKIP_IMAGES to k is equivalent to incrementing the pointer by kp, where p is the number
of components or indices per image, as computed in the GL_PACK_IMAGE_HEIGHT section.

GL_PACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable

values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-alignment), and 8
(rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory.
These values are significant for glDrawPixels, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glBitmap, and glPolygonStipple.

Additionally, if the ARB_imaging extension is supported, glColorTable, glColorSubTable,
glConvolutionFilter1D, glConvolutionFilter2D, and glSeparableFilter2D. They are as
follows:

GL_UNPACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color indices, or stencil

indices is reversed. That is, if a four-byte component consists of bytes b0, b1, b2, b3, it is taken from
memory as b3, b2, b1, b0 if GL_UNPACK_SWAP_BYTES is true. GL_UNPACK_SWAP_BYTES has no effect on
the memory order of components within a pixel, only on the order of bytes within components or
indices. For example, the three components of a GL_RGB format pixel are always stored with red first,
green second, and blue third, regardless of the value of GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the first

bit in each byte is the most significant one. This is relevant only for bitmap data.
GL_UNPACK_ROW_LENGTH
If greater than 0, GL_UNPACK_ROW_LENGTH defines the number of pixels in a row. If the first pixel

of a row is placed at location p in memory, then the location of the first pixel of the next row is
obtained by skipping

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than 0, the width argument to
the pixel routine otherwise), a is the value of GL_UNPACK_ALIGNMENT, and s is the size, in bytes, of a
single component (if a<s, then it is as if a = s). In the case of 1-bit values, the location of the next row
is obtained by skipping

components or indices.
The word component in this description refers to the nonindex values red, green, blue, alpha, and

depth. Storage format GL_RGB, for example, has three components per pixel: first red, then green, and
finally blue.

GL_UNPACK_IMAGE_HEIGHT
If greater than 0, GL_UNPACK_IMAGE_HEIGHT defines the number of pixels in an image of a three-

dimensional texture volume. Where “image” is defined by all pixel sharing the same third dimension

k = 8 a n l
8 a

k = s n l
a

n l
a
s

s >= a
s < a

glPixelStore 1033

C

index. If the first pixel of a row is placed at location p in memory, then the location of the first pixel
of the next row is obtained by skipping

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than 0, the width argument
to glTexImage3D otherwise), h is the number of rows in an image (GL_UNPACK_IMAGE_HEIGHT
if it is greater than 0, the height argument to glTexImage3D otherwise), a is the value of
GL_UNPACK_ALIGNMENT, and s is the size, in bytes, of a single component (if a<s,
then it is as if a = s).

The word component in this description refers to the nonindex values red, green, blue, alpha, and
depth. Storage format GL_RGB, for example, has three components per pixel: first red, then green, and
finally blue.

GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide no functionality

that cannot be duplicated by incrementing the pointer passed to glDrawPixels, glTexImage1D,
glTexImage2D, glTexSubImage1D, glTexSubImage2D, glBitmap, or glPolygonStipple. Setting
GL_UNPACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by in components or
indices, where n is the number of components or indices in each pixel. Setting
GL_UNPACK_SKIP_ROWS to j is equivalent to incrementing the pointer by jk components or indices,
where k is the number of components or indices per row, as just computed in the
GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable

values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-alignment), and 8
(rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each storage para-
meter that can be set with glPixelStore.

pname Type Initial Value Valid Range

GL_PACK_SWAP_BYTES boolean false true or false

GL_PACK_LSB_FIRST boolean false true or false

GL_PACK_ROW_LENGTH integer 0 [0, ∞)

GL_PACK_IMAGE_HEIGHT integer 0 [0, ∞)

GL_PACK_SKIP_ROWS integer 0 [0, ∞)

GL_PACK_SKIP_PIXELS integer 0 [0, ∞)

GL_PACK_SKIP_IMAGES integer 0 [0, ∞)

GL_PACK_ALIGNMENT integer 4 1, 2, 4, or 8

GL_UNPACK_SWAP_BYTES boolean false true or false

GL_UNPACK_LSB_FIRST boolean false true or false

GL_UNPACK_ROW_LENGTH integer 0 [0, ∞)

GL_UNPACK_IMAGE_HEIGHT integer 0 [0, ∞)

GL_UNPACK_SKIP_ROWS integer 0 [0, ∞)

GL_UNPACK_SKIP_PIXELS integer 0 [0, ∞)

GL_UNPACK_SKIP_IMAGES integer 0 [0, ∞)

GL_UNPACK_ALIGNMENT integer 4 1, 2, 4, or 8

k = s n l h
a

n l h
a
s

s >= a
s < a

glPixelStore1034

glPixelStoref can be used to set any pixel store parameter. If the parameter type is boolean,
then if param is 0, the parameter is false; otherwise it is set to true. If pname is a integer type parame-
ter, param is rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean para-
meters are set to false if param is 0 and true otherwise.

Notes

The pixel storage modes in effect when glDrawPixels, glReadPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D,
glBitmap, or glPolygonStipple is placed in a display list control the interpretation of memory
data. Likewise, if the ARB_imaging extension is supported, the pixel storage modes in effect when
glColorTable, glColorSubTable, glConvolutionFilter1D, glConvolutionFilter2D, of
glSeparableFilter2D is placed in a display list control the interpretation of memory data. The
pixel storage modes in effect when a display list is executed are not significant.

Pixel storage modes are client state and must be pushed and restored using
glPushClientAttrib and glPopClientAttrib.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip value is speci-

fied, or if alignment is specified as other than 1, 2, 4, or 8.
GL_INVALID_OPERATION is generated if glPixelStore is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_PACK_SWAP_BYTES
glGet with argument GL_PACK_LSB_FIRST
glGet with argument GL_PACK_ROW_LENGTH
glGet with argument GL_PACK_IMAGE_HEIGHT
glGet with argument GL_PACK_SKIP_ROWS
glGet with argument GL_PACK_SKIP_PIXELS
glGet with argument GL_PACK_SKIP_IMAGES
glGet with argument GL_PACK_ALIGNMENT
glGet with argument GL_UNPACK_SWAP_BYTES
glGet with argument GL_UNPACK_LSB_FIRST
glGet with argument GL_UNPACK_ROW_LENGTH
glGet with argument GL_UNPACK_IMAGE_HEIGHT
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_UNPACK_SKIP_PIXELS
glGet with argument GL_UNPACK_SKIP_IMAGES
glGet with argument GL_UNPACK_ALIGNMENT

See Also

glBitmap, glColorTable, glColorSubTable, glConvolutionFilter1D,
glConvolutionFilter2D, glSeparableFilter2D, glDrawPixels, glHistogram, glMinmax,
glPixelMap, glPixelTransfer, glPixelZoom, glPolygonStipple, glPushClientAttrib,
glReadPixels, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

glPixelStore 1035

C

glPixelTransfer

Set pixel transfer modes

C Specification

void glPixelTransferf(GLenum pname,
GLfloat param);

void glPixelTransferi(GLenum pname,
GLint param);

Parameters

pname Specifies the symbolic name of the pixel transfer parameter to be set. Must be one of
the following: GL_MAP_COLOR, GL_MAP_STENCIL, GL_INDEX_SHIFT,
GL_INDEX_OFFSET, GL_RED_SCALE, GL_RED_BIAS, GL_GREEN_SCALE,
GL_GREEN_BIAS, GL_BLUE_SCALE, GL_BLUE_BIAS, GL_ALPHA_SCALE,
GL_ALPHA_BIAS, GL_DEPTH_SCALE, or GL_DEPTH_BIAS.

Additionally, if the ARB_imaging extension is supported, the following symbolic
names are accepted:

GL_POST_COLOR_MATRIX_RED_SCALE, GL_POST_COLOR_MATRIX_GREEN_SCALE,
GL_POST_COLOR_MATRIX_BLUE_SCALE, GL_POST_COLOR_MATRIX_ALPHA_SCALE,
GL_POST_COLOR_MATRIX_RED_BIAS, GL_POST_COLOR_MATRIX_GREEN_BIAS,
GL_POST_COLOR_MATRIX_BLUE_BIAS, GL_POST_COLOR_MATRIX_ALPHA_BIAS,
GL_POST_CONVOLUTION_RED_SCALE, GL_POST_CONVOLUTION_GREEN_SCALE,
GL_POST_CONVOLUTION_BLUE_SCALE, GL_POST_CONVOLUTION_ALPHA_SCALE,
GL_POST_CONVOLUTION_RED_BIAS, GL_POST_CONVOLUTION_GREEN_BIAS,
GL_POST_CONVOLUTION_BLUE_BIAS, and GL_POST_CONVOLUTION_ALPHA_BIAS.

param Specifies the value that pname is set to.

Description

glPixelTransfer sets pixel transfer modes that affect the operation of subsequent
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glReadPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, and glTexSubImage3D
commands. Additionally, if the ARB_imaging subset is supported, the routines glColorTable,
glColorSubTable, glConvolutionFilter1D, glConvolutionFilter2D, glHistogram,
glMinmax, and glSeparableFilter2D are also affected. The algorithms that are specified by pixel
transfer modes operate on pixels after they are read from the frame buffer
(glCopyPixelsglCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, and glReadPixels), or unpacked from client
memory (glDrawPixels, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, and glTexSubImage3D). Pixel transfer operations happen in the same order, and
in the same manner, regardless of the command that resulted in the pixel operation. Pixel storage
modes (see glPixelStore) control the unpacking of pixels being read from client memory and the
packing of pixels being written back into client memory.

Pixel transfer operations handle four fundamental pixel types: color, color index, depth, and stencil.
Color pixels consist of four floating-point values with unspecified mantissa and exponent sizes, scaled
such that 0 represents zero intensity and 1 represents full intensity. Color indices comprise a single
fixed-point value, with unspecified precision to the right of the binary point. Depth pixels comprise a
single floating-point value, with unspecified mantissa and exponent sizes, scaled such that 0.0 repre-
sents the minimum depth buffer value, and 1.0 represents the maximum depth buffer value. Finally,
stencil pixels comprise a single fixed-point value, with unspecified precision to the right of the binary
point.

glPixelTransfer1036

The pixel transfer operations performed on the four basic pixel types are as follows:
Color
Each of the four color components is multiplied by a scale factor, then added to a bias factor. That

is, the red component is multiplied by GL_RED_SCALE, then added to GL_RED_BIAS; the green
component is multiplied by GL_GREEN_SCALE, then added to GL_GREEN_BIAS; the blue component
is multiplied by GL_BLUE_SCALE, then added to GL_BLUE_BIAS; and the alpha component is multi-
plied by GL_ALPHA_SCALE, then added to GL_ALPHA_BIAS. After all four color components are
scaled and biased, each is clamped to the range [0,1]. All color, scale, and bias values are specified
with glPixelTransfer.

If GL_MAP_COLOR is true, each color component is scaled by the size of the corresponding color-
to-color map, then replaced by the contents of that map indexed by the scaled component. That is,
the red component is scaled by GL_PIXEL_MAP_R_TO_R_SIZE, then replaced by the contents of
GL_PIXEL_MAP_R_TO_R indexed by itself. The green component is scaled by
GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the contents of GL_PIXEL_MAP_G_TO_G indexed by
itself. The blue component is scaled by GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents
of GL_PIXEL_MAP_B_TO_B indexed by itself. And the alpha component is scaled by
GL_PIXEL_MAP_A_TO_A_SIZE, then replaced by the contents of GL_PIXEL_MAP_A_TO_A indexed by
itself. All components taken from the maps are then clamped to the range [0,1]. GL_MAP_COLOR is
specified with glPixelTransfer. The contents of the various maps are specified with glPixelMap.

If the ARB_imaging extension is supported, each of the four color components may be scaled
and biased after transformation by the color matrix. That is, the red component is multiplied by
GL_POST_COLOR_MATRIX_RED_SCALE, then added to GL_POST_COLOR_MATRIX_RED_BIAS;
the green component is multiplied by GL_POST_COLOR_MATRIX_GREEN_SCALE, then added to
GL_POST_COLOR_MATRIX_GREEN_BIAS; the blue component is multiplied by
GL_POST_COLOR_MATRIX_BLUE_SCALE, then added to GL_POST_COLOR_MATRIX_BLUE_BIAS; and
the alpha component is multiplied by GL_POST_COLOR_MATRIX_ALPHA_SCALE, then added to
GL_POST_COLOR_MATRIX_ALPHA_BIAS. After all four color components are scaled and biased,
each is clamped to the range [0,1].

Similarly, if the ARB_imaging extension is supported, each of the four color components
may be scaled and biased after processing by the enabled convolution filter. That is, the red
component is multiplied by GL_POST_CONVOLUTION_RED_SCALE, then added to
GL_POST_CONVOLUTION_RED_BIAS; the green component is multiplied by
GL_POST_CONVOLUTION_GREEN_SCALE, then added to GL_POST_CONVOLUTION_GREEN_BIAS; the
blue component is multiplied by GL_POST_CONVOLUTION_BLUE_SCALE, then added to
GL_POST_CONVOLUTION_BLUE_BIAS; and the alpha component is multiplied by
GL_POST_CONVOLUTION_ALPHA_SCALE, then added to GL_POST_CONVOLUTION_ALPHA_BIAS. After
all four color components are scaled and biased, each is clamped to the range [0,1].

Color index
Each color index is shifted left by GL_INDEX_SHIFT bits; any bits beyond the number of fraction

bits carried by the fixed-point index are filled with zeros. If GL_INDEX_SHIFT is negative, the shift is
to the right, again zero filled. Then GL_INDEX_OFFSET is added to the index. GL_INDEX_SHIFT and
GL_INDEX_OFFSET are specified with glPixelTransfer.

From this point, operation diverges depending on the required format of the resulting pixels. If
the resulting pixels are to be written to a color index buffer, or if they are being read back to client
memory in GL_COLOR_INDEX format, the pixels continue to be treated as indices. If GL_MAP_COLOR is
true, each index is masked by 2n – 1, where n is GL_PIXEL_MAP_I_TO_I_SIZE, then replaced by the
contents of GL_PIXEL_MAP_I_TO_I indexed by the masked value. GL_MAP_COLOR is specified with
glPixelTransfer. The contents of the index map is specified with glPixelMap.

If the resulting pixels are to be written to an RGBA color buffer, or if they are read back to client
memory in a format other than GL_COLOR_INDEX, the pixels are converted from indices to colors by
referencing the four maps GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A. Before being dereferenced, the index is

glPixelTransfer 1037

C

masked by 2n – 1, where n is GL_PIXEL_MAP_I_TO_R_SIZE for the red map,
GL_PIXEL_MAP_I_TO_G_SIZE for the green map, GL_PIXEL_MAP_I_TO_B_SIZE for the blue map,
and GL_PIXEL_MAP_I_TO_A_SIZE for the alpha map. All components taken from the maps are then
clamped to the range [0,1]. The contents of the four maps is specified with glPixelMap.

Depth
Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, then clamped to

the range [0,1].
Stencil
Each index is shifted GL_INDEX_SHIFT bits just as a color index is, then added to

GL_INDEX_OFFSET. If GL_MAP_STENCIL is true, each index is masked by 2n ? 1, where n is
GL_PIXEL_MAP_S_TO_S_SIZE, then replaced by the contents of GL_PIXEL_MAP_S_TO_S indexed by
the masked value.

The following table gives the type, initial value, and range of valid values for each of the pixel
transfer parameters that are set with glPixelTransfer.

pname Type Initial Valid
Value Range

GL_MAP_COLOR boolean false true/false

GL_MAP_STENCIL boolean false true/false

GL_INDEX_SHIFT integer 0 (–∞, ∞)

GL_INDEX_OFFSET integer 0 (–∞, ∞)

GL_RED_SCALE float 1 (–∞, ∞)

GL_GREEN_SCALE float 1 (–∞, ∞)

GL_BLUE_SCALE float 1 (–∞, ∞)

GL_ALPHA_SCALE float 1 (–∞, ∞)

GL_DEPTH_SCALE float 1 (–∞, ∞)

GL_RED_BIAS float 0 (–∞, ∞)

GL_GREEN_BIAS float 0 (–∞, ∞)

GL_BLUE_BIAS float 0 (–∞, ∞)

GL_ALPHA_BIAS float 0 (–∞, ∞)

GL_DEPTH_BIAS float 0 (–∞, ∞)

GL_POST_COLOR_MATRIX_RED_SCALE float 1 (–∞, ∞)

GL_POST_COLOR_MATRIX_GREEN_SCALE float 1 (–∞, ∞)

GL_POST_COLOR_MATRIX_BLUE_SCALE float 1 (–∞, ∞)

GL_POST_COLOR_MATRIX_ALPHA_SCALE float 1 (–∞, ∞)

GL_POST_COLOR_MATRIX_RED_BIAS float 0 (–∞, ∞)

GL_POST_COLOR_MATRIX_GREEN_BIAS float 0 (–∞, ∞)

GL_POST_COLOR_MATRIX_BLUE_BIAS float 0 (–∞, ∞)

GL_POST_COLOR_MATRIX_ALPHA_BIAS float 0 (–∞, ∞)

GL_POST_CONVOLUTION_RED_SCALE float 1 (–∞, ∞)

GL_POST_CONVOLUTION_GREEN_SCALE float 1 (–∞, ∞)

GL_POST_CONVOLUTION_BLUE_SCALE float 1 (–∞, ∞)

GL_POST_CONVOLUTION_ALPHA_SCALE float 1 (–∞, ∞)

GL_POST_CONVOLUTION_RED_BIAS float 0 (–∞, ∞)

GL_POST_CONVOLUTION_GREEN_BIAS float 0 (–∞, ∞)

GL_POST_CONVOLUTION_BLUE_BIAS float 0 (–∞, ∞)

GL_POST_CONVOLUTION_ALPHA_BIAS float 0 (–∞, ∞)

glPixelTransfer1038

glPixelTransferf can be used to set any pixel transfer parameter. If the parameter type is
boolean, 0 implies false and any other value implies true. If pname is an integer parameter, param is
rounded to the nearest integer.

Likewise, glPixelTransferi can be used to set any of the pixel transfer parameters. Boolean
parameters are set to false if param is 0 and to true otherwise. param is converted to floating point
before being assigned to real-valued parameters.

Notes

If a glColorTable, glColorSubTable, glConvolutionFilter1D, glConvolutionFilter2D,
glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glReadPixels,
glSeparableFilter2D, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, or glTexSubImage3D command is placed in a display list (see glNewList and
glCallList), the pixel transfer mode settings in effect when the display list is executed are the ones
that are used. They may be different from the settings when the command was compiled into the
display list.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if glPixelTransfer is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MAP_COLOR
glGet with argument GL_MAP_STENCIL
glGet with argument GL_INDEX_SHIFT
glGet with argument GL_INDEX_OFFSET
glGet with argument GL_RED_SCALE
glGet with argument GL_RED_BIAS
glGet with argument GL_GREEN_SCALE
glGet with argument GL_GREEN_BIAS
glGet with argument GL_BLUE_SCALE
glGet with argument GL_BLUE_BIAS
glGet with argument GL_ALPHA_SCALE
glGet with argument GL_ALPHA_BIAS
glGet with argument GL_DEPTH_SCALE
glGet with argument GL_DEPTH_BIAS
glGet with argument GL_POST_COLOR_MATRIX_RED_SCALE
glGet with argument GL_POST_COLOR_MATRIX_RED_BIAS
glGet with argument GL_POST_COLOR_MATRIX_GREEN_SCALE
glGet with argument GL_POST_COLOR_MATRIX_GREEN_BIAS
glGet with argument GL_POST_COLOR_MATRIX_BLUE_SCALE
glGet with argument GL_POST_COLOR_MATRIX_BLUE_BIAS
glGet with argument GL_POST_COLOR_MATRIX_ALPHA_SCALE
glGet with argument GL_POST_COLOR_MATRIX_ALPHA_BIAS
glGet with argument GL_POST_CONVOLUTION_RED_SCALE
glGet with argument GL_POST_CONVOLUTION_RED_BIAS
glGet with argument GL_POST_CONVOLUTION_GREEN_SCALE
glGet with argument GL_POST_CONVOLUTION_GREEN_BIAS
glGet with argument GL_POST_CONVOLUTION_BLUE_SCALE
glGet with argument GL_POST_CONVOLUTION_BLUE_BIAS
glGet with argument GL_POST_CONVOLUTION_ALPHA_SCALE
glGet with argument GL_POST_CONVOLUTION_ALPHA_BIAS

glPixelTransfer 1039

C

See Also

glCallList, glColorTable, glColorSubTable, glConvolutionFilter1D,
glConvolutionFilter2D, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glNewList, glPixelMap, glPixelStore, glPixelZoom, glReadPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

glPixelZoom

Specify the pixel zoom factors

C Specification

void glPixelZoom(GLfloat xfactor,
GLfloat yfactor);

Parameters

xfactor, yfactor Specify the x and y zoom factors for pixel write operations.

Description

glPixelZoom specifies values for the x and y zoom factors. During the execution of
glDrawPixels or glCopyPixels, if (xr, yr) is the current raster position, and a given element is in
the mth row and nth column of the pixel rectangle, then pixels whose centers are in the rectangle
with corners at

(xr + n • xfactor, yr + m • yfactor)
(xr + (n + 1) • xfactor, yr + (m + 1) • yfactor)
are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this

rectangular region is also modified.
Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting

image about the current raster position.

Errors

GL_INVALID_OPERATION is generated if glPixelZoom is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ZOOM_X
glGet with argument GL_ZOOM_Y

See Also

glCopyPixels, glDrawPixels

glPointParameter

Specify point parameters

C Specification

void glPointParameterf(GLenum pname,
GLfloat param);

void glPointParameteri(GLenum pname,
GLint param);

glPixelZoom1040

Parameters

pname Specifies a single-valued point parameter. GL_POINT_SIZE_MIN,
GL_POINT_SIZE_MAX, GL_POINT_FADE_THRESHOLD_SIZE, and
GL_POINT_SPRITE_COORD_ORIGIN are accepted.

param Specifies the value that pname will be set to.

C Specification

void glPointParameterfv(GLenum pname,
const GLfloat * params);

void glPointParameteriv(GLenum pname,
const GLint * params);

Parameters

pname Specifies a point parameter. GL_POINT_SIZE_MIN, GL_POINT_SIZE_MAX,
GL_POINT_DISTANCE_ATTENUATION, GL_POINT_FADE_THRESHOLD_SIZE, and
GL_POINT_SPRITE_COORD_ORIGIN are accepted.

params Specifies the value or values to be assigned to pname. GL_POINT_DISTANCE_ATTENUA-
TION requires an array of three values. All other parameters accept an array containing
only a single value.

Description

The following values are accepted for pname:
GL_POINT_SIZE_MIN
params is a single floating-point value that specifies the minimum point size. The default value is

0.0.
GL_POINT_SIZE_MAX
params is a single floating-point value that specifies the maximum point size. The default value

is 1.0.
GL_POINT_FADE_THRESHOLD_SIZE
params is a single floating-point value that specifies the threshold value to which point sizes are

clamped if they exceed the specified value. The default value is 1.0.
GL_POINT_DISTANCE_ATTENUATION
params is an array of three floating-point values that specify the coefficients used for scaling the

computed point size. The default values are (1,0,0).
GL_POINT_SPRITE_COORD_ORIGIN
params is a single enum specifying the point sprite texture coordinate origin, either

GL_LOWER_LEFT or GL_UPPER_LEFT. The default value is GL_UPPER_LEFT.

Notes

glPointParameter is available only if the GL version is 1.4 or greater.
GL_POINT_SPRITE_COORD_ORIGIN is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_VALUE is generated If the value specified for GL_POINT_SIZE_MIN,
GL_POINT_SIZE_MAX, or GL_POINT_FADE_THRESHOLD_SIZE is less than zero.

GL_INVALID_ENUM is generated If the value specified for GL_POINT_SPRITE_COORD_ORIGIN is
not GL_LOWER_LEFT or GL_UPPER_LEFT.

If the value for GL_POINT_SIZE_MIN is greater than GL_POINT_SIZE_MAX, the point size after
clamping is undefined, but no error is generated.

glPointParameter 1041

C

Associated Gets

glGet with argument GL_POINT_SIZE_MIN
glGet with argument GL_POINT_SIZE_MAX
glGet with argument GL_POINT_FADE_THRESHOLD_SIZE
glGet with argument GL_POINT_DISTANCE_ATTENUATION
glGet with argument GL_POINT_SPRITE_COORD_ORIGIN

See Also

glPointSize

glPointSize

Specify the diameter of rasterized points

C Specification

void glPointSize(GLfloat size);

Parameters

size Specifies the diameter of rasterized points. The initial value is 1.

Description

glPointSize specifies the rasterized diameter of both aliased and antialiased points. Using a
point size other than 1 has different effects, depending on whether point antialiasing is enabled. To
enable and disable point antialiasing, call glEnable and glDisable with argument
GL_POINT_SMOOTH. Point antialiasing is initially disabled.

The specified point size is multiplied with a distance attenuation factor and clamped to the speci-
fied point size range, and further clamped to the implementation-dependent point size range to
produce the derived point size using

where d is the eye-coordinate distance from the eye to the vertex, and a, b, and c are the distance
attenuation coefficients (see glPointParameter).

If multisampling is disabled, the computed point size is used as the point’s width.
If multisampling is enabled, the point may be faded by modifying the point alpha value (see

glSampleCoverage) instead of allowing the point width to go below a given threshold (see
glPointParameter). In this case, the width is further modified in the following manner:

The point alpha value is modified by computing:

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the
nearest integer. (If the rounding results in the value 0, it is as if the point size were 1.) If the rounded
size is odd, then the center point (x, y) of the pixel fragment that represents the point is computed as

where w subscripts indicate window coordinates. All pixels that lie within the square grid of the
rounded size centered at (x, y) make up the fragment. If the size is even, the center point is

(xw + .5 , yw + .5)

(xw + .5, yw + .5)

pointAlpha =
1
pointSize

pointSize >= threshold
otherwise

threshold()2

pointWidth =
pointSize
threshold

pointSize >= threshold
otherwise

sizepointSize = clamp ()
a + b d + c d2

1

glPointSize1042

and the rasterized fragment’s centers are the half-integer window coordinates within the square of
the rounded size centered at (x,y). All pixel fragments produced in rasterizing a nonantialiased point
are assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel square that
intersects the region lying within the circle having diameter equal to the current point size and
centered at the point’s (xw,yw). The coverage value for each fragment is the window coordinate area of
the intersection of the circular region with the corresponding pixel square. This value is saved and
used in the final rasterization step. The data associated with each fragment is the data associated with
the point being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested,
the nearest supported size is used. Only size 1 is guaranteed to be supported; others depend on the
implementation. To query the range of supported sizes and the size difference between supported
sizes within the range, call glGet with arguments GL_SMOOTH_POINT_SIZE_RANGE and
GL_SMOOTH_POINT_SIZE_GRANULARITY. For aliased points, query the supported ranges and
granularity with glGet with arguments GL_ALIASED_POINT_SIZE_RANGE.

Notes

The point size specified by glPointSize is always returned when GL_POINT_SIZE is queried.
Clamping and rounding for aliased and antialiased points have no effect on the specified value.

A non-antialiased point size may be clamped to an implementation-dependent maximum.
Although this maximum cannot be queried, it must be no less than the maximum value for
antialiased points, rounded to the nearest integer value.

GL_POINT_SIZE_RANGE and GL_POINT_SIZE_GRANULARITY are deprecated in GL versions 1.2
and greater. Their functionality has been replaced by GL_SMOOTH_POINT_SIZE_RANGE and
GL_SMOOTH_POINT_SIZE_GRANULARITY.

Errors

GL_INVALID_VALUE is generated if size is less than or equal to 0.
GL_INVALID_OPERATION is generated if glPointSize is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ALIASED_POINT_SIZE_RANGE
glGet with argument GL_POINT_SIZE
glGet with argument GL_POINT_SIZE_MIN
glGet with argument GL_POINT_SIZE_MAX
glGet with argument GL_POINT_FADE_THRESHOLD_SIZE
glGet with argument GL_POINT_DISTANCE_ATTENUATION
glGet with argument GL_SMOOTH_POINT_SIZE_RANGE
glGet with argument GL_SMOOTH_POINT_SIZE_GRANULARITY
glIsEnabled with argument GL_POINT_SMOOTH

See Also

glEnable, glPointParameter

glPolygonMode

Select a polygon rasterization mode

C Specification

void glPolygonMode(GLenum face, GLenum mode);

glPolygonMode 1043

C

Parameters

face Specifies the polygons that mode applies to. Must be GL_FRONT for front-facing polygons,
GL_BACK for back-facing polygons, or GL_FRONT_AND_BACK for front- and back-facing
polygons.

mode Specifies how polygons will be rasterized. Accepted values are GL_POINT, GL_LINE, and
GL_FILL. The initial value is GL_FILL for both front- and back-facing polygons.

Description

glPolygonMode controls the interpretation of polygons for rasterization. face describes which
polygons mode applies to: front-facing polygons (GL_FRONT), back-facing polygons (GL_BACK), or
both (GL_FRONT_AND_BACK). The polygon mode affects only the final rasterization of polygons. In
particular, a polygon’s vertices are lit and the polygon is clipped and possibly culled before these
modes are applied.

Three modes are defined and can be specified in mode:
GL_POINT
Polygon vertices that are marked as the start of a boundary edge are drawn as points. Point attrib-

utes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the rasterization of the points. Polygon
rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_LINE
Boundary edges of the polygon are drawn as line segments. They are treated as connected line

segments for line stippling; the line stipple counter and pattern are not reset between segments (see
glLineStipple). Line attributes such as GL_LINE_WIDTH and GL_LINE_SMOOTH control the rasteri-
zation of the lines. Polygon rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_FILL
The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_STIPPLE and

GL_POLYGON_SMOOTH control the rasterization of the polygon.

Examples

To draw a surface with filled back-facing polygons and outlined front-facing polygons, call
glPolygonMode(GL_FRONT,GL_LINE);

Notes

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated inter-
nally by the GL when it decomposes polygons; they can be set explicitly using glEdgeFlag.

Errors

GL_INVALID_ENUM is generated if either face or mode is not an accepted value.
GL_INVALID_OPERATION is generated if glPolygonMode is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_POLYGON_MODE

See Also

glBegin, glEdgeFlag, glLineStipple, glLineWidth, glPointSize, glPolygonStipple

glPolygonOffset

Set the scale and units used to calculate depth values

C Specification

void glPolygonOffset(GLfloat factor,
GLfloat units);

glPolygonMode1044

Parameters

factor Specifies a scale factor that is used to create a variable depth offset for each polygon.
The initial value is 0.

units Is multiplied by an implementation-specific value to create a constant depth offset. The
initial value is 0.

Description

When GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or GL_POLYGON_OFFSET_POINT
is enabled, each fragment’s depth value will be offset after it is interpolated from the depth values of
the appropriate vertices. The value of the offset is factor × DZ + r × units, where DZ is a measure-
ment of the change in depth relative to the screen area of the polygon, and r is the smallest value
that is guaranteed to produce a resolvable offset for a given implementation. The offset is added
before the depth test is performed and before the value is written into the depth buffer.

glPolygonOffset is useful for rendering hidden-line images, for applying decals to surfaces, and
for rendering solids with highlighted edges.

Notes

glPolygonOffset is available only if the GL version is 1.1 or greater.
glPolygonOffset has no effect on depth coordinates placed in the feedback buffer.
glPolygonOffset has no effect on selection.

Errors

GL_INVALID_OPERATION is generated if glPolygonOffset is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT.

glGet with argument GL_POLYGON_OFFSET_FACTOR or GL_POLYGON_OFFSET_UNITS.

See Also

glDepthFunc, glEnable, glGet, glIsEnabled

glPolygonStipple

Set the polygon stippling pattern

C Specification

void glPolygonStipple(const GLubyte * pattern);

Parameters

pattern Specifies a pointer to a 32 × 32 stipple pattern that will be unpacked from memory in
the same way that glDrawPixels unpacks pixels.

Description

Polygon stippling, like line stippling (see glLineStipple), masks out certain fragments produced
by rasterization, creating a pattern. Stippling is independent of polygon antialiasing.

pattern is a pointer to a 32 × 32 stipple pattern that is stored in memory just like the pixel data
supplied to a glDrawPixels call with height and width both equal to 32, a pixel format of
GL_COLOR_INDEX, and data type of GL_BITMAP. That is, the stipple pattern is represented as a
32 × 32 array of 1-bit color indices packed in unsigned bytes. glPixelStore parameters like
GL_UNPACK_SWAP_BYTES and GL_UNPACK_LSB_FIRST affect the assembling of the bits into a stipple
pattern. Pixel transfer operations (shift, offset, pixel map) are not applied to the stipple image,
however.

glPolygonStipple 1045

C

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a stipple pattern is specified, pattern is treated as a byte offset into the buffer
object’s data store.

To enable and disable polygon stippling, call glEnable and glDisable with argument
GL_POLYGON_STIPPLE. Polygon stippling is initially disabled. If it’s enabled, a rasterized polygon
fragment with window coordinates xw and yw is sent to the next stage of the GL if and only if the
(xw%32)th bit in the (yw%32)th row of the stipple pattern is 1 (one). When polygon stippling is
disabled, it is as if the stipple pattern consists of all 1’s.

Errors

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glPolygonStipple is executed between the execution
of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetPolygonStipple
glIsEnabled with argument GL_POLYGON_STIPPLE
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glDrawPixels, glLineStipple, glPixelStore, glPixelTransfer

glPrioritizeTextures

Set texture residence priority

C Specification

void glPrioritizeTextures(GLsizei n,
const GLuint * textures,
const GLclampf * priorities);

Parameters

n Specifies the number of textures to be prioritized.
textures Specifies an array containing the names of the textures to be prioritized.
priorities Specifies an array containing the texture priorities. A priority given in an element of

priorities applies to the texture named by the corresponding element of textures.

Description

glPrioritizeTextures assigns the n texture priorities given in priorities to the n textures
named in textures.

The GL establishes a “working set” of textures that are resident in texture memory. These textures
may be bound to a texture target much more efficiently than textures that are not resident. By speci-
fying a priority for each texture, glPrioritizeTextures allows applications to guide the GL imple-
mentation in determining which textures should be resident.

The priorities given in priorities are clamped to the range [0,1] before they are assigned. 0
indicates the lowest priority; textures with priority 0 are least likely to be resident. 1 indicates the
highest priority; textures with priority 1 are most likely to be resident. However, textures are not guar-
anteed to be resident until they are used.

glPrioritizeTextures1046

glPrioritizeTextures silently ignores attempts to prioritize texture 0 or any texture name
that does not correspond to an existing texture.

glPrioritizeTextures does not require that any of the textures named by textures be
bound to a texture target. glTexParameter may also be used to set a texture’s priority, but only if
the texture is currently bound. This is the only way to set the priority of a default texture.

Notes

glPrioritizeTextures is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glPrioritizeTextures is executed between the execu-

tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY retrieves the priority of a
currently bound texture.

See Also

glAreTexturesResident, glBindTexture, glCopyTexImage1D, glCopyTexImage2D,
glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter

glPushAttrib

Push and pop the server attribute stack

C Specification

void glPushAttrib(GLbitfield mask);

Parameters

mask Specifies a mask that indicates which attributes to save. Values for mask are listed below.

C Specification

void glPopAttrib(void);

Description

glPushAttrib takes one argument, a mask that indicates which groups of state variables to save
on the attribute stack. Symbolic constants are used to set bits in the mask. mask is typically
constructed by specifying the bitwise-or of several of these constants together. The special mask
GL_ALL_ATTRIB_BITS can be used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows (the second column lists
which attributes are saved):

GL_ACCUM_BUFFER_BIT Accumulation buffer clear value

GL_COLOR_BUFFER_BIT GL_ALPHA_TEST enable bit

Alpha test function and reference value

GL_BLEND enable bit

Blending source and destination functions

Constant blend color

Blending equation

GL_DITHER enable bit

GL_DRAW_BUFFER setting

glPushAttrib 1047

C

GL_COLOR_LOGIC_OP enable bit

GL_INDEX_LOGIC_OP enable bit

Logic op function

Color mode and index mode clear values

Color mode and index mode writemasks

GL_CURRENT_BIT Current RGBA color

Current color index

Current normal vector

Current texture coordinates

Current raster position

GL_CURRENT_RASTER_POSITION_VALID flag

RGBA color associated with current raster position

Color index associated with current raster position

Texture coordinates associated with current raster position

GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit

Depth buffer test function

Depth buffer clear value

GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT GL_ALPHA_TEST flag

GL_AUTO_NORMAL flag

GL_BLEND flag

Enable bits for the user-definable clipping planes

GL_COLOR_MATERIAL

GL_CULL_FACE flag

GL_DEPTH_TEST flag

GL_DITHER flag

GL_FOG flag

GL_LIGHTi where <apply><leq></leq>0i</apply>

<GL_MAX_LIGHTS>

GL_LIGHTING flag

GL_LINE_SMOOTH flag

GL_LINE_STIPPLE flag

GL_COLOR_LOGIC_OP flag

GL_INDEX_LOGIC_OP flag

GL_MAP1_x where x is a map type

GL_MAP2_x where x is a map type

GL_MULTISAMPLE flag

GL_NORMALIZE flag

GL_POINT_SMOOTH flag

GL_POLYGON_OFFSET_LINE flag

GL_POLYGON_OFFSET_FILL flag

GL_POLYGON_OFFSET_POINT flag

GL_POLYGON_SMOOTH flag

glPushAttrib1048

GL_POLYGON_STIPPLE flag

GL_SAMPLE_ALPHA_TO_COVERAGE flag

GL_SAMPLE_ALPHA_TO_ONE flag

GL_SAMPLE_COVERAGE flag

GL_SCISSOR_TEST flag

GL_STENCIL_TEST flag

GL_TEXTURE_1D flag

GL_TEXTURE_2D flag

GL_TEXTURE_3D flag

Flags GL_TEXTURE_GEN_x where x is S, T, R, or Q

GL_EVAL_BIT GL_MAP1_x enable bits, where x is a map type

GL_MAP2_x enable bits, where x is a map type

1D grid endpoints and divisions

2D grid endpoints and divisions

GL_AUTO_NORMAL enable bit

GL_FOG_BIT GL_FOG enable bit

Fog color

Fog density

Linear fog start

Linear fog end

Fog index

GL_FOG_MODE value

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT setting

GL_POINT_SMOOTH_HINT setting

GL_LINE_SMOOTH_HINT setting

GL_POLYGON_SMOOTH_HINT setting

GL_FOG_HINT setting

GL_GENERATE_MIPMAP_HINT setting

GL_TEXTURE_COMPRESSION_HINT setting

GL_LIGHTING_BIT GL_COLOR_MATERIAL enable bit

GL_COLOR_MATERIAL_FACE value

Color material parameters that are tracking the current color

Ambient scene color

GL_LIGHT_MODEL_LOCAL_VIEWER value

GL_LIGHT_MODEL_TWO_SIDE setting

GL_LIGHTING enable bit

Enable bit for each light

Ambient, diffuse, and specular intensity for each light

Direction, position, exponent, and cutoff angle for each light

Constant, linear, and quadratic attenuation factors for each light

Ambient, diffuse, specular, and emissive color for each material

Ambient, diffuse, and specular color indices for each material

Specular exponent for each material

GL_SHADE_MODEL setting

glPushAttrib 1049

C

GL_LINE_BIT GL_LINE_SMOOTH flag

GL_LINE_STIPPLE enable bit

Line stipple pattern and repeat counter

Line width

GL_LIST_BIT GL_LIST_BASE setting

GL_MULTISAMPLE_BIT GL_MULTISAMPLE flag

GL_SAMPLE_ALPHA_TO_COVERAGE flag

GL_SAMPLE_ALPHA_TO_ONE flag

GL_SAMPLE_COVERAGE flag

GL_SAMPLE_COVERAGE_VALUE value

GL_SAMPLE_COVERAGE_INVERT value

GL_PIXEL_MODE_BIT GL_RED_BIAS and GL_RED_SCALE settings

GL_GREEN_BIAS and GL_GREEN_SCALE values

GL_BLUE_BIAS and GL_BLUE_SCALE

GL_ALPHA_BIAS and GL_ALPHA_SCALE

GL_DEPTH_BIAS and GL_DEPTH_SCALE

GL_INDEX_OFFSET and GL_INDEX_SHIFT values

GL_MAP_COLOR and GL_MAP_STENCIL flags

GL_ZOOM_X and GL_ZOOM_Y factors

GL_READ_BUFFER setting

GL_POINT_BIT GL_POINT_SMOOTH flag

Point size

GL_POLYGON_BIT GL_CULL_FACE enable bit

GL_CULL_FACE_MODE value

GL_FRONT_FACE indicator

GL_POLYGON_MODE setting

GL_POLYGON_SMOOTH flag

GL_POLYGON_STIPPLE enable bit

GL_POLYGON_OFFSET_FILL flag

GL_POLYGON_OFFSET_LINE flag

GL_POLYGON_OFFSET_POINT flag

GL_POLYGON_OFFSET_FACTOR

GL_POLYGON_OFFSET_UNITS

GL_POLYGON_STIPPLE_BIT Polygon stipple image

GL_SCISSOR_BIT GL_SCISSOR_TEST flag

Scissor box

GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST enable bit

Stencil function and reference value

Stencil value mask

Stencil fail, pass, and depth buffer pass actions

Stencil buffer clear value

Stencil buffer writemask

glPushAttrib1050

GL_TEXTURE_BIT Enable bits for the four texture coordinates

Border color for each texture image

Minification function for each texture image

Magnification function for each texture image

Texture coordinates and wrap mode for each texture image

Color and mode for each texture environment

Enable bits GL_TEXTURE_GEN_x, x is S, T, R, and Q

GL_TEXTURE_GEN_MODE setting for S, T, R, and Q

glTexGen plane equations for S, T, R, and Q

Current texture bindings (for example, GL_TEXTURE_BINDING_2D)

GL_TRANSFORM_BIT Coefficients of the six clipping planes

Enable bits for the user-definable clipping planes

GL_MATRIX_MODE value

GL_NORMALIZE flag

GL_RESCALE_NORMAL flag

GL_VIEWPORT_BIT Depth range (near and far)

Viewport origin and extent

glPopAttrib restores the values of the state variables saved with the last glPushAttrib
command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack or to pop attributes off an empty stack. In either
case, the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

Notes

Not all values for GL state can be saved on the attribute stack. For example, render mode state,
and select and feedback state cannot be saved. Client state must be saved with
glPushClientAttrib.

The depth of the attribute stack depends on the implementation, but it must be at least 16.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

pushing and popping texture state applies to all supported texture units.

Errors

GL_STACK_OVERFLOW is generated if glPushAttrib is called while the attribute stack is full.
GL_STACK_UNDERFLOW is generated if glPopAttrib is called while the attribute stack is empty.
GL_INVALID_OPERATION is generated if glPushAttrib or glPopAttrib is executed between

the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_ATTRIB_STACK_DEPTH
glGet with argument GL_MAX_ATTRIB_STACK_DEPTH

See Also

glGet, glGetClipPlane, glGetError, glGetLight, glGetMap, glGetMaterial,
glGetPixelMap, glGetPolygonStipple, glGetString, glGetTexEnv, glGetTexGen,
glGetTexImage, glGetTexLevelParameter, glGetTexParameter, glIsEnabled,
glPushClientAttrib

glPushAttrib 1051

C

glPushClientAttrib

Push and pop the client attribute stack

C Specification

void glPushClientAttrib(GLbitfield mask);

Parameters

mask Specifies a mask that indicates which attributes to save. Values for mask are listed below.

C Specification

void glPopClientAttrib(void);

Description

glPushClientAttrib takes one argument, a mask that indicates which groups of client-state
variables to save on the client attribute stack. Symbolic constants are used to set bits in the mask.
mask is typically constructed by specifying the bitwise-or of several of these constants together. The
special mask GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the second
column lists which attributes are saved):

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes GL_CLIENT_VERTEX_ARRAY_BIT Vertex
arrays (and enables)

glPopClientAttrib restores the values of the client-state variables saved with the last
glPushClientAttrib. Those not saved are left unchanged.

It is an error to push attributes onto a full client attribute stack or to pop attributes off an empty
stack. In either case, the error flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

Notes

glPushClientAttrib is available only if the GL version is 1.1 or greater.
Not all values for GL client state can be saved on the attribute stack. For example, select and feed-

back state cannot be saved.
The depth of the attribute stack depends on the implementation, but it must be at least 16.
Use glPushAttrib and glPopAttrib to push and restore state that is kept on the server. Only

pixel storage modes and vertex array state may be pushed and popped with glPushClientAttrib
and glPopClientAttrib.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
pushing and popping client vertex array state applies to all supported texture units, and the active
client texture state.

Errors

GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the attribute stack is
full.

GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the attribute stack is
empty.

Associated Gets

glGet with argument GL_ATTRIB_STACK_DEPTH
glGet with argument GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

See Also

glColorPointer, glDisableClientState, glEdgeFlagPointer, glEnableClientState,
glFogCoordPointer, glGet, glGetError, glIndexPointer, glNormalPointer, glNewList,
glPixelStore, glPushAttrib, glTexCoordPointer, glVertexPointer

glPushClientAttrib1052

glPushMatrix

Push and pop the current matrix stack

C Specification

void glPushMatrix(void);

C Specification

void glPopMatrix(void);

Description

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode, the stack
depth is at least 32. In the other modes, GL_COLOR, GL_PROJECTION, and GL_TEXTURE, the depth is
at least 2. The current matrix in any mode is the matrix on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current matrix.
That is, after a glPushMatrix call, the matrix on top of the stack is identical to the one below it.

glPopMatrix pops the current matrix stack, replacing the current matrix with the one below it
on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.
It is an error to push a full matrix stack or to pop a matrix stack that contains only a single

matrix. In either case, the error flag is set and no other change is made to GL state.

Errors

GL_STACK_OVERFLOW is generated if glPushMatrix is called while the current matrix stack is
full.

GL_STACK_UNDERFLOW is generated if glPopMatrix is called while the current matrix stack
contains only a single matrix.

GL_INVALID_OPERATION is generated if glPushMatrix or glPopMatrix is executed between
the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX
glGet with argument GL_COLOR_MATRIX_STACK_DEPTH
glGet with argument GL_MODELVIEW_STACK_DEPTH
glGet with argument GL_PROJECTION_STACK_DEPTH
glGet with argument GL_TEXTURE_STACK_DEPTH
glGet with argument GL_MAX_MODELVIEW_STACK_DEPTH
glGet with argument GL_MAX_PROJECTION_STACK_DEPTH
glGet with argument GL_MAX_TEXTURE_STACK_DEPTH

See Also

glFrustum, glLoadIdentity, glLoadMatrix, glLoadTransposeMatrix, glMatrixMode,
glMultMatrix, glMultTransposeMatrix, glOrtho, glRotate, glScale, glTranslate,
glViewport

glPushMatrix 1053

C

glPushName

Push and pop the name stack

C Specification

void glPushName(GLuint name);

Parameters

name Specifies a name that will be pushed onto the name stack.

C Specification

void glPopName(void);

Description

The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers and is initially empty.

glPushName causes name to be pushed onto the name stack. glPopName pops one name off the
top of the stack.

The maximum name stack depth is implementation-dependent; call GL_MAX_NAME_STACK_DEPTH
to find out the value for a particular implementation. It is an error to push a name onto a full stack or
to pop a name off an empty stack. It is also an error to manipulate the name stack between the execu-
tion of glBegin and the corresponding execution of glEnd. In any of these cases, the error flag is set
and no other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName
or glPopName while the render mode is not GL_SELECT are ignored.

Errors

GL_STACK_OVERFLOW is generated if glPushName is called while the name stack is full.
GL_STACK_UNDERFLOW is generated if glPopName is called while the name stack is empty.
GL_INVALID_OPERATION is generated if glPushName or glPopName is executed between a call to

glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

See Also

glInitNames, glLoadName, glRenderMode, glSelectBuffer

glRasterPos

Specify the raster position for pixel operations

C Specification

void glRasterPos2s(GLshort x, GLshort y);
void glRasterPos2i(GLint x, GLint y);
void glRasterPos2f(GLfloat x, GLfloat y);
void glRasterPos2d(GLdouble x, GLdouble y);
void glRasterPos3s(GLshort x,

GLshort y,
GLshort z);

void glRasterPos3i(GLint x, GLint y, GLint z);

glPushName1054

void glRasterPos3f(GLfloat x,
GLfloat y,
GLfloat z);

void glRasterPos3d(GLdouble x,
GLdouble y,
GLdouble z);

void glRasterPos4s(GLshort x,
GLshort y,
GLshort z,
GLshort w);

void glRasterPos4i(GLint x,
GLint y,
GLint z,
GLint w);

void glRasterPos4f(GLfloat x,
GLfloat y,
GLfloat z,
GLfloat w);

void glRasterPos4d(GLdouble x,
GLdouble y,
GLdouble z,
GLdouble w);

Parameters

x, y, z, w
Specify the x, y, z, and w object coordinates (if present) for the raster position.

C Specification

void glRasterPos2sv(const GLshort * v);
void glRasterPos2iv(const GLint * v);
void glRasterPos2fv(const GLfloat * v);
void glRasterPos2dv(const GLdouble * v);
void glRasterPos3sv(const GLshort * v);
void glRasterPos3iv(const GLint * v);
void glRasterPos3fv(const GLfloat * v);
void glRasterPos3dv(const GLdouble * v);
void glRasterPos4sv(const GLshort * v);
void glRasterPos4iv(const GLint * v);
void glRasterPos4fv(const GLfloat * v);
void glRasterPos4dv(const GLdouble * v);

Parameters

v Specifies a pointer to an array of two, three, or four elements, specifying x, y, z, and w coordi-
nates, respectively.

Description

The GL maintains a 3D position in window coordinates. This position, called the raster position,
is used to position pixel and bitmap write operations. It is maintained with subpixel accuracy. See
glBitmap, glDrawPixels, and glCopyPixels.

The current raster position consists of three window coordinates (x, y, z), a clip coordinate value
(w), an eye coordinate distance, a valid bit, and associated color data and texture coordinates. The w
coordinate is a clip coordinate, because w is not projected to window coordinates. glRasterPos4

glRasterPos 1055

C

specifies object coordinates x, y, z, and w explicitly. glRasterPos3 specifies object coordinate x, y,
and z explicitly, while w is implicitly set to 1. glRasterPos2 uses the argument values for x and y
while implicitly setting z and w to 0 and 1.

The object coordinates presented by glRasterPos are treated just like those of a glVertex
command: They are transformed by the current modelview and projection matrices and passed to the
clipping stage. If the vertex is not culled, then it is projected and scaled to window coordinates,
which become the new current raster position, and the GL_CURRENT_RASTER_POSITION_VALID flag
is set. If the vertex is culled, then the valid bit is cleared and the current raster position and associated
color and texture coordinates are undefined.

The current raster position also includes some associated color data and texture coordinates. If
lighting is enabled, then GL_CURRENT_RASTER_COLOR (in RGBA mode) or
GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by the lighting calcu-
lation (see glLight, glLightModel, and glShadeModel). If lighting is disabled, current color (in
RGBA mode, state variable GL_CURRENT_COLOR) or color index (in color index mode, state variable
GL_CURRENT_INDEX) is used to update the current raster color.
GL_CURRENT_RASTER_SECONDARY_COLOR (in RGBA mode) is likewise updated.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation functions
(see glTexGen). Finally, the distance from the origin of the eye coordinate system to the vertex as
transformed by only the modelview matrix replaces GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0, 0, 0, 1), the current raster distance is 0, the valid bit is
set, the associated RGBA color is (1, 1, 1, 1), the associated color index is 1, and the associated texture
coordinates are (0, 0, 0, 1). In RGBA mode, GL_CURRENT_RASTER_INDEX is always 1; in color index
mode, the current raster RGBA color always maintains its initial value.

Notes

The raster position is modified by glRasterPos, glBitmap, and glWindowPos.
When the raster position coordinates are invalid, drawing commands that are based on the raster

position are ignored (that is, they do not result in changes to GL state).
Calling glDrawElements or glDrawRangeElements may leave the current color or index inde-

terminate. If glRasterPos is executed while the current color or index is indeterminate, the current
raster color or current raster index remains indeterminate.

To set a valid raster position outside the viewport, first set a valid raster position, then call
glBitmap with NULL as the bitmap parameter.

When the ARB_imaging extension is supported, there are distinct raster texture coordinates for
each texture unit. Each texture unit’s current raster texture coordinates are updated by glRasterPos.

Errors

GL_INVALID_OPERATION is generated if glRasterPos is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_CURRENT_RASTER_DISTANCE
glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_SECONDARY_COLOR
glGet with argument GL_CURRENT_RASTER_INDEX
glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

See Also

glBitmap, glCopyPixels, glDrawArrays, glDrawElements, glDrawRangeElements,
glDrawPixels, glMultiTexCoord, glTexCoord, glTexGen, glVertex, glWindowPos

glRasterPos1056

glReadBuffer

Select a color buffer source for pixels

C Specification

void glReadBuffer(GLenum mode);

Parameters

mode Specifies a color buffer. Accepted values are GL_FRONT_LEFT, GL_FRONT_RIGHT,
GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and
GL_AUXi, where i is between 0 and the value of GL_AUX_BUFFERS minus 1.

Description

glReadBuffer specifies a color buffer as the source for subsequent glReadPixels,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, and glCopyPixels commands. mode accepts one of twelve or more prede-
fined values. (GL_AUX0 through GL_AUX3 are always defined.) In a fully configured system,
GL_FRONT, GL_LEFT, and GL_FRONT_LEFT all name the front left buffer, GL_FRONT_RIGHT and
GL_RIGHT name the front right buffer, and GL_BACK_LEFT and GL_BACK name the back left buffer.

Nonstereo double-buffered configurations have only a front left and a back left buffer. Single-
buffered configurations have a front left and a front right buffer if stereo, and only a front left buffer
if nonstereo. It is an error to specify a nonexistent buffer to glReadBuffer.

mode is initially GL_FRONT in single-buffered configurations and GL_BACK in double-buffered
configurations.

Errors

GL_INVALID_ENUM is generated if mode is not one of the twelve (or more) accepted values.
GL_INVALID_OPERATION is generated if mode specifies a buffer that does not exist.
GL_INVALID_OPERATION is generated if glReadBuffer is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_READ_BUFFER

See Also

glCopyPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawBuffer, glReadPixels

glReadPixels

Read a block of pixels from the frame buffer

C Specification

void glReadPixels(GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLvoid * data);

Parameters

x, y Specify the window coordinates of the first pixel that is read from the frame
buffer. This location is the lower-left corner of a rectangular block of pixels.

glReadPixels 1057

C

width, height Specify the dimensions of the pixel rectangle. width and height of one corre-
spond to a single pixel.

format Specifies the format of the pixel data. The following symbolic values are
accepted: GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT,
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA,
GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. Must be one of GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV.

data Returns the pixel data.

Description

glReadPixels returns pixel data from the frame buffer, starting with the pixel whose lower-left
corner is at location (x, y), into client memory starting at location data. Several parameters control
the processing of the pixel data before it is placed into client memory. These parameters are set with
three commands: glPixelStore, glPixelTransfer, and glPixelMap. This reference page
describes the effects on glReadPixels of most, but not all of the parameters specified by these three
commands.

If a nonzero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a block of pixels is requested, data is treated as a byte offset into the buffer
object’s data store rather than a pointer to client memory.

When the ARB_imaging extension is supported, the pixel data may be processed by additional
operations including color table lookup, color matrix transformations, convolutions, histograms, and
minimum and maximum pixel value computations.

glReadPixels returns values from each pixel with lower-left corner at (x + i,y + j) for 0<=i<width
and 0<=j<height. This pixel is said to be the ith pixel in the jth row. Pixels are returned in row order
from the lowest to the highest row, left to right in each row.

format specifies the format for the returned pixel values; accepted values are:
GL_COLOR_INDEX
Color indices are read from the color buffer selected by glReadBuffer. Each index is converted

to fixed point, shifted left or right depending on the value and sign of GL_INDEX_SHIFT, and added
to GL_INDEX_OFFSET. If GL_MAP_COLOR is GL_TRUE, indices are replaced by their mappings in the
table GL_PIXEL_MAP_I_TO_I.

GL_STENCIL_INDEX
Stencil values are read from the stencil buffer. Each index is converted to fixed point, shifted left

or right depending on the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If
GL_MAP_STENCIL is GL_TRUE, indices are replaced by their mappings in the table
GL_PIXEL_MAP_S_TO_S.

GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to floating point such

that the minimum depth value maps to 0 and the maximum value maps to 1. Each component is
then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and finally clamped to the range
[0,1].

GL_RED
GL_GREEN
GL_BLUE

glReadPixels1058

GL_ALPHA
GL_RGB
GL_BGR
GL_RGBA
GL_BGRA
GL_LUMINANCE
GL_LUMINANCE_ALPHA
Processing differs depending on whether color buffers store color indices or RGBA color compo-

nents. If color indices are stored, they are read from the color buffer selected by glReadBuffer. Each
index is converted to fixed point, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. Indices are then replaced by the red, green, blue,
and alpha values obtained by indexing the tables GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A. Each table must be of size 2n, but n may be
different for different tables. Before an index is used to look up a value in a table of size 2n, it must be
masked against 2n – 1.

If RGBA color components are stored in the color buffers, they are read from the color buffer
selected by glReadBuffer. Each color component is converted to floating point such that zero inten-
sity maps to 0.0 and full intensity maps to 1.0. Each component is then multiplied by GL_c_SCALE
and added to GL_c_BIAS, where c is RED, GREEN, BLUE, or ALPHA. Finally, if GL_MAP_COLOR is
GL_TRUE, each component is clamped to the range [0,1], scaled to the size of its corresponding table,
and is then replaced by its mapping in the table GL_PIXEL_MAP_c_TO_c, where c is R, G, B, or A.

Unneeded data is then discarded. For example, GL_RED discards the green, blue, and alpha
components, while GL_RGB discards only the alpha component. GL_LUMINANCE computes a single-
component value as the sum of the red, green, and blue components, and GL_LUMINANCE_ALPHA
does the same, while keeping alpha as a second value. The final values are clamped to the range [0,1].

The shift, scale, bias, and lookup factors just described are all specified by glPixelTransfer. The
lookup table contents themselves are specified by glPixelMap.

Finally, the indices or components are converted to the proper format, as specified by type. If
format is GL_COLOR_INDEX or GL_STENCIL_INDEX and type is not GL_FLOAT, each index is
masked with the mask value given in the following table. If type is GL_FLOAT, then each integer
index is converted to single-precision floating-point format.

If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA,
GL_LUMINANCE, or GL_LUMINANCE_ALPHA and type is not GL_FLOAT, each component is multiplied
by the multiplier shown in the following table. If type is GL_FLOAT, then each component is passed
as is (or converted to the client’s single-precision floating-point format if it is different from the one
used by the GL).

type Index Mask Component Conversion

GL_UNSIGNED_BYTE 28 – 1 (28 – 1) c

GL_BYTE 27 – 1

GL_BITMAP 1 1

GL_UNSIGNED_SHORT 216 – 1 (216 – 1) c

GL_SHORT 215 – 1

GL_UNSIGNED_INT 232 – 1 (232 – 1) c

GL_INT 231 – 1

GL_FLOAT none c

(232 – 1) c – 1
2

(216 – 1)c – 1
2

(28 – 1) c – 1
2

glReadPixels 1059

C

Return values are placed in memory as follows. If format is GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, or GL_LUMI-
NANCE, a single value is returned and the data for the ith pixel in the jth row is placed in location (j)
width + i. GL_RGB and GL_BGR return three values, GL_RGBA and GL_BGRA return four values, and
GL_LUMINANCE_ALPHA returns two values for each pixel, with all values corresponding to a single
pixel occupying contiguous space in data. Storage parameters set by glPixelStore, such as
GL_PACK_LSB_FIRST and GL_PACK_SWAP_BYTES, affect the way that data is written into memory.
See glPixelStore for a description.

Notes

Values for pixels that lie outside the window connected to the current GL context are undefined.
If an error is generated, no change is made to the contents of data.

Errors

GL_INVALID_ENUM is generated if format or type is not an accepted value.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX or

GL_STENCIL_INDEX.
GL_INVALID_VALUE is generated if either width or height is negative.
GL_INVALID_OPERATION is generated if format is GL_COLOR_INDEX and the color buffers store

RGBA color components.
GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil

buffer.
GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and there is no depth

buffer.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

The formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and data is not evenly divisible into the number of bytes needed to
store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glReadPixels is executed between the execution of
glBegin and the corresponding execution of glEnd.

glReadPixels1060

Associated Gets

glGet with argument GL_INDEX_MODE
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glCopyPixels, glDrawPixels, glPixelMap, glPixelStore, glPixelTransfer,
glReadBuffer

glRect

Draw a rectangle

C Specification

void glRectd(GLdouble x1,
GLdouble y1,
GLdouble x2,
GLdouble y2);

void glRectf(GLfloat x1,
GLfloat y1,
GLfloat x2,
GLfloat y2);

void glRecti(GLint x1,
GLint y1,
GLint x2,
GLint y2);

void glRects(GLshort x1,
GLshort y1,
GLshort x2,
GLshort y2);

Parameters

x1, y1 Specify one vertex of a rectangle.
x2, y2 Specify the opposite vertex of the rectangle.

C Specification

void glRectdv(const GLdouble * v1,
const GLdouble * v2);

void glRectfv(const GLfloat * v1,
const GLfloat * v2);

void glRectiv(const GLint * v1,
const GLint * v2);

void glRectsv(const GLshort * v1,
const GLshort * v2);

Parameters

v1 Specifies a pointer to one vertex of a rectangle.
v2 Specifies a pointer to the opposite vertex of the rectangle.

Description

glRect supports efficient specification of rectangles as two corner points. Each rectangle
command takes four arguments, organized either as two consecutive pairs of (x,y) coordinates or as
two pointers to arrays, each containing an (x,y) pair. The resulting rectangle is defined in the z = 0
plane.

glRect 1061

C

glRect(x1, y1, x2, y2) is exactly equivalent to the following sequence:
glBegin(GL_POLYGON);
glVertex2(x1, y1);
glVertex2(x2, y1);
glVertex2(x2, y2);
glVertex2(x1, y2);
glEnd();
Note that if the second vertex is above and to the right of the first vertex, the rectangle is

constructed with a counterclockwise winding.

Errors

GL_INVALID_OPERATION is generated if glRect is executed between the execution of glBegin
and the corresponding execution of glEnd.

See Also

glBegin, glVertex

glRenderMode

Set rasterization mode

C Specification

GLint glRenderMode(GLenum mode);

Parameters

mode Specifies the rasterization mode. Three values are accepted: GL_RENDER, GL_SELECT, and
GL_FEEDBACK. The initial value is GL_RENDER.

Description

glRenderMode sets the rasterization mode. It takes one argument, mode, which can assume one
of three predefined values:

GL_RENDER
Render mode. Primitives are rasterized, producing pixel fragments, which are written into the

frame buffer. This is the normal mode and also the default mode.
GL_SELECT
Selection mode. No pixel fragments are produced, and no change to the frame buffer contents is

made. Instead, a record of the names of primitives that would have been drawn if the render mode
had been GL_RENDER is returned in a select buffer, which must be created (see glSelectBuffer)
before selection mode is entered.

GL_FEEDBACK
Feedback mode. No pixel fragments are produced, and no change to the frame buffer contents is

made. Instead, the coordinates and attributes of vertices that would have been drawn if the render
mode had been GL_RENDER is returned in a feedback buffer, which must be created (see
glFeedbackBuffer) before feedback mode is entered.

The return value of glRenderMode is determined by the render mode at the time glRenderMode
is called, rather than by mode. The values returned for the three render modes are as follows:

GL_RENDER
0.
GL_SELECT
The number of hit records transferred to the select buffer.
GL_FEEDBACK
The number of values (not vertices) transferred to the feedback buffer.
See the glSelectBuffer and glFeedbackBuffer reference pages for more details concerning

selection and feedback operation.

glRenderMode1062

Notes

If an error is generated, glRenderMode returns 0 regardless of the current render mode.

Errors

GL_INVALID_ENUM is generated if mode is not one of the three accepted values.
GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render mode is

GL_SELECT, or if glRenderMode is called with argument GL_SELECT before glSelectBuffer is
called at least once.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the render mode is
GL_FEEDBACK, or if glRenderMode is called with argument GL_FEEDBACK before
glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION is generated if glRenderMode is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_RENDER_MODE

See Also

glFeedbackBuffer, glInitNames, glLoadName, glPassThrough, glPushName,
glSelectBuffer

glResetHistogram

Reset histogram table entries to zero

C Specification

void glResetHistogram(GLenum target);

Parameters

target Must be GL_HISTOGRAM.

Description

glResetHistogram resets all the elements of the current histogram table to zero.

Notes

glResetHistogram is present only if ARB_imaging is returned when glGetString is called
with an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not GL_HISTOGRAM.
GL_INVALID_OPERATION is generated if glResetHistogram is executed between the execution

of glBegin and the corresponding execution of glEnd.

See Also

glHistogram

glResetMinmax

Reset minmax table entries to initial values

C Specification

void glResetMinmax(GLenum target);

glResetMinmax 1063

C

Parameters

target Must be GL_MINMAX.

Description

glResetMinmax resets the elements of the current minmax table to their initial values: the
“maximum” element receives the minimum possible component values, and the “minimum” element
receives the maximum possible component values.

Notes

glResetMinmax is present only if ARB_imaging is returned when glGetString is called with an
argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not GL_MINMAX.
GL_INVALID_OPERATION is generated if glResetMinmax is executed between the execution of

glBegin and the corresponding execution of glEnd.

See Also

glMinmax

glRotate

Multiply the current matrix by a rotation matrix

C Specification

void glRotated(GLdouble angle,
GLdouble x,
GLdouble y,
GLdouble z);

void glRotatef(GLfloat angle,
GLfloat x,
GLfloat y,
GLfloat z);

Parameters

angle Specifies the angle of rotation, in degrees.
x, y, z Specify the x, y, and z coordinates of a vector, respectively.

Description

glRotate produces a rotation of angle degrees around the vector (x,y,z). The current matrix (see

glMatrixMode) is multiplied by a rotation matrix with the product replacing the current matrix, as if

glMultMatrix were called with the following matrix as its argument:

Where c = cos(angle), s = sin(angle), and ||(x,y,z)|| = 1 (if not, the GL will normalize this vector).If
the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glRotate is
called are rotated. Use glPushMatrix and glPopMatrix to save and restore the unrotated coordinate
system.

x2 (1 – c) + c x y (1 – c) – z s x z (1 – c) + y s 0

y x (1 – c) + z s y2 (1 – c) + c y z (1 – c) – x s 0

x z (1 – c) – y s y z (1 – c) + x s z2 (1 – c) + c 0

 0 0 0 1

glRotate1064

Notes

This rotation follows the right-hand rule, so if the vector (x,y,z) points toward the user, the rota-
tion will be counterclockwise.

Errors

GL_INVALID_OPERATION is generated if glRotate is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glMatrixMode, glMultMatrix, glPushMatrix, glScale, glTranslate

glSampleCoverage

Specify multisample coverage parameters

C Specification

void glSampleCoverage(GLclampf value,
GLboolean invert);

Parameters

value Specify a single floating-point sample coverage value. The value is clamped to the range
[0,1]. The initial value is 1.0.

invert Specify a single boolean value representing if the coverage masks should be inverted.
GL_TRUE and GL_FALSE are accepted. The initial value is GL_FALSE.

Description

Multisampling samples a pixel multiple times at various implementation-dependent subpixel
locations to generate antialiasing effects. Multisampling transparently antialiases points, lines, poly-
gons, bitmaps, and images if it is enabled.

value is used in constructing a temporary mask used in determining which samples will be used
in resolving the final fragment color. This mask is bitwise-anded with the coverage mask generated
from the multisampling computation. If the invert flag is set, the temporary mask is inverted (all
bits flipped) and then the bitwise-and is computed.

If an implementation does not have any multisample buffers available, or multisampling is
disabled, rasterization occurs with only a single sample computing a pixel’s final RGB color.

Provided an implementation supports multisample buffers, and multisampling is enabled, then a
pixel’s final color is generated by combining several samples per pixel. Each sample contains color,
depth, and stencil information, allowing those operations to be performed on each sample.

Notes

glSampleCoverage is available only if the GL version is 1.3 or greater.

Errors

GL_INVALID_OPERATION is generated if glSampleCoverage is executed between the execution
of glBegin and the corresponding execution of glEnd.

glSampleCoverage 1065

C

Associated Gets

glGet with argument GL_SAMPLE_COVERAGE_VALUE
glGet with argument GL_SAMPLE_COVERAGE_INVERT
glIsEnabled with argument GL_MULTISAMPLE
glIsEnabled with argument GL_SAMPLE_ALPHA_TO_COVERAGE
glIsEnabled with argument GL_SAMPLE_ALPHA_TO_ONE
glIsEnabled with argument GL_SAMPLE_COVERAGE

See Also

glEnable, glPushAttrib

glScale

Multiply the current matrix by a general scaling matrix

C Specification

void glScaled(GLdouble x,
GLdouble y,
GLdouble z);

void glScalef(GLfloat x, GLfloat y, GLfloat z);

Parameters

x, y, z Specify scale factors along the x, y, and z axes, respectively.

Description

glScale produces a nonuniform scaling along the x, y, and z axes. The three parameters indicate
the desired scale factor along each of the three axes.

The current matrix (see glMatrixMode) is multiplied by this scale matrix, and the product
replaces the current matrix as if glMultMatrix were called with the following matrix as its
argument:

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glScale
is called are scaled.

Use glPushMatrix and glPopMatrix to save and restore the unscaled coordinate system.

Notes

If scale factors other than 1 are applied to the modelview matrix and lighting is enabled, lighting
often appears wrong. In that case, enable automatic normalization of normals by calling glEnable
with the argument GL_NORMALIZE.

Errors

GL_INVALID_OPERATION is generated if glScale is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

glScale1066

See Also

glMatrixMode, glMultMatrix, glPushMatrix, glRotate, glTranslate

glScissor

Define the scissor box

C Specification

void glScissor(GLint x,
GLint y,
GLsizei width,
GLsizei height);

Parameters

x, y Specify the lower-left corner of the scissor box. Initially (0, 0).
width, height Specify the width and height of the scissor box. When a GL context is first

attached to a window, width and height are set to the dimensions of that
window.

Description

glScissor defines a rectangle, called the scissor box, in window coordinates. The first two argu-
ments, x and y, specify the lower-left corner of the box. width and height specify the width and
height of the box.

To enable and disable the scissor test, call glEnable and glDisable with argument GL_-
SCISSOR_TEST. The test is initially disabled. While the test is enabled, only pixels that lie within the
scissor box can be modified by drawing commands. Window coordinates have integer values at the
shared corners of frame buffer pixels. glScissor(0,0,1,1) allows modification of only the lower-
left pixel in the window, and glScissor(0,0,0,0) doesn’t allow modification of any pixels in the
window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

Errors

GL_INVALID_VALUE is generated if either width or height is negative.
GL_INVALID_OPERATION is generated if glScissor is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_SCISSOR_BOX
glIsEnabled with argument GL_SCISSOR_TEST

See Also

glEnable, glViewport

glSecondaryColor

Set the current secondary color

C Specification

void glSecondaryColor3b(GLbyte red,
GLbyte green,
GLbyte blue);

void glSecondaryColor3s(GLshort red,
GLshort green,
GLshort blue);

glSecondaryColor 1067

C

void glSecondaryColor3i(GLint red,
GLint green,
GLint blue);

void glSecondaryColor3f(GLfloat red,
GLfloat green,
GLfloat blue);

void glSecondaryColor3d(GLdouble red,
GLdouble green,
GLdouble blue);

void glSecondaryColor3ub(GLubyte red,
GLubyte green,
GLubyte blue);

void glSecondaryColor3us(GLushort red,
GLushort green,
GLushort blue);

void glSecondaryColor3ui(GLuint red,
GLuint green,
GLuint blue);

Parameters

red, green, blue Specify new red, green, and blue values for the current secondary color.

C Specification

void glSecondaryColor3bv(const GLbyte * v);
void glSecondaryColor3sv(const GLshort * v);
void glSecondaryColor3iv(const GLint * v);
void glSecondaryColor3fv(const GLfloat * v);
void glSecondaryColor3dv(const GLdouble * v);
void glSecondaryColor3ubv(const GLubyte * v);
void glSecondaryColor3usv(const GLushort * v);
void glSecondaryColor3uiv(const GLuint * v);

Parameters

v Specifies a pointer to an array that contains red, green, blue.

Description

The GL stores both a primary four-valued RGBA color and a secondary four-valued RGBA color
(where alpha is always set to 0.0) that is associated with every vertex.

The secondary color is interpolated and applied to each fragment during rasterization when
GL_COLOR_SUM is enabled. When lighting is enabled, and GL_SEPARATE_SPECULAR_COLOR is speci-
fied, the value of the secondary color is assigned the value computed from the specular term of the
lighting computation. Both the primary and secondary current colors are applied to each fragment,
regardless of the state of GL_COLOR_SUM, under such conditions. When GL_SEPARATE_SPECULAR_
COLOR is specified, the value returned from querying the current secondary color is undefined.

glSecondaryColor3b, glSecondaryColor3s, and glSecondaryColor3i take three signed
byte, short, or long integers as arguments. When v is appended to the name, the color commands can
take a pointer to an array of such values.

Color values are stored in floating-point format, with unspecified mantissa and exponent sizes.
Unsigned integer color components, when specified, are linearly mapped to floating-point values
such that the largest representable value maps to 1.0 (full intensity), and 0 maps to 0.0 (zero inten-
sity). Signed integer color components, when specified, are linearly mapped to floating-point values

glSecondaryColor1068

such that the most positive representable value maps to 1.0, and the most negative representable
value maps to -1.0. (Note that this mapping does not convert 0 precisely to 0.0). Floating-point values
are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before the current
color is updated. However, color components are clamped to this range before they are interpolated
or written into a color buffer.

Notes

glSecondaryColor is available only if the GL version is 1.4 or greater.
The initial value for the secondary color is (0, 0, 0, 0).
The secondary color can be updated at any time. In particular, glSecondaryColor can be called

between a call to glBegin and the corresponding call to glEnd.
Associated Gets
glGet with argument GL_CURRENT_SECONDARY_COLOR
glGet with argument GL_RGBA_MODE
glIsEnabled with argument GL_COLOR_SUM

See Also

glColor, glIndex, glIsEnabled, glLightModel, glSecondaryColorPointer

glSecondaryColorPointer

Define an array of secondary colors

C Specification

void glSecondaryColorPointer(GLint size,
GLenum type,
GLsizei stride,
const GLvoid * pointer);

Parameters
size Specifies the number of components per color. Must be 3.
type Specifies the data type of each color component in the array. Symbolic constants

GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is
GL_FLOAT.

stride Specifies the byte offset between consecutive colors. If stride is 0, the colors are under-
stood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first component of the first color element in the array. The
initial value is 0.

Description

glSecondaryColorPointer specifies the location and data format of an array of color compo-
nents to use when rendering. size specifies the number of components per color, and must be 3.
type specifies the data type of each color component, and stride specifies the byte stride from one
color to the next, allowing vertices and attributes to be packed into a single array or stored in separate
arrays.

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a secondary color array is specified, pointer is treated as a byte offset into the buffer object’s
data store. Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as secondary color
vertex array client-side state (GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING).

When a secondary color array is specified, size, type, stride, and pointer are saved as client-
side state, in addition to the current vertex array buffer object binding.

glSecondaryColorPointer 1069

C

To enable and disable the secondary color array, call glEnableClientState and
glDisableClientState with the argument GL_SECONDARY_COLOR_ARRAY. If enabled, the
secondary color array is used when glArrayElement, glDrawArrays, glMultiDrawArrays,
glDrawElements, glMultiDrawElements, or glDrawRangeElements is called.

Notes

glSecondaryColorPointer is available only if the GL version is 1.4 or greater.
Secondary colors are not supported for interleaved vertex array formats (see glInterleavedArrays).

The secondary color array is initially disabled and isn’t accessed when glArrayElement,
glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glSecondaryColorPointer is not allowed between the execution of glBegin and
the corresponding execution of glEnd, but an error may or may not be generated. If no error is gener-
ated, the operation is undefined.

glSecondaryColorPointer is typically implemented on the client side.
Secondary color array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_VALUE is generated if size is not 3.
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_SECONDARY_COLOR_ARRAY
glGet with argument GL_SECONDARY_COLOR_ARRAY_SIZE
glGet with argument GL_SECONDARY_COLOR_ARRAY_TYPE
glGet with argument GL_SECONDARY_COLOR_ARRAY_STRIDE
glGet with argument GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_SECONDARY_COLOR_ARRAY_POINTER

See Also

glArrayElement, glBindBuffer, glColorPointer, glDisableClientState, glDrawArrays,
glDrawElements, glDrawRangeElements, glEdgeFlagPointer, glEnableClientState,
glFogCoordPointer, glIndexPointer, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormalPointer, glPopClientAttrib, glPushClientAttrib,
glSecondaryColor, glTexCoordPointer, glVertexAttribPointer, glVertexPointer

glSelectBuffer

Establish a buffer for selection mode values

C Specification

void glSelectBuffer(GLsizei size,
GLuint * buffer);

Parameters

size Specifies the size of buffer.
buffer Returns the selection data.

glSecondaryColorPointer1070

Description

glSelectBuffer has two arguments: buffer is a pointer to an array of unsigned integers, and
size indicates the size of the array. buffer returns values from the name stack (see glInitNames,
glLoadName, glPushName) when the rendering mode is GL_SELECT (see glRenderMode).
glSelectBuffer must be issued before selection mode is enabled, and it must not be issued while
the rendering mode is GL_SELECT.

A programmer can use selection to determine which primitives are drawn into some region of a
window. The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive or a
raster position intersects the clipping volume defined by the viewing frustum and the user-defined
clipping planes, this primitive causes a selection hit. (With polygons, no hit occurs if the polygon is
culled.) When a change is made to the name stack, or when glRenderMode is called, a hit record is
copied to buffer if any hits have occurred since the last such event (name stack change or
glRenderMode call). The hit record consists of the number of names in the name stack at the time of
the event, followed by the minimum and maximum depth values of all vertices that hit since the
previous event, followed by the name stack contents, bottom name first.

Depth values (which are in the range [0,1]) are multiplied by 232 – 1, before being placed in the
hit record.

An internal index into buffer is reset to 0 whenever selection mode is entered. Each time a hit
record is copied into buffer, the index is incremented to point to the cell just past the end of the
block of names\(emthat is, to the next available cell If the hit record is larger than the number of
remaining locations in buffer, as much data as can fit is copied, and the overflow flag is set. If the
name stack is empty when a hit record is copied, that record consists of 0 followed by the minimum
and maximum depth values.

To exit selection mode, call glRenderMode with an argument other than GL_SELECT. Whenever
glRenderMode is called while the render mode is GL_SELECT, it returns the number of hit records
copied to buffer, resets the overflow flag and the selection buffer pointer, and initializes the name
stack to be empty. If the overflow bit was set when glRenderMode was called, a negative hit record
count is returned.

Notes

The contents of buffer is undefined until glRenderMode is called with an argument other than
GL_SELECT.

glBegin/glEnd primitives and calls to glRasterPos can result in hits. glWindowPos will always
generate a selection hit.

Errors

GL_INVALID_VALUE is generated if size is negative.
GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render mode is

GL_SELECT, or if glRenderMode is called with argument GL_SELECT before glSelectBuffer is
called at least once.

GL_INVALID_OPERATION is generated if glSelectBuffer is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_SELECTION_BUFFER_SIZE
glGetPointerv with argument GL_SELECTION_BUFFER_POINTER

See Also

glFeedbackBuffer, glInitNames, glLoadName, glPushName, glRenderMode

glSelectBuffer 1071

C

glSeparableFilter2D

Define a separable two-dimensional convolution filter

C Specification

void glSeparableFilter2D(GLenum target,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid * row,
const GLvoid * column);

Parameters

target Must be GL_SEPARABLE_2D.
internalformat The internal format of the convolution filter kernel. The allowable values are

GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_
LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width The number of elements in the pixel array referenced by row. (This is the width
of the separable filter kernel.)

height The number of elements in the pixel array referenced by column. (This is the
height of the separable filter kernel.)

format The format of the pixel data in row and column. The allowable values are
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA,
GL_INTENSITY, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type The type of the pixel data in row and column. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

row Pointer to a one-dimensional array of pixel data that is processed to build the
row filter kernel.

column Pointer to a one-dimensional array of pixel data that is processed to build the
column filter kernel.

Description

glSeparableFilter2D builds a two-dimensional separable convolution filter kernel from two
arrays of pixels.

The pixel arrays specified by (width, format, type, row) and (height, format, type, column)
are processed just as if they had been passed to glDrawPixels, but processing stops after the final
expansion to RGBA is completed.

glSeparableFilter2D1072

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a convolution filter is specified, row and column are treated as byte offsets into
the buffer object’s data store.

Next, the R, G, B, and A components of all pixels in both arrays are scaled by the four separable
2D GL_CONVOLUTION_FILTER_SCALE parameters and biased by the four separable 2D GL_
CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters are set by
glConvolutionParameter using the GL_SEPARABLE_2D target and the names
GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves
are vectors of four values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This conver-
sion simply maps the component values of the pixel (R, G, B, and A) to the values included in the
internal format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R

GL_INTENSITY R

GL_RGB R G B

GL_RGBA R G B A

The red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in floating-point rather than integer format. They form two one-dimensional filter kernel
images. The row image is indexed by coordinate i starting at zero and increasing from left to right.
Each location in the row image is derived from element i of row. The column image is indexed by
coordinate j starting at zero and increasing from bottom to top. Each location in the column image is
derived from element j of column.

Note that after a convolution is performed, the resulting color components are also scaled by
their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased by their corresponding
GL_POST_CONVOLUTION_c_BIAS parameters (where c takes on the values RED, GREEN, BLUE, and
ALPHA). These parameters are set by glPixelTransfer.

Notes

glSeparableFilter2D is present only if ARB_imaging is returned when glGetString is called
with an argument of GL_EXTENSIONS.

Errors

GL_INVALID_ENUM is generated if target is not GL_SEPARABLE_2D.
GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not one of the allowable values.
GL_INVALID_ENUM is generated if type is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum

supported value. This value may be queried with glGetConvolutionParameter using target
GL_SEPARABLE_2D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_VALUE is generated if height is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using target
GL_SEPARABLE_2D and name GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_
5_6_5_REV and format is not GL_RGB.

glSeparableFilter2D 1073

C

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_
5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_
INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor
GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and row or column is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glSeparableFilter2D is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetConvolutionParameter, glGetSeparableFilter
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glConvolutionFilter1D, glConvolutionFilter2D, glConvolutionParameter,
glPixelTransfer

glShadeModel

Select flat or smooth shading

C Specification

void glShadeModel(GLenum mode);

Parameters

mode Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT
and GL_SMOOTH. The initial value is GL_SMOOTH.

Description

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the
computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning differ-
ent colors to each resulting pixel fragment. Flat shading selects the computed color of just one vertex
and assigns it to all the pixel fragments generated by rasterizing a single primitive. In either case, the
computed color of a vertex is the result of lighting if lighting is enabled, or it is the current color at
the time the vertex was specified if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Starting when glBegin is issued and
counting vertices and primitives from 1, the GL gives each flat-shaded line segment i the computed
color of vertex i + 1, its second vertex. Counting similarly from 1, the GL gives each flat-shaded
polygon the computed color of the vertex listed in the following table. This is the last vertex to
specify the polygon in all cases except single polygons, where the first vertex specifies the flat-shaded
color.

glShadeModel1074

Primitive Type of Polygon i Vertex

Single polygon (i==1) 1

Triangle strip i + 2

Triangle fan i + 2

Independent triangle 3i

Quad strip 2i + 2

Independent quad 4i

Flat and smooth shading are specified by glShadeModel with mode set to GL_FLAT and
GL_SMOOTH, respectively.

Errors

GL_INVALID_ENUM is generated if mode is any value other than GL_FLAT or GL_SMOOTH.
GL_INVALID_OPERATION is generated if glShadeModel is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_SHADE_MODEL

See Also

glBegin, glColor, glLight, glLightModel

glShaderSource

Replace the source code in a shader object

C Specification

void glShaderSource(GLuint shader,
GLsizei count,
const GLchar ** string,
const GLint * length);

Parameters

shader Specifies the handle of the shader object whose source code is to be replaced.
count Specifies the number of elements in the string and length arrays.
string Specifies an array of pointers to strings containing the source code to be loaded into the

shader.
length Specifies an array of string lengths.

Description

glShaderSource sets the source code in shader to the source code in the array of strings speci-
fied by string. Any source code previously stored in the shader object is completely replaced. The
number of strings in the array is specified by count. If length is NULL, each string is assumed to be
null terminated. If length is a value other than NULL, it points to an array containing a string length
for each of the corresponding elements of string. Each element in the length array may contain
the length of the corresponding string (the null character is not counted as part of the string length)
or a value less than 0 to indicate that the string is null terminated. The source code strings are not
scanned or parsed at this time; they are simply copied into the specified shader object.

Notes

glShaderSource is available only if the GL version is 2.0 or greater.
OpenGL copies the shader source code strings when glShaderSource is called, so an application
may free its copy of the source code strings immediately after the function returns.

glShaderSource 1075

C

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_VALUE is generated if count is less than 0.
GL_INVALID_OPERATION is generated if glShaderSource is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetShader with arguments shader and GL_SHADER_SOURCE_LENGTH
glGetShaderSource with argument shader
glIsShader

See Also

glCompileShader, glCreateShader, glDeleteShader

glStencilFunc

Set front and back function and reference value for stencil testing

C Specification

void glStencilFunc(GLenum func,
GLint ref,
GLuint mask);

Parameters

func Specifies the test function. Eight tokens are valid: GL_NEVER, GL_LESS, GL_LEQUAL,
GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS. The initial value is
GL_ALWAYS.

ref Specifies the reference value for the stencil test. ref is clamped to the range [0,2n – 1],
where n is the number of bitplanes in the stencil buffer. The initial value is 0.

mask Specifies a mask that is ANDed with both the reference value and the stored stencil value
when the test is done. The initial value is all 1’s.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the reference value and the value in the stencil buffer. To enable and disable the test, call glEnable
and glDisable with argument GL_STENCIL_TEST. To specify actions based on the outcome of the
stencil test, call glStencilOp or glStencilOpSeparate.

There can be two separate sets of func, ref, and mask parameters; one affects back-facing
polygons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilFunc sets both front and back stencil state to the same values. Use
glStencilFuncSeparate to set front and back stencil state to different values.

func is a symbolic constant that determines the stencil comparison function. It accepts one of
eight values, shown in the following list. ref is an integer reference value that is used in the stencil
comparison. It is clamped to the range [0,2n – 1], where n is the number of bitplanes in the stencil
buffer. mask is bitwise ANDed with both the reference value and the stored stencil value, with the
ANDed values participating in the comparison.

glStencilFunc1076

If stencil represents the value stored in the corresponding stencil buffer location, the following list
shows the effect of each comparison function that can be specified by func. Only if the comparison
succeeds is the pixel passed through to the next stage in the rasterization process (see glStencilOp).
All tests treat stencil values as unsigned integers in the range [0,2n – 1], where n is the number of
bitplanes in the stencil buffer.

The following values are accepted by func:
GL_NEVER
Always fails.
GL_LESS
Passes if (ref & mask) < (stencil & mask).
GL_LEQUAL
Passes if (ref & mask) <= (stencil & mask).
GL_GREATER
Passes if (ref & mask) > (stencil & mask).
GL_GEQUAL
Passes if (ref & mask) >= (stencil & mask).
GL_EQUAL
Passes if (ref & mask) = (stencil & mask).
GL_NOTEQUAL
Passes if (ref & mask) != (stencil & mask).
GL_ALWAYS
Always passes.

Notes

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil test always passes.

glStencilFunc is the same as calling glStencilFuncSeparate with face set to
GL_FRONT_AND_BACK.

Errors

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.
GL_INVALID_OPERATION is generated if glStencilFunc is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_FUNC, GL_STENCIL_VALUE_MASK, GL_STENCIL_REF,
GL_STENCIL_BACK_FUNC, GL_STENCIL_BACK_VALUE_MASK, GL_STENCIL_BACK_REF, or
GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glAlphaFunc, glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFuncSeparate,
glStencilMask, glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

glStencilFuncSeparate

Set front and/or back function and reference value for stencil testing

C Specification

void glStencilFuncSeparate(GLenum face,
GLenum func,
GLint ref,
GLuint mask);

glStencilFuncSeparate 1077

C

Parameters

face Specifies whether front and/or back stencil state is updated. Three tokens are valid:
GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

func Specifies the test function. Eight tokens are valid: GL_NEVER, GL_LESS, GL_LEQUAL,
GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS. The initial value is
GL_ALWAYS.

ref Specifies the reference value for the stencil test. ref is clamped to the range [0,2n – 1],
where n is the number of bitplanes in the stencil buffer. The initial value is 0.

mask Specifies a mask that is ANDed with both the reference value and the stored stencil value
when the test is done. The initial value is all 1’s.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the reference value and the value in the stencil buffer. To enable and disable the test, call glEnable
and glDisable with argument GL_STENCIL_TEST. To specify actions based on the outcome of the
stencil test, call glStencilOp or glStencilOpSeparate.

There can be two separate sets of func, ref, and mask parameters; one affects back-facing
polygons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilFunc sets both front and back stencil state to the same values, as if
glStencilFuncSeparate were called with face set to GL_FRONT_AND_BACK.

func is a symbolic constant that determines the stencil comparison function. It accepts one of
eight values, shown in the following list. ref is an integer reference value that is used in the stencil
comparison. It is clamped to the range [0,2n – 1], where n is the number of bitplanes in the stencil
buffer. mask is bitwise ANDed with both the reference value and the stored stencil value, with the
ANDed values participating in the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the following list
shows the effect of each comparison function that can be specified by func. Only if the comparison
succeeds is the pixel passed through to the next stage in the rasterization process (see glStencilOp).
All tests treat stencil values as unsigned integers in the range [0,2n – 1], where n is the number of
bitplanes in the stencil buffer.

The following values are accepted by func:
GL_NEVER
Always fails.
GL_LESS
Passes if (ref & mask) < (stencil & mask).
GL_LEQUAL
Passes if (ref & mask) <= (stencil & mask).
GL_GREATER
Passes if (ref & mask) > (stencil & mask).
GL_GEQUAL
Passes if (ref & mask) >= (stencil & mask).
GL_EQUAL
Passes if (ref & mask) = (stencil & mask).
GL_NOTEQUAL
Passes if (ref & mask) != (stencil & mask).
GL_ALWAYS
Always passes.

glStencilFuncSeparate1078

Notes

glStencilFuncSeparate is available only if the GL version is 2.0 or greater.
Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and
it is as if the stencil test always passes.

Errors

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.
GL_INVALID_OPERATION is generated if glStencilFuncSeparate is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_FUNC, GL_STENCIL_VALUE_MASK, GL_STENCIL_REF,
GL_STENCIL_BACK_FUNC, GL_STENCIL_BACK_VALUE_MASK, GL_STENCIL_BACK_REF, or
GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glAlphaFunc, glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFunc,
glStencilMask, glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

glStencilMask

Control the front and back writing of individual bits in the stencil planes

C Specification

void glStencilMask(GLuint mask);

Parameters

mask Specifies a bit mask to enable and disable writing of individual bits in the stencil planes.
Initially, the mask is all 1’s.

Description

glStencilMask controls the writing of individual bits in the stencil planes. The least significant
n bits of mask, where n is the number of bits in the stencil buffer, specify a mask. Where a 1 appears
in the mask, it’s possible to write to the corresponding bit in the stencil buffer. Where a 0 appears, the
corresponding bit is write-protected. Initially, all bits are enabled for writing.

There can be two separate mask writemasks; one affects back-facing polygons, and the other
affects front-facing polygons as well as other non-polygon primitives. glStencilMask sets both front
and back stencil writemasks to the same values. Use glStencilMaskSeparate to set front and back
stencil writemasks to different values.

Notes

glStencilMask is the same as calling glStencilMaskSeparate with face set to
GL_FRONT_AND_BACK.

Errors

GL_INVALID_OPERATION is generated if glStencilMask is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_WRITEMASK, GL_STENCIL_BACK_WRITEMASK, or
GL_STENCIL_BITS

glStencilMask 1079

C

See Also

glColorMask, glDepthMask, glIndexMask, glStencilFunc, glStencilFuncSeparate,
glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

glStencilMaskSeparate

Control the front and/or back writing of individual bits in the stencil planes

C Specification

void glStencilMaskSeparate(GLenum face,
GLuint mask);

Parameters

face Specifies whether the front and/or back stencil writemask is updated. Three tokens are
valid: GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

mask Specifies a bit mask to enable and disable writing of individual bits in the stencil planes.
Initially, the mask is all 1’s.

Description

glStencilMaskSeparate controls the writing of individual bits in the stencil planes. The least
significant n bits of mask, where n is the number of bits in the stencil buffer, specify a mask. Where a
1 appears in the mask, it’s possible to write to the corresponding bit in the stencil buffer. Where a 0
appears, the corresponding bit is write-protected. Initially, all bits are enabled for writing.

There can be two separate mask writemasks; one affects back-facing polygons, and the other
affects front-facing polygons as well as other non-polygon primitives. glStencilMask sets both front
and back stencil writemasks to the same values, as if glStencilMaskSeparate were called with
face set to GL_FRONT_AND_BACK.

Notes

glStencilMaskSeparate is available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_OPERATION is generated if glStencilMaskSeparate is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_WRITEMASK, GL_STENCIL_BACK_WRITEMASK, or
GL_STENCIL_BITS

See Also

glColorMask, glDepthMask, glIndexMask, glStencilFunc, glStencilFuncSeparate,
glStencilMask, glStencilOp, glStencilOpSeparate

glStencilOp

Set front and back stencil test actions

C Specification

void glStencilOp(GLenum sfail,
GLenum dpfail,
GLenum dppass);

glStencilMaskSeparate1080

Parameters

sfail Specifies the action to take when the stencil test fails. Eight symbolic constants are
accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP, GL_DECR,
GL_DECR_WRAP, and GL_INVERT. The initial value is GL_KEEP.

dpfail Specifies the stencil action when the stencil test passes, but the depth test fails. dpfail
accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

dppass Specifies the stencil action when both the stencil test and the depth test pass, or when
the stencil test passes and either there is no depth buffer or depth testing is not enabled.
dppass accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the value in the stencil buffer and a reference value. To enable and disable the test, call glEnable
and glDisable with argument GL_STENCIL_TEST; to control it, call glStencilFunc or
glStencilFuncSeparate.

There can be two separate sets of sfail, dpfail, and dppass parameters; one affects back-facing
polygons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilOp sets both front and back stencil state to the same values. Use glStencilOpSeparate
to set front and back stencil state to different values.

glStencilOp takes three arguments that indicate what happens to the stored stencil value while
stenciling is enabled. If the stencil test fails, no change is made to the pixel’s color or depth buffers,
and sfail specifies what happens to the stencil buffer contents. The following eight actions are
possible.

GL_KEEP
Keeps the current value.
GL_ZERO
Sets the stencil buffer value to 0.
GL_REPLACE
Sets the stencil buffer value to ref, as specified by glStencilFunc.
GL_INCR
Increments the current stencil buffer value. Clamps to the maximum representable unsigned

value.
GL_INCR_WRAP
Increments the current stencil buffer value. Wraps stencil buffer value to zero when incrementing

the maximum representable unsigned value.
GL_DECR
Decrements the current stencil buffer value. Clamps to 0.
GL_DECR_WRAP
Decrements the current stencil buffer value. Wraps stencil buffer value to the maximum repre-

sentable unsigned value when decrementing a stencil buffer value of zero.
GL_INVERT
Bitwise inverts the current stencil buffer value.
Stencil buffer values are treated as unsigned integers. When incremented and decremented, values

are clamped to 0 and 2n – 1, where n is the value returned by querying GL_STENCIL_BITS.
The other two arguments to glStencilOp specify stencil buffer actions that depend on whether

subsequent depth buffer tests succeed (dppass) or fail (dpfail) (see glDepthFunc). The actions are
specified using the same eight symbolic constants as sfail. Note that dpfail is ignored when there

glStencilOp 1081

C

is no depth buffer, or when the depth buffer is not enabled. In these cases, sfail and dppass specify
stencil action when the stencil test fails and passes, respectively.

Notes

GL_DECR_WRAP and GL_INCR_WRAP are available only if the GL version is 1.4 or greater.
Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur

and it is as if the stencil tests always pass, regardless of any call to glStencilOp.
glStencilOp is the same as calling glStencilOpSeparate with face set to

GL_FRONT_AND_BACK.

Errors

GL_INVALID_ENUM is generated if sfail, dpfail, or dppass is any value other than the eight
defined constant values.

GL_INVALID_OPERATION is generated if glStencilOp is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_STENCIL_FAIL, GL_STENCIL_PASS_DEPTH_PASS,
GL_STENCIL_PASS_DEPTH_FAIL, GL_STENCIL_BACK_FAIL, GL_STENCIL_BACK_PASS_DEPTH_PASS,
GL_STENCIL_BACK_PASS_DEPTH_FAIL, or GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glAlphaFunc, glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFunc,
glStencilFuncSeparate, glStencilMask, glStencilMaskSeparate, glStencilOpSeparate

glStencilOpSeparate

Set front and/or back stencil test actions

C Specification

void glStencilOpSeparate(GLenum face,
GLenum sfail,
GLenum dpfail,
GLenum dppass);

Parameters

face Specifies whether front and/or back stencil state is updated. Three tokens are valid:
GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

sfail Specifies the action to take when the stencil test fails. Eight symbolic constants are
accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP, GL_DECR,
GL_DECR_WRAP, and GL_INVERT. The initial value is GL_KEEP.

dpfail Specifies the stencil action when the stencil test passes, but the depth test fails. dpfail
accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

dppass Specifies the stencil action when both the stencil test and the depth test pass, or when
the stencil test passes and either there is no depth buffer or depth testing is not enabled.
dppass accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

glStencilOpSeparate1082

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the value in the stencil buffer and a reference value. To enable and disable the test, call glEnable
and glDisable with argument GL_STENCIL_TEST; to control it, call glStencilFunc or
glStencilFuncSeparate.

There can be two separate sets of sfail, dpfail, and dppass parameters; one affects back-facing
polygons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilOp sets both front and back stencil state to the same values, as if glStencilOpSeparate
were called with face set to GL_FRONT_AND_BACK.

glStencilOpSeparate takes three arguments that indicate what happens to the stored stencil
value while stenciling is enabled. If the stencil test fails, no change is made to the pixel’s color or
depth buffers, and sfail specifies what happens to the stencil buffer contents. The following eight
actions are possible.

GL_KEEP
Keeps the current value.
GL_ZERO
Sets the stencil buffer value to 0.
GL_REPLACE
Sets the stencil buffer value to ref, as specified by glStencilFunc.
GL_INCR
Increments the current stencil buffer value. Clamps to the maximum representable unsigned

value.
GL_INCR_WRAP
Increments the current stencil buffer value. Wraps stencil buffer value to zero when incrementing

the maximum representable unsigned value.
GL_DECR
Decrements the current stencil buffer value. Clamps to 0.
GL_DECR_WRAP
Decrements the current stencil buffer value. Wraps stencil buffer value to the maximum repre-

sentable unsigned value when decrementing a stencil buffer value of zero.
GL_INVERT
Bitwise inverts the current stencil buffer value.
Stencil buffer values are treated as unsigned integers. When incremented and decremented, values

are clamped to 0 and 2n – 1, where n is the value returned by querying GL_STENCIL_BITS.
The other two arguments to glStencilOpSeparate specify stencil buffer actions that depend on

whether subsequent depth buffer tests succeed (dppass) or fail (dpfail) (see glDepthFunc). The
actions are specified using the same eight symbolic constants as sfail. Note that dpfail is ignored
when there is no depth buffer, or when the depth buffer is not enabled. In these cases, sfail and
dppass specify stencil action when the stencil test fails and passes, respectively.

Notes

glStencilOpSeparate is available only if the GL version is 2.0 or greater.
Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur

and it is as if the stencil test always passes.

Errors

GL_INVALID_ENUM is generated if face is any value other than GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

GL_INVALID_ENUM is generated if sfail, dpfail, or dppass is any value other than the eight
defined constant values.

GL_INVALID_OPERATION is generated if glStencilOpSeparate is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

glStencilOpSeparate 1083

C

Associated Gets

glGet with argument GL_STENCIL_FAIL, GL_STENCIL_PASS_DEPTH_PASS,
GL_STENCIL_PASS_DEPTH_FAIL, GL_STENCIL_BACK_FAIL, GL_STENCIL_BACK_PASS_DEPTH_PASS,
GL_STENCIL_BACK_PASS_DEPTH_FAIL, or GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glAlphaFunc, glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFunc,
glStencilFuncSeparate, glStencilMask, glStencilMaskSeparate, glStencilOp

glTexCoord

Set the current texture coordinates

C Specification

void glTexCoord1s(GLshort s);
void glTexCoord1i(GLint s);
void glTexCoord1f(GLfloat s);
void glTexCoord1d(GLdouble s);
void glTexCoord2s(GLshort s, GLshort t);
void glTexCoord2i(GLint s, GLint t);
void glTexCoord2f(GLfloat s, GLfloat t);
void glTexCoord2d(GLdouble s, GLdouble t);
void glTexCoord3s(GLshort s,

GLshort t,
GLshort r);

void glTexCoord3i(GLint s, GLint t, GLint r);
void glTexCoord3f(GLfloat s,

GLfloat t,
GLfloat r);

void glTexCoord3d(GLdouble s,
GLdouble t,
GLdouble r);

void glTexCoord4s(GLshort s,
GLshort t,
GLshort r,
GLshort q);

void glTexCoord4i(GLint s,
GLint t,
GLint r,
GLint q);

void glTexCoord4f(GLfloat s,
GLfloat t,
GLfloat r,
GLfloat q);

void glTexCoord4d(GLdouble s,
GLdouble t,
GLdouble r,
GLdouble q);

Parameters

s, t, r, q Specify s, t, r, and q texture coordinates. Not all parameters are present in all
forms of the command.

glTexCoord1084

C Specification

void glTexCoord1sv(const GLshort * v);
void glTexCoord1iv(const GLint * v);
void glTexCoord1fv(const GLfloat * v);
void glTexCoord1dv(const GLdouble * v);
void glTexCoord2sv(const GLshort * v);
void glTexCoord2iv(const GLint * v);
void glTexCoord2fv(const GLfloat * v);
void glTexCoord2dv(const GLdouble * v);
void glTexCoord3sv(const GLshort * v);
void glTexCoord3iv(const GLint * v);
void glTexCoord3fv(const GLfloat * v);
void glTexCoord3dv(const GLdouble * v);
void glTexCoord4sv(const GLshort * v);
void glTexCoord4iv(const GLint * v);
void glTexCoord4fv(const GLfloat * v);
void glTexCoord4dv(const GLdouble * v);

Parameters

v Specifies a pointer to an array of one, two, three, or four elements, which in turn specify the s,
t, r, and q texture coordinates.

Description

glTexCoord specifies texture coordinates in one, two, three, or four dimensions. glTexCoord1
sets the current texture coordinates to (s,0,0,1); a call to glTexCoord2 sets them to (s,t,0,1).
Similarly, glTexCoord3 specifies the texture coordinates as (s,t,r,1), and glTexCoord4 defines all
four components explicitly as (s,t,r,q).

The current texture coordinates are part of the data that is associated with each vertex and with
the current raster position. Initially, the values for s, t, r, and q are (0, 0, 0, 1).

Notes

The current texture coordinates can be updated at any time. In particular, glTexCoord can be
called between a call to glBegin and the corresponding call to glEnd.

When the ARB_imaging extension is supported, glTexCoord always updates texture unit
GL_TEXTURE0.

Associated Gets

glGet with argument GL_CURRENT_TEXTURE_COORDS

See Also

glMultiTexCoord, glTexCoordPointer, glVertex

glTexCoordPointer

Define an array of texture coordinates

C Specification

void glTexCoordPointer(GLint size,
GLenum type,
GLsizei stride,
const GLvoid * pointer);

glTexCoordPointer 1085

C

Parameters

size Specifies the number of coordinates per array element. Must be 1, 2, 3, or 4. The initial
value is 4.

type Specifies the data type of each texture coordinate. Symbolic constants GL_SHORT,
GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive texture coordinate sets. If stride is 0, the
array elements are understood to be tightly packed. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first texture coordinate set in the array.
The initial value is 0.

Description

glTexCoordPointer specifies the location and data format of an array of texture coordinates to
use when rendering. size specifies the number of coordinates per texture coordinate set, and must be
1, 2, 3, or 4. type specifies the data type of each texture coordinate, and stride specifies the byte
stride from one texture coordinate set to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays. (Single-array storage may be more efficient on some imple-
mentations; see glInterleavedArrays.)

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a texture coordinate array is specified, pointer is treated as a byte offset into the buffer object’s
data store. Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as texture coordi-
nate vertex array client-side state (GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING).

When a texture coordinate array is specified, size, type, stride, and pointer are saved as
client-side state, in addition to the current vertex array buffer object binding.

To enable and disable a texture coordinate array, call glEnableClientState and
glDisableClientState with the argument GL_TEXTURE_COORD_ARRAY. If enabled, the texture
coordinate array is used when glArrayElement, glDrawArrays, glMultiDrawArrays,
glDrawElements, glMultiDrawElements, or glDrawRangeElements is called.

Notes

glTexCoordPointer is available only if the GL version is 1.1 or greater.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

glTexCoordPointer updates the texture coordinate array state of the active client texture unit, spec-
ified with glClientActiveTexture.

Each texture coordinate array is initially disabled and isn’t accessed when glArrayElement,
glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glTexCoordPointer is not allowed between the execution of glBegin and the
corresponding execution of glEnd, but an error may or may not be generated. If no error is gener-
ated, the operation is undefined.

glTexCoordPointer is typically implemented on the client side.
Texture coordinate array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_TEXTURE_COORD_ARRAY
glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE
glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE

glTexCoordPointer1086

glGet with argument GL_TEXTURE_COORD_ARRAY_STRIDE
glGet with argument GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_POINTER

See Also

glArrayElement, glBindBuffer, glClientActiveTexture, glColorPointer,
glDisableClientState, glDrawArrays, glDrawElements, glDrawRangeElements,
glEdgeFlagPointer, glEnableClientState, glFogCoordPointer, glIndexPointer,
glInterleavedArrays, glMultiDrawArrays, glMultiDrawElements, glMultiTexCoord,
glNormalPointer, glPopClientAttrib, glPushClientAttrib, glSecondaryColorPointer,
glTexCoord, glVertexAttribPointer, glVertexPointer

glTexEnv

Set texture environment parameters

C Specification

void glTexEnvf(GLenum target,
GLenum pname,
GLfloat param);

void glTexEnvi(GLenum target,
GLenum pname,
GLint param);

Parameters

target Specifies a texture environment. May be GL_TEXTURE_ENV,
GL_TEXTURE_FILTER_CONTROL or GL_POINT_SPRITE.

pname Specifies the symbolic name of a single-valued texture environment parameter. May be
either GL_TEXTURE_ENV_MODE, GL_TEXTURE_LOD_BIAS, GL_COMBINE_RGB,
GL_COMBINE_ALPHA, GL_SRC0_RGB, GL_SRC1_RGB, GL_SRC2_RGB, GL_SRC0_ALPHA,
GL_SRC1_ALPHA, GL_SRC2_ALPHA, GL_OPERAND0_RGB, GL_OPERAND1_RGB,
GL_OPERAND2_RGB, GL_OPERAND0_ALPHA, GL_OPERAND1_ALPHA, GL_OPERAND2_ALPHA,
GL_RGB_SCALE, GL_ALPHA_SCALE, or GL_COORD_REPLACE.

param Specifies a single symbolic constant, one of GL_ADD, GL_ADD_SIGNED, GL_INTERPOLATE,
GL_MODULATE, GL_DECAL, GL_BLEND, GL_REPLACE, GL_SUBTRACT, GL_COMBINE,
GL_TEXTURE, GL_CONSTANT, GL_PRIMARY_COLOR, GL_PREVIOUS, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, a single
boolean value for the point sprite texture coordinate replacement, a single floating-point
value for the texture level-of-detail bias, or 1.0, 2.0, or 4.0 when specifying the
GL_RGB_SCALE or GL_ALPHA_SCALE.

C Specification

void glTexEnvfv(GLenum target,
GLenum pname,
const GLfloat * params);

void glTexEnviv(GLenum target,
GLenum pname,
const GLint * params);

Parameters

target Specifies a texture environment. May be either GL_TEXTURE_ENV, or
GL_TEXTURE_FILTER_CONTROL.

glTexEnv 1087

C

pname Specifies the symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR, or GL_TEXTURE_LOD_BIAS.

params Specifies a pointer to a parameter array that contains either a single symbolic constant,
single floating-point number, or an RGBA color.

Description

A texture environment specifies how texture values are interpreted when a fragment is textured.
When target is GL_TEXTURE_FILTER_CONTROL, pname must be GL_TEXTURE_LOD_BIAS. When
target is GL_TEXTURE_ENV, pname can be GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR,
GL_COMBINE_RGB, GL_COMBINE_ALPHA, RGB_SCALE, ALPHA_SCALE, SRC0_RGB, SRC1_RGB,
SRC2_RGB, SRC0_ALPHA, SRC1_ALPHA, or SRC2_ALPHA.

If pname is GL_TEXTURE_ENV_MODE, then params is (or points to) the symbolic name of a texture
function. Six texture functions may be specified: GL_ADD, GL_MODULATE, GL_DECAL, GL_BLEND,
GL_REPLACE, or GL_COMBINE.

A texture function acts on the fragment to be textured using the texture image value that applies
to the fragment (see glTexParameter) and produces an RGBA color for that fragment. The following
table shows how the RGBA color is produced for each of the three texture functions that can be
chosen. C is a triple of color values (RGB) and A is the associated alpha value. RGBA values extracted
from a texture image are in the range [0,1]. The subscript f refers to the incoming fragment, the
subscript t to the texture image, the subscript c to the texture environment color, and subscript v indi-
cates a value produced by the texture function.

A texture image can have up to four components per texture element (see glTexImage1D,
glTexImage2D, glTexImage3D, glCopyTexImage1D, and glCopyTexImage2D). In a one-
component image, Lt indicates that single component. A two-component image uses Lt and At. A
three-component image has only a color value, Ct. A four-component image has both a color value Ct
and an alpha value At.

Texture Base Internal GL_MODULATE GL_DECAL GL_BLEND
Format Function Function Function

GL_ALPHA Cv = Cf undefined Cv = Cf

Av = AfAt Av = AtAf

GL_LUMINANCE Cv = LtCf undefined Cv = (1 – Lt)Cf

(or 1) Av = Af Av = Af

GL_LUMINANCE_ALPHA Cv = LtCf undefined Cv = (1 – Lt)Cf

(or 2) Av = AtAf Av = AtAf

GL_INTENSITY Cv = CfIt undefined Cv = (1 – It)Cf

Av = AfIt Av = (1 – It)Af

GL_RGB Cv = CtCf Cv = Ct Cv = (1 – Ct)Cf

(or 3) Av = Af Av = Af Av = Af

GL_RGBA Cv = CtCf Cv = (1 – At) Cf + AtCt Cv = (1 – Ct)Cf

(or 4) Av = AtAf Av = Af Av = AtAf

Texture Base Internal GL_REPLACE GL_ADD
Format Function Function

GL_ALPHA Cv = Cf Cv = Cf

Av = At Av = AfAt

GL_LUMINANCE Cv = Lt Cv = Cf + Lt

(or 1) Av = Af Av = Af

glTexEnv1088

Texture Base Internal GL_REPLACE GL_ADD
Format Function Function

GL_LUMINANCE_ALPHA Cv = Lt + LtCc Cv = Cf + Lt

(or 2) Av = At Av = AfAt

GL_INTENSITY Cv = It + ItCc Cv = Cf + It
Av = It + ItAc Av = Af + It

GL_RGB Cv = Ct + CtCc Cv = Cf + Ct

(or 3) Av = Af Av = At

GL_RGBA Cv = Ct + CtCc Cv = Cf + Ct

(or 4) Av = At Av = At

If pname is GL_TEXTURE_ENV_MODE, and params is GL_COMBINE, the form of the texture func-
tion depends on the values of GL_COMBINE_RGB and GL_COMBINE_ALPHA.

The following describes how the texture sources, as specified by GL_SRC0_RGB, GL_SRC1_RGB,
GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA, and GL_SRC2_ALPHA, are combined to produce a
final texture color. In the following tables, GL_SRC0_c is represented by Arg0, GL_SRC1_c is repre-
sented by Arg1, and GL_SRC2_c is represented by Arg2.

GL_COMBINE_RGB accepts any of GL_REPLACE, GL_MODULATE, GL_ADD, GL_ADD_SIGNED,
GL_INTERPOLATE, GL_SUBTRACT, GL_DOT3_RGB, or GL_DOT3_RGBA.

GL_COMBINE_RGB Texture Function

GL_REPLACE Arg0

GL_MODULATE Arg0 × Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 – 0.5

GL_INTERPOLATE Arg0 × Arg2 + Arg1 × (1 – Arg2)

GL_SUBTRACT Arg0 – Arg1

GL_DOT3_RGB 4 × ((Arg0r – 0.5) × (Arg1r – 0.5)) +

or ((Arg0g – 0.5) × (Arg1g – 0.5)) +

GL_DOT3_RGBA ((Arg0b – 0.5) × (Arg1b – 0.5))

The scalar results for GL_DOT3_RGB and GL_DOT3_RGBA are placed into each of the 3 (RGB) or 4
(RGBA) components on output.
Likewise, GL_COMBINE_ALPHA accepts any of GL_REPLACE, GL_MODULATE, GL_ADD, GL_ADD_SIGNED,
GL_INTERPOLATE, or GL_SUBTRACT. The following table describes how alpha values are combined:

GL_COMBINE_ALPHA Texture Function

GL_REPLACE Arg0

GL_MODULATE Arg0 × Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 – 0.5

GL_INTERPOLATE Arg0 × Arg2 + Arg1 × (1 – Arg2)

GL_SUBTRACT Arg0 – Arg1

glTexEnv 1089

C

In the following tables, the value Cs represents the color sampled from the currently bound texture,
Cc represents the constant texture-environment color, Cf represents the primary color of the incoming
fragment, and Cp represents the color computed from the previous texture stage, or zero if processing
texture stage 0. Likewise, As, Ac, Af, and Ap represent the respective alpha values.
The following table describes the values assigned to Arg0, Arg1, and Arg2 based upon the RGB
sources and operands:

GL_SRCn_RGB GL_OPERANDn_RGB Argument Value

GL_TEXTURE GL_SRC_COLOR Cs

GL_ONE_MINUS_SRC_COLOR 1 – Cs

GL_SRC_ALPHA As

GL_ONE_MINUS_SRC_ALPHA 1 – As

GL_TEXTUREn GL_SRC_COLOR Cs

GL_ONE_MINUS_SRC_COLOR 1 – Cs

GL_SRC_ALPHA As

GL_ONE_MINUS_SRC_ALPHA 1 – As

GL_CONSTANT GL_SRC_COLOR Cc

GL_ONE_MINUS_SRC_COLOR 1 – Cc

GL_SRC_ALPHA Ac

GL_ONE_MINUS_SRC_ALPHA 1 – Ac

GL_PRIMARY_COLOR GL_SRC_COLOR Cf

GL_ONE_MINUS_SRC_COLOR 1 – Cf

GL_SRC_ALPHA Af

GL_ONE_MINUS_SRC_ALPHA 1 – Af

GL_PREVIOUS GL_SRC_COLOR Cp

GL_ONE_MINUS_SRC_COLOR 1 – Cp

GL_SRC_ALPHA Ap

GL_ONE_MINUS_SRC_ALPHA 1 – Ap

For GL_TEXTUREn sources, Cs and As represent the color and alpha, respectively, produced from
texture stage n.

The follow table describes the values assigned to Arg0, Arg1, and Arg2 based upon the alpha
sources and operands:

GL_SRCn_ALPHA GL_OPERANDn_ALPHA Argument Value

GL_TEXTURE GL_SRC_ALPHA As

GL_ONE_MINUS_SRC_ALPHA 1 – As

GL_TEXTUREn GL_SRC_ALPHA As

GL_ONE_MINUS_SRC_ALPHA 1 – As

GL_CONSTANT GL_SRC_ALPHA Ac

GL_ONE_MINUS_SRC_ALPHA 1 – Ac

GL_PRIMARY_COLOR GL_SRC_ALPHA Af

GL_ONE_MINUS_SRC_ALPHA 1 – Af

GL_PREVIOUS GL_SRC_ALPHA Ap

GL_ONE_MINUS_SRC_ALPHA 1 – Ap

glTexEnv1090

The RGB and alpha results of the texture function are multipled by the values of GL_RGB_SCALE
and GL_ALPHA_SCALE, respectively, and clamped to the range [0,1].

If pname is GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an RGBA color
consisting of four values. Integer color components are interpreted linearly such that the most posi-
tive integer maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the
range [0,1] when they are specified. Cc takes these four values.

If pname is GL_TEXTURE_LOD_BIAS, the value specified is added to the texture level-of-detail
parameter, that selects which mipmap, or mipmaps depending upon the selected
GL_TEXTURE_MIN_FILTER, will be sampled.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and GL_TEXTURE_ENV_COLOR defaults to (0, 0,
0, 0).

If target is GL_POINT_SPRITE and pname is GL_COORD_REPLACE, the boolean value specified is
used to either enable or disable point sprite texture coordinate replacement. The default value is
GL_FALSE.

Notes

GL_REPLACE may only be used if the GL version is 1.1 or greater.
GL_TEXTURE_FILTER_CONTROL and GL_TEXTURE_LOD_BIAS may only be used if the GL version

is 1.4 or greater.
GL_COMBINE mode and its associated constants may only be used if the GL version is 1.3 or

greater.
GL_TEXTUREn may only be used if the GL version is 1.4 or greater.
Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or greater.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,

glTexEnv controls the texture environment for the current active texture unit, selected by
glActiveTexture.

GL_POINT_SPRITE and GL_COORD_REPLACE are available only if the GL version is 2.0 or greater.

Errors

GL_INVALID_ENUM is generated when target or pname is not one of the accepted defined
values, or when params should have a defined constant value (based on the value of pname) and does
not.

GL_INVALID_VALUE is generated if the params value for GL_RGB_SCALE is not one of 1.0, 2.0, or
4.0.

GL_INVALID_OPERATION is generated if glTexEnv is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexEnv

See Also

glActiveTexture, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glTexImage1D,
glTexImage2D, glTexImage3D, glTexParameter, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D

glTexGen

Control the generation of texture coordinates

C Specification

void glTexGeni(GLenum coord,
GLenum pname,
GLint param);

glTexGen 1091

C

void glTexGenf(GLenum coord,
GLenum pname,
GLfloat param);

void glTexGend(GLenum coord,
GLenum pname,
GLdouble param);

Parameters

coord Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or GL_Q.
pname Specifies the symbolic name of the texture-coordinate generation function. Must be

GL_TEXTURE_GEN_MODE.
param Specifies a single-valued texture generation parameter, one of GL_OBJECT_LINEAR,

GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP, or GL_REFLECTION_MAP.

C Specification

void glTexGeniv(GLenum coord,
GLenum pname,
const GLint * params);

void glTexGenfv(GLenum coord,
GLenum pname,
const GLfloat * params);

void glTexGendv(GLenum coord,
GLenum pname,
const GLdouble * params);

Parameters

coord Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or GL_Q.
pname Specifies the symbolic name of the texture-coordinate generation function or function

parameters. Must be GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.
params Specifies a pointer to an array of texture generation parameters. If pname is

GL_TEXTURE_GEN_MODE, then the array must contain a single symbolic constant, one
of GL_OBJECT_LINEAR, GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP, or
GL_REFLECTION_MAP. Otherwise, params holds the coefficients for the texture-coordi-
nate generation function specified by pname.

Description

glTexGen selects a texture-coordinate generation function or supplies coefficients for one of the
functions. coord names one of the (s, t, r, q) texture coordinates; it must be one of the symbols GL_S,
GL_T, GL_R, or GL_Q. pname must be one of three symbolic constants: GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. If pname is GL_TEXTURE_GEN_MODE, then params chooses a
mode, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP, or
GL_REFLECTION_MAP. If pname is either GL_OBJECT_PLANE or GL_EYE_PLANE, params contains
coefficients for the corresponding texture generation function.

If the texture generation function is GL_OBJECT_LINEAR, the function

g = p1 × xo + p2 × yo + p3 × zo + p4 × wo

is used, where g is the value computed for the coordinate named in coord, p1, p2, p3, and p4 are
the four values supplied in params, and xo, yo, zo, and wo are the object coordinates of the vertex. This
function can be used, for example, to texture-map terrain using sea level as a reference plane (defined
by p1, p2, p3, and p4). The altitude of a terrain vertex is computed by the GL_OBJECT_LINEAR coordi-
nate generation function as its distance from sea level; that altitude can then be used to index the
texture image to map white snow onto peaks and green grass onto foothills.

glTexGen1092

If the texture generation function is GL_EYE_LINEAR, the function

g = p1
" × xe + p2

" × ye + p3
" × ze + p4

" × we

is used, where
(p1

" p2
" p3

" p4
") = (p1p2p3p4)M

-1

and xe, ye, ze, and we are the eye coordinates of the vertex, p1, p2, p3, and p4 are the values supplied
in params, and M is the modelview matrix when glTexGen is invoked. If M is poorly conditioned or
singular, texture coordinates generated by the resulting function may be inaccurate or undefined.

Note that the values in params define a reference plane in eye coordinates. The modelview
matrix that is applied to them may not be the same one in effect when the polygon vertices are trans-
formed. This function establishes a field of texture coordinates that can produce dynamic contour
lines on moving objects.

If pname is GL_SPHERE_MAP and coord is either GL_S or GL_T, s and t texture coordinates are
generated as follows. Let u be the unit vector pointing from the origin to the polygon vertex (in eye
coordinates). Let n sup prime be the current normal, after transformation to eye coordinates. Let

f = (fxfyfz)
T be the reflection vector such that

f = u – 2n " n " Tu

Finally, let . Then the values assigned to the s and t texture coordinates are

To enable or disable a texture-coordinate generation function, call glEnable or glDisable with
one of the symbolic texture-coordinate names (GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument. When enabled, the specified texture
coordinate is computed according to the generating function associated with that coordinate. When
disabled, subsequent vertices take the specified texture coordinate from the current set of texture
coordinates. Initially, all texture generation functions are set to GL_EYE_LINEAR and are disabled.
Both s plane equations are (1, 0, 0, 0), both t plane equations are (0, 1, 0, 0), and all r and q plane
equations are (0, 0, 0, 0).

When the ARB_multitexture extension is supported, glTexGen set the texture generation para-
meters for the currently active texture unit, selected with glActiveTexture.

Errors

GL_INVALID_ENUM is generated when coord or pname is not an accepted defined value, or when
pname is GL_TEXTURE_GEN_MODE and params is not an accepted defined value.

GL_INVALID_ENUM is generated when pname is GL_TEXTURE_GEN_MODE, params is
GL_SPHERE_MAP, and coord is either GL_R or GL_Q.

GL_INVALID_OPERATION is generated if glTexGen is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexGen
glIsEnabled with argument GL_TEXTURE_GEN_S
glIsEnabled with argument GL_TEXTURE_GEN_T
glIsEnabled with argument GL_TEXTURE_GEN_R
glIsEnabled with argument GL_TEXTURE_GEN_Q

See Also

glActiveTexture, glCopyPixels, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glTexEnv, glTexImage1D, glTexImage2D,
glTexImage3D, glTexParameter, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

= +t
fy

m
1
2

= +s
fx

m
1
2

2 (fx
2 + fy

2 + (fz + 1)2)

glTexGen 1093

C

glTexImage1D

Specify a one-dimensional texture image

C Specification

void glTexImage1D(GLenum target,
GLint level,
GLint internalFormat,
GLsizei width,
GLint border,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the

nth mipmap reduction image.
internalFormat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or

one of the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8,
GL_ALPHA12, GL_ALPHA16, GL_COMPRESSED_ALPHA, GL_COMPRESSED_
LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY,
GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SLUMINANCE, GL_SLUMINANCE8,
GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8,
GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

width Specifies the width of the texture image including the border if any. If the GL
version does not support non-power-of-two sizes, this value must be 2n +
2(border) for some integer n. All implementations support texture images that
are at least 64 texels wide. The height of the 1D texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.
format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR,
GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are
accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

glTexImage1D1094

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable one-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_1D.

Texture images are defined with glTexImage1D. The arguments describe the parameters of the
texture image, such as width, width of the border, level-of-detail number (see glTexParameter), and
the internal resolution and format used to store the image. The last three arguments describe how the
image is represented in memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_1D, no data is read from data, but all of the texture image state
is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to
0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

If target is GL_TEXTURE_1D, data is read from data as a sequence of signed or unsigned bytes,
shorts, or longs, or single-precision floating-point values, depending on type. These values are
grouped into sets of one, two, three, or four values, depending on format, to form elements. If type
is GL_BITMAP, the data is considered as a string of unsigned bytes (and format must be
GL_COLOR_INDEX). Each data byte is treated as eight 1-bit elements, with bit ordering determined by
GL_UNPACK_LSB_FIRST (see glPixelStore).

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

The first element corresponds to the left end of the texture array. Subsequent elements progress
left-to-right through the remaining texels in the texture array. The final element corresponds to the
right end of the texture array.

format determines the composition of each element in data. It can assume one of these
symbolic values:
GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to fixed point (with an unspeci-
fied number of zero bits to the right of the binary point), shifted left or right depending on the value
and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer). The result-
ing index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped
to the range [0,1].
GL_RED

Each element is a single red component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_GREEN

Each element is a single green component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red and blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_BLUE

Each element is a single blue component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red and green, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).

glTexImage1D 1095

C

GL_ALPHA
Each element is a single alpha component. The GL converts it to floating point and assembles it

into an RGBA element by attaching 0 for red, green, and blue. Each component is then multiplied by
the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).
GL_INTENSITY

Each element is a single intensity value. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the intensity value three times for red, green, blue, and alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_RGB
GL_BGR

Each element is an RGB triple. The GL converts it to floating point and assembles it into an RGBA
element by attaching 1 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).
GL_RGBA
GL_BGRA

Each element contains all four components. Each component is multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).
GL_LUMINANCE

Each element is a single luminance value. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue and
attaching 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_DEPTH_COMPONENT

Each element is a single depth value. The GL converts it to floating point, multiplies by the
signed scale factor GL_DEPTH_SCALE, adds the signed bias GL_DEPTH_BIAS, and clamps to the range
[0,1] (see glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values for the type
parameter.

If an application wants to store the texture at a certain resolution or in a certain format, it can
request the resolution and format with internalFormat. The GL will choose an internal representa-
tion that closely approximates that requested by internalFormat, but it may not match exactly.
(The representations specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA
must match exactly. The numeric values 1, 2, 3, and 4 may also be used to specify the above
representations.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA, the GL will
replace the internal format with the symbolic constant for a specific internal format and compress the
texture before storage. If no corresponding internal format is available, or the GL can not compress
that image for any reason, the internal format is instead replaced with a corresponding base internal
format.

glTexImage1D1096

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8,
GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, or GL_SLUMINANCE8_ALPHA8, the
texture is treated as if the red, green, blue, or luminance components are encoded in the sRGB color
space. Any alpha component is left unchanged. The conversion from the sRGB encoded component cs
to a linear component cl is:

Assume cs is the sRGB component in the range [0,1].
Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The implementation

will update and recompute its best match for the requested storage resolution and format. To then
query this state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture
state is set to 0.

A one-component texture image uses only the red component of the RGBA color from data. A
two-component image uses the R and A values. A three-component image uses the R, G, and B values.
A four-component image uses all of the RGBA components.

Depth textures can be treated as LUMINANCE, INTENSITY or ALPHA textures during texture
filtering and application. Image-based shadowing can be enabled by comparing texture r coordi-
nates to depth texture values to generate a boolean result. See glTexParameter for details on texture
comparison.

Notes

Texturing has no effect in color index mode.
If the ARB_imaging extension is supported, RGBA elements may also be processed by the

imaging pipeline. The following stages may be applied to an RGBA color before color component
clamping to the range [0,1]:

1. Color component replacement by the color table specified for GL_COLOR_TABLE, if
enabled. See glColorTable.

2. One-dimensional convolution filtering, if enabled. See glConvolutionFilter1D.
If a convolution filter changes the width of the texture (by processing with a
GL_CONVOLUTION_BORDER_MODE of GL_REDUCE, for example), the width must 2n +
2(border), for some integer n, after filtering.

3. RGBA components may be multiplied by GL_POST_CONVOLUTION_c_SCALE, and added
to GL_POST_CONVOLUTION_c_BIAS, if enabled. See glPixelTransfer.

4. Color component replacement by the color table specified for
GL_POST_CONVOLUTION_COLOR_TABLE, if enabled. See glColorTable.

5. Transformation by the color matrix.
See glMatrixMode.

6. RGBA components may be multiplied by GL_POST_COLOR_MATRIX_c_SCALE, and added
to GL_POST_COLOR_MATRIX_c_BIAS, if enabled. See glPixelTransfer.

7. Color component replacement by the color table specified for
GL_POST_COLOR_MATRIX_COLOR_TABLE, if enabled. See glColorTable.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX cannot be used. glPixelStore and glPixelTransfer
modes affect texture images in exactly the way they affect glDrawPixels.

GL_PROXY_TEXTURE_1D may be used only if the GL version is 1.1 or greater.
Internal formats other than 1, 2, 3, or 4 may be used only if the GL version is 1.1 or greater.
In GL version 1.1 or greater, data may be a null pointer. In this case texture memory is allocated

to accommodate a texture of width width. You can then download subtextures to initialize the
texture memory. The image is undefined if the program tries to apply an uninitialized portion of the
texture image to a primitive.

cs
12.92

1.055
2.4

0.04045

cl =
cs + 0.055()

if cs

0.04045if cs >

<=

glTexImage1D 1097

C

Formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.

When the ARB_multitexture extension is supported, or the GL version is 1.3 or greater,
glTexImage1D specifies the one-dimensional texture for the current texture unit, specified with
glActiveTexture.

GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, and
GL_DEPTH_COMPONENT32 are available only if the GL version is 1.4 or greater.

Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-
tion exports the GL_ARB_texture_non_power_of_two extension.

The GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8, GL_SLUMINANCE,
GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, and GL_SLUMINANCE8_ALPHA8 internal formats are only
available if the GL version is 2.1 or greater.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.
GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants

other than GL_STENCIL_INDEX are accepted.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalFormat is not 1, 2, 3, 4, or one of the accepted

resolution and format symbolic constants.
GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 + GL_MAX_TEXTURE_

SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

cannot be represented as 2n + 2(border) for some integer value of n.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and internalFormat
is not GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or
GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if internalFormat is GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32, and format is not
GL_DEPTH_COMPONENT.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

glTexImage1D1098

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexImage1D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glColorTable, glCompressedTexImage1D,
glCompressedTexSubImage1D, glConvolutionFilter1D, glCopyPixels, glCopyTexImage1D,
glCopyTexSubImage1D, glDrawPixels, glGetCompressedTexImage, glMatrixMode,
glPixelStore, glPixelTransfer, glTexEnv, glTexGen, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

glTexImage2D

Specify a two-dimensional texture image

C Specification

void glTexImage2D(GLenum target,
GLint level,
GLint internalFormat,
GLsizei width,
GLsizei height,
GLint border,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D,
GL_PROXY_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is
the nth mipmap reduction image.

internalFormat Specifies the number of color components in the texture. Must be 1, 2, 3, or
4, or one of the following symbolic constants: GL_ALPHA, GL_ALPHA4,
GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_COMPRESSED_ALPHA,
GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24,
GL_DEPTH_COMPONENT32, GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

glTexImage2D 1099

C

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SLUMINANCE, GL_SLUMINANCE8,
GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8,
GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

width Specifies the width of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2n + 2(border) for some integer n. All implementations support texture
images that are at least 64 texels wide.

height Specifies the height of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2m + 2(border) for some integer m. All implementations support texture
images that are at least 64 texels high.

border Specifies the width of the border. Must be either 0 or 1.
format Specifies the format of the pixel data. The following symbolic values are

accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are
accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_2D. To enable and disable texturing using cube-mapped texture, call
glEnable and glDisable with argument GL_TEXTURE_CUBE_MAP.

To define texture images, call glTexImage2D. The arguments describe the parameters of the
texture image, such as height, width, width of the border, level-of-detail number (see
glTexParameter), and number of color components provided. The last three arguments describe
how the image is represented in memory; they are identical to the pixel formats used for
glDrawPixels.

If target is GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_CUBE_MAP, no data is read from
data, but all of the texture image state is recalculated, checked for consistency, and checked against
the implementation’s capabilities. If the implementation cannot handle a texture of the requested
texture size, it sets all of the image state to 0, but does not generate an error (see glGetError). To
query for an entire mipmap array, use an image array level greater than or equal to 1.

If target is GL_TEXTURE_2D, or one of the GL_TEXTURE_CUBE_MAP targets, data is read from
data as a sequence of signed or unsigned bytes, shorts, or longs, or single-precision floating-point
values, depending on type. These values are grouped into sets of one, two, three, or four values,
depending on format, to form elements. If type is GL_BITMAP, the data is considered as a string of
unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as eight 1-bit
elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

glTexImage2D1100

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

The first element corresponds to the lower-left corner of the texture image. Subsequent elements
progress left-to-right through the remaining texels in the lowest row of the texture image, and then in
successively higher rows of the texture image. The final element corresponds to the upper-right
corner of the texture image.

format determines the composition of each element in data. It can assume one of these
symbolic values:
GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to fixed point (with an unspeci-
fied number of zero bits to the right of the binary point), shifted left or right depending on the value
and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer). The result-
ing index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped
to the range [0,1].
GL_RED

Each element is a single red component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_GREEN

Each element is a single green component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red and blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_BLUE

Each element is a single blue component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red and green, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_ALPHA

Each element is a single alpha component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red, green, and blue. Each component is then multiplied by
the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).
GL_INTENSITY

Each element is a single intensity value. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the intensity value three times for red, green, blue, and alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_RGB
GL_BGR

Each element is an RGB triple. The GL converts it to floating point and assembles it into an RGBA
element by attaching 1 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).
GL_RGBA
GL_BGRA

Each element contains all four components. Each component is multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

glTexImage2D 1101

C

GL_LUMINANCE
Each element is a single luminance value. The GL converts it to floating point, then assembles it

into an RGBA element by replicating the luminance value three times for red, green, and blue and
attaching 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_DEPTH_COMPONENT

Each element is a single depth value. The GL converts it to floating point, multiplies by the
signed scale factor GL_DEPTH_SCALE, adds the signed bias GL_DEPTH_BIAS, and clamps to the range
[0,1] (see glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values for the type
parameter.

If an application wants to store the texture at a certain resolution or in a certain format, it can
request the resolution and format with internalFormat. The GL will choose an internal representa-
tion that closely approximates that requested by internalFormat, but it may not match exactly.
(The representations specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA
must match exactly. The numeric values 1, 2, 3, and 4 may also be used to specify the above
representations.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA, the GL will
replace the internal format with the symbolic constant for a specific internal format and compress the
texture before storage. If no corresponding internal format is available, or the GL can not compress
that image for any reason, the internal format is instead replaced with a corresponding base internal
format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8,
GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, or GL_SLUMINANCE8_ALPHA8, the
texture is treated as if the red, green, blue, or luminance components are encoded in the sRGB color
space. Any alpha component is left unchanged. The conversion from the sRGB encoded component cs
to a linear component cl is:

Assume cs is the sRGB component in the range [0,1].
Use the GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_CUBE_MAP target to try out a resolution

and format. The implementation will update and recompute its best match for the requested storage
resolution and format. To then query this state, call glGetTexLevelParameter. If the texture
cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from
data. A two-component image uses the R and A values. A three-component image uses the R, G, and
B values. A four-component image uses all of the RGBA components.

Depth textures can be treated as LUMINANCE, INTENSITY or ALPHA textures during texture
filtering and application. Image-based shadowing can be enabled by comparing texture r coordi-
nates to depth texture values to generate a boolean result. See glTexParameter for details on texture
comparison.

cs
12.92

1.055
2.4

0.04045

cl =
cs + 0.055()

if cs

0.04045if cs >

<=

glTexImage2D1102

Notes

Texturing has no effect in color index mode.
If the ARB_imaging extension is supported, RGBA elements may also be processed by the

imaging pipeline. The following stages may be applied to an RGBA color before color component
clamping to the range [0,1]:

1. Color component replacement by the color table specified for GL_COLOR_TABLE, if
enabled. See glColorTable.

2. Two-dimensional Convolution filtering, if enabled.
See glConvolutionFilter1D.
If a convolution filter changes the width of the texture (by processing with a
GL_CONVOLUTION_BORDER_MODE of GL_REDUCE, for example), and the GL does not
support non-power-of-two textures, the width must 2n + 2(border), for some integer n,
and height must be 2m + 2(border), for some integer m, after filtering.

3. RGBA components may be multiplied by GL_POST_CONVOLUTION_c_SCALE, and added
to GL_POST_CONVOLUTION_c_BIAS, if enabled. See glPixelTransfer.

4. Color component replacement by the color table specified for
GL_POST_CONVOLUTION_COLOR_TABLE, if enabled. See glColorTable.

5. Transformation by the color matrix.
See glMatrixMode.

6. RGBA components may be multiplied by GL_POST_COLOR_MATRIX_c_SCALE, and added
to GL_POST_COLOR_MATRIX_c_BIAS, if enabled. See glPixelTransfer.

7. Color component replacement by the color table specified for
GL_POST_COLOR_MATRIX_COLOR_TABLE, if enabled. See glColorTable.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX cannot be used. glPixelStore and glPixelTransfer
modes affect texture images in exactly the way they affect glDrawPixels.

glTexImage2D and GL_PROXY_TEXTURE_2D are available only if the GL version is 1.1 or greater.
Internal formats other than 1, 2, 3, or 4 may be used only if the GL version is 1.1 or greater.
In GL version 1.1 or greater, data may be a null pointer. In this case, texture memory is allocated

to accommodate a texture of width width and height height. You can then download subtextures to
initialize this texture memory. The image is undefined if the user tries to apply an uninitialized
portion of the texture image to a primitive.

Formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.

When the ARB_multitexture extension is supported or the GL version is 1.3 or greater,
glTexImage2D specifies the two-dimensional texture for the current texture unit, specified with
glActiveTexture.

GL_TEXTURE_CUBEMAP and GL_PROXY_TEXTURE_CUBEMAP are available only if the GL version is
1.3 or greater.

GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, and
GL_DEPTH_COMPONENT32 are available only if the GL version is 1.4 or greater.

Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-
tion exports the GL_ARB_texture_non_power_of_two extension.

The GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8, GL_SLUMINANCE,
GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, and GL_SLUMINANCE8_ALPHA8 internal formats are only
available if the GL version is 2.1 or greater.

glTexImage2D 1103

C

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D, GL_PROXY_TEXTURE_2D,
GL_PROXY_TEXTURE_CUBE_MAP, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_ENUM is generated if target is one of the six cube map 2D image targets and the
width and height parameters are not equal.

GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalFormat is not 1, 2, 3, 4, or one of the accepted

resolution and format symbolic constants.
GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

or height cannot be represented as 2k + 2(border) for some integer value of k.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if target is not GL_TEXTURE_2D or
GL_PROXY_TEXTURE_2D and internalFormat is GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and internalFormat
is not GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or
GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if internalFormat is GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32, and format is not
GL_DEPTH_COMPONENT.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexImage2D is executed between the execution of
glBegin and the corresponding execution of glEnd.

glTexImage2D1104

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D or GL_TEXTURE_CUBE_MAP
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glColorTable, glConvolutionFilter2D, glCopyPixels,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glDrawPixels, glMatrixMode, glPixelStore, glPixelTransfer,
glSeparableFilter2D, glTexEnv, glTexGen, glTexImage1D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

glTexImage3D

Specify a three-dimensional texture image

C Specification

void glTexImage3D(GLenum target,
GLint level,
GLint internalFormat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D or
GL_PROXY_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the
nth mipmap reduction image.

internalFormat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4,
or one of the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8,
GL_ALPHA12, GL_ALPHA16, GL_COMPRESSED_ALPHA, GL_COMPRESSED_
LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_
INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SLUMINANCE, GL_SLUMINANCE8,
GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8,
GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

width Specifies the width of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2n + 2(border) for some integer n. All implementations support texture images
that are at least 64 texels wide.

glTexImage3D 1105

C

height Specifies the height of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2m + 2(border) for some integer m. All implementations support texture images
that are at least 64 texels high.

depth Specifies the depth of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2k + 2k(border) for some integer k. All implementations support texture images
that are at least 64 texels deep.

border Specifies the width of the border. Must be either 0 or 1.
format Specifies the format of the pixel data. The following symbolic values are

accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are
accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable three-dimensional texturing, call glEnable and
glDisable with argument GL_TEXTURE_3D.

To define texture images, call glTexImage3D. The arguments describe the parameters of the
texture image, such as height, width, depth, width of the border, level-of-detail number (see
glTexParameter), and number of color components provided. The last three arguments describe
how the image is represented in memory; they are identical to the pixel formats used for
glDrawPixels.

If target is GL_PROXY_TEXTURE_3D, no data is read from data, but all of the texture image state
is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to
0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

If target is GL_TEXTURE_3D, data is read from data as a sequence of signed or unsigned bytes,
shorts, or longs, or single-precision floating-point values, depending on type. These values are
grouped into sets of one, two, three, or four values, depending on format, to form elements. If type
is GL_BITMAP, the data is considered as a string of unsigned bytes (and format must be
GL_COLOR_INDEX). Each data byte is treated as eight 1-bit elements, with bit ordering determined by
GL_UNPACK_LSB_FIRST (see glPixelStore).

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

The first element corresponds to the lower-left corner of the texture image. Subsequent elements
progress left-to-right through the remaining texels in the lowest row of the texture image, and then in
successively higher rows of the texture image. The final element corresponds to the upper-right
corner of the texture image.

format determines the composition of each element in data. It can assume one of these
symbolic values:

glTexImage3D1106

GL_COLOR_INDEX
Each element is a single value, a color index. The GL converts it to fixed point (with an unspeci-

fied number of zero bits to the right of the binary point), shifted left or right depending on the value
and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer). The result-
ing index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped
to the range [0,1].
GL_RED

Each element is a single red component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_GREEN

Each element is a single green component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red and blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_BLUE

Each element is a single blue component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red and green, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see glPixelTransfer).
GL_ALPHA

Each element is a single alpha component. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for red, green, and blue. Each component is then multiplied by
the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).
GL_INTENSITY

Each element is a single intensity value. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the intensity value three times for red, green, blue, and alpha.
Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_RGB
GL_BGR

Each element is an RGB triple. The GL converts it to floating point and assembles it into an RGBA
element by attaching 1 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).
GL_RGBA
GL_BGRA

Each element contains all four components. Each component is multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).
GL_LUMINANCE

Each element is a single luminance value. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue and
attaching 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue. Each

glTexImage3D 1107

C

component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values for the type
parameter.

If an application wants to store the texture at a certain resolution or in a certain format, it can
request the resolution and format with internalFormat. The GL will choose an internal representa-
tion that closely approximates that requested by internalFormat, but it may not match exactly.
(The representations specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA
must match exactly. The numeric values 1, 2, 3, and 4 may also be used to specify the above
representations.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA, the GL will
replace the internal format with the symbolic constant for a specific internal format and compress the
texture before storage. If no corresponding internal format is available, or the GL can not compress
that image for any reason, the internal format is instead replaced with a corresponding base internal
format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8,
GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, or GL_SLUMINANCE8_ALPHA8, the
texture is treated as if the red, green, blue, or luminance components are encoded in the sRGB color
space. Any alpha component is left unchanged. The conversion from the sRGB encoded component cs
to a linear component cl is:

Assume cs is the sRGB component in the range [0,1].
Use the GL_PROXY_TEXTURE_3D target to try out a resolution and format. The implementation

will update and recompute its best match for the requested storage resolution and format. To then
query this state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture
state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from
data. A two-component image uses the R and A values. A three-component image uses the R, G, and
B values. A four-component image uses all of the RGBA components.

Notes

Texturing has no effect in color index mode.
The texture image can be represented by the same data formats as the pixels in a glDrawPixels

command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

glTexImage3D is available only if the GL version is 1.2 or greater.
Internal formats other than 1, 2, 3, or 4 may be used only if the GL version is 1.1 or greater.
data may be a null pointer. In this case texture memory is allocated to accommodate a texture of

width width, height height, and depth depth. You can then download subtextures to initialize this
texture memory. The image is undefined if the user tries to apply an uninitialized portion of the
texture image to a primitive.

Formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

cs
12.92

1.055
2.4

0.04045

cl =
cs + 0.055()

if cs

0.04045if cs >

<=

glTexImage3D1108

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glTexImage3D specifies the three-dimensional texture for the current texture unit, specified with
glActiveTexture.

If the ARB_imaging extension is supported, RGBA elements may also be processed by the
imaging pipeline. The following stages may be applied to an RGBA color before color component
clamping to the range [0,1]:

1. Color component replacement by the color table specified for GL_COLOR_TABLE, if
enabled. See glColorTable.

2. Color component replacement by the color table specified for
GL_POST_CONVOLUTION_COLOR_TABLE, if enabled. See glColorTable.

3. Transformation by the color matrix. See glMatrixMode.
4. RGBA components may be multiplied by GL_POST_COLOR_MATRIX_c_SCALE, and added

to GL_POST_COLOR_MATRIX_c_BIAS, if enabled. See glPixelTransfer.
5. Color component replacement by the color table specified for
GL_POST_COLOR_MATRIX_COLOR_TABLE, if enabled. See glColorTable.

Non-power-of-two textures are supported if the GL version is 2.0 or greater, or if the implementa-
tion exports the GL_ARB_texture_non_power_of_two extension.

The GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, GL_SRGB8_ALPHA8, GL_SLUMINANCE, GL_SLUMI-
NANCE8, GL_SLUMINANCE_ALPHA, and GL_SLUMINANCE8_ALPHA8 internal formats are only available
if the GL version is 2.1 or greater.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D or GL_PROXY_TEXTURE_3D.
GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants

other than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalFormat is not 1, 2, 3, 4, or one of the accepted

resolution and format symbolic constants.
GL_INVALID_VALUE is generated if width, height, or depth is less than 0 or greater than

2 + GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width,

height, or depth cannot be represented as 2k + 2(border) for some integer value of k.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if format or internalFormat is GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

glTexImage3D 1109

C

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexImage3D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_3D
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glColorTable, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glCompressedTexSubImage3D, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glGetCompressedTexImage, glMatrixMode, glPixelStore, glPixelTransfer, glTexEnv,
glTexGen, glTexImage1D, glTexImage2D, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D, glTexParameter

glTexParameter

Set texture parameters

C Specification

void glTexParameterf(GLenum target,
GLenum pname,
GLfloat param);

void glTexParameteri(GLenum target,
GLenum pname,
GLint param);

Parameters

target Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP.

pname Specifies the symbolic name of a single-valued texture parameter. pname can be one of the
following: GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T,
GL_TEXTURE_WRAP_R, GL_TEXTURE_PRIORITY, GL_TEXTURE_COMPARE_MODE,
GL_TEXTURE_COMPARE_FUNC, GL_DEPTH_TEXTURE_MODE, or GL_GENERATE_MIPMAP.

param Specifies the value of pname.

C Specification

void glTexParameterfv(GLenum target,
GLenum pname,
const GLfloat * params);

void glTexParameteriv(GLenum target,
GLenum pname,
const GLint * params);

glTexParameter1110

Parameters

target Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D or
GL_TEXTURE_3D.

pname Specifies the symbolic name of a texture parameter. pname can be one of the following:
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_LOD,
GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_LEVEL,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R,
GL_TEXTURE_BORDER_COLOR, GL_TEXTURE_PRIORITY, GL_TEXTURE_COMPARE_MODE,
GL_TEXTURE_COMPARE_FUNC, GL_DEPTH_TEXTURE_MODE, or GL_GENERATE_MIPMAP.

params Specifies a pointer to an array where the value or values of pname are stored.

Description

Texture mapping is a technique that applies an image onto an object’s surface as if the image were
a decal or cellophane shrink-wrap. The image is created in texture space, with an (s, t) coordinate
system. A texture is a one- or two-dimensional image and a set of parameters that determine how
samples are derived from the image.

glTexParameter assigns the value or values in params to the texture parameter specified as
pname. target defines the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D. The following symbols are accepted in pname:
GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured maps to an area greater
than one texture element. There are six defined minifying functions. Two of them use the nearest one
or nearest four texture elements to compute the texture value. The other four use mipmaps.

A mipmap is an ordered set of arrays representing the same image at progressively lower resolu-
tions. If the texture has dimensions 2n × 2m, there are max(n,m) + 1 mipmaps. The first mipmap is the
original texture, with dimensions 2n × 2m. Each subsequent mipmap has dimensions 2k–1 × 2l–1, where
2k × 2l are the dimensions of the previous mipmap, until either k = 0 or l = 0. At that point, subsequent
mipmaps have dimension 1 × 2l–1 or 2k–1 × 1 until the final mipmap, which has dimension 1 × 1.
To define the mipmaps, call glTexImage1D, glTexImage2D, glTexImage3D, glCopyTexImage1D, or
glCopyTexImage2D with the level argument indicating the order of the mipmaps. Level 0 is the
original texture; level max(n,m) is the final 1 × 1 mipmap.

params supplies a function for minifying the texture as one of the following:
GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to the center of
the pixel being textured.
GL_LINEAR

Returns the weighted average of the four texture elements that are closest to the center of the
pixel being textured. These can include border texture elements, depending on the values of
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.
GL_NEAREST_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the pixel being textured and uses the
GL_NEAREST criterion (the texture element nearest to the center of the pixel) to produce a texture
value.
GL_LINEAR_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the pixel being textured and uses the
GL_LINEAR criterion (a weighted average of the four texture elements that are closest to the center of
the pixel) to produce a texture value.
GL_NEAREST_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of the pixel being textured and uses
the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to produce a texture
value from each mipmap. The final texture value is a weighted average of those two values.

glTexParameter 1111

C

GL_LINEAR_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being textured and uses

the GL_LINEAR criterion (a weighted average of the four texture elements that are closest to the
center of the pixel) to produce a texture value from each mipmap. The final texture value is a
weighted average of those two values.

As more texture elements are sampled in the minification process, fewer aliasing artifacts will be
apparent. While the GL_NEAREST and GL_LINEAR minification functions can be faster than the other
four, they sample only one or four texture elements to determine the texture value of the pixel being
rendered and can produce moire patterns or ragged transitions. The initial value of
GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.
GL_TEXTURE_MAG_FILTER

The texture magnification function is used when the pixel being textured maps to an area less
than or equal to one texture element. It sets the texture magnification function to either GL_NEAREST
or GL_LINEAR (see below). GL_NEAREST is generally faster than GL_LINEAR, but it can produce
textured images with sharper edges because the transition between texture elements is not as smooth.
The initial value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.
GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to the center of
the pixel being textured.
GL_LINEAR

Returns the weighted average of the four texture elements that are closest to the center of the
pixel being textured. These can include border texture elements, depending on the values of
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.
GL_TEXTURE_MIN_LOD

Sets the minimum level-of-detail parameter. This floating-point value limits the selection of
highest resolution mipmap (lowest mipmap level). The initial value is -1000.
GL_TEXTURE_MAX_LOD

Sets the maximum level-of-detail parameter. This floating-point value limits the selection of the
lowest resolution mipmap (highest mipmap level). The initial value is 1000.
GL_TEXTURE_BASE_LEVEL

Specifies the index of the lowest defined mipmap level. This is an integer value. The initial value
is 0.
GL_TEXTURE_MAX_LEVEL

Sets the index of the highest defined mipmap level. This is an integer value. The initial value is
1000.
GL_TEXTURE_WRAP_S

Sets the wrap parameter for texture coordinate s to either GL_CLAMP, GL_CLAMP_TO_BORDER,
GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, or GL_REPEAT. GL_CLAMP causes s coordinates to be
clamped to the range [0,1] and is useful for preventing wrapping artifacts when mapping a single
image onto an object. GL_CLAMP_TO_BORDER causes the s coordinate to be clamped to the range

, where N is the size of the texture in the direction of clamping.GL_CLAMP_TO_EDGE
causes s coordinates to be clamped to the range

, where N is the size of the texture in the direction of clamping.
GL_REPEAT causes the integer part of the s coordinate to be ignored; the GL uses only the frac-

tional part, thereby creating a repeating pattern. GL_MIRRORED_REPEAT causes the s coordinate to be
set to the fractional part of the texture coordinate if the integer part of s is even; if the integer part of
s is odd, then the s texture coordinate is set to 1 – frac (s), where frac (s) represents the fractional part
of s. Border texture elements are accessed only if wrapping is set to GL_CLAMP or
GL_CLAMP_TO_BORDER. Initially, GL_TEXTURE_WRAP_S is set to GL_REPEAT.

1–
2

N, 1
1
2

N

-1 +
2

N, 1
1
2

N

glTexParameter1112

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordinate t to either GL_CLAMP, GL_CLAMP_TO_BORDER,

GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, or GL_REPEAT. See the discussion under
GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to GL_REPEAT.
GL_TEXTURE_WRAP_R

Sets the wrap parameter for texture coordinate r to either GL_CLAMP, GL_CLAMP_TO_BORDER,
GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, or GL_REPEAT. See the discussion under
GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_R is set to GL_REPEAT.
GL_TEXTURE_BORDER_COLOR

Sets a border color. params contains four values that comprise the RGBA color of the texture
border. Integer color components are interpreted linearly such that the most positive integer maps to
1.0, and the most negative integer maps to -1.0. The values are clamped to the range [0,1] when they
are specified. Initially, the border color is (0, 0, 0, 0).
GL_TEXTURE_PRIORITY

Specifies the texture residence priority of the currently bound texture. Permissible values are in
the range [0,1]. See glPrioritizeTextures and glBindTexture for more information.
GL_TEXTURE_COMPARE_MODE

Specifies the texture comparison mode for currently bound depth textures. That is, a texture
whose internal format is GL_DEPTH_COMPONENT_*; see glTexImage2D) Permissible values are:
GL_COMPARE_R_TO_TEXTURE

Specifies that the interpolated and clamped r texture coordinate should be compared to the value
in the currently bound depth texture. See the discussion of GL_TEXTURE_COMPARE_FUNC for details
of how the comparison is evaluated. The result of the comparison is assigned to luminance, intensity,
or alpha (as specified by GL_DEPTH_TEXTURE_MODE).
GL_NONE

Specifies that the luminance, intensity, or alpha (as specified by GL_DEPTH_TEXTURE_MODE)
should be assigned the appropriate value from the currently bound depth texture.
GL_TEXTURE_COMPARE_FUNC

Specifies the comparison operator used when GL_TEXTURE_COMPARE_MODE is set to
GL_COMPARE_R_TO_TEXTURE. Permissible values are:

Texture Comparison Function Computed result

GL_LEQUAL

GL_GEQUAL

GL_LESS

GL_GREATER

GL_EQUAL

GL_NOTEQUAL

GL_ALWAYS result = 1.0

GL_NEVER result = 0.0

result =
1.0
0.0

r Dt

r = Dt

result =
1.0
0.0

r = Dt

r Dt

result =
1.0
0.0

r > Dt

r <= Dt

result =
1.0
0.0

r < Dt

r >= Dt

result =
1.0
0.0

r >= Dt

r < Dt

result =
1.0
0.0

r <= Dt

r > Dt

glTexParameter 1113

C

where r is the current interpolated texture coordinate, and Dt is the depth texture value sampled
from the currently bound depth texture. result is assigned to the either the luminance, intensity, or
alpha (as specified by GL_DEPTH_TEXTURE_MODE).
GL_DEPTH_TEXTURE_MODE

Specifies a single symbolic constant indicating how depth values should be treated during filter-
ing and texture application. Accepted values are GL_LUMINANCE, GL_INTENSITY, and GL_ALPHA. The
initial value is GL_LUMINANCE.
GL_GENERATE_MIPMAP

Specifies a boolean value that indicates if all levels of a mipmap array should be automatically
updated when any modification to the base level mipmap is done. The initial value is GL_FALSE.

Notes

GL_TEXTURE_3D, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD, GL_CLAMP_TO_EDGE,
GL_TEXTURE_BASE_LEVEL, and GL_TEXTURE_MAX_LEVEL are available only if the GL version is 1.2
or greater.

GL_CLAMP_TO_BORDER is available only if the GL version is 1.3 or greater.
GL_MIRRORED_REPEAT, GL_TEXTURE_COMPARE_MODE, GL_TEXTURE_COMPARE_FUNC,

GL_DEPTH_TEXTURE_MODE, and GL_GENERATE_MIPMAP are available only if the GL version is 1.4 or
greater.

GL_TEXTURE_COMPARE_FUNC allows the following additional comparison modes only if the GL
version is 1.5 or greater: GL_LESS, GL_GREATER, GL_EQUAL, GL_NOTEQUAL, GL_ALWAYS, and
GL_NEVER.

Suppose that a program has enabled texturing (by calling glEnable with argument
GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D) and has set GL_TEXTURE_MIN_FILTER to
one of the functions that requires a mipmap. If either the dimensions of the texture images currently
defined (with previous calls to glTexImage1D, glTexImage2D, glTexImage3D, glCopyTexImage1D,
or glCopyTexImage2D) do not follow the proper sequence for mipmaps (described above), or there
are fewer texture images defined than are needed, or the set of texture images have differing numbers
of texture components, then it is as if texture mapping were disabled.

Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D textures,
linear filtering accesses the two nearest texture elements.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glTexParameter specifies the texture parameters for the active texture unit, specified by calling
glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined values.
GL_INVALID_ENUM is generated if params should have a defined constant value (based on the

value of pname) and does not.
GL_INVALID_OPERATION is generated if glTexParameter is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter
glGetTexLevelParameter
See Also
glActiveTexture, glBindTexture, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,

glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels,
glPixelStore, glPixelTransfer, glPrioritizeTextures, glTexEnv, glTexGen,
glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D

glTexParameter1114

glTexSubImage1D

Specify a one-dimensional texture subimage

C Specification

void glTexSubImage1D(GLenum target,
GLint level,
GLint xoffset,
GLsizei width,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.
xoffset Specifies a texel offset in the x direction within the texture array.
width Specifies the width of the texture subimage.
format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA,
GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable or disable one-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_1D.

glTexSubImage1D redefines a contiguous subregion of an existing one-dimensional texture
image. The texels referenced by data replace the portion of the existing texture array with x indices
xoffset and xoffset + width – 1, inclusive. This region may not include any texels outside the
range of the texture array as it was originally specified. It is not an error to specify a subtexture with
width of 0, but such a specification has no effect.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes

glTexSubImage1D is available only if the GL version is 1.1 or greater.
Texturing has no effect in color index mode.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.
Formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

glTexSubImage1D 1115

C

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glTexSubImage1D specifies a one-dimensional subtexture for the current texture unit, specified with
glActiveTexture.

When the ARB_imaging extension is supported, the RGBA components specified in data may be
processed by the imaging pipeline. See glTexImage1D for specific details.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned

value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if xoffset<–b, or if (xoffset + width) > (w – b), where w is

the GL_TEXTURE_WIDTH, and b is the width of the GL_TEXTURE_BORDER of the texture image being
modified. Note that w includes twice the border width.

GL_INVALID_VALUE is generated if width is less than 0.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage1D operation.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexSubImage1D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glPixelStore,
glPixelTransfer, glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexImage3D,
glTexParameter, glTexSubImage2D, glTexSubImage3D

glTexSubImage1D1116

glTexSubImage2D

Specify a two-dimensional texture subimage

C Specification

void glTexSubImage2D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_
MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.
yoffset Specifies a texel offset in the y direction within the texture array.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.
format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA,
GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_2D.

glTexSubImage2D redefines a contiguous subregion of an existing two-dimensional texture
image. The texels referenced by data replace the portion of the existing texture array with x indices
xoffset and xoffset + width – 1, inclusive, and y indices yoffset and yoffset + height – 1,
inclusive. This region may not include any texels outside the range of the texture array as it was origi-
nally specified. It is not an error to specify a subtexture with zero width or height, but such a specifi-
cation has no effect.

glTexSubImage2D 1117

C

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes

glTexSubImage2D is available only if the GL version is 1.1 or greater.
Texturing has no effect in color index mode.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.
Formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.
For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glTexSubImage2D specifies a two-dimensional subtexture for the current texture unit, specified with
glActiveTexture.
When the ARB_imaging extension is supported, the RGBA components specified in data may be
processed by the imaging pipeline. See glTexImage1D for specific details.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.
GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned
value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if xoffset<–b, (xoffset + width) > (w – b), yoffset<–b, or
(yoffset + height) > (h – b), where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT,
and b is the border width of the texture image being modified. Note that w and h include twice the
border width.
GL_INVALID_VALUE is generated if width or height is less than 0.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTexImage2D operation.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.
GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

glTexSubImage2D1118

GL_INVALID_OPERATION is generated if glTexSubImage2D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glPixelStore,
glPixelTransfer, glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage3D, glTexParameter

glTexSubImage3D

Specify a three-dimensional texture subimage

C Specification

void glTexSubImage3D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.
xoffset Specifies a texel offset in the x direction within the texture array.
yoffset Specifies a texel offset in the y direction within the texture array.
zoffset Specifies a texel offset in the z direction within the texture array.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.
depth Specifies the depth of the texture subimage.
format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA,
GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

glTexSubImage3D 1119

C

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable three-dimensional texturing, call glEnable and
glDisable with argument GL_TEXTURE_3D.

glTexSubImage3D redefines a contiguous subregion of an existing three-dimensional texture
image. The texels referenced by data replace the portion of the existing texture array with x indices
xoffset and xoffset + width – 1, inclusive, y indices yoffset and yoffset + height – 1, inclu-
sive, and z indices zoffset and zoffset + depth – 1, inclusive. This region may not include any
texels outside the range of the texture array as it was originally specified. It is not an error to specify a
subtexture with zero width, height, or depth but such a specification has no effect.

If a nonzero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer
object’s data store.

Notes

glTexSubImage3D is available only if the GL version is 1.2 or greater.
Texturing has no effect in color index mode.
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.
Formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2 or greater.

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
glTexSubImage3D specifies a three-dimensional subtexture for the current texture unit, specified
with glActiveTexture.

When the ARB_imaging extension is supported, the RGBA components specified in data may be
processed by the imaging pipeline. See glTexImage3D for specific details.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D.
GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned

value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if xoffset<–b, (xoffset + width) > (w – b), yoffset<–b, or

(yoffset + height) > (h – b), or zoffset<–b, or (zoffset + depth) > (d – b), where w is the
GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH and b is the border
width of the texture image being modified. Note that w, h, and d include twice the border width.

GL_INVALID_VALUE is generated if width, height, or depth is less than 0.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage3D operation.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or

glTexSubImage3D1120

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a nonzero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexSubImage3D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_3D
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawPixels, glPixelStore,
glPixelTransfer, glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexParameter

glTranslate

Multiply the current matrix by a translation matrix

C Specification

void glTranslated(GLdouble x,
GLdouble y,
GLdouble z);

void glTranslatef(GLfloat x,
GLfloat y,
GLfloat z);

Parameters

x, y, z Specify the x, y, and z coordinates of a translation vector.

Description

glTranslate produces a translation by (x,y,z). The current matrix (see glMatrixMode) is multi-
plied by this translation matrix, with the product replacing the current matrix, as if glMultMatrix
were called with the following matrix for its argument:

glTranslate 1121

C

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after a call to
glTranslate are translated.

Use glPushMatrix and glPopMatrix to save and restore the untranslated coordinate system.

Errors

GL_INVALID_OPERATION is generated if glTranslate is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_MATRIX_MODE
glGet with argument GL_COLOR_MATRIX
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

See Also

glMatrixMode, glMultMatrix, glPushMatrix, glRotate, glScale

glUniform

Specify the value of a uniform variable for the current program object

C Specification

void glUniform1f(GLint location, GLfloat v0);
void glUniform2f(GLint location,

GLfloat v0,
GLfloat v1);

void glUniform3f(GLint location,
GLfloat v0,
GLfloat v1,
GLfloat v2);

void glUniform4f(GLint location,
GLfloat v0,
GLfloat v1,
GLfloat v2,
GLfloat v3);

void glUniform1i(GLint location, GLint v0);
void glUniform2i(GLint location,

GLint v0,
GLint v1);

void glUniform3i(GLint location,
GLint v0,
GLint v1,
GLint v2);

void glUniform4i(GLint location,
GLint v0,
GLint v1,
GLintv2,
GLint v3);

Parameters

location Specifies the location of the uniform variable to be modified.
v0, v1, v2, v3 Specifies the new values to be used for the specified uniform variable.

glUniform1122

C Specification

void glUniform1fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform2fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform3fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform4fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform1iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform2iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform3iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform4iv(GLint location,
GLsizei count,
const GLint * value);

Parameters

location Specifies the location of the uniform value to be modified.
count Specifies the number of elements that are to be modified. This should be 1 if the

targeted uniform variable is not an array, and 1 or more if it is an array.
value Specifies a pointer to an array of count values that will be used to update the specified

uniform variable.

C Specification

void glUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix2x3fv(GLint ocation,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

glUniform 1123

C

void glUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

Parameters

location Specifies the location of the uniform value to be modified.
count Specifies the number of matrices that are to be modified. This should be 1 if the

targeted uniform variable is not an array of matrices, and 1 or more if it is an array of
matrices.

transpose Specifies whether to transpose the matrix as the values are loaded into the uniform
variable.

value Specifies a pointer to an array of count values that will be used to update the specified
uniform variable.

Description

glUniform modifies the value of a uniform variable or a uniform variable array. The location of
the uniform variable to be modified is specified by location, which should be a value returned by
glGetUniformLocation. glUniform operates on the program object that was made part of current
state by calling glUseProgram.

The commands glUniform{1|2|3|4}{f|i} are used to change the value of the uniform vari-
able specified by location using the values passed as arguments. The number specified in the
command should match the number of components in the data type of the specified uniform vari-
able (e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2, etc.). The suffix f indicates that floating-point
values are being passed; the suffix i indicates that integer values are being passed, and this type
should also match the data type of the specified uniform variable. The i variants of this function
should be used to provide values for uniform variables defined as int, ivec2, ivec3, ivec4, or arrays of
these. The f variants should be used to provide values for uniform variables of type float, vec2, vec3,
vec4, or arrays of these. Either the i or the f variants may be used to provide values for uniform vari-
ables of type bool, bvec2, bvec3, bvec4, or arrays of these. The uniform variable will be set to false if
the input value is 0 or 0.0f, and it will be set to true otherwise.

All active uniform variables defined in a program object are initialized to 0 when the program
object is linked successfully. They retain the values assigned to them by a call to glUniform until
the next successful link operation occurs on the program object, when they are once again initialized
to 0.

glUniform1124

The commands glUniform{1|2|3|4}{f|i}v can be used to modify a single uniform variable or
a uniform variable array. These commands pass a count and a pointer to the values to be loaded into
a uniform variable or a uniform variable array. A count of 1 should be used if modifying the value of
a single uniform variable, and a count of 1 or greater can be used to modify an entire array or part of
an array. When loading n elements starting at an arbitrary position m in a uniform variable array,
elements m + n - 1 in the array will be replaced with the new values. If m + n - 1 is larger than the size
of the uniform variable array, values for all array elements beyond the end of the array will be
ignored. The number specified in the name of the command indicates the number of components for
each element in value, and it should match the number of components in the data type of the speci-
fied uniform variable (e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2, etc.). The data type specified
in the name of the command must match the data type for the specified uniform variable as
described previously for glUniform{1|2|3|4}{f|i}.

For uniform variable arrays, each element of the array is considered to be of the type indicated in
the name of the command (e.g., glUniform3f or glUniform3fv can be used to load a uniform vari-
able array of type vec3). The number of elements of the uniform variable array to be modified is spec-
ified by count.

The commands glUniformFloatMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv are used to
modify a matrix or an array of matrices. The numbers in the command name are interpreted as the
dimensionality of the matrix. The number 2 indicates a 2 × 2 matrix (i.e., 4 values), the number 3
indicates a 3 × 3 matrix (i.e., 9 values), and the number 4 indicates a 4 × 4 matrix (i.e., 16 values).
Non-square matrix dimensionality is explicit, with the first number representing the number of
columns and the second number representing the number of rows. For example, 2x4 indicates a 2 × 4
matrix with 2 columns and 4 rows (i.e., 8 values). If transpose is GL_FALSE, each matrix is assumed
to be supplied in column major order. If transpose is GL_TRUE, each matrix is assumed to be
supplied in row major order. The count argument indicates the number of matrices to be passed. A
count of 1 should be used if modifying the value of a single matrix, and a count greater than 1 can be
used to modify an array of matrices.

Notes

glUniform is available only if the GL version is 2.0 or greater.
glUniformMatrix{2x3|3x2|2x4|4x2|3x4|4x3}fv is available only if the GL version is 2.1 or

greater.
glUniform1i and glUniform1iv are the only two functions that may be used to load uniform

variables defined as sampler types. Loading samplers with any other function will result in a
GL_INVALID_OPERATION error.

If count is greater than 1 and the indicated uniform variable is not an array, a
GL_INVALID_OPERATION error is generated and the specified uniform variable will remain
unchanged.

Other than the preceding exceptions, if the type and size of the uniform variable as defined in
the shader do not match the type and size specified in the name of the command used to load its
value, a GL_INVALID_OPERATION error will be generated and the specified uniform variable will
remain unchanged.

If location is a value other than -1 and it does not represent a valid uniform variable location in
the current program object, an error will be generated, and no changes will be made to the uniform
variable storage of the current program object. If location is equal to -1, the data passed in will be
silently ignored and the specified uniform variable will not be changed.

Errors

GL_INVALID_OPERATION is generated if there is no current program object.
GL_INVALID_OPERATION is generated if the size of the uniform variable declared in the shader

does not match the size indicated by the glUniform command.

glUniform 1125

C

GL_INVALID_OPERATION is generated if one of the integer variants of this function is used to
load a uniform variable of type float, vec2, vec3, vec4, or an array of these, or if one of the floating-
point variants of this function is used to load a uniform variable of type int, ivec2, ivec3, or ivec4, or
an array of these.

GL_INVALID_OPERATION is generated if location is an invalid uniform location for the current
program object and location is not equal to -1.

GL_INVALID_VALUE is generated if count is less than 0.
GL_INVALID_OPERATION is generated if count is greater than 1 and the indicated uniform vari-

able is not an array variable.
GL_INVALID_OPERATION is generated if a sampler is loaded using a command other than

glUniform1i and glUniform1iv.
GL_INVALID_OPERATION is generated if glUniform is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveUniform with the handle of a program object and the index of an active uniform

variable
glGetUniform with the handle of a program object and the location of a uniform variable
glGetUniformLocation with the handle of a program object and the name of a uniform

variable

See Also

glLinkProgram, glUseProgram

glUseProgram

Installs a program object as part of current rendering state

C Specification

void glUseProgram(GLuint program);

Parameters

program Specifies the handle of the program object whose executables are to be used as part of
current rendering state.

Description

glUseProgram installs the program object specified by program as part of current rendering
state. One or more executables are created in a program object by successfully attaching shader
objects to it with glAttachShader, successfully compiling the shader objects with
glCompileShader, and successfully linking the program object with glLinkProgram.

A program object will contain an executable that will run on the vertex processor if it contains
one or more shader objects of type GL_VERTEX_SHADER that have been successfully compiled and
linked. Similarly, a program object will contain an executable that will run on the fragment processor
if it contains one or more shader objects of type GL_FRAGMENT_SHADER that have been successfully
compiled and linked.

Successfully installing an executable on a programmable processor will cause the corresponding
fixed functionality of OpenGL to be disabled. Specifically, if an executable is installed on the vertex
processor, the OpenGL fixed functionality will be disabled as follows.

• The modelview matrix is not applied to vertex coordinates.
• The projection matrix is not applied to vertex coordinates.
• The texture matrices are not applied to texture coordinates.
• Normals are not transformed to eye coordinates.

glUseProgram1126

• Normals are not rescaled or normalized.
• Normalization of GL_AUTO_NORMAL evaluated normals is not performed.
• Texture coordinates are not generated automatically.
• Per-vertex lighting is not performed.
• Color material computations are not performed.
• Color index lighting is not performed.
• This list also applies when setting the current raster position.

The executable that is installed on the vertex processor is expected to implement any or all of the
desired functionality from the preceding list. Similarly, if an executable is installed on the fragment
processor, the OpenGL fixed functionality will be disabled as follows.

• Texture environment and texture functions are not applied.
• Texture application is not applied.
• Color sum is not applied.
• Fog is not applied.

Again, the fragment shader that is installed is expected to implement any or all of the desired
functionality from the preceding list.

While a program object is in use, applications are free to modify attached shader objects, compile
attached shader objects, attach additional shader objects, and detach or delete shader objects. None of
these operations will affect the executables that are part of the current state. However, relinking the
program object that is currently in use will install the program object as part of the current rendering
state if the link operation was successful (see glLinkProgram). If the program object currently in use
is relinked unsuccessfully, its link status will be set to GL_FALSE, but the executables and associated
state will remain part of the current state until a subsequent call to glUseProgram removes it from
use. After it is removed from use, it cannot be made part of current state until it has been successfully
relinked.

If program contains shader objects of type GL_VERTEX_SHADER but it does not contain shader
objects of type GL_FRAGMENT_SHADER, an executable will be installed on the vertex processor, but
fixed functionality will be used for fragment processing. Similarly, if program contains shader objects
of type GL_FRAGMENT_SHADER but it does not contain shader objects of type GL_VERTEX_SHADER, an
executable will be installed on the fragment processor, but fixed functionality will be used for vertex
processing. If program is 0, the programmable processors will be disabled, and fixed functionality will
be used for both vertex and fragment processing.

Notes

glUseProgram is available only if the GL version is 2.0 or greater.
While a program object is in use, the state that controls the disabled fixed functionality may also

be updated using the normal OpenGL calls.
Like display lists and texture objects, the name space for program objects may be shared across a

set of contexts, as long as the server sides of the contexts share the same address space. If the name
space is shared across contexts, any attached objects and the data associated with those attached
objects are shared as well.

Applications are responsible for providing the synchronization across API calls when objects are
accessed from different execution threads.

Errors

GL_INVALID_VALUE is generated if program is neither 0 nor a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program could not be made part of current state.
GL_INVALID_OPERATION is generated if glUseProgram is executed between the execution of

glBegin and the corresponding execution of glEnd.

glUseProgram 1127

C

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with a valid program object and the index of an active attribute variable
glGetActiveUniform with a valid program object and the index of an active uniform variable
glGetAttachedShaders with a valid program object
glGetAttribLocation with a valid program object and the name of an attribute variable
glGetProgram with a valid program object and the parameter to be queried
glGetProgramInfoLog with a valid program object
glGetUniform with a valid program object and the location of a uniform variable
glGetUniformLocation with a valid program object and the name of a uniform variable
glIsProgram

See Also

gllAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram,
glDeleteProgram, glDetachShader, glLinkProgram, glUniform, glValidateProgram,
glVertexAttrib

glValidateProgram

Validates a program object

C Specification

void glValidateProgram(GLuint program);

Parameters

program Specifies the handle of the program object to be validated.

Description

glValidateProgram checks to see whether the executables contained in program can execute
given the current OpenGL state. The information generated by the validation process will be stored in
program’s information log. The validation information may consist of an empty string, or it may be a
string containing information about how the current program object interacts with the rest of current
OpenGL state. This provides a way for OpenGL implementers to convey more information about why
the current program is inefficient, suboptimal, failing to execute, and so on.

The status of the validation operation will be stored as part of the program object’s state. This
value will be set to GL_TRUE if the validation succeeded, and GL_FALSE otherwise. It can be queried
by calling glGetProgram with arguments program and GL_VALIDATE_STATUS. If validation is
successful, program is guaranteed to execute given the current state. Otherwise, program is guaran-
teed to not execute.

This function is typically useful only during application development. The informational string
stored in the information log is completely implementation dependent; therefore, an application
should not expect different OpenGL implementations to produce identical information strings.

Notes

glValidateProgram is available only if the GL version is 2.0 or greater.
This function mimics the validation operation that OpenGL implementations must perform when

rendering commands are issued while programmable shaders are part of current state. The error
GL_INVALID_OPERATION will be generated by glBegin, glRasterPos, or any command that
performs an implicit call to glBegin if:

• any two active samplers in the current program object are of different types, but refer to the
same texture image unit,

• any active sampler in the current program object refers to a texture image unit where fixed-
function fragment processing accesses a texture target that does not match the sampler type, or

glValidateProgram1128

• the sum of the number of active samplers in the program and the number of texture image
units enabled for fixed-function fragment processing exceeds the combined limit on the total
number of texture image units allowed.

It may be difficult or cause a performance degradation for applications to catch these errors when
rendering commands are issued. Therefore, applications are advised to make calls to
glValidateProgram to detect these issues during application development.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if glValidateProgram is executed between the execution

of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetProgram with arguments program and GL_VALIDATE_STATUS
glGetProgramInfoLog with argument program
glIsProgram

See Also

glLinkProgram, glUseProgram

glVertex

Specify a vertex

C Specification

void glVertex2s(GLshort x, GLshort y);
void glVertex2i(GLin t x, GLint y);
void glVertex2f(GLfloat x, GLfloat y);
void glVertex2d(GLdouble x, GLdouble y);
void glVertex3s(GLshort x,

GLshort y,
GLshort z);

void glVertex3i(GLint x, GLint y, GLint z);
void glVertex3f(GLfloat x,

GLfloat y,
GLfloat z);

void glVertex3d(GLdouble x,
GLdouble y,
GLdouble z);

void glVertex4s(GLshort x,
GLshort y,
GLshort z,
GLshort w);

void glVertex4i(GLint x,
GLint y,
GLint z,
GLint w);

void glVertex4f(GLfloat x,
GLfloat y,
GLfloat z,
GLfloat w);

glVertex 1129

C

void glVertex4d(GLdouble x,
GLdouble y,
GLdouble z,
GLdouble w);

Parameters

x, y, z, w Specify x, y, z, and w coordinates of a vertex. Not all parameters are present in all
forms of the command.

C Specification

void glVertex2sv(const GLshort * v);
void glVertex2iv(const GLint * v);
void glVertex2fv(const GLfloat * v);
void glVertex2dv(const GLdouble * v);
void glVertex3sv(const GLshort * v);
void glVertex3iv(const GLint * v);
void glVertex3fv(const GLfloat * v);
void glVertex3dv(const GLdouble * v);
void glVertex4sv(const GLshort * v);
void glVertex4iv(const GLint * v);
void glVertex4fv(const GLfloat * v);
void glVertex4dv(const GLdouble * v);

Parameters

v Specifies a pointer to an array of two, three, or four elements. The elements of a two-
element array are x and y; of a three-element array, x, y, and z; and of a four-element array,
x, y, z, and w.

Description

glVertex commands are used within glBegin/glEnd pairs to specify point, line, and polygon
vertices. The current color, normal, texture coordinates, and fog coordinate are associated with the
vertex when glVertex is called.

When only x and y are specified, z defaults to 0 and w defaults to 1. When x, y, and z are speci-
fied, w defaults to 1.

Notes

Invoking glVertex outside of a glBegin/glEnd pair results in undefined behavior.

See Also

glBegin, glCallList, glColor, glEdgeFlag, glEvalCoord, glFogCoord, glIndex,
glMaterial, glMultiTexCoord, glNormal, glRect, glTexCoord, glVertexPointer

glVertexAttrib

Specifies the value of a generic vertex attribute

C Specification

void glVertexAttrib1f(GLuint index,
GLfloat v0);

void glVertexAttrib1s(GLuint index,
GLshort v0);

void glVertexAttrib1d(GLuint index,
GLdouble v0);

glVertex1130

void glVertexAttrib2f (GLuint index,
GLfloat v0,
GLfloat v1);

void glVertexAttrib2s (GLuint index,
GLshort v0,
GLshort v1);

void glVertexAttrib2d (GLuint index,
GLdouble v0,
GLdouble v1);

void glVertexAttrib3f (GLuint index,
GLfloat v0,
GLfloat v1,
GLfloat v2);

void glVertexAttrib3s (GLuint index,
GLshort v0,
GLshort v1,
GLshort v2);

void glVertexAttrib3d (GLuint index,
GLdouble v0,
GLdouble v1,
GLdouble v2);

void glVertexAttrib4f (GLuint index,
GLfloat v0,
GLfloat v1,
GLfloat v2,
GLfloat v3);

void glVertexAttrib4s (GLuint index,
GLshort v0,
GLshort v1,
GLshort v2,
GLshort v3);

void glVertexAttrib4d (GLuint index,
GLdouble v0,
GLdouble v1,
GLdouble v2,
GLdouble v3);

void glVertexAttrib4Nub(GLuint index,
GLubyte v0,
GLubyte v1,
GLubyte v2,
GLubyte v3);

Parameters

index Specifies the index of the generic vertex attribute to be modified.
v0, v1, v2, v3 Specifies the new values to be used for the specified vertex attribute.

C Specification

void glVertexAttrib1fv(GLuint index,
const GLfloat * v);

void glVertexAttrib1sv(GLuint index,
const GLshort * v);

glVertexAttrib 1131

C

void glVertexAttrib1dv(GLuint index,
const GLdouble * v);

void glVertexAttrib2fv(GLuint index,
const GLfloat * v);

void glVertexAttrib2sv(GLuint ndex,
const GLshort * v);

void glVertexAttrib2dv(GLuint index,
const GLdouble * v);

void glVertexAttrib3fv(GLuint index,
const GLfloat * v);

void glVertexAttrib3sv(GLuint index,
const GLshort * v);

void glVertexAttrib3dv(GLuint index,
const GLdouble * v);

void glVertexAttrib4fv(GLuint index,
const GLfloat * v);

void glVertexAttrib4sv(GLuint index,
const GLshort * v);

void glVertexAttrib4dv(GLuint index,
const GLdouble * v);

void glVertexAttrib4iv(GLuint index,
const GLint * v);

void glVertexAttrib4bv(GLuint index,
const GLbyte * v);

void glVertexAttrib4ubv(GLuint index,
const GLubyte * v);

void glVertexAttrib4usv(GLuint index,
const GLushort * v);

void glVertexAttrib4uiv(GLuint index,
const GLuint * v);

void glVertexAttrib4Nbv(GLuint index,
const GLbyte * v);

void glVertexAttrib4Nsv(GLuint index,
const GLshort * v);

void glVertexAttrib4Niv(GLuint index,
const GLint * v);

void glVertexAttrib4Nubv(GLuint index,
const GLubyte ** v);

void glVertexAttrib4Nusv(GLuint index,
const GLushort * v);

void glVertexAttrib4Nuiv(GLuint index,
const GLuint * v);

Parameters

index Specifies the index of the generic vertex attribute to be modified.
v Specifies a pointer to an array of values to be used for the generic vertex attribute.

Description

OpenGL defines a number of standard vertex attributes that applications can modify with stan-
dard API entry points (color, normal, texture coordinates, etc.). The glVertexAttrib family of entry
points allows an application to pass generic vertex attributes in numbered locations.

glVertexAttrib1132

Generic attributes are defined as four-component values that are organized into an array. The first
entry of this array is numbered 0, and the size of the array is specified by the implementation-depen-
dent constant GL_MAX_VERTEX_ATTRIBS. Individual elements of this array can be modified with a
glVertexAttrib call that specifies the index of the element to be modified and a value for that
element.

These commands can be used to specify one, two, three, or all four components of the generic
vertex attribute specified by index. A 1 in the name of the command indicates that only one value is
passed, and it will be used to modify the first component of the generic vertex attribute. The second
and third components will be set to 0, and the fourth component will be set to 1. Similarly, a 2 in the
name of the command indicates that values are provided for the first two components, the third
component will be set to 0, and the fourth component will be set to 1. A 3 in the name of the
command indicates that values are provided for the first three components and the fourth com-
ponent will be set to 1, whereas a 4 in the name indicates that values are provided for all four
components.

The letters s, f, i, d, ub, us, and ui indicate whether the arguments are of type short, float, int,
double, unsigned byte, unsigned short, or unsigned int. When v is appended to the name, the
commands can take a pointer to an array of such values. The commands containing N indicate that
the arguments will be passed as fixed-point values that are scaled to a normalized range according to
the component conversion rules defined by the OpenGL specification. Signed values are understood
to represent fixed-point values in the range [-1,1], and unsigned values are understood to represent
fixed-point values in the range [0,1].

OpenGL Shading Language attribute variables are allowed to be of type mat2, mat3, or mat4.
Attributes of these types may be loaded using the glVertexAttrib entry points. Matrices must be
loaded into successive generic attribute slots in column major order, with one column of the matrix
in each generic attribute slot.

A user-defined attribute variable declared in a vertex shader can be bound to a generic attribute
index by calling glBindAttribLocation. This allows an application to use more descriptive variable
names in a vertex shader. A subsequent change to the specified generic vertex attribute will be imme-
diately reflected as a change to the corresponding attribute variable in the vertex shader.

The binding between a generic vertex attribute index and a user-defined attribute variable in a
vertex shader is part of the state of a program object, but the current value of the generic vertex
attribute is not. The value of each generic vertex attribute is part of current state, just like standard
vertex attributes, and it is maintained even if a different program object is used.

An application may freely modify generic vertex attributes that are not bound to a named vertex
shader attribute variable. These values are simply maintained as part of current state and will not be
accessed by the vertex shader. If a generic vertex attribute bound to an attribute variable in a vertex
shader is not updated while the vertex shader is executing, the vertex shader will repeatedly use the
current value for the generic vertex attribute.

The generic vertex attribute with index 0 is the same as the vertex position attribute previously
defined by OpenGL. A glVertex2, glVertex3, or glVertex4 command is completely equivalent to
the corresponding glVertexAttrib command with an index argument of 0. A vertex shader can
access generic vertex attribute 0 by using the built-in attribute variable gl_Vertex. There are no
current values for generic vertex attribute 0. This is the only generic vertex attribute with this prop-
erty; calls to set other standard vertex attributes can be freely mixed with calls to set any of the other
generic vertex attributes.

Notes

glVertexAttrib is available only if the GL version is 2.0 or greater.
Generic vertex attributes can be updated at any time. In particular, glVertexAttrib can be

called between a call to glBegin and the corresponding call to glEnd.
It is possible for an application to bind more than one attribute name to the same generic vertex

attribute index. This is referred to as aliasing, and it is allowed only if just one of the aliased attribute

glVertexAttrib 1133

C

variables is active in the vertex shader, or if no path through the vertex shader consumes more than
one of the attributes aliased to the same location. OpenGL implementations are not required to do
error checking to detect aliasing, they are allowed to assume that aliasing will not occur, and they are
allowed to employ optimizations that work only in the absence of aliasing.

There is no provision for binding standard vertex attributes; therefore, it is not possible to alias
generic attributes with standard attributes.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with argument program and the index of an active attribute variable
glGetAttribLocation with argument program and an attribute variable name
glGetVertexAttrib with arguments GL_CURRENT_VERTEX_ATTRIB and index

See Also

glBindAttribLocation, glVertex, glVertexAttribPointer

glVertexAttribPointer

Define an array of generic vertex attribute data

C Specification

void glVertexAttribPointer(GLuint index,
GLint size,
GLenum type,
GLboolean normalized,
GLsizei stride,
const GLvoid * pointer);

Parameters

index Specifies the index of the generic vertex attribute to be modified.
size Specifies the number of components per generic vertex attribute. Must be 1, 2, 3,

or 4. The initial value is 4.
type Specifies the data type of each component in the array. Symbolic constants

GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is
GL_FLOAT.

normalized Specifies whether fixed-point data values should be normalized (GL_TRUE) or
converted directly as fixed-point values (GL_FALSE) when they are accessed.

stride Specifies the byte offset between consecutive generic vertex attributes. If stride is
0, the generic vertex attributes are understood to be tightly packed in the array.
The initial value is 0.

pointer Specifies a pointer to the first component of the first generic vertex attribute in the
array. The initial value is 0.

Description

glVertexAttribPointer specifies the location and data format of the array of generic vertex
attributes at index index to use when rendering. size specifies the number of components per
attribute and must be 1, 2, 3, or 4. type specifies the data type of each component, and stride spec-
ifies the byte stride from one attribute to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays. If set to GL_TRUE, normalized indicates that values stored in

glVertexAttribPointer1134

an integer format are to be mapped to the range [-1,1] (for signed values) or [0,1] (for unsigned
values) when they are accessed and converted to floating point. Otherwise, values will be converted
to floats directly without normalization.

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a generic vertex attribute array is specified, pointer is treated as a byte offset into the buffer
object’s data store. Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as generic
vertex attribute array client-side state (GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING) for index
index.

When a generic vertex attribute array is specified, size, type, normalized, stride, and
pointer are saved as client-side state, in addition to the current vertex array buffer object binding.
To enable and disable a generic vertex attribute array, call glEnableVertexAttribArray and
glDisableVertexAttribArray with index. If enabled, the generic vertex attribute array is used
when glArrayElement, glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, or glDrawRangeElements is called.

Notes

glVertexAttribPointer is available only if the GL version is 2.0 or greater.
Each generic vertex attribute array is initially disabled and isn’t accessed when glArrayElement,

glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glVertexAttribPointer is not allowed between the execution of glBegin and
the corresponding execution of glEnd, but an error may or may not be generated. If no error is gener-
ated, the operation is undefined.

glVertexAttribPointer is typically implemented on the client side.
Generic vertex attribute array parameters are client-side state and are therefore not saved or

restored by glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib
instead.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_ENABLED
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_SIZE
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_TYPE
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_NORMALIZED
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_STRIDE
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetVertexAttribPointerv with arguments index and

GL_VERTEX_ATTRIB_ARRAY_POINTER

See Also

glArrayElement, glBindAttribLocation, glBindBuffer, glColorPointer,
glDisableVertexAttribArray, glDrawArrays, glDrawElements, glDrawRangeElements,
glEnableVertexAttribArray, glEdgeFlagPointer, glFogCoordPointer, glIndexPointer,
glInterleavedArrays, glMultiDrawArrays, glMultiDrawElements, glNormalPointer,
glPopClientAttrib, glPushClientAttrib, glSecondaryColorPointer, glTexCoordPointer,
glVertexAttrib, glVertexPointer

glVertexAttribPointer 1135

C

glVertexPointer

Define an array of vertex data

C Specification

void glVertexPointer(GLint size,
GLenum type,
GLsizei stride,
const GLvoid * pointer);

Parameters

size Specifies the number of coordinates per vertex. Must be 2, 3, or 4. The initial value is 4.
type Specifies the data type of each coordinate in the array. Symbolic constants GL_SHORT,

GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.
stride Specifies the byte offset between consecutive vertices. If stride is 0, the vertices are

understood to be tightly packed in the array. The initial value is 0.
pointer Specifies a pointer to the first coordinate of the first vertex in the array. The initial value

is 0.

Description

glVertexPointer specifies the location and data format of an array of vertex coordinates to use
when rendering. size specifies the number of coordinates per vertex, and must be 2, 3, or 4. type
specifies the data type of each coordinate, and stride specifies the byte stride from one vertex to the
next, allowing vertices and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations; see glInterleavedArrays.)

If a nonzero named buffer object is bound to the GL_ARRAY_BUFFER target (see glBindBuffer)
while a vertex array is specified, pointer is treated as a byte offset into the buffer object’s data store.
Also, the buffer object binding (GL_ARRAY_BUFFER_BINDING) is saved as vertex array client-side state
(GL_VERTEX_ARRAY_BUFFER_BINDING).

When a vertex array is specified, size, type, stride, and pointer are saved as client-side state,
in addition to the current vertex array buffer object binding.

To enable and disable the vertex array, call glEnableClientState and glDisableClientState
with the argument GL_VERTEX_ARRAY. If enabled, the vertex array is used when glArrayElement,
glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements, or
glDrawRangeElements is called.

Notes

glVertexPointer is available only if the GL version is 1.1 or greater.
The vertex array is initially disabled and isn’t accessed when glArrayElement,

glDrawElements, glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or
glMultiDrawElements is called.

Execution of glVertexPointer is not allowed between the execution of glBegin and the corre-
sponding execution of glEnd, but an error may or may not be generated. If no error is generated, the
operation is undefined.

glVertexPointer is typically implemented on the client side.
Vertex array parameters are client-side state and are therefore not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_VALUE is generated if size is not 2, 3, or 4.
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.

glVertexPointer1136

Associated Gets

glIsEnabled with argument GL_VERTEX_ARRAY
glGet with argument GL_VERTEX_ARRAY_SIZE
glGet with argument GL_VERTEX_ARRAY_TYPE
glGet with argument GL_VERTEX_ARRAY_STRIDE
glGet with argument GL_VERTEX_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetPointerv with argument GL_VERTEX_ARRAY_POINTER

See Also

glArrayElement, glBindBuffer, glColorPointer, glDisableClientState, glDrawArrays,
glDrawElements, glDrawRangeElements, glEdgeFlagPointer, glEnableClientState,
glFogCoordPointer, glIndexPointer, glInterleavedArrays, glMultiDrawArrays,
glMultiDrawElements, glNormalPointer, glPopClientAttrib, glPushClientAttrib,
glSecondaryColorPointer, glTexCoordPointer, glVertex, glVertexAttribPointer

glViewport

Set the viewport

C Specification

void glViewport(GLint x,
GLint y,
GLsizei width,
GLsizei height);

Parameters

x, y Specify the lower-left corner of the viewport rectangle, in pixels. The initial
value is (0,0).

width, height Specify the width and height of the viewport. When a GL context is first
attached to a window, width and height are set to the dimensions of that
window.

Description

glViewport specifies the affine transformation of x and y from normalized device coordinates to
window coordinates. Let (xnd,ynd) be normalized device coordinates. Then the window coordinates
(xw,yw) are computed as follows:

Viewport width and height are silently clamped to a range that depends on the implementation.
To query this range, call glGet with argument GL_MAX_VIEWPORT_DIMS.

Errors

GL_INVALID_VALUE is generated if either width or height is negative.
GL_INVALID_OPE RATION is generated if glViewport is executed between the execution of

glBegin and the corresponding execution of glEnd.

= + y(ynd + 1)yw
height

2()

= + x(xnd + 1)xw
width

2()

glViewport 1137

C

Associated Gets

glGet with argument GL_VIEWPORT
glGet with argument GL_MAX_VIEWPORT_DIMS

See Also

glDepthRange

glWindowPos

Specify the raster position in window coordinates for pixel operations

C Specification

void glWindowPos2s(GLshort x, GLshort y);
void glWindowPos2i(GLint x, GLint y);
void glWindowPos2f(GLfloat x, GLfloat y);
void glWindowPos2d(GLdouble x, GLdouble y);
void glWindowPos3s(GLshort x,

GLshort y,
GLshort z);

void glWindowPos3i(GLint x, GLint y, GLint z);
void glWindowPos3f(GLfloat x,

GLfloat y,
GLfloat z);

void glWindowPos3d(GLdouble x,
GLdouble y,
GLdouble z);

Parameters

x, y, z Specify the x, y, z coordinates for the raster position.

C Specification

void glWindowPos2sv(const GLshort * v);
void glWindowPos2iv(const GLint * v);
void glWindowPos2fv(const GLfloat * v);
void glWindowPos2dv(const GLdouble * v);
void glWindowPos3sv(const GLshort * v);
void glWindowPos3iv(const GLint * v);
void glWindowPos3fv(const GLfloat * v);
void glWindowPos3dv(const GLdouble * v);

Parameters

v Specifies a pointer to an array of two or three elements, specifying x, y, z coordinates,
respectively.

Description

The GL maintains a 3D position in window coordinates. This position, called the raster position,
is used to position pixel and bitmap write operations. It is maintained with subpixel accuracy. See
glBitmap, glDrawPixels, and glCopyPixels.

glWindowPos2 specifies the x and y coordinates, while z is implicitly set to 0. glWindowPos3
specifies all three coordinates. The w coordinate of the current raster position is always set to 1.0.

glWindowPos1138

glWindowPos directly updates the x and y coordinates of the current raster position with the
values specified. That is, the values are neither transformed by the current modelview and projection
matrices, nor by the viewport-to-window transform. The z coordinate of the current raster position is
updated in the following manner:

updated in the following manner:

where n is GL_DEPTH_RANGE’s near value, and f is GL_DEPTH_RANGE’s far value. See glDepthRange.
The specified coordinates are not clip-tested, causing the raster position to always be valid.

The current raster position also includes some associated color data and texture coordinates. If
lighting is enabled, then GL_CURRENT_RASTER_COLOR (in RGBA mode) or
GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by the lighting calcu-
lation (see glLight, glLightModel, and glShadeModel). If lighting is disabled, current color (in
RGBA mode, state variable GL_CURRENT_COLOR) or color index (in color index mode, state variable
GL_CURRENT_INDEX) is used to update the current raster color.
GL_CURRENT_RASTER_SECONDARY_COLOR (in RGBA mode) is likewise updated.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation functions
(see glTexGen). The GL_CURRENT_RASTER_DISTANCE is set to the GL_CURRENT_FOG_COORD.

Notes

glWindowPos is available only if the GL version is 1.4 or greater.
The raster position is modified by glRasterPos, glBitmap, and glWindowPos.
Calling glDrawElements, or glDrawRangeElements may leave the current color or index inde-

terminate. If glWindowPos is executed while the current color or index is indeterminate, the current
raster color or current raster index remains indeterminate.

There are distinct raster texture coordinates for each texture unit. Each texture unit’s current
raster texture coordinates are updated by glWindowPos.

Errors

GL_INVALID_OPERATION is generated if glWindowPos is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_CURRENT_RASTER_DISTANCE
glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_SECONDARY_COLOR
glGet with argument GL_CURRENT_RASTER_INDEX
glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

See Also

glBitmap, glCopyPixels, glDrawArrays, glDrawElements, glDrawRangeElements,
glDrawPixels, glMultiTexCoord, glRasterPos, glTexCoord, glTexGen, glVertex

z =
n
f
n + z (f – n)

if z <= 0
if z >= 1
normal otherwise

glWindowPos 1139

C

This page intentionally left blank

Index

Numbers
2D Cartesian coordinates, 24
2D graphics

2D Bézier curves, 391-396
bitmaps

BITMAPS sample program, 253-257
definition of, 252
drawing, 257
pixel packing, 257-258
raster position, 256

color matrix, 288-289
color tables

bias values, 291
color lookup, 289-290
proxies, 290-291
rendering, 291
replacing, 291-292
scaling factors, 291

convolutions
applying, 293
border modes, 296-297
combining with other imaging operations,

293-294
definition of, 292
kernels, 292
loading from color buffer, 295
one-dimensional filters, 296
separable filters, 296

histograms, 297-300
history of, 10
imaging pipeline, 288
IMAGING sample program

glColorTable function, 290
glConvolutionFilter2D function, 293
glMatrixMode function, 288
histograms, 298-300
RenderScene function, 284-287

imaging subset, 283-284
minmax operations, 301
OPERATIONS sample program

glPixelMap function, 282
glPixelTransferf function, 279
glPixelZoom function, 275-277
ProcessMenu function, 269, 274

RenderScene function, 270-275
SetupRC function, 269, 274
source code, 268-275

overview, 251
pixel mapping, 281-282
pixel packing, 257-258
pixel transfer, 277-281
pixel zoom, 275-277
pixmaps

copying pixels, 265
data types, 259-260
definition of, 252
drawing, 258
IMAGELOAD, 261-265
moving pixels, 265-266
packed pixel formats, 260
pixel formats, 259
reading pixels, 265
saving pixels, 266-268

primitives, 27
targa files

loading, 262-265
writing to, 266-268

textures, 311-316
3D Cartesian coordinates, 27
3D graphics. See also GLSL (OpenGL Shading

Language)
actors

actor frames, 161-163
definition of, 161

antialiasing, 18
applications

non–real-time 3D, 22
real-time 3D, 19-22
shaders, 22-23

Bézier curves
2D curves, 391-396
3D Bézier surfaces, 397-400
breakpoints, 390
continuity, 390-391
control points, 390
cubic curves, 390
degree of, 390
evaluating, 396-397
lighting and normal vectors, 400-401
order of, 390
overview, 388
parametric equation, 388-389
piecewise curves, 390
quadratic curves, 390

bitmaps, drawing, 796-797
blending, 18
buffers. See buffers

color. See color
coordinate systems

2D Cartesian coordinates, 24
3D Cartesian coordinates, 27
coordinate clipping, 25-26
overview, 24
vertices, 27
viewports, 26-27

display lists
batch processing, 423-424
converting to, 426-428
creating, 425
deleting, 425
executing, 425-426
immediate mode rendering, 423
limitations of, 426
naming, 425
overview, 422-423
preprocessed batches, 424-426

Euler angles, 163-164
feedback

feedback buffer, 471, 478-480
feedback data, 472
labeling objects for, 473-475
overview, 458, 471
passthrough markers, 473
SELECT sample program, 473-480

filtering, 16
fixed functionality rendering pipeline

antialiasing application, 521
clipping, 519-520
color sum, 520
fog application, 521
lighting, 518
overview, 515-516
texture application and environment, 520
texture coordinate generation and

transformation, 519
vertex transformation, 518

further reading, 773-774
general polygons, 108-109
history of, 10-14

CRTs (cathode ray tubes), 10
development of 3D graphic techniques,

11-13
foreshortening, 14
overview, 9-10
real-time graphics, 10-11

immediate mode, 23
lines, drawing

curves, approximating with straight lines,
88-89

glBegin function, 85

2D graphics1142

glEnd function, 85
line loops, 87-88
line strips, 87-89
line width, 89-91
LINES program example, 85-87
stippling, 91-93

matrices
column-major matrix ordering, 154-155
creating, 157-159
definition of, 134
identity matrices, 140-142
loading, 156-160
modelview matrices, 136
orthonormal vectors, 155

perspective
definition of, 14
foreshortening, 14
hidden surface removal, 14
overview, 11-13

points, drawing
glBegin function, 78
glEnd function, 78
glVertex function, 76-77
overview, 74
point parameters, 85, 1040-1041
point size, 81-85, 1042-1043
POINTS program example, 78-80
POINTSZ program example, 82-85

projections
orthographic projections, 29
overview, 28
perspective projections, 30

quad strips, 108
quadrics

cylinders, 382
disks, 384-385
drawing, 108, 381-384
modeling with, 385-388
overview, 378
quadric states, 379-381
SNOWMAN sample program, 385-388
spheres, 381-382

rendering
definition of, 14
full-screen rendering on Mac OS X,

706-711
immediate mode rendering, 423
with vertex arrays, 434-435

retained mode, 23
scalars, 135
scissor test, 119-121

selection
definition of, 457
hierarchical picking, 466-471
naming primitives, 458-460
overview, 458
picking, 457, 464-466
rendering modes, 460-461
selection buffer, 461-463

shaders. See shaders
shading, 15
shadows, 15-16
solid objects, drawing

backface culling, 104-106
colors, 101-102, 182-183
depth testing, 103
edge flags, 114-116
hidden surface removal, 102-103
polygon construction rules, 113-114
polygon modes, 107
shading, 183-186
stippling, 109-113
TRIANGLE program example, 98-101

surfaces. See surfaces
textures

anisotropic texture filtering, 344-346
beach ball texture fragment shader,

592-595
binding, 795-796
checkerboard texture fragment shader,

589-591
compressing, 347-349
coordinate generation parameters,

966-967
coordinates, 1084-1087, 1091-1093
data types, 306-307
dependent texture lookups, 572
environment parameters, 964-966,

1087-1091
filtering, 318-319
floating-point textures, 622-630
internal formats, 305
isotropic texture filtering, 345
loading, 304-307
loading compressed textures, 349-350
making active, 785
mipmapping, 325-330
multiple textures, managing, 331-338
multitexture, 362-369
one-dimensional texture images,

specifying, 1094-1099
overview, 16, 303-304
parameters, 318, 1110-1114
point sprites, 371-374

3D graphics 1143

priorities, 1046-1047
procedural texture mapping vertex shader,

588-589
PYRAMID sample program, 311-316
resident textures, 338, 787
returning compressed textures, 937-938
secondary specular color, 341-344
selecting active texture, 814
state, 304
subimages. See subimages
texels, 304-306
texture combiners, 369-371
texture coordinates, 308-310, 350-361,

1018-1020
texture environment mode, 316-318
texture matrix, 311
texture objects, 330-339
texture priorities, 339
three-dimensional texture images,

specifying, 1105-1110
toon-shading (cell-shading), 321-325
toy ball texture fragment shader, 595-599
two-dimensional texture images,

specifying, 1099-1104
updating, 307-308
wrap modes, 320-321

transformations. See transformations
transparency, 18
triangles, drawing

overview, 94
simple example, 94-95
triangle fans, 97-98
triangle strips, 96-97
windings, 95-96, 201

vectors, 134
vertex arrays

enabling, 432-433
indexed vertex arrays, 435-449
loading geometry, 432
overview, 428-429
pointer functions, 433-434
rendering with, 434-435
sizes and data types, 434
STARRYNIGHT sample program, 429-431
texture, 434

viewing volume, 74-76
4-bit color mode, 179
8-bit color mode, 179
16-bit color mode, 180
24-bit color mode, 180
32-bit color mode, 180
8514 graphics cards, 178

A
accumulation buffers, 244-248, 784-785
active texture, selecting, 814
actors

actor frames, 161-163
definition of, 161

AddTriangle method, 445
AGL

full-screen rendering support, 708-711
overview, 686
pixel formats, 692-693
rendering context, 694-695

AGL_ACCUM_ALPHA_SIZE constant, 693
AGL_ACCUM_BLUE_SIZE constant, 693
AGL_ACCUM_GREEN_SIZE constant, 693
AGL_ACCUM_RED_SIZE constant, 693
AGL_ALL_RENDERERS constant, 692
AGL_ALPHA_SIZE constant, 693
AGL_AUX_BUFFERS constant, 693
AGL_AUX_DEPTH_STENCIL constant, 693
AGL_BLUE_SIZE constant, 693
AGL_BUFFER_SIZE constant, 692
AGL_COLOR_FLOAT constant, 693
AGL_DEPTH_SIZE constant, 693
AGL_DOUBLEBUFFER constant, 692
AGL_FULLSCREEN constant, 693
AGL_GREEN_SIZE constant, 693
AGL_LEVEL constant, 692
AGL_MAXIMUM_POLICY constant, 693
AGL_MINIMUM_POLICY constant, 693
AGL_MULTISAMPLE constant, 693
AGL_NONE constant, 692
AGL_OFFSCREEN constant, 693
AGL_PIXEL_SIZE constant, 693
AGL_RED_SIZE constant, 693
AGL_RGBA constant, 692
AGL_SAMPLES_ARB constant, 693
AGL_SAMPLE_ALPHA constant, 693
AGL_SAMPLE_BUFFERS_ARB constant, 693
AGL_STENCIL_SIZE constant, 693
AGL_STEREO constant, 693
AGL_SUPERSAMPLE constant, 693
aglChoosePixelFormat function, 692, 710
aglCreateContext function, 694
aglDestroyPixelFormat function, 694
aglEnable function, 710
AGLPixelFormat data type, 692
aglSetCurrentContext function, 694
aglSetDrawable function, 694
aglSetFullScreen function, 710
aglSwapBuffers function, 696

3D graphics1144

aglUpdateContext function, 696
aglUseFont function, 697-698
aliasing, 18
allocating texture objects, 330
alpha testing, 249, 506, 786
ambient light

AMBIENT program, 195-196
calculating light effects, 190-191
Cosmic Background Radiation (global

ambient light), 192-193
material properties, 193-196
overview, 187-188
shadows, 500-501

AMBIENT program, 195-196
AMD/ATI’s developer home page, 774
animation

bouncing square example, 62-64
double buffering, 64-65
frames, 423
keyboard polling, 171
overview, 61

ANISOTROPIC program, 346
anisotropic texture filtering, 344-346
antialiasing, 18, 85, 234-238, 521
API wars, 36
ApplyActorTransform function, 169
ApplyCameraTransform function, 164
applying convolution filters, 293
approximation, 217
ARB (Architecture Review Board), 35
ARB_prefix, 71
arrays

of colors, defining, 819-820
of generic vertex attribute data, 1134-1135
indexing, 538
interleaved arrays, enabling, 984-985
of normals, defining, 1025-1026
overview, 534-535
of secondary colors, defining, 1069-1070
of texture coordinates, 1085-1087
vertex arrays

enabling, 432-433
indexed vertex arrays, 435-449
loading geometry, 432
overview, 428-429
pointer functions, 433-434
rendering with, 434-435
sizes and data types, 434
STARRYNIGHT sample program, 429-431
texture, 434

of vertex data, 1136-1137

ATI_prefix, 71
ATOM program, 143-146
attaching

images to FBOs (framebuffer objects),
610-611

program objects to shaders, 530
shaders, 788-789, 929-930

attribute qualifier, 535
averaging normal vectors, 211-213
axes (2D Cartesian coordinate systems), 24

B
B-splines, 402
backface culling, 104-106
batch processing

flushing buffer, 423-424
preprocessed batches, 424-426

beach ball texture fragment shader, 592-595
BeginPaint function, 665
BEZ3D program, 397-399
Bézier curves

2D curves, 391-396
3D Bézier surfaces, 397-400
breakpoints, 390
continuity, 390-391
control points, 390
cubic curves, 390
degree of, 390
evaluating, 396-397
lighting and normal vectors, 400-401
order of, 390
overview, 388
parametric equation, 388-389
piecewise curves, 390
quadratic curves, 390

BEZIER program, 391-393
BEZLIT program, 401
bi-cubic splines, 402
bias values, applying with color tables, 291
binding

texture objects, 330, 795-796
vertex buffer objects, 450, 793-795

bitmaps
bitmap fonts (Carbon)

CARBONGLFONTS sample program, 698
setting up fonts, 697-698

BITMAPS sample program, 253-255
glBitmap function, 257
glRasterPos2i function, 256
glWindowPos2i function, 256
RenderScene function, 255

bitmaps 1145

definition of, 252
drawing, 257, 796-797
pixel packing, 257-258
raster position, 256

BITMAPS program, 253-255
glBitmap function, 257
glRasterPos2i function, 256
glWindowPos2i function, 256
RenderScene function, 255

bitwise color logical operations, 248
blending

color, 229
antialiasing, 234-238
blend color, 798
blending equation, 230, 234, 798-799
destination color, 230
enabling blending, 230
glBlendColor function, 234
glBlendEquation function, 234
glBlendFunc function, 230-232
glBlendFuncSeparate function, 234
multisampling, 238-240
pixel arithmetic, 801, 803-806
REFLECTION sample program, 232-233
source color, 230

overview, 18
vertex blending, 563-566

bloom effect
bright pass, 633-634
drawing scene, 630-633
framebuffer, 636-638
Gaussian blur, 634-636
overview, 630
PBOs (pixel buffer objects), 638

blurring images, 575-576
blur fragment shader, 575-576
Gaussian blur, 634-636

bodies of programs, 50
books

3D graphics books, 773-774
OpenGL books, 773

bool data type, 533
border modes (convolutions), 296-297
bouncing square program, 62-64
bounding boxes

bounding volumes, 485
creating, 485-486
rendering, 487-490

bounding volumes, 485
breakpoints (Bézier curves), 390
buffer swaps, 423, 705-706

buffers
accumulation buffers, 244-248, 784-785

clearing, 811-812
binding, 793-795
bloom effect

bright pass, 633-634
drawing scene, 630-633
framebuffer, 636-638
Gaussian blur, 634-636
overview, 630
PBOs (pixel buffer objects), 638

buffer swaps, 423, 705-706
buffer targets, 117-119
clearing, 810-811
color buffer, 117

clearing, 52-53, 812
loading convolution kernels from, 295
loading textures from, 307
specifying, 868-870, 1057

color index buffers
clearing, 813
controlling writing to, 981-982

data store
creating and initializing, 806-807
mapping, 1009-1010
returning pointers to, 932-933
returning subset of, 933
updating subset of, 807-808

depth buffer, 119, 497-498
clearing, 812-813
enabling/disabling, 865

double-buffered rendering, 64-65, 117
EGL, 764-765
FBOs (framebuffer objects)

attaching images, 610-611
creating, 609-610
destroying, 609-610
draw buffers, 611
environment map generation sample

program, 615-618
framebuffer completeness, 612-613
mipmap generation, 613
multiple target rendering, 619-621
offscreen rendering, 613-615
overview, 608-609
shadow mapping sample program,

613-615
feedback buffer

glFeedbackBuffer function, 471
loading and parsing, 478-480
placing markers in, 1028
types, 471

bitmaps1146

floating-point textures
High Dynamic Range (HDR), 622-623
OpenEXR file format, 623-626
overview, 622
tone mapping, 626-630

flushing, 423-424
frame buffer, 53

color components, enabling/disabling,
817-818

copying pixels in, 848-850
reading pixels from, 1057-1060
writing block of pixels to, 871-876

multisampled buffers, 652
named buffer objects

deleting, 861
generating names, 900
querying names, 985

OpenGL ES 2.0, 749-750
overview, 117, 601
parameters, returning, 931-932
PBOs (pixel buffer objects)

benefits of, 603-604
functions, 602-603, 608
motion blur sample program, 604-608
overview, 601-602

selection buffer, 461-463, 1070-1071
single-buffered rendering, 117-119
stencil buffer, 121-126

clearing, 813
vertex buffer objects

binding, 450
creating, 450
initializing arrays, 452-453
loading, 451
mixing static and dynamic data, 453-454
overview, 450
rendering from, 451-455

built-in variables, 536-537
bvec2 data type, 533
bvec3 data type, 533
bvec4 data type, 533
byte coordinates (ES 1.0), 741

C
C calling convention, 41
calculating

ambient light effects, 190-191
blending equation, 230, 234
diffuse light effects, 191
fog equations, 242-244
normal vectors, 202-203
specular light effects, 191

callback functions, tessellator callbacks, 412-413
calling functions (GLSL), 543
camera transformations, 164-165
campfire graphics

campfire bitmap program (BITMAPS),
253-255

glBitmap function, 257
glRasterPos2i function, 256
glWindowPos2i function, 256
RenderScene function, 255

campfire pixmap program (IMAGELOAD)
gltLoadTGA function, 262-265
RenderScene function, 261-262

canvases. See viewing volumes
capturing display, 707
Carbon

bitmap fonts, 697
CARBONGLFONTS sample program, 698
setting up, 697-698

Carbon window, initializing, 690-691
cleanup, 695
event handling, 695-696
OpenGL setup, 689-690
overview, 689
pixel format, 692-693
rendering context, 694-695

CARBONGLFONTS program, 698
Cartesian coordinates

2D Cartesian coordinates, 24
3D Cartesian coordinates, 27

cartoons with texture, 321-325
cathode ray tube (CRT), 10, 176
cell-shading (toon-shading), 321-325
centroid varying qualifier, 535
CGA (Color Graphics Adapter) cards, 178
CGDisplayBestModeForParameters function, 707
CGDisplayCapture function, 707
CGDisplayPixelsHigh function, 707
CGDisplayPixelsWide function, 707
CGDisplaySwitchToMode function, 707
CGL, 686
CGMainDisplayID function, 707
CGReleaseAllDisplays function, 707
ChangeDisplaySettings function, 675
ChangeSize function, 58, 75, 394, 499, 696, 711
changing display modes, 707
checkerboard texture fragment shader, 589-591
checking for extensions, 69-71
ChoosePixelFormat function, 653-654
Clarke, Arthur C., 173
classes

CTriangleMesh, 448
CVBOMesh, 454

classes 1147

GLFrame, 162-164
ThunderGLView, 701-705

cleanup
Carbon, 695
OpenGL ES applications, 771-772

clearing
buffers, 810-811

accumulation buffers, 811-812
color buffers, 52-53, 812
color index buffers, 813
depth buffers, 812-813
stencil buffers, 813

windows, 51-52
client-side capability, enabling/disabling,

884-885
clients, pushing attributes onto attribute

stack, 1052
clipped viewing volumes, defining, 59-60
clipping

clipping planes
specifying, 814-815
returning coefficients of, 934

clipping regions, 25
fixed vertex processing, 519-520
overview, 524

clockwise windings, 95
Cocoa

COCOAGL program, 699-700
buffer swaps, 705-706
OpenGL views, creating, 700-701
ThunderGLView class, 701-705

overview, 699
source module, 688

COCOAGL program, 699-700
buffer swaps, 705-706
OpenGL views, creating, 700-701
ThunderGLView class, 701-705

code, indenting, 78
collecting

histogram data, 298-300
minmax data, 301

color
accumulation buffers, 244-248
alpha testing, 249
array of colors, defining, 819-820
blending, 229

antialiasing, 234-238
blending equation, 230, 234, 798-799
destination color, 230
enabling, 230
glBlendColor function, 234
glBlendEquation function, 234
glBlendFunc function, 230-232

glBlendFuncSeparate function, 234
multisampling, 238-240
overview, 18
pixel arithmetic, 801, 803-806
REFLECTION sample program, 232-233
setting blend color, 798
source color, 230

color buffer, 52-53, 117
clearing, 812
loading convolution kernels from, 295
loading textures from, 307
specifying, 868-870, 1057

color depth, 179-180
color index

defining array of, 982-983
logical pixel operation, 1002-1003
setting, 980-981

color index buffers
clearing, 813
controlling writing to, 981-982

color masking, 248
color matrix, 288-289
color sum, 520
color tables

bias values, 291
color lookup, 289-290
copying pixels into, 843-845
defining, 821-824
parameters, 824-825, 936-937
proxies, 290-291
rendering, 291
replacing, 291-292
respecifying portion of, 820-821, 843
retrieving contents of, 934-935
scaling factors, 291

color tracking, 194
composite colors, 52
computer monitors and, 176-177
converting

color inversion fragment shader, 570-571
grayscale conversion fragment shader,

568-569
sepia-tone conversion fragment shader,

569-570
depth buffers, clearing, 812-813
display modes, 179-180
dithering, 250
drawing colors, setting, 182-183
fog

creating, 240-241
enabling/disabling, 241
fog coordinates, 244, 896

classes1148

fog equations, 242-244
fog parameters, 894-895
glFog function, 242

graphics cards, 177-179
heat signature effect, 571-572
light particles, 175
light sources

direction, specifying, 197
material properties, 205
normal averaging, 211-213
overview, 196
polygons, specifying, 205-206
setting up, 203-205
surface normals, 197-200
unit normals, 201-203

light wavelengths, 174
lighting conditions

adding to materials, 190
ambient light, 187-196
Cosmic Background Radiation (global

ambient light), 192-193
diffuse light, 188, 191
enabling lighting, 192
material properties, 190, 193-196, 205
normal averaging, 211-213
overview, 186-187, 207
RGBA values, 189
SHINYJET sample program, 210-211
specular exponent, 209-210
specular highlights, 207
specular light, 188-191, 208
specular reflectance, 208-209
SPOT sample program, 213-220

logical operations, 248-249
OpenGL ES specifications, 740
overview, 15, 174
perception by eye, 176
polygon colors, setting, 101-102, 182-183
RGB colorspace, 180-181
secondary colors

defining array of, 1069-1070
setting, 1067-1069
specular color, 341-344

setting, 815-817
shading

definition of, 183
flat shading, 186
smooth shading, 183-185

shadows
ambient lighting, 500-501
definition of, 222
depth buffer, 497-498

depth textures, 498-500
FBO shadow mapping, 613-615
GL_ARB_shadow_ambient extension, 509
modelview matrix, 496
overview, 221, 495-496
polygon offset, 510
projection matrix, 496-497
shadow maps, 501-509
shadow projection matrix, 223-225
SHADOW sample program, 223-226
SPHEREWORLD sample program, 227

spotlights
creating, 214-216
drawing, 216-220

stencil buffers, clearing, 813
color buffer, 52-53, 117

clearing, 812
loading convolution kernels from, 295
loading textures from, 307
specifying, 868-870, 1057

Color Graphics Adapter (CGA) cards, 178
color index

defining array of, 982-983
logical pixel operation, 1002-1003
setting, 980-981

color index buffers
clearing, 813
controlling writing to, 981-982

color inversion fragment shader, 570-571
color masking, 248
color matrix, 288-289
color space (RGB), 180-181
color tables

bias values, 291
color lookup, 289-290
copying pixels into, 843-845
defining, 821-824
parameters, 824-825, 936-937
proxies, 290-291
rendering, 291
replacing, 291-292
respecifying portion of, 820-821, 843
retrieving contents of, 934-935
scaling factors, 291

column-major matrix ordering, 154-155
combining

textures with texture combiners, 369-371
transformations, 160-161

commands
compiling, 424
glxinfo, 714, 718

comparision functions (alpha testing), 249

comparision functions 1149

compiling
commands, 424
shaders, 529-530, 825-826

component selectors, 540-541
composite colors, 52
compressed paletted texture (ES 1.0), 742
compressed textures

loading, 349-350
returning, 937-938

compressing textures, 347-349
cone cells (eyes), 176
config management

GLX 1.2, 722-723
GLX 1.3+, 719-721

configuring OpenGL on Linux
GLUT, 716-717
glxinfo command, 714
hardware drivers, 715
Mesa installation, 715
OpenGL programs, building, 716-717
X Server, 715-716

conformance, 35-36
const qualifier, 535
constructors, 538-540
context management

EGL, 763-764
GLX

GLX 1.2, 726
GLX 1.3+, 724-726

continuity of Bézier curves, 390-391
control points (Bézier curves), 390
conventions used in book, 5
converting

colors
color inversion fragment shader, 570-571
grayscale conversion fragment shader,

568-569
sepia-tone conversion fragment shader,

569-570
display lists, 426-428

convex polygons, 114
convolutions

applying, 293
border modes, 296-297
combining with other imaging operations,

293-294
definition of, 292
kernels, 292
loading from color buffer, 295
one-dimensional filters, 296

copying pixels into, 845-846
defining, 836-838

parameters, 841-842, 940-941

returning, 938-940
separable filters, 296, 959-960
separable two-dimensional filters, 1072-1074
two-dimensional filters

copying pixels into, 846-848
defining, 839-841

coordinate clipping, 25-26
coordinate generation parameters (textures),

returning, 966-967
coordinate systems

2D Cartesian coordinates, 24
3D Cartesian coordinates, 27
coordinate clipping, 25-26
eye coordinates, 129
fog coordinates, 244, 896-897
overview, 24
texture coordinate generation, 350-354

cube mapping, 357-361
disabling, 350
enabling, 350
eye linear mapping, 355-356
object linear mapping, 354
sphere mapping, 356-357
TEXGEN sample program, 351-354

texture coordinates, 308-310
arrays of coordinates, 1085-1087
controlling generation of, 1091-1093
setting, 1018-1020, 1084-1085

vertices, 27
viewports, 26-27

copying
pixels, 265

into 1D texture image, 850-852
into 2D texture image, 852-854
into color table, 843-845
in frame buffer, 848-850
into one-dimensional convolution filters,

845-846
into two-dimensional convolution filters,

846-848
texture subimages

one-dimensional, 854-855
three-dimensional, 857-858
two-dimensional, 855-857

core additions
ES 1.0

OES_byte_coordinates, 741
OES_compressed_paletted_textures, 742
OES_fixed_point, 741
OES_query_matrix, 742
OES_read_format, 742
OES_single_precision_commands, 742

compiling1150

ES 1.1
OES_draw_texture, 745
OES_matrix_get, 745
OES_matrix_palette, 744
OES_point_sprite, 745

ES 2.0
OES_compressed_ETC1_RGB8_texture, 750
OES_element_index_uint, 750
OES_fbo_render_mipmap, 749
OES_fragment_precision_high, 750
OES_framebuffer_object, 749
OES_mapbuffer, 750
OES_shader_binary, 751-752
OES_shader_source, 751
OES_stencil8, 749
OES_texture_3D, 750
OES_texture_float, 750
OES_texture_half_float, 750
OES_texture_npot, 750
OES_vertex_half_float, 749

ES SC, 754
Cosmic Background Radiation (global ambient

light), 192-193
counterclockwise windings, 95
CreateWindow function, 657, 659, 672
CRT (cathode ray tube), 10, 176
CTriangleMesh class, 448
cube mapping, 357-361

creating mirrored surface effect with, 360-361
loading cube maps, 358-360

CUBEDX program, 436-439
CUBEMAP program, 358-362
cubic curves, 390
culling, backface, 104-106, 860
curves

approximating with straight lines, 88-89
Bézier

2D curves, 391-396
3D Bézier surfaces, 397-400
breakpoints, 390
continuity, 390-391
control points, 390
cubic curves, 390
degree of, 390
evaluating, 396-397
lighting and normal vectors, 400-401
order of, 390
overview, 388
parametric equation, 388-389
piecewise curves, 390
quadratic curves, 390

NURBS, 409

CVBOMesh class, 454
cylinders, drawing, 382

D
data store (buffer)

creating and initializing, 806-807
mapping, 1009-1010
returning pointers to, 932-933
returning subset of, 933
updating subset of, 807-808

data types, 532-533
AGLPixelFormat, 692
corresponding C/C++ data types, 44-45
for pixel data, 306-307
of vertex arrays, 434
overview, 45
pixel data, 259-260

declaring
arrays, 534
functions (GLSL), 542-543
NURBS surfaces, 404-406
structures, 534

Deep Exploration, 440
degree of Bézier curves, 390
deleting

buffer objects, 861
Cocoa source module, 688
display lists, 425, 861
program objects, 530, 862
query objects, 487, 862-863
rendering contexts, 660-663
shader objects, 528, 863
texture objects, 330, 863-864

delimiting
queries, 791-792
vertices of primitives, 789-791

dependent texture lookups, 572
depth buffers, 119, 497-498

enabling/disabling, 865
depth of color, 179-180
depth testing, 103
depth textures

overview, 498-499
size, 499-500

DescribePixelFormat function, 650-651
destination color, 230
destroying FBOs (framebuffer objects), 609-610
detaching

program objects from shaders, 530
shaders, 866-867

detecting edges, 580, 582

detecting edges 1151

device contexts
GDI device contexts, 646
GLRECT program, 657-660

diffuse light
calculating light effects, 191
diffuse lighting fragment shader, 582-584
diffuse lighting vertex shader, 549, 551
overview, 188

dilating images, 578-579
dilation fragment shader, 578-579
direction of light sources, specifying, 197
disabling

alpha testing, 249
client-side capability, 884-885
depth buffer, 865
fog, 241
multisampling, 239
scissor test, 120
state variables, 65-66
texture coordinate generation, 350
vertex attribute arrays, 886

discard keyword (GLSL), 542
disks, drawing, 384-385
display callback functions, 51
display configs (EGL), 759-763
display lists

batch processing, 423-424
converting to, 426-428
creating, 425, 1023-1024
deleting, 425, 861
executing, 425-426, 808-810
generating, 900-901
immediate mode rendering, 423
limitations of, 426
naming, 425
overview, 422-423
preprocessed batches, 424-426
querying, 988-989

display modes
color depth, 179-180
double-buffered, 50
overview, 179
screen resolution, 179
single-buffered, 50

displays
EGL, 758-759
GLX, 718

dithering, 250
double buffering, 64-65

double-buffered rendering, 117
double-buffered windows, 50

draw buffers, 611

Draw method
CTriangleMesh class, 448
CVBOMesh class, 454

DrawBody function, 440
DrawGeometry function, 246
DrawGround function, 166-168
drawing

bitmaps, 257, 796-797
buffers

buffer targets, 117-119
color buffers, 117
depth buffer, 119
double-buffered rendering, 117
overview, 117
single-buffered rendering, 117-119
stencil buffer, 121-126

color, setting, 182-183
general polygons, 108-109
lines

curves, approximating with straight lines,
88-89

glBegin function, 85
glEnd function, 85
line loops, 87-88
line strips, 87-89
line width, 89-91
LINES program example, 85-87
stippling, 91-93

pixmaps, 258
points

glBegin function, 78
glEnd function, 78
glVertex function, 76-77
overview, 74
point parameters, 85
point size, 81-85
POINTS program example, 78, 80
POINTSZ program example, 82-85

quad strips, 108
quadrics, 108, 381-384
rectangles, 56, 1061-1062
scaling drawings to window, 56
solid objects

backface culling, 104-106
colors, 101-102, 182-183
depth testing, 103
edge flags, 114-116
hidden surface removal, 102-103
polygon construction rules, 113-114
polygon modes, 107
shading, 183-186
stippling, 109-113
TRIANGLE program example, 98-101

device contexts1152

triangles
overview, 94
simple example, 94-95
triangle fans, 97-98
triangle strips, 96-97
windings, 95-96, 201

viewing volume, 74-76
DrawModels function, 487
DrawObjects function, 474
DrawOccluder function, 482
DrawPoints function, 392-394
DrawSphere function, 484, 490
DrawThunderBird function, 446-447
DrawTorus function, 158
drivers, 715

extended OpenGL, 644-645
ICD (Installable Client Driver), 642-643
Mini-Client Driver (MCD), 643
mini-drivers, 643-644
OpenGL on Vista, 644

E
earth/sun/moon program, 151-154
edge detection fragment shader, 580-582
edge flags, 114-116, 878-879
edges of polygons, 114-116
effects

fog
creating, 240-241
enabling/disabling, 241
fog coordinates, 244
fog equations, 242-244
glFog function, 242

lighting effects
normal averaging, 211-213
overview, 207
SHINYJET sample program, 210-211
specular exponent, 209-210
specular highlights, 207
specular light, 208
specular reflectance, 208-209

mirrored surface effect, 360-361
EGA (Enhanced Graphics Adapter) cards, 178
EGL

buffers, 764-765
context management, 763-764
display configs, 759-763
displays, 758-759
embedded system diagram, 758
errors, 765
extending, 765-766

initializing, 758
overview, 757
rendering surfaces, 763
rendering synchronization, 764-765
strings, 765

EGL_ALPHA_MASK_SIZE config attribute, 760
EGL_ALPHA_SIZE config attribute, 760
EGL_BIND_TO_TEXTURE_RGB config

attribute, 760
EGL_BIND_TO_TEXTURE_RGBA config

attribute, 760
EGL_BLUE_SIZE config attribute, 760
EGL_BUFFER SIZE config attribute, 760
EGL_COLOR_BUFFER_TYPE config attribute, 760
EGL_CONFIG_CAVEAT config attribute, 760
EGL_CONFIG_ID config attribute, 760
EGL_DEPTH_SIZE config attribute, 760
EGL_GREEN_SIZE config attribute, 760
EGL_LEVEL config attribute, 760
EGL_LUMINANCE_SIZE config attribute, 760
EGL_MAX_PBUFFER_HEIGHT config

attribute, 761
EGL_MAX_PBUFFER_PIXELS config attribute, 761
EGL_MAX_PBUFFER_WIDTH config

attribute, 761
EGL_MAX_SWAP_INTERVAL config attribute, 760
EGL_MIN_SWAP_INTERVAL config attribute, 760
EGL_NATIVE_RENDERABLE config attribute, 760
EGL_NATIVE_VISUAL_ID config attribute, 760
EGL_NATIVE_VISUAL_TYPE config attribute, 760
EGL_RED_SIZE config attribute, 760
EGL_RENDERABLE_TYPE config attribute, 760
EGL_SAMPLES config attribute, 760
EGL_SAMPLE_BUFFERS config attribute, 760
EGL_STENCIL_SIZE config attribute, 760
EGL_SURFACE_TYPE config attribute, 760
EGL_TRANSPARENT_BLUE_VALUE config

attribute, 761
EGL_TRANSPARENT_GREEN_VALUE config

attribute, 761
EGL_TRANSPARENT_RED_VALUE config

attribute, 760
EGL_TRANSPARENT_TYPE config attribute, 760
eglBindAPI function, 759
eglChooseConfig function, 761
eglCreateContext function, 763, 769
eglCreateWindowSurface function, 763, 768-769
eglDestroyContext function, 764, 772
eglDestroySurface function, 763
eglGetConfigAttrib function, 762
eglGetConfigs function, 763
eglGetDisplay function, 758
eglGetError function, 765

eglGetError function 1153

eglGetProcAddress function, 766
eglInitialize function, 758, 768
eglMakeCurrent function, 764, 769-771
eglQueryString function, 765
eglReleaseThread function, 759
eglSwapBuffers function, 764, 771
eglSwapInterval function, 764
eglTerminate function, 759
eglWaitGL function, 765
eglWaitNative function, 765
Eliminate Surface Acne with Gradient Shadow

Mapping, 510
embedded environments

embedded hardware, 766
operating systems, 766
vendor-specific extensions, 767

enabling
alpha testing, 249
antialiasing, 236
blending, 230
client-side capability, 884-885
color logical operations, 248
color tracking, 194
cube mapping, 359
depth buffer, 865
depth testing, 103, 119
dithering, 250
fog, 241
histograms, 298
interleaved arrays, 984-985
lighting, 192, 203
minmax operations, 301
multisampling, 239
normalization, 201
point sprites, 372
polygon stippling, 109
program objects, 532
scissor test, 119-121
secondary specular color, 344
state variables, 65-66
stippling, 91
texture coordinate generation, 350
texture mapping, 316
vertex arrays, 432-433, 886

EndMesh method, 452-453
EndPaint function, 665
Enhanced Graphics Adapter (EGA) cards, 178
enumerating pixel formats, 650-652
environment parameters (textures)

returning, 964-966
setting, 1087-1091

environments
embedded environments

embedded hardware, 766
operating systems, 766
vendor-specific extensions, 767

environment mapping, 615-618
texture, 316-318

equations
blending equation, 230, 234
fog equations, 242-244
parametric equation for curves, 388-389
second-order exponential fog factor, 557
specular lighting, 551

Ericsson compressed texture format, 750
eroding images, 580
erosion fragment shader, 580
errors

EGL, 765
error codes, 68
error flags, displaying, 67-68
FBOs (framebuffer objects), 612-613
GL_STACK_OVERFLOW, 143
GL_STACK_UNDERFLOW, 143
glAccum function, 785
glActiveTexture function, 785
glAlphaFunc function, 786
glAreTexturesResident function, 787
glArrayElement function, 788
glAttachShader function, 789
glBegin function, 790
glBeginQuery function, 792
glBindAttribLocation function, 793
glBindBuffer function, 795
glBindTexture function, 796
glBitmap function, 797
glBlendColor function, 798
glBlendEquation function, 799
glBlendFunc function, 803
glBlendFuncSeparate function, 806
glBufferData function, 807
glBufferSubData function, 808
glCallLists function, 810
glClear function, 811
glClearAccum function, 812
glClearColor function, 812
glClearDepth function, 813
glClearIndex function, 813
glClearStencil function, 813
glClientActiveTexture function, 814
glClipPlane function, 815
glColorMask function, 818
glColorMaterial function, 818

eglGetProcAddress function1154

glColorPointer function, 820
glColorSubTable function, 821
glColorTable function, 824
glColorTableParameter function, 825
glCompileShader function, 825
glCompressedTexImage1D function, 827
glCompressedTexImage2D function, 829
glCompressedTexImage3D function, 831
glCompressedTexSubImage1D function, 832
glCompressedTexSubImage2D function, 834
glCompressedTexSubImage3D function, 836
glConvolutionFilter1D function, 838
glConvolutionFilter2D function, 840
glConvolutionParameter function, 842
glCopyColorSubTable function, 843
glCopyColorTable function, 844
glCopyConvolutionFilter1D function, 846
glCopyConvolutionFilter2D function, 848
glCopyPixels function, 850
glCopyTexImage1D function, 852
glCopyTexImage2D function, 854
glCopyTexSubImage1D function, 855
glCreateShader function, 860
glCullFace function, 860
glDeleteBuffers function, 861
glDeleteLists function, 861
glDeleteProgram function, 862
glDeleteQueries function, 863
glDeleteShader function, 863
glDeleteTextures function, 864
glDepthFunc function, 865
glDepthMask function, 865
glDepthRange function, 866
glDetachShader function, 866
glDrawArrays function, 867
glDrawBuffer function, 869
glDrawBuffers function, 870
glDrawElements function, 871
glDrawPixels function, 876
glDrawRangeElements function, 877
glEdgeFlagPointer function, 879
glEnable function, 884
glEnableClientState function, 885
glEnableVertexAttribArray function, 886
glEvalMesh function, 890
glFeedbackBuffer function, 893
glFinish function, 893
glFlush function, 894
glFog function, 895
glFogCoordPointer function, 897
glFrontFace function, 898
glFrustum function, 899

glGenBuffers function, 900
glGenLists function, 901
glGenTextures function, 902
glGet function, 926
glGetActiveAttrib function, 927
glGetActiveUniform function, 929
glGetAttachedShaders function, 930
glGetAttribLocation function, 931
glGetBufferParameteriv function, 932
glGetBufferPointerv function, 932
glGetBufferSubData function, 933
glGetClipPlane function, 934
glGetColorTable function, 935
glGetColorTableParameter function, 937
glGetCompressedTexImage function, 938
glGetConvolutionFilter function, 939-940
glGetConvolutionParameter function, 941
glGetError function, 942
glGetHistogram function, 943
glGetHistogramParameter function, 944
glGetLight function, 946
glGetMap function, 947
glGetMaterial function, 949
glGetMinmax function, 950
glGetMinmaxParameter function, 951
glGetPixelMap function, 952
glGetPointerv function, 953
glGetPolygonStipple function, 954
glGetProgramInfoLog function, 956
glGetProgramiv function, 955
glGetQueryiv function, 957
glGetQueryObject function, 958
glGetSeparableFilter function, 960
glGetShaderInfoLog function, 962
glGetShaderiv function, 961
glGetString function, 964
glGetTexEnv function, 966
glGetTexImage function, 969
glGetTexLevelParameter function, 971
glGetTexParameter function, 973
glGetUniform function, 974
glGetUniformLocation function, 975
glGetVertexAttrib function, 977
glGetVertexAttributePointerv function, 978
glHint function, 979
glHistogram function, 980
glIndexMask function, 982
glIndexPointer function, 983
glInitNames function, 983
glInterleavedArrays function, 984
glIsBuffer function, 985
glIsEnabled function, 988

errors 1155

glIsList function, 988
glIsProgram function, 989
glIsQuery function, 989
glIsShader function, 990
glIsTexture function, 991
glLight function, 993
glLightModel function, 995
glLineStipple function, 996
glLineWidth function, 997
glLinkProgram function, 998
glListBase function, 999
glLoadIdentity function, 999
glLoadMatrix function, 1000
glLoadName function, 1001
glLoadTransposeMatrix function, 1002
glLogicOp function, 1003
glMap1 function, 1005
glMap2 function, 1008
glMapBuffer function, 1010
glMapGrid function, 1012
glMaterial function, 1014
glMatrixMode function, 1014
glMinmax function, 1015
glMultiDrawArrays function, 1016
glMultiDrawElements function, 1018
glMultMatrix function, 1021
glMultTransposeMatrix function, 1022
glNewList function, 1024
glOrtho function, 1027
glPassThrough function, 1028
glPixelMap function, 1030
glPixelStore function, 1035
glPixelTransfer function, 1039
glPixelZoom function, 1040
glPointParameter function, 1041
glPointSize function, 1043
glPolygonMode function, 1044
glPolygonOffset function, 1045
glPolygonStipple function, 1046
glPrioritizeTextures function, 1047
glPushAttrib function, 1051
glPushClientAttrib function, 1052
glPushMatrix function, 1053
glPushName function, 1054
glRasterPos function, 1056
glReadBuffer function, 1057
glReadPixels function, 1060
glRect function, 1062
glRenderMode function, 1063
glResetHistogram function, 1063
glResetMinmax function, 1064
glRotate function, 1065
glSampleCoverage function, 1065

glScale function, 1066
glScissor function, 1067
glSecondaryColorPointer function, 1070
glSelectBuffer function, 1071
glSeparableFilter2D function, 1073-1074
glShaderSource function, 1076
glStencilFunc function, 1077
glStencilFuncSeparate function, 1079
glStencilMask function, 1079
glStencilMaskSeparate function, 1080
glStencilOp function, 1082
glStencilOpSeparate function, 1083
glTexCoordPointer function, 1086
glTexEnv function, 1091
glTexGen function, 1093
glTexImage1D function, 1098-1099
glTexImage2D function, 1104
glTexImage3D function, 1109-1110
glTexSubImage1D function, 1116
glTexSubImage2D function, 1118-1119
glTexSubImage3D function, 1120-1121
glTranslate function, 1122
glUniform function, 1125-1126
glUseProgram function, 1127
glValidateProgram function, 1129
glVertexAttrib function, 1134
glVertexAttribPointer function, 1135
glVertexPointer function, 1136
glViewport function, 1137
glWindowPos function, 1139
returning information about, 941-942
overview, 67

ES. See OpenGL ES
Essential Mathematics for Games and Interactive

Applications, 757
Euler angles, 163-164
evaluating Bézier curves, 396-397
evaluators

definition of, 391
glMap1f, 395
glMap2f, 399
one-dimensional evaluators, defining,

1003-1005
parameters, returning, 946-947
two-dimensional evaluators, defining,

1006-1009
event handling (Carbon), 695-696
event-driven programming, 660
executing display lists, 425-426
expressions

array access, 538
component selectors, 540-541

errors1156

constructors, 538-540
operators, 537-538

EXT_prefix, 71
extended OpenGL, 644-645
extending

EGL, 765-766
GLX, 729

extensions
checking for, 69-71
ES 1.0

OES_byte_coordinates, 741
OES_compressed_paletted_textures, 742
OES_fixed_point, 741
OES_query_matrix, 742
OES_read_format, 742
OES_single_precision_commands, 742

ES 1.1
OES_matrix_get, 745
OES_matrix_palette, 744
OES_point_sprite, 745

ES 2.0
OES_compressed_ETC1_RGB8_texture, 750
OES_element_index_uint, 750
OES_fbo_render_mipmap, 749
OES_fragment_precision_high, 750
OES_framebuffer_object, 749
OES_mapbuffer, 750
OES_shader_binary, 751-752
OES_shader_source, 751
OES_stencil8, 749
OES_texture_3D, 750
OES_texture_float, 750
OES_texture_half_float, 750
OES_texture_npot, 750
OES_vertex_half_float, 749

ES SC, 754
overview, 69
prefix identifiers, 71
WGL. See WGL extensions

eye coordinates, 129
eye linear mapping, 355-356
eyes, perception of color, 176

F
F-16 Thunderbird model. See THUNDERGL

program
Fahrenheit, 36-37
FBOs (framebuffer objects)

attaching images, 610-611
color components, enabling/disabling,

817-818

copying pixels in, 848-850
creating, 609-610
destroying, 609-610
draw buffers, 611
environment map generation sample

program, 615-618
framebuffer completeness, 612-613
mipmap generation, 613
multiple target rendering, 619-621
offscreen rendering, 613-615
OpenGL ES specifications

ES 1.0, 741
ES 2.0, 749

overview, 40, 53, 608-609
reading pixels from, 1057-1060
shadow mapping sample program, 613-615
writing block of pixels to, 871-876

feedback
feedback buffer

glFeedbackBuffer function, 471
loading and parsing, 478-480
placing markers in, 1028
types, 471

feedback data, 472
labeling objects for, 473-475
overview, 458, 471
passthrough markers, 473
SELECT sample program

labeling objects for feedback, 473-475
loading and parsing feedback buffer,

478-480
selecting objects, 476-477

feedback buffer
glFeedbackBuffer function, 471
loading and parsing, 478-480
placing markers in, 1028
types, 471

feedback mode, 891-893
files

gl.h, 42
glee.h, 43
gltools.cpp, 43
gltools.h, 42-43
glu.h, 42
glut.h, 43
OpenEXR format, 623-626
targa files

loading, 262-265
writing to, 266-268

filters
anisotropic texture filtering, 344-346
convolution filters. See convolutions

filters 1157

definition of, 16
isotropic texture filtering, 345
mipmap filters, 327-328
percentage-closer filtering, 506
textures, 318-319

finding normal vectors, 202-203
fixed functionality

antialiasing application, 521
clipping, 519-520
color sum, 520
fixed functionality rendering pipeline, 515
fog application, 521
lighting, 518
overview, 516
texture application and environment, 520
texture coordinate generation and

transformation, 519
vertex transformation, 518

fixed-point data type (ES 1.0), 741
fixed-point math, 756-757
flagging edges, 878-879
flat shading, 186
float data type, 533
floating-point textures

High Dynamic Range (HDR), 622-623
OpenEXR file format, 623-626
OpenGL ES specifications, 750
overview, 622
tone mapping, 626-630

FLORIDA program, 414-419
complex polygon, tessellating, 417-418
convex polygon, drawing, 415-416
vertex data and drawing code for state

outline, 414-415
flow control (GLSL)

discard keyword, 542
functions

calling, 543
declaring, 542-543
function name overloading, 543
main, 542
texture lookup functions, 544-545

if/else clauses, 542
loops, 541

flushing
buffer, 423-424
queue, 53

fog
creating, 240-241
enabling/disabling, 241
fixed fragment processing, 521

fog coordinates, 244, 896
fog equations, 242-244
fog fragment shader, 572-574
fog parameters, 894-895
fog vertex shader, 557-559
glFog function, 242
overview, 17
second-order exponential fog factor, 557

font.c program, 728-729
fonts

bitmap fonts, 697-698
Windows fonts

2D fonts and text, 669, 671
3D fonts and text, 666-668
overview, 666

X fonts, 728-729
forcing command execution, 893-894
foreshortening, 14, 133
fragment operations (OpenGL ES)

ES 2.0, 748
ES SC, 753

fragment shaders
beach ball texture fragment shader, 592-595
blur fragment shader, 575-576
capabilities of, 525-526
checkerboard texture fragment shader,

589-591
color inversion fragment shader, 570-571
diffuse lighting fragment shader, 582-584
dilation fragment shader, 578-579
edge detection fragment shader, 580-582
erosion fragment shader, 580
fog fragment shader, 572-574
grayscale conversion fragment shader,

568-569
heat signature fragment shader, 571-572
overview, 567-568
sepia-tone conversion fragment shader,

569-570
sharpen fragment shader, 577-578
simple example, 527
three colored lights fragment shader, 586-587
toy ball texture fragment shader, 595-599

framebuffer objects. See FBOs
frameless windows, creating, 672
frames, 423

actor frames, 161-163
GLFrame class, 162-164

freeglut, 47. See also GLUT
front-facing polygons, defining, 898
frustums, 30, 148-149, 898-899

filters1158

full-screen rendering
Mac OS X

AGL full-screen support, 708-711
display management, 706-707
overview, 706

Windows, 671
frameless windows, creating, 672
full-screen windows, creating, 672-675

full-screen windows, creating, 672-675
functions, 542-545. See also specific functions

calling, 543
declaring, 542-543
evaluators, 391
main, 542
naming conventions, 45-46
name overloading, 543
texture lookup functions, 544-545

future of OpenGL, 37

G
Gaussian blur, 634-636
GDI (graphics device interface), 38
GDI device contexts, 646
generating

buffer names, 900
display lists, 900-901
mip levels, 328-329
query names, 901
texture coordinates, 350-354

cube mapping, 357-361
disabling, 350
enabling, 350
eye linear mapping, 355-356
object linear mapping, 354
sphere mapping, 356-357
TEXGEN sample program, 351-354

texture names, 902
generic implementations, 38-39, 642
geometric primitives. See primitives, drawing
geometric transformations. See transformations
geometry throughput

display lists
batch processing, 423-424
converting to, 426-428
creating, 425
deleting, 425
executing, 425-426
immediate mode rendering, 423
limitations of, 426
naming, 425

overview, 422-423
preprocessed batches, 424-426

overview, 421-422
vertex arrays

enabling, 432-433
indexed vertex arrays, 435-449
loading geometry, 432
overview, 428-429
pointer functions, 433-434
rendering with, 434-435
sizes and data types, 434
STARRYNIGHT sample program, 429-431
texture, 434

vertex buffer objects
binding, 450
creating, 450
initializing arrays, 452-453
loading, 451
mixing static and dynamic data, 453-454
overview, 450
rendering from, 451-455

GetDC function, 657-658
GetDeviceCaps function, 673
GetMatrix function, 162-163
GetWindowPortBounds function, 696
GL Easy Extension (GLEE) library, 679
gl.h file, 42
GL_ACCUM_ALPHA_BITS constant (glGet

function), 903
GL_ACCUM_BLUE_BITS constant (glGet

function), 903
GL_ACCUM_CLEAR_VALUE constant (glGet

function), 903
GL_ACCUM_GREEN_BITS constant (glGet

function), 903
GL_ACCUM_RED_BITS constant (glGet

function), 903
GL_ACTIVE_TEXTURE constant (glGet

function), 903
GL_ADD texture environment mode, 317, 370
GL_ADD_SIGNED constant, 370
GL_ALIASED_LINE_WIDTH_RANGE constant

(glGet function), 903
GL_ALIASED_POINT_SIZE_RANGE constant

(glGet function), 903
GL_ALPHA pixel format, 259
GL_ALPHA_BIAS constant (glGet function), 903
GL_ALPHA_BITS constant (glGet function), 903
GL_ALPHA_SCALE constant (glGet

function), 903
GL_ALPHA_TEST constant (glGet function), 903

GL_ALPHA_TEST constant 1159

GL_ALPHA_TEST_FUNC constant (glGet
function), 903

GL_ALPHA_TEST_REF constant (glGet
function), 904

GL_AMBIENT parameter
glGetLight function, 945
glLight function, 992
glMaterial function, 1013

GL_AMBIENT_AND_DIFFUSE parameter
(glMaterial function), 1013

GL_ARB_color_buffer_float extension. See
floating-point textures

GL_ARB_shadow_ambient extension, 509
GL_ARRAY_BUFFER_BINDING constant (glGet

function), 904
GL_ATTRIB_STACK_DEPTH constant (glGet

function), 904
GL_AUTO_NORMAL constant (glGet

function), 904
GL_AUX_BUFFERS constant (glGet

function), 904
gl_BackColor built-in variable, 537
gl_BackSecondaryColor built-in variable, 537
GL_BGR pixel format, 259
GL_BGRA pixel format, 259
GL_BITMAP data type, 259, 306
GL_BLEND constant (glGet function), 904
GL_BLEND texture environment mode, 317
GL_BLEND_COLOR constant (glGet

function), 904
GL_BLEND_DST_ALPHA constant (glGet

function), 904
GL_BLEND_DST_RGB constant (glGet

function), 904
GL_BLEND_EQUATION_ALPHA constant (glGet

function), 904
GL_BLEND_EQUATION_RGB constant (glGet

function), 904
GL_BLEND_SRC_ALPHA constant (glGet

function), 904
GL_BLEND_SRC_RGB constant (glGet

function), 904
GL_BLUE pixel format, 259
GL_BLUE_BIAS constant (glGet function), 904
GL_BLUE_BITS constant (glGet function), 904
GL_BLUE_SCALE constant (glGet function), 904
GL_BYTE data type, 259, 306
GL_CLAMP wrap mode, 321
GL_CLAMP_TO_BORDER wrap mode, 321
GL_CLAMP_TO_EDGE wrap mode, 321
GL_CLIENT_ACTIVE_TEXTURE constant (glGet

function), 905

GL_CLIENT_ATTRIB_STACK_DEPTH constant
(glGet function), 905

GL_CLIP_PLANEi constant (glGet function), 905
gl_ClipVertex built-in variable, 536
gl_Color built-in variable, 536-537
GL_COLOR_ARRAY constant (glGet

function), 905
GL_COLOR_ARRAY_BUFFER_BINDING constant

(glGet function), 905
GL_COLOR_ARRAY_SIZE constant (glGet

function), 905
GL_COLOR_ARRAY_STRIDE constant (glGet

function), 905
GL_COLOR_ARRAY_TYPE constant (glGet

function), 905
GL_COLOR_CLEAR_VALUE constant (glGet

function), 905
GL_COLOR_INDEXES parameter (glMaterial

function), 1013
GL_COLOR_LOGIC_OP constant (glGet

function), 905
GL_COLOR_MATERIAL constant (glGet

function), 905
GL_COLOR_MATERIAL_FACE constant (glGet

function), 905
GL_COLOR_MATERIAL_PARAMETER constant

(glGet function), 905
GL_COLOR_MATRIX constant (glGet

function), 905
GL_COLOR_MATRIX_STACK_DEPTH constant

(glGet function), 905
GL_COLOR_SUM constant (glGet function), 905
GL_COLOR_TABLE constant (glGet

function), 906
GL_COLOR_WRITEMASK constant (glGet

function), 906
GL_COMPRESSED_TEXTURE_FORMATS constant

(glGet function), 906
GL_CONSTANT constant, 370
GL_CONSTANT_ATTENUATION parameter

glGetLight function, 946
glLight function, 993

GL_CONVOLUTION_1D constant (glGet
function), 906

GL_CONVOLUTION_2D constant (glGet
function), 906

GL_CULL_FACE constant (glGet function), 906
GL_CULL_FACE_MODE constant (glGet

function), 906
GL_CURRENT_COLOR constant (glGet

function), 906

GL_ALPHA_TEST_FUNC constant1160

GL_CURRENT_FOG_COORD constant (glGet
function), 906

GL_CURRENT_INDEX constant (glGet
function), 906

GL_CURRENT_NORMAL constant (glGet
function), 906

GL_CURRENT_PROGRAM constant (glGet
function), 906

GL_CURRENT_RASTER_COLOR constant (glGet
function), 906

GL_CURRENT_RASTER_DISTANCE constant
(glGet function), 906

GL_CURRENT_RASTER_INDEX constant (glGet
function), 906

GL_CURRENT_RASTER_POSITION constant
(glGet function), 906

GL_CURRENT_RASTER_POSITION_VALID
constant (glGet function), 907

GL_CURRENT_RASTER_SECONDARY_COLOR
constant (glGet function), 907

GL_CURRENT_RASTER_TEXTURE_COORDS
constant (glGet function), 907

GL_CURRENT_SECONDARY_COLOR constant
(glGet function), 907

GL_CURRENT_TEXTURE_COORDS constant
(glGet function), 907

GL_DECAL texture environment mode, 317
GL_DEPTH_BIAS constant (glGet function), 907
GL_DEPTH_BITS constant (glGet function), 907
GL_DEPTH_CLEAR_VALUE constant (glGet

function), 907
GL_DEPTH_COMPONENT pixel format, 259
GL_DEPTH_FUNC constant (glGet function), 907
GL_DEPTH_RANGE constant (glGet

function), 907
GL_DEPTH_SCALE constant (glGet function), 907
GL_DEPTH_TEST constant (glGet function), 907
GL_DEPTH_WRITEMASK constant (glGet

function), 907
GL_DIFFUSE parameter

glGetLight function, 945
glLight function, 992
glMaterial function, 1013

GL_DITHER constant (glGet function), 907
GL_DOT3_RGB constant, 370
GL_DOT3_RGBA constant, 370
GL_DOUBLEBUFFER constant (glGet

function), 907
GL_DRAW_BUFFER constant (glGet

function), 908
GL_DRAW_BUFFERi constant (glGet

function), 908

GL_DYNAMIC_DRAW usage hint, 451
GL_EDGE_FLAG constant (glGet function), 908
GL_EDGE_FLAG_ARRAY constant (glGet

function), 908
GL_EDGE_FLAG_ARRAY_BUFFER_BINDING

constant (glGet function), 908
GL_EDGE_FLAG_ARRAY_STRIDE constant (glGet

function), 908
GL_ELEMENT_ARRAY_BUFFER_BINDING con-

stant (glGet function), 908
GL_EMISSION parameter (glMaterial

function), 1013
GL_EXP fog mode, 242
GL_EXP2 fog mode, 242
GL_EXT_texture_compression_s3tc texture

compression format, 349
GL_EYE_LINEAR texture generation mode,

355-356
GL_FEEDBACK rendering mode, 461
GL_FEEDBACK_BUFFER_SIZE constant (glGet

function), 908
GL_FEEDBACK_BUFFER_TYPE constant (glGet

function), 908
GL_FLOAT data type, 259, 306
GL_FOG constant (glGet function), 908
GL_FOG_COLOR constant (glGet function), 909
GL_FOG_COORD_ARRAY constant (glGet

function), 908
GL_FOG_COORD_ARRAY_BUFFER_BINDING

constant (glGet function), 908
GL_FOG_COORD_ARRAY_STRIDE constant

(glGet function), 908
GL_FOG_COORD_ARRAY_TYPE constant (glGet

function), 908
GL_FOG_COORD_SRC constant (glGet

function), 908
GL_FOG_DENSITY constant (glGet

function), 909
GL_FOG_END constant (glGet function), 909
GL_FOG_HINT constant (glGet function), 909
GL_FOG_INDEX constant (glGet function), 909
GL_FOG_MODE constant (glGet function), 909
GL_FOG_START constant (glGet function), 909
gl_FogCoord built-in variable, 536
gl_FogFragCoord built-in variable, 537
gl_FragColor built-in variable, 537
gl_FragCoord built-in variable, 537
gl_FragData[] built-in variable, 537
gl_FragDepth built-in variable, 537
GL_FRAGMENT_SHADER_DERIVATIVE_HINT

constant (glGet function), 909

GL_FRAGMENT_SHADER_DERIVATIVE_HINT constant 1161

GL_FRAMEBUFFER_COMPLETE_EXT error
condition, 612

GL_FRAMEBUFFER_INCOMPLETE_
ATTACHMENT_EXT error condition, 612

GL_FRAMEBUFFER_INCOMPLETE_
DIMENSIONS_EXT error condition, 612

GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER
_EXT error condition, 612

GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT
error condition, 612

GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_
EXT error condition, 612

GL_FRAMEBUFFER_UNSUPPORTED_EXT error
condition, 612

GL_FRONT_FACE constant (glGet function), 909
gl_FrontColor built-in variable, 536
gl_FrontFacing built-in variable, 537
gl_FrontSecondaryColor built-in variable, 537
GL_FUNC_ADD constant, 234
GL_FUNC_REVERSE_SUBTRACT constant, 234
GL_FUNC_SUBTRACT constant, 234
GL_GENERATE_MIPMAP_HINT constant (glGet

function), 909
GL_GREEN pixel format, 259
GL_GREEN_BIAS constant (glGet function), 909
GL_GREEN_BITS constant (glGet function), 909
GL_GREEN_SCALE constant (glGet function), 909
GL_HISTOGRAM constant (glGet function), 909
GL_INDEX_ARRAY constant (glGet function), 909
GL_INDEX_ARRAY_BUFFER_BINDING constant

(glGet function), 909
GL_INDEX_ARRAY_STRIDE constant (glGet

function), 909
GL_INDEX_ARRAY_TYPE constant (glGet

function), 910
GL_INDEX_BITS constant (glGet function), 910
GL_INDEX_CLEAR_VALUE constant (glGet

function), 910
GL_INDEX_LOGIC_OP constant (glGet

function), 910
GL_INDEX_MODE constant (glGet function), 910
GL_INDEX_OFFSET constant (glGet

function), 910
GL_INDEX_SHIFT constant (glGet function), 910
GL_INDEX_WRITEMASK constant (glGet

function), 910
GL_INT data type, 259, 306
GL_INTERPOLATE constant, 370
GL_INVALID_ENUM error code, 68
GL_INVALID_FRAMEBUFFER_OPERATION_EXT

error condition, 613
GL_INVALID_OPERATION error code, 68

GL_INVALID_VALUE error code, 68
GL_LIGHT_MODEL_AMBIENT constant (glGet

function), 910
GL_LIGHT_MODEL_COLOR_CONTROL constant

(glGet function), 910
GL_LIGHT_MODEL_LOCAL_VIEWER constant

(glGet function), 910
GL_LIGHT_MODEL_TWO_SIDE constant (glGet

function), 910
GL_LIGHTi constant (glGet function), 910
GL_LIGHTING constant (glGet function), 910
GL_LINE_LOOP primitive, 87-88
GL_LINE_SMOOTH constant (glGet

function), 910
GL_LINE_SMOOTH_HINT constant (glGet func-

tion), 910
GL_LINE_STIPPLE constant (glGet function), 910
GL_LINE_STIPPLE_PATTERN constant (glGet

function), 911
GL_LINE_STIPPLE_REPEAT constant (glGet

function), 911
GL_LINE_STRIP primitive, 87-89
GL_LINE_WIDTH constant (glGet function), 911
GL_LINE_WIDTH_GRANULARITY constant (glGet

function), 911
GL_LINE_WIDTH_RANGE constant (glGet

function), 911
GL_LINEAR constant, 242, 327
GL_LINEAR_ATTENUATION parameter

glGetLight function, 946
glLight function, 993

GL_LINEAR_MIPMAP_LINEAR mipmap filter, 327
GL_LINEAR_MIPMAP_NEAREST mipmap

filter, 327
GL_LINES primitive. See lines, drawing
GL_LIST_BASE constant (glGet function), 911
GL_LIST_INDEX constant (glGet function), 911
GL_LIST_MODE constant (glGet function), 911
GL_LOGIC_OP_MODE constant (glGet

function), 911
GL_LUMINANCE pixel format, 259
GL_LUMINANCE_ALPHA pixel format, 259
GL_MAP_COLOR constant (glGet function), 912
GL_MAP_STENCIL constant (glGet

function), 912
GL_MAP1_COLOR_4 constant (glGet

function), 911
GL_MAP1_GRID_DOMAIN constant (glGet

function), 911
GL_MAP1_GRID_SEGMENTS constant (glGet

function), 911
GL_MAP1_INDEX constant (glGet function), 911

GL_FRAMEBUFFER_COMPLETE_EXT error condition1162

GL_MAP1_NORMAL constant (glGet
function), 911

GL_MAP1_TEXTURE_COORD_1 constant (glGet
function), 911

GL_MAP1_TEXTURE_COORD_2 constant (glGet
function), 911

GL_MAP1_TEXTURE_COORD_3 constant (glGet
function), 911

GL_MAP1_TEXTURE_COORD_4 constant (glGet
function), 911

GL_MAP1_VERTEX_3 constant (glGet
function), 912

GL_MAP1_VERTEX_4 constant (glGet
function), 912

GL_MAP2_COLOR_4 constant (glGet
function), 912

GL_MAP2_GRID_DOMAIN constant (glGet
function), 912

GL_MAP2_GRID_SEGMENTS constant (glGet
function), 912

GL_MAP2_INDEX constant (glGet function), 912
GL_MAP2_NORMAL constant (glGet

function), 912
GL_MAP2_TEXTURE_COORD_1 constant (glGet

function), 912
GL_MAP2_TEXTURE_COORD_2 constant (glGet

function), 912
GL_MAP2_TEXTURE_COORD_3 constant (glGet

function), 912
GL_MAP2_TEXTURE_COORD_4 constant (glGet

function), 912
GL_MAP2_VERTEX_3 constant (glGet

function), 912
GL_MAP2_VERTEX_4 constant (glGet

function), 912
GL_MATRIX_MODE constant (glGet

function), 912
GL_MAX blending mode, 234
GL_MAX_3D_TEXTURE_SIZE constant (glGet

function), 912
GL_MAX_ATTRIB_STACK_DEPTH constant (glGet

function), 913
GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

constant (glGet function), 913
GL_MAX_CLIP_PLANES constant (glGet

function), 913
GL_MAX_COLOR_MATRIX_STACK_DEPTH

constant (glGet function), 913
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS

constant (glGet function), 913
GL_MAX_CUBE_MAP_TEXTURE_SIZE constant

(glGet function), 913

GL_MAX_DRAW_BUFFERS constant (glGet
function), 913

GL_MAX_ELEMENTS_INDICES constant (glGet
function), 913

GL_MAX_ELEMENTS_VERTICES constant (glGet
function), 913

GL_MAX_EVAL_ORDER constant (glGet
function), 913

GL_MAX_FRAGMENT_UNIFORM_COMPONENTS
constant (glGet function), 913

GL_MAX_LIGHTS constant (glGet function), 913
GL_MAX_LIST_NESTING constant (glGet

function), 913
GL_MAX_MODELVIEW_STACK_DEPTH constant

(glGet function), 913
GL_MAX_NAME_STACK_DEPTH constant (glGet

function), 913
GL_MAX_PIXEL_MAP_TABLE constant (glGet

function), 913
GL_MAX_PROJECTION_STACK_DEPTH constant

(glGet function), 914
GL_MAX_TEXTURE_COORDS constant (glGet

function), 914
GL_MAX_TEXTURE_IMAGE_UNITS constant

(glGet function), 914
GL_MAX_TEXTURE_LOD_BIAS constant (glGet

function), 914
GL_MAX_TEXTURE_SIZE constant (glGet

function), 914
GL_MAX_TEXTURE_STACK_DEPTH constant

(glGet function), 914
GL_MAX_TEXTURE_UNITS constant (glGet

function), 914
GL_MAX_VARYING_FLOATS constant (glGet

function), 914
GL_MAX_VERTEX_ATTRIBS constant (glGet

function), 914
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS

constant (glGet function), 914
GL_MAX_VERTEX_UNIFORM_COMPONENTS

constant (glGet function), 914
GL_MAX_VIEWPORT_DIMS constant (glGet

function), 914
GL_MIN blending mode, 234
GL_MINMAX constant (glGet function), 914
GL_MODELVIEW_MATRIX constant (glGet

function), 914
GL_MODELVIEW_STACK_DEPTH constant (glGet

function), 914
GL_MODULATE texture environment mode,

317, 370
gl_MultiTexCoordn built-in variable, 536

gl_MultiTexCoordn built-in variable 1163

GL_NAME_STACK_DEPTH constant (glGet
function), 915

GL_NEAREST mipmap filter, 327
GL_NEAREST_MIPMAP_LINEAR mipmap

filter, 327
GL_NEAREST_MIPMAP_NEAREST mipmap

filter, 327
GL_NO_ERROR error code, 68
gl_Normal built-in variable, 536
GL_NORMAL_ARRAY constant (glGet

function), 915
GL_NORMAL_ARRAY_BUFFER_BINDING constant

(glGet function), 915
GL_NORMAL_ARRAY_STRIDE constant (glGet

function), 915
GL_NORMAL_ARRAY_TYPE constant (glGet

function), 915
GL_NORMAL_MAP texture generation

mode, 357
GL_NORMALIZE constant (glGet function), 915
gl_NormalMatrix function, 551
GL_NUM_COMPRESSED_TEXTURE_FORMATS

constant (glGet function), 915
GL_OBJECT_LINEAR texture generation

mode, 354
GL_ONE_MINUS_SRC_ALPHA constant, 371
GL_ONE_MINUS_SRC_COLOR constant, 371
GL_OUT_OF_MEMORY error code, 68
GL_PACK_ALIGNMENT constant

glGet function, 915
glPixlStore function, 1033

GL_PACK_IMAGE_HEIGHT constant
glGet function, 915
glPixlStore function, 1032

GL_PACK_LSB_FIRST constant
glGet function, 915
glPixlStore function, 1032

GL_PACK_ROW_LENGTH constant
glGet function, 915
glPixlStore function, 1032

GL_PACK_SKIP_IMAGES constant
glGet function, 915
glPixlStore function, 1033

GL_PACK_SKIP_PIXELS constant
glGet function, 915
glPixlStore function, 1033

GL_PACK_SKIP_ROWS constant
glGet function, 915
glPixlStore function, 1033

GL_PACK_SWAP_BYTES constant
glGet function, 915
glPixlStore function, 1032

GL_PERSPECTIVE_CORRECTION_HINT constant
(glGet function), 915

GL_PIXEL_MAP_A_TO_A_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_B_TO_B_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_G_TO_G_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_I_TO_A_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_I_TO_B_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_I_TO_G_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_I_TO_I_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_I_TO_R_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_R_TO_R_SIZE constant (glGet
function), 916

GL_PIXEL_MAP_S_TO_S_SIZE constant (glGet
function), 916

GL_PIXEL_PACK_BUFFER_BINDING constant
(glGet function), 916

GL_PIXEL_UNPACK_BUFFER_BINDING constant
(glGet function), 916

GL_POINT_DISTANCE_ATTENUATION constant
(glGet function), 916

GL_POINT_FADE_THRESHOLD_SIZE constant
(glGet function), 916

GL_POINT_SIZE constant (glGet function), 916
GL_POINT_SIZE_GRANULARITY constant (glGet

function), 916
GL_POINT_SIZE_MAX constant (glGet

function), 916
GL_POINT_SIZE_MIN constant (glGet

function), 917
GL_POINT_SIZE_RANGE constant (glGet

function), 917
GL_POINT_SMOOTH constant (glGet

function), 917
GL_POINT_SMOOTH_HINT constant (glGet

function), 917
GL_POINT_SPRITE constant (glGet function), 917
gl_PointCoord built-in variable, 537
GL_POINTS primitive. See points, drawing
gl_PointSize built-in variable, 536
GL_POLYGON primitive, 108-109
GL_POLYGON_MODE constant (glGet

function), 917
GL_POLYGON_OFFSET_FACTOR constant (glGet

function), 917

GL_NAME_STACK_DEPTH constant1164

GL_POLYGON_OFFSET_FILL constant (glGet
function), 917

GL_POLYGON_OFFSET_LINE constant (glGet
function), 917

GL_POLYGON_OFFSET_POINT constant (glGet
function), 917

GL_POLYGON_OFFSET_UNITS constant (glGet
function), 917

GL_POLYGON_SMOOTH constant (glGet
function), 917

GL_POLYGON_SMOOTH_HINT constant (glGet
function), 917

GL_POLYGON_STIPPLE constant (glGet
function), 917

gl_Position built-in variable, 536
GL_POSITION parameter

glGetLight function, 945
glLight function, 992

GL_POST_COLOR_MATRIX_ALPHA_BIAS constant
(glGet function), 918

GL_POST_COLOR_MATRIX_ALPHA_SCALE
constant (glGet function), 918

GL_POST_COLOR_MATRIX_BLUE_BIAS constant
(glGet function), 918

GL_POST_COLOR_MATRIX_BLUE_SCALE
constant (glGet function), 918

GL_POST_COLOR_MATRIX_COLOR_TABLE
constant (glGet function), 917

GL_POST_COLOR_MATRIX_GREEN_BIAS
constant (glGet function), 918

GL_POST_COLOR_MATRIX_GREEN_SCALE
constant (glGet function), 918

GL_POST_COLOR_MATRIX_RED_BIAS constant
(glGet function), 917

GL_POST_COLOR_MATRIX_RED_SCALE constant
(glGet function), 918

GL_POST_CONVOLUTION_ALPHA_BIAS constant
(glGet function), 918

GL_POST_CONVOLUTION_ALPHA_SCALE
constant (glGet function), 918

GL_POST_CONVOLUTION_BLUE_BIAS constant
(glGet function), 918

GL_POST_CONVOLUTION_BLUE_SCALE constant
(glGet function), 918

GL_POST_CONVOLUTION_COLOR_TABLE
constant (glGet function), 918

GL_POST_CONVOLUTION_GREEN_BIAS constant
(glGet function), 918

GL_POST_CONVOLUTION_GREEN_SCALE
constant (glGet function), 918

GL_POST_CONVOLUTION_RED_BIAS constant
(glGet function), 918

GL_POST_CONVOLUTION_RED_SCALE constant
(glGet function), 918

GL_PREVIOUS constant, 370
GL_PRIMARY_COLOR constant, 370
GL_PROJECTION_MATRIX constant (glGet

function), 918
GL_PROJECTION_STACK_DEPTH constant (glGet

function), 919
GL_QUAD_STRIP primitive, 108
GL_QUADRATIC_ATTENUATION parameter

glGetLight function, 946
glLight function, 993

GL_QUADS primitive, 108
GL_READ_BUFFER constant (glGet function), 919
GL_RED pixel format, 259
GL_RED_BIAS constant (glGet function), 919
GL_RED_BITS constant (glGet function), 919
GL_RED_SCALE constant (glGet function), 919
GL_REFLECTION_MAP texture generation

mode, 357
GL_RENDER rendering mode, 460
GL_RENDER_MODE constant (glGet

function), 919
GL_REPEAT wrap mode, 320-321
GL_REPLACE texture environment mode,

317, 370
GL_RESCALE_NORMAL constant (glGet

function), 919
GL_RGB pixel format, 259
GL_RGBA pixel format, 259
GL_RGBA_MODE constant (glGet function), 919
GL_SAMPLES constant (glGet function), 919
GL_SAMPLE_BUFFERS constant (glGet

function), 919
GL_SAMPLE_COVERAGE_INVERT constant (glGet

function), 919
GL_SAMPLE_COVERAGE_VALUE constant (glGet

function), 919
GL_SCISSOR_BOX constant (glGet

function), 919
GL_SCISSOR_TEST constant (glGet function), 919
GL_SECONDARY_COLOR_ARRAY constant (glGet

function), 919
GL_SECONDARY_COLOR_ARRAY_BUFFER_

BINDING constant (glGet function), 919
GL_SECONDARY_COLOR_ARRAY_SIZE constant

(glGet function), 919
GL_SECONDARY_COLOR_ARRAY_STRIDE

constant (glGet function), 920
GL_SECONDARY_COLOR_ARRAY_TYPE constant

(glGet function), 920
gl_SecondaryColor built-in variable, 536-537

gl_SecondaryColor built-in variable 1165

GL_SELECTION_BUFFER_SIZE constant (glGet
function), 920

GL_SEPARABLE_2D constant (glGet
function), 920

GL_SHADE_MODEL constant (glGet
function), 920

GL_SHININESS parameter (glMaterial
function), 1013

GL_SHORT data type, 259, 306
GL_SMOOTH_LINE_WIDTH_GRANULARITY

constant (glGet function), 920
GL_SMOOTH_LINE_WIDTH_RANGE constant

(glGet function), 920
GL_SMOOTH_POINT_SIZE_GRANULARITY

constant (glGet function), 920
GL_SMOOTH_POINT_SIZE_RANGE constant

(glGet function), 920
GL_SPECULAR parameter

glGetLight function, 945
glLight function, 992
glMaterial function, 1013

GL_SPHERE_MAP texture generation mode,
356-357

GL_SPOT_CUTOFF parameter
glGetLight function, 946
glLight function, 993

GL_SPOT_DIRECTION parameter
glGetLight function, 946
glLight function, 992

GL_SPOT_EXPONENT parameter
glGetLight function, 946
glLight function, 992

GL_SRC_ALPHA constant, 371
GL_SRC_COLOR constant, 371
GL_STACK_OVERFLOW error code, 68, 143
GL_STACK_UNDERFLOW error code, 68, 143
GL_STATIC_DRAW usage hint, 451
GL_STENCIL_BACK_FAIL constant (glGet

function), 920
GL_STENCIL_BACK_FUNC constant (glGet

function), 920
GL_STENCIL_BACK_PASS_DEPTH_FAIL constant

(glGet function), 920
GL_STENCIL_BACK_PASS_DEPTH_PASS constant

(glGet function), 920
GL_STENCIL_BACK_REF constant (glGet

function), 920
GL_STENCIL_BACK_VALUE_MASK constant

(glGet function), 920
GL_STENCIL_BACK_WRITEMASK constant (glGet

function), 920

GL_STENCIL_BITS constant (glGet function), 920
GL_STENCIL_CLEAR_VALUE constant (glGet

function), 921
GL_STENCIL_FAIL constant (glGet function), 921
GL_STENCIL_FUNC constant (glGet function), 921
GL_STENCIL_INDEX pixel format, 259
GL_STENCIL_PASS_DEPTH_FAIL constant (glGet

function), 921
GL_STENCIL_PASS_DEPTH_PASS constant (glGet

function), 921
GL_STENCIL_REF constant (glGet function), 921
GL_STENCIL_TEST constant (glGet function), 921
GL_STENCIL_VALUE_MASK constant (glGet

function), 921
GL_STENCIL_WRITEMASK constant (glGet

function), 921
GL_STEREO constant (glGet function), 921
GL_STREAM_DRAW usage hint, 451
GL_SUBPIXEL_BITS constant (glGet

function), 921
GL_SUBTRACT constant, 370
GL_TABLE_TOO_LARGE error code, 68
gl_TexCoord[] built-in variable, 537
GL_TEXTURE constant, 370
GL_TEXTURE_1D constant (glGet function), 921
GL_TEXTURE_2D constant (glGet function), 922
GL_TEXTURE_3D constant (glGet function), 922
GL_TEXTURE_BINDING_1D constant (glGet

function), 921
GL_TEXTURE_BINDING_2D constant (glGet

function), 922
GL_TEXTURE_BINDING_3D constant (glGet

function), 922
GL_TEXTURE_BINDING_CUBE_MAP constant

(glGet function), 922
GL_TEXTURE_COMPRESSION_HINT constant

(glGet function), 922
GL_TEXTURE_COORD_ARRAY constant (glGet

function), 922
GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING

constant (glGet function), 922
GL_TEXTURE_COORD_ARRAY_SIZE constant

(glGet function), 922
GL_TEXTURE_COORD_ARRAY_STRIDE constant

(glGet function), 922
GL_TEXTURE_COORD_ARRAY_TYPE constant

(glGet function), 922
GL_TEXTURE_CUBE_MAP constant (glGet

function), 922
GL_TEXTURE_GEN_Q constant (glGet

function), 922

GL_SELECTION_BUFFER_SIZE constant1166

GL_TEXTURE_GEN_R constant (glGet
function), 922

GL_TEXTURE_GEN_S constant (glGet
function), 922

GL_TEXTURE_GEN_T constant (glGet
function), 922

GL_TEXTURE_MATRIX constant (glGet
function), 922

GL_TEXTURE_STACK_DEPTH constant (glGet
function), 923

GL_TRANSPOSE_COLOR_MATRIX constant
(glGet function), 923

GL_TRANSPOSE_MODELVIEW_MATRIX constant
(glGet function), 923

GL_TRANSPOSE_PROJECTION_MATRIX constant
(glGet function), 923

GL_TRANSPOSE_TEXTURE_MATRIX constant
(glGet function), 923

GL_TRIANGLES primitive. See triangles, drawing
GL_TRIANGLE_FAN primitive, 97-98
GL_TRIANGLE_STRIP primitive, 96-97
GL_UNPACK_ALIGNMENT constant

glGet function, 923
glPixlStore function, 1034

GL_UNPACK_IMAGE_HEIGHT constant
glGet function, 923
glPixlStore function, 1033

GL_UNPACK_LSB_FIRST constant
glGet function, 923
glPixlStore function, 1033

GL_UNPACK_ROW_LENGTH constant
glGet function, 923
glPixlStore function, 1033

GL_UNPACK_SKIP_IMAGES constant (glGet
function), 923

GL_UNPACK_SKIP_PIXELS constant
glGet function, 923
glPixlStore function, 1034

GL_UNPACK_SKIP_ROWS constant
glGet function, 923
glPixlStore function, 1034

GL_UNPACK_SWAP_BYTES constant
glGet function, 923
glPixlStore function, 1033

GL_UNSIGNED_BYTE data type, 259, 306
GL_UNSIGNED_INT data type, 259-260, 306
GL_UNSIGNED_SHORT data type, 259-260, 306
gl_Vertex built-in variable, 536
GL_VERTEX_ARRAY constant (glGet

function), 923

GL_VERTEX_ARRAY_BUFFER_BINDING constant
(glGet function), 923

GL_VERTEX_ARRAY_SIZE constant (glGet
function), 923

GL_VERTEX_ARRAY_STRIDE constant (glGet
function), 924

GL_VERTEX_ARRAY_TYPE constant (glGet
function), 924

GL_VERTEX_PROGRAM_POINT_SIZE constant
(glGet function), 924

GL_VERTEX_PROGRAM_TWO_SIDE constant
(glGet function), 924

GL_VIEWPORT constant (glGet function), 924
GL_ZOOM_X constant (glGet function), 924
GL_ZOOM_Y constant (glGet function), 924
glAccum function, 244-246, 784-785
glActiveTexture function, 363, 785
glAlphaFunc function, 249, 506, 786
glAreTexturesResident function, 338, 787
glArrayElement function, 435, 788
glAttachShader function, 530, 747, 788-789
glBegin function, 422, 789-791

GL_LINES parameter, 85
GL_LINE_STRIP parameter, 87
GL_POINTS parameter, 78
GL_TRIANGLES parameter, 94

glBeginQuery function, 487, 791-792
glBindAttribLocation function, 747, 792-793
glBindBuffer function, 450-454, 602-603,

793-795
glBindFramebufferEXT function, 609
glBindRenderbufferEXT function, 609
glBindTexture function, 330, 337, 505, 795-796
glBitmap function, 257, 796-797
glBlendColor function, 234, 798
glBlendEquation function, 234, 798-799
glBlendEquationSeparate function, 799-801
glBlendFunc function, 230-232, 236, 801-803
glBlendFuncSeparate function, 234, 803-806
glBufferData function, 451, 602, 806-807
glBufferSubData function, 602, 807-808
glCallList function, 425, 808-809
glCallLists function, 425, 668, 698, 728, 809-810
glClear function, 52, 123, 810-811
glClearAccum function, 811-812
glClearColor function, 51-52, 812
glClearDepth function, 812-813
glClearIndex function, 813
glClearStencil function, 123, 813
glClientActiveTexture function, 434, 814

glClientActiveTexture function 1167

glClipPlane function, 814-815
glColor function, 182-183, 815-817
glColor3f function, 56, 182
glColor3ub function, 182
glColor4ub function, 742
glColorMask function, 248, 817-818
glColorMaterial function, 194, 205, 818-819
glColorPointer function, 433-434, 819-820
glColorSubTable function, 291, 820-821
glColorTable function, 289-290, 821-824
glColorTableParameter function, 291, 824-825
glColorTableParameterfv function, 291
glColorTableParameteriv function, 291
glCompileShader function, 529, 751, 825-826
glCompressedTexImage1D function, 349,

826-827
glCompressedTexImage2D function, 349,

827-829
glCompressedTexImage3D function, 350,

830-831
glCompressedTexSubImage function, 350
glCompressedTexSubImage1D function, 832-833
glCompressedTexSubImage2D function, 833-835
glCompressedTexSubImage3D function, 835-836
glConvolutionFilter1D function, 296, 836-838
glConvolutionFilter2D function, 293-294,

839-841
glConvolutionParameter function, 296, 841-842
glConvolutionParameterf function, 296
glConvolutionParameterfv function, 296
glConvolutionParameteri function, 296
glConvolutionParameteriv function, 296
glCopyColorSubTable function, 292, 843
glCopyColorTable function, 291, 843-845
glCopyConvolutionFilter1D function, 845-846
glCopyConvolutionFilter2D function, 295,

846-848
glCopyPixels function, 265, 848-850
glCopyTexImage function, 638
glCopyTexImage1D function, 307, 850-852
glCopyTexImage2D function, 307, 498-499, 574,

618, 852-854
glCopyTexSubImage function, 308
glCopyTexSubImage1D function, 308, 854-855
glCopyTexSubImage2D function, 308, 855-857
glCopyTexSubImage3D function, 308, 857-858
glCreateProgram function, 530, 747, 858-859
glCreateShader function, 528, 747, 859-860
glCullFace function, 860
glDeleteBuffers function, 602, 861
glDeleteFramebuffersEXT function, 609
glDeleteLists function, 425, 861

glDeleteProgram function, 530, 862
glDeleteQueries function, 487, 862-863
glDeleteRenderbuffersEXT function, 609
glDeleteShader function, 528, 863
glDeleteTextures function, 330, 863-864
glDepthFunc function, 249, 864-865
glDepthMask function, 119, 865
glDepthRange function, 865-866
glDetachShader function, 530, 866-867
glDisable function, 66, 91, 290

GL_ALPHA_TEST parameter, 249
GL_DITHER parameter, 250
GL_FOG parameter, 241
GL_MULTISAMPLE parameter, 239
GL_TEXTURE_GEN_* parameter, 351

glDisableClientState function, 432
glDrawArrays function, 435, 771, 867
glDrawBuffer function, 117, 266, 611, 706,

868-869
glDrawBuffers function, 611, 869-870
glDrawElements function, 438, 870-871
glDrawPixels function, 258, 279-280, 602-603,

871-876
glDrawRangeElements function, 439, 876-877
glDrawTex function, 745
glEdgeFlag function, 115-116, 878
glEdgeFlagPointer function, 433-434, 878-879
glee.h file, 43
glEnable function, 65, 91, 879-884

GL_ALPHA_TEST parameter, 249
GL_BLEND parameter, 230, 236
GL_COLOR_LOGIC_OP parameter, 248
GL_COLOR_MATERIAL parameter, 194
GL_COLOR_SUM parameter, 344
GL_DEPTH_TEST parameter, 103, 119
GL_DITHER parameter, 250
GL_FOG parameter, 241
GL_HISTOGRAM parameter, 298
GL_LIGHT0 parameter, 203
GL_LIGHTING parameter, 192
GL_LINE_STIPPLE parameter, 91
GL_MINMAX parameter, 301
GL_MULTISAMPLE parameter, 239
GL_NORMALIZE parameter, 201
GL_POINT_SPRITE parameter, 372
GL_POLYGON_STIPPLE parameter, 109
GL_RESCALE_NORMALS parameter, 201
GL_SCISSOR_TEST parameter, 120
GL_STENCIL_TEST parameter, 122
GL_TEXTURE_2D function, 316
GL_TEXTURE_CUBE_MAP parameter, 359
GL_TEXTURE_GEN_* parameter, 350

glClipPlane function1168

glEnableClientState function, 432-433, 884-885
glEnableVertexAttribArray function, 886
glEnd function, 422

GL_LINES parameter, 85
GL_LINE_STRIP parameter, 87
GL_POINTS parameter, 78
GL_TRIANGLES parameter, 95

glEndList function, 424-426
glEndQuery function, 487
glEvalCoord function, 396, 886-888
glEvalCoord1f function, 396
glEvalMesh function, 396, 400, 888-890
glEvalMesh2 function, 400
glEvalPoint function, 890-891
glFeedbackBuffer function, 471, 891-893
glFinish function, 424, 893
glFlush function, 53, 424, 893-894
glFog function, 242, 894-895
glFogCoord function, 896
glFogCoordf function, 244
glFogCoordPointer function, 433-434, 896-897
glFogf function, 242-243
glFogfv function, 242
glFogi function, 242, 244
glFogiv function, 242
GLFrame class, 162-164
glFramebufferRenderbufferEXT function, 610
glFramebufferTexture1DEXT function, 610
glFramebufferTexture2DEXT function, 610
glFramebufferTexture3DEXT function, 610
glFrontFace function, 96, 898
glFrustrumf function, 770
glFrustum function, 149, 898-899
glGenBuffers function, 450, 602, 900
glGenerateMipmapEXT function, 613, 618, 634
glGenFramebuffersEXT function, 609
glGenLists function, 425, 900-901
glGenQueries function, 486
glGenRenderbuffersEXT function, 609
glGenTextures function, 330, 337, 505, 902
glGet function, 143
glGet function, 902-924

C specification, 902
constants

GL_ACCUM_ALPHA_BITS, 903
GL_ACCUM_BLUE_BITS, 903
GL_ACCUM_CLEAR_VALUE, 903
GL_ACCUM_GREEN_BITS, 903
GL_ACCUM_RED_BITS, 903
GL_ACTIVE_TEXTURE, 903
GL_ALIASED_LINE_WIDTH_RANGE, 903
GL_ALIASED_POINT_SIZE_RANGE, 903

GL_ALPHA_BIAS, 903
GL_ALPHA_BITS, 903
GL_ALPHA_SCALE, 903
GL_ALPHA_TEST, 903
GL_ALPHA_TEST_FUNC, 903
GL_ALPHA_TEST_REF, 904
GL_ARRAY_BUFFER_BINDING, 904
GL_ATTRIB_STACK_DEPTH, 904
GL_AUTO_NORMAL, 904
GL_AUX_BUFFERS, 904
GL_BLEND, 904
GL_BLEND_COLOR, 904
GL_BLEND_DST_ALPHA, 904
GL_BLEND_DST_RGB, 904
GL_BLEND_EQUATION_ALPHA, 904
GL_BLEND_EQUATION_RGB, 904
GL_BLEND_SRC_ALPHA, 904
GL_BLEND_SRC_RGB, 904
GL_BLUE_BIAS, 904
GL_BLUE_BITS, 904
GL_BLUE_SCALE, 904
GL_CLIENT_ACTIVE_TEXTURE, 905
GL_CLIENT_ATTRIB_STACK_DEPTH, 905
GL_CLIP_PLANEi, 905
GL_COLOR_ARRAY, 905
GL_COLOR_ARRAY_BUFFER_BINDING, 905
GL_COLOR_ARRAY_SIZE, 905
GL_COLOR_ARRAY_STRIDE, 905
GL_COLOR_ARRAY_TYPE, 905
GL_COLOR_CLEAR_VALUE, 905
GL_COLOR_LOGIC_OP, 905
GL_COLOR_MATERIAL, 905
GL_COLOR_MATERIAL_FACE, 905
GL_COLOR_MATERIAL_PARAMETER, 905
GL_COLOR_MATRIX, 905
GL_COLOR_MATRIX_STACK_DEPTH, 905
GL_COLOR_SUM, 905
GL_COLOR_TABLE, 906
GL_COLOR_WRITEMASK, 906
GL_COMPRESSED_TEXTURE_

FORMATS, 906
GL_CONVOLUTION_1D, 906
GL_CONVOLUTION_2D, 906
GL_CULL_FACE, 906
GL_CULL_FACE_MODE, 906
GL_CURRENT_COLOR, 906
GL_CURRENT_FOG_COORD, 906
GL_CURRENT_INDEX, 906
GL_CURRENT_NORMAL, 906
GL_CURRENT_PROGRAM, 906
GL_CURRENT_RASTER_COLOR, 906
GL_CURRENT_RASTER_DISTANCE, 906

glGet function 1169

GL_CURRENT_RASTER_INDEX, 906
GL_CURRENT_RASTER_POSITION, 906
GL_CURRENT_RASTER_POSITION_

VALID, 907
GL_CURRENT_RASTER_SECONDARY_

COLOR, 907
GL_CURRENT_RASTER_TEXTURE_

COORDS, 907
GL_CURRENT_SECONDARY_COLOR, 907
GL_CURRENT_TEXTURE_COORDS, 907
GL_DEPTH_BIAS, 907
GL_DEPTH_BITS, 907
GL_DEPTH_CLEAR_VALUE, 907
GL_DEPTH_FUNC, 907
GL_DEPTH_RANGE, 907
GL_DEPTH_SCALE, 907
GL_DEPTH_TEST, 907
GL_DEPTH_WRITEMASK, 907
GL_DITHER, 907
GL_DOUBLEBUFFER, 907
GL_DRAW_BUFFER, 908
GL_DRAW_BUFFERi, 908
GL_EDGE_FLAG, 908
GL_EDGE_FLAG_ARRAY, 908
GL_EDGE_FLAG_ARRAY_BUFFER_

BINDING, 908
GL_EDGE_FLAG_ARRAY_STRIDE, 908
GL_ELEMENT_ARRAY_BUFFER_

BINDING, 908
GL_FEEDBACK_BUFFER_SIZE, 908
GL_FEEDBACK_BUFFER_TYPE, 908
GL_FOG, 908
GL_FOG_COLOR, 909
GL_FOG_COORD_ARRAY, 908
GL_FOG_COORD_ARRAY_BUFFER_

BINDING, 908
GL_FOG_COORD_ARRAY_STRIDE, 908
GL_FOG_COORD_ARRAY_TYPE, 908
GL_FOG_COORD_SRC, 908
GL_FOG_DENSITY, 909
GL_FOG_END, 909
GL_FOG_HINT, 909
GL_FOG_INDEX, 909
GL_FOG_MODE, 909
GL_FOG_START, 909
GL_FRAGMENT_SHADER_DERIVATIVE_

HINT, 909
GL_FRONT_FACE, 909
GL_GENERATE_MIPMAP_HINT, 909
GL_GREEN_BIAS, 909
GL_GREEN_BITS, 909
GL_GREEN_SCALE, 909

GL_HISTOGRAM, 909
GL_INDEX_ARRAY, 909
GL_INDEX_ARRAY_BUFFER_BINDING, 909
GL_INDEX_ARRAY_STRIDE, 909
GL_INDEX_ARRAY_TYPE, 910
GL_INDEX_BITS, 910
GL_INDEX_CLEAR_VALUE, 910
GL_INDEX_LOGIC_OP, 910
GL_INDEX_MODE, 910
GL_INDEX_OFFSET, 910
GL_INDEX_SHIFT, 910
GL_INDEX_WRITEMASK, 910
GL_LIGHTi, 910
GL_LIGHTING, 910
GL_LIGHT_MODEL_AMBIENT, 910
GL_LIGHT_MODEL_COLOR_

CONTROL, 910
GL_LIGHT_MODEL_LOCAL_VIEWER, 910
GL_LIGHT_MODEL_TWO_SIDE, 910
GL_LINE_SMOOTH, 910
GL_LINE_SMOOTH_HINT, 910
GL_LINE_STIPPLE, 910
GL_LINE_STIPPLE_PATTERN, 911
GL_LINE_STIPPLE_REPEAT, 911
GL_LINE_WIDTH, 911
GL_LINE_WIDTH_GRANULARITY, 911
GL_LINE_WIDTH_RANGE, 911
GL_LIST_BASE, 911
GL_LIST_INDEX, 911
GL_LIST_MODE, 911
GL_LOGIC_OP_MODE, 911
GL_MAP1_COLOR_4, 911
GL_MAP1_GRID_DOMAIN, 911
GL_MAP1_GRID_SEGMENTS, 911
GL_MAP1_INDEX, 911
GL_MAP1_NORMAL, 911
GL_MAP1_TEXTURE_COORD_1, 911
GL_MAP1_TEXTURE_COORD_2, 911
GL_MAP1_TEXTURE_COORD_3, 911
GL_MAP1_TEXTURE_COORD_4, 911
GL_MAP1_VERTEX_3, 912
GL_MAP1_VERTEX_4, 912
GL_MAP2_COLOR_4, 912
GL_MAP2_GRID_DOMAIN, 912
GL_MAP2_GRID_SEGMENTS, 912
GL_MAP2_INDEX, 912
GL_MAP2_NORMAL, 912
GL_MAP2_TEXTURE_COORD_1, 912
GL_MAP2_TEXTURE_COORD_2, 912
GL_MAP2_TEXTURE_COORD_3, 912
GL_MAP2_TEXTURE_COORD_4, 912

glGet function1170

GL_MAP2_VERTEX_3, 912
GL_MAP2_VERTEX_4, 912
GL_MAP_COLOR, 912
GL_MAP_STENCIL, 912
GL_MATRIX_MODE, 912
GL_MAX_3D_TEXTURE_SIZE, 912
GL_MAX_ATTRIB_STACK_DEPTH, 913
GL_MAX_CLIENT_ATTRIB_STACK_

DEPTH, 913
GL_MAX_CLIP_PLANES, 913
GL_MAX_COLOR_MATRIX_STACK_

DEPTH, 913
GL_MAX_COMBINED_TEXTURE_IMAGE_

UNITS, 913
GL_MAX_CUBE_MAP_TEXTURE_SIZE, 913
GL_MAX_DRAW_BUFFERS, 913
GL_MAX_ELEMENTS_INDICES, 913
GL_MAX_ELEMENTS_VERTICES, 913
GL_MAX_EVAL_ORDER, 913
GL_MAX_FRAGMENT_UNIFORM_

COMPONENTS, 913
GL_MAX_LIGHTS, 913
GL_MAX_LIST_NESTING, 913
GL_MAX_MODELVIEW_STACK_

DEPTH, 913
GL_MAX_NAME_STACK_DEPTH, 913
GL_MAX_PIXEL_MAP_TABLE, 913
GL_MAX_PROJECTION_STACK_

DEPTH, 914
GL_MAX_TEXTURE_COORDS, 914
GL_MAX_TEXTURE_IMAGE_UNITS, 914
GL_MAX_TEXTURE_LOD_BIAS, 914
GL_MAX_TEXTURE_SIZE, 914
GL_MAX_TEXTURE_STACK_DEPTH, 914
GL_MAX_TEXTURE_UNITS, 914
GL_MAX_VARYING_FLOATS, 914
GL_MAX_VERTEX_ATTRIBS, 914
GL_MAX_VERTEX_TEXTURE_IMAGE_

UNITS, 914
GL_MAX_VERTEX_UNIFORM_

COMPONENTS, 914
GL_MAX_VIEWPORT_DIMS, 914
GL_MINMAX, 914
GL_MODELVIEW_MATRIX, 914
GL_MODELVIEW_STACK_DEPTH, 914
GL_NAME_STACK_DEPTH, 915
GL_NORMALIZE, 915
GL_NORMAL_ARRAY, 915
GL_NORMAL_ARRAY_BUFFER_

BINDING, 915
GL_NORMAL_ARRAY_STRIDE, 915

GL_NORMAL_ARRAY_TYPE, 915
GL_NUM_COMPRESSED_TEXTURE_

FORMATS, 915
GL_PACK_ALIGNMENT, 915
GL_PACK_IMAGE_HEIGHT, 915
GL_PACK_LSB_FIRST, 915
GL_PACK_ROW_LENGTH, 915
GL_PACK_SKIP_IMAGES, 915
GL_PACK_SKIP_PIXELS, 915
GL_PACK_SKIP_ROWS, 915
GL_PACK_SWAP_BYTES, 915
GL_PERSPECTIVE_CORRECTION_

HINT, 915
GL_PIXEL_MAP_A_TO_A_SIZE, 916
GL_PIXEL_MAP_B_TO_B_SIZE, 916
GL_PIXEL_MAP_G_TO_G_SIZE, 916
GL_PIXEL_MAP_I_TO_A_SIZE, 916
GL_PIXEL_MAP_I_TO_B_SIZE, 916
GL_PIXEL_MAP_I_TO_G_SIZE, 916
GL_PIXEL_MAP_I_TO_I_SIZE, 916
GL_PIXEL_MAP_I_TO_R_SIZE, 916
GL_PIXEL_MAP_R_TO_R_SIZE, 916
GL_PIXEL_MAP_S_TO_S_SIZE, 916
GL_PIXEL_PACK_BUFFER_BINDING, 916
GL_PIXEL_UNPACK_BUFFER_

BINDING, 916
GL_POINT_DISTANCE_

ATTENUATION, 916
GL_POINT_FADE_THRESHOLD_SIZE, 916
GL_POINT_SIZE, 916
GL_POINT_SIZE_GRANULARITY, 916
GL_POINT_SIZE_MAX, 916
GL_POINT_SIZE_MIN, 917
GL_POINT_SIZE_RANGE, 917
GL_POINT_SMOOTH, 917
GL_POINT_SMOOTH_HINT, 917
GL_POINT_SPRITE, 917
GL_POLYGON_MODE, 917
GL_POLYGON_OFFSET_FACTOR, 917
GL_POLYGON_OFFSET_FILL, 917
GL_POLYGON_OFFSET_LINE, 917
GL_POLYGON_OFFSET_POINT, 917
GL_POLYGON_OFFSET_UNITS, 917
GL_POLYGON_SMOOTH, 917
GL_POLYGON_SMOOTH_HINT, 917
GL_POLYGON_STIPPLE, 917
GL_POST_COLOR_MATRIX_ALPHA_

BIAS, 918
GL_POST_COLOR_MATRIX_ALPHA_

SCALE, 918
GL_POST_COLOR_MATRIX_BLUE_

BIAS, 918

glGet function 1171

GL_POST_COLOR_MATRIX_BLUE_
SCALE, 918

GL_POST_COLOR_MATRIX_COLOR_
TABLE, 917

GL_POST_COLOR_MATRIX_GREEN_
BIAS, 918

GL_POST_COLOR_MATRIX_GREEN_
SCALE, 918

GL_POST_COLOR_MATRIX_RED_
BIAS, 917

GL_POST_COLOR_MATRIX_RED_
SCALE, 918

GL_POST_CONVOLUTION_ALPHA_
BIAS, 918

GL_POST_CONVOLUTION_ALPHA_
SCALE, 918

GL_POST_CONVOLUTION_BLUE_
BIAS, 918

GL_POST_CONVOLUTION_BLUE_
SCALE, 918

GL_POST_CONVOLUTION_COLOR_
TABLE, 918

GL_POST_CONVOLUTION_GREEN_
BIAS, 918

GL_POST_CONVOLUTION_GREEN_
SCALE, 918

GL_POST_CONVOLUTION_RED_BIAS, 918
GL_POST_CONVOLUTION_RED_

SCALE, 918
GL_PROJECTION_MATRIX, 918
GL_PROJECTION_STACK_DEPTH, 919
GL_READ_BUFFER, 919
GL_RED_BIAS, 919
GL_RED_BITS, 919
GL_RED_SCALE, 919
GL_RENDER_MODE, 919
GL_RESCALE_NORMAL, 919
GL_RGBA_MODE, 919
GL_SAMPLES, 919
GL_SAMPLE_BUFFERS, 919
GL_SAMPLE_COVERAGE_INVERT, 919
GL_SAMPLE_COVERAGE_VALUE, 919
GL_SCISSOR_BOX, 919
GL_SCISSOR_TEST, 919
GL_SECONDARY_COLOR_ARRAY, 919
GL_SECONDARY_COLOR_ARRAY_

BUFFER_BINDING, 919
GL_SECONDARY_COLOR_ARRAY_

SIZE, 919
GL_SECONDARY_COLOR_ARRAY_

STRIDE, 920

GL_SECONDARY_COLOR_ARRAY_
TYPE, 920

GL_SELECTION_BUFFER_SIZE, 920
GL_SEPARABLE_2D, 920
GL_SHADE_MODEL, 920
GL_SMOOTH_LINE_WIDTH_

GRANULARITY, 920
GL_SMOOTH_LINE_WIDTH_RANGE, 920
GL_SMOOTH_POINT_SIZE_

GRANULARITY, 920
GL_SMOOTH_POINT_SIZE_RANGE, 920
GL_STENCIL_BACK_FAIL, 920
GL_STENCIL_BACK_FUNC, 920
GL_STENCIL_BACK_PASS_DEPTH_

FAIL, 920
GL_STENCIL_BACK_PASS_DEPTH_

PASS, 920
GL_STENCIL_BACK_REF, 920
GL_STENCIL_BACK_VALUE_MASK, 920
GL_STENCIL_BACK_WRITEMASK, 920
GL_STENCIL_BITS, 920
GL_STENCIL_CLEAR_VALUE, 921
GL_STENCIL_FAIL, 921
GL_STENCIL_FUNC, 921
GL_STENCIL_PASS_DEPTH_FAIL, 921
GL_STENCIL_PASS_DEPTH_PASS, 921
GL_STENCIL_REF, 921
GL_STENCIL_TEST, 921
GL_STENCIL_VALUE_MASK, 921
GL_STENCIL_WRITEMASK, 921
GL_STEREO, 921
GL_SUBPIXEL_BITS, 921
GL_TEXTURE_1D, 921
GL_TEXTURE_2D, 922
GL_TEXTURE_3D, 922
GL_TEXTURE_BINDING_1D, 921
GL_TEXTURE_BINDING_2D, 922
GL_TEXTURE_BINDING_3D, 922
GL_TEXTURE_BINDING_CUBE_MAP, 922
GL_TEXTURE_COMPRESSION_HINT, 922
GL_TEXTURE_COORD_ARRAY, 922
GL_TEXTURE_COORD_ARRAY_BUFFER_

BINDING, 922
GL_TEXTURE_COORD_ARRAY_SIZE, 922
GL_TEXTURE_COORD_ARRAY_

STRIDE, 922
GL_TEXTURE_COORD_ARRAY_TYPE, 922
GL_TEXTURE_CUBE_MAP, 922
GL_TEXTURE_GEN_Q, 922
GL_TEXTURE_GEN_R, 922
GL_TEXTURE_GEN_S, 922

glGet function1172

GL_TEXTURE_GEN_T, 922
GL_TEXTURE_MATRIX, 922
GL_TEXTURE_STACK_DEPTH, 923
GL_TRANSPOSE_COLOR_MATRIX, 923
GL_TRANSPOSE_MODELVIEW_

MATRIX, 923
GL_TRANSPOSE_PROJECTION_

MATRIX, 923
GL_TRANSPOSE_TEXTURE_MATRIX, 923
GL_UNPACK_ALIGNMENT, 923
GL_UNPACK_IMAGE_HEIGHT, 923
GL_UNPACK_LSB_FIRST, 923
GL_UNPACK_ROW_LENGTH, 923
GL_UNPACK_SKIP_IMAGES, 923
GL_UNPACK_SKIP_PIXELS, 923
GL_UNPACK_SKIP_ROWS, 923
GL_UNPACK_SWAP_BYTES, 923
GL_VERTEX_ARRAY, 923
GL_VERTEX_ARRAY_BUFFER_

BINDING, 923
GL_VERTEX_ARRAY_SIZE, 923
GL_VERTEX_ARRAY_STRIDE, 924
GL_VERTEX_ARRAY_TYPE, 924
GL_VERTEX_PROGRAM_POINT_SIZE, 924
GL_VERTEX_PROGRAM_TWO_SIDE, 924
GL_VIEWPORT, 924
GL_ZOOM_X, 924
GL_ZOOM_Y, 924

errors, 926
notes, 924-926
parameters, 903

glGetActiveAttrib function, 926-927
glGetActiveUniform function, 928-929
glGetAttachedShaders function, 929-930
glGetAttribLocation function, 930-931
glGetBooleanv function, 66
glGetBufferParameteriv function, 931-932
glGetBufferPointerv function, 932-933
glGetBufferSubData function, 604, 933
glGetClipPlane function, 934
glGetColorTable function, 934-936
glGetColorTableParameter function, 290,

936-937
glGetColorTableParameteriv function, 291
glGetCompressedTexImage function, 349,

937-938
glGetConvolutionFilter function, 938-940
glGetConvolutionParameter function, 940-941
glGetDoublev function, 66
glGetError function, 67-68, 613, 941-942
glGetFloatv function, 66, 345, 503

glGetHistogram function, 298-300, 942-943
glGetHistogramParameter function, 944
glGetIntegerv function, 66, 362
glGetLight function, 945-946
glGetMap function, 946-947
glGetMaterial function, 948-949
glGetMinmax function, 301, 949-950
glGetMinmaxParameter function, 951
glGetMinmaxParameterfv function, 951
glGetMinmaxParameteriv function, 951
glGetPixelMap function, 951-953
glGetPixelMapfv function, 951
glGetPixelMapuiv function, 951
glGetPixelMapusv function, 951
glGetPointerv function, 953-954
glGetPolygonStipple function, 954
glGetProgramInfoLog function, 956-957
glGetProgramiv function, 954-956
glGetQueryiv function, 492, 957
glGetQueryObject function, 958
glGetQueryObjectiv function, 490, 958
glGetSeparableFilter function, 959-960
glGetShaderInfoLog function, 751, 961-962
glGetShaderiv function, 529-530, 960-961
glGetShaderPrecisionFormatOES function, 751
glGetShaderSource function, 751, 962-963
glGetString function, 68, 70, 645, 651, 963-964
glGetTexEnv function, 964-966
glGetTexEnvfv function, 964
glGetTexEnviv function, 964
glGetTexGen function, 966-967
glGetTexGendv function, 966
glGetTexGenfv function, 966
glGetTexGeniv function, 967
glGetTexImage function, 967-969
glGetTexLevelParameter function, 348, 970-972
glGetTexLevelParameterfv function, 970
glGetTexLevelParameteriv function, 348, 970
glGetTexParameter function, 972-973
glGetTexParameterfv function, 972
glGetTexParameteriv function, 972
glGetUniform function, 974
glGetUniformfv function, 974
glGetUniformiv function, 974
glGetUniformLocation function, 975
glGetVertexAttrib function, 976-977
glGetVertexAttribdv function, 976
glGetVertexAttribfv function, 976
glGetVertexAttribiv function, 976
glGetVertexAttribPointerv function, 977
glGetVertexAttributePointerv function, 977-978

glGetVertexAttributePointerv function 1173

glHint function, 69, 238, 243, 349, 978-979
glHistogram function, 298-299, 979-980
glIndex function, 980-981
glIndexMask function, 981-982
glIndexPointer function, 982-983
glInitNames function, 460, 983
glInterleavedArrays function, 439, 984-985
glIsBuffer function, 985
glIsEnabled function, 66, 985-988
glIsList function, 988
glIsProgram function, 988-989
glIsQuery function, 492, 989
glIsShader function, 990
glIsTexture function, 331, 990-991
glLight function, 991-993
glLightfv function, 203-204, 208, 500-501, 991
glLightiv function, 991
glLightModel function, 193, 993-995
glLightModelf function, 993
glLightModelfv function, 193
glLightModeli function, 343, 677, 993
glLineStipple function, 91, 995-996
glLineWidth function, 89-91, 996-997
glLinkProgram function, 531, 747, 752, 997-999
glListBase function, 668, 698, 999
glLoadIdentity function, 60, 142, 999-1000
glLoadMatrix function, 1000-1001
glLoadMatrixd function, 156
glLoadMatrixf function, 156, 159
glLoadName function, 460, 1001
glLoadTransposeMatrix function, 1001-1002
glLoadTransposeMatrixd function, 157, 1001
glLoadTransposeMatrixf function, 157, 1001
glLogicOp function, 248, 1002-1003
glMap1 function, 1003-1005
glMap1f function, 395
glMap2 function, 1006-1009
glMap2d function, 1006
glMap2f function, 399, 1006
glMapBuffer function, 454, 602-604, 1009-1010
glMapGrid function, 396, 1011-1012
glMapGrid1d function, 1011
glMapGrid1f function, 1011
glMapGrid2d function, 1011
glMapGrid2f function, 399, 1011
glMaterial function, 193-194, 1012-1014
glMaterialf function, 1012
glMaterialfv function, 194, 209
glMateriali function, 209, 1012
glMatrixMode function, 142, 156, 288-289,

311, 1014

glMinmax function, 301, 1015-1016
glMultiDrawArrays function, 439, 1016-1017
glMultiDrawElements function, 1017-1018
glMultiTexCoord function, 434, 1018-1020
glMultiTexCoord1dv function, 1019
glMultiTexCoord1f function, 364
glMultiTexCoord1fv function, 1019
glMultiTexCoord1iv function, 1019
glMultiTexCoord1sv function, 1019
glMultiTexCoord2dv function, 1019
glMultiTexCoord2f function, 364
glMultiTexCoord2fv function, 1019
glMultiTexCoord2iv function, 1019
glMultiTexCoord2sv function, 1019
glMultiTexCoord3dv function, 1020
glMultiTexCoord3f function, 364
glMultiTexCoord3fv function, 1020
glMultiTexCoord3iv function, 1020
glMultiTexCoord3sv function, 1019
glMultiTexCoord4dv function, 1020
glMultiTexCoord4fv function, 1020
glMultiTexCoord4iv function, 1020
glMultiTexCoord4sv function, 1020
glMultMatrix function, 161, 1020-1021
glMultMatrixf function, 163
glMultTransposeMatrix function, 1022-1023
glMultTransposeMatrixd function, 1022
glMultTransposeMatrixf function, 1022
glNewList function, 424-425, 1023-1024
glNewLists function, 426
glNormal function, 1024-1025
glNormal3b function, 1024
glNormal3d function, 1024
glNormal3f function, 1024
glNormal3i function, 1024
glNormal3s function, 1024
glNormalPointer function, 433-434, 1025-1026
global ambient light, 192-193
glOrtho function, 59, 75, 1027-1028
glPassThrough function, 473, 1028
glPixelMap function, 282, 1028-1031
glPixelMapfv function, 282, 1028
glPixelMapuiv function, 282, 1028
glPixelMapusv function, 282, 1029
glPixelStore function, 258, 1031-1035

C specification, 1031
constants

GL_PACK_ALIGNMENT, 1033
GL_PACK_IMAGE_HEIGHT, 1032
GL_PACK_LSB_FIRST, 1032
GL_PACK_ROW_LENGTH, 1032

glHint function1174

GL_PACK_SKIP_IMAGES, 1033
GL_PACK_SKIP_PIXELS, 1033
GL_PACK_SKIP_ROWS, 1033
GL_PACK_SWAP_BYTES, 1032
GL_UNPACK_ALIGNMENT, 1034
GL_UNPACK_IMAGE_HEIGHT, 1033
GL_UNPACK_LSB_FIRST, 1033
GL_UNPACK_ROW_LENGTH, 1033
GL_UNPACK_SKIP_PIXELS, 1034
GL_UNPACK_SKIP_ROWS, 1034
GL_UNPACK_SWAP_BYTES, 1033

parameters, 1031
glPixelStoref function, 257, 1031
glPixelStorei function, 257-258, 1031
glPixelTransfer function, 279, 1036-1039
glPixelTransferf function, 277-279, 281, 1036
glPixelTransferi function, 277, 1036
glPixelZoom function, 275-277, 1040
glPointParameter function, 1040-1042
glPointParameterf function, 1040
glPointParameteri function, 374, 1040
glPointSize function, 81-85, 1042-1043
glPolygonMode function, 107, 1043-1044
glPolygonOffset function, 510, 1044-1045
glPolygonStipple function, 109, 1045-1046
glPopAttrib function, 67, 1047
glPopClientAttrib function, 1052
glPopMatrix function, 76, 80, 142, 146, 1053
glPrioritizeTextures function, 339, 1046-1047
glPushAttrib function, 67, 1047-1051
glPushClientAttrib function, 1052
glPushMatrix function, 76, 80, 142, 146, 1053
glPushName function, 460, 1054
glRasterPos function, 728, 753, 1054-1056
glRasterPos2i function, 256
glRasterPos3f function, 753
glReadBuffer function, 266, 1057
glReadPixels function, 265, 280, 499, 604,

1057-1061
glRect function, 1061-1062
GLRect program

animation, 62-64
clipped viewing volume, 59-60
device contexts, 657-660
overview, 655
rectangles, drawing, 56
rendering contexts, 660

creating/deleting, 660-663
initializing, 663
shutting down, 664

scaling to window, 56

source code, 53-55
viewport, 58
Win32, 658
windows, resizing, 58
WinMain function, 655, 657, 673-674
WM_CREATE message, 660
WM_DESTROY message, 660
WM_PAINT message, 664-665
WM_SIZE message, 664
WM_TIMER message, 664

glRectf function, 56
glRenderbufferStorageEXT function, 609
glRenderMode function, 460-462, 1062-1063
glResetHistogram function, 1063
glResetMinmax function, 1063-1064
glRotate function, 76, 80, 1064-1065
glRotatef function, 138, 146
glSampleCoverage function, 240, 1065-1066
glScale function, 1066
glScalef function, 139
glScissor function, 120, 1067
glSecondaryColor function, 1067-1069
glSecondaryColorPointer function, 433-434,

1069-1070
glSelectBuffer function, 462, 1070-1071
glSeparableFilter2D function, 296, 1072-1074
glShadeModel function, 102, 1074-1075

FL_FLAT parameter, 186
GL_SMOOTH parameter, 185

glShaderBinaryOES function, 752
glShaderSource function, 529, 751, 1075-1076
GLSL (OpenGL Shading Language), 516

clipping, 524
expressions

array access, 538
component selectors, 540-541
constructors, 538-540
operators, 537-538

flow control
discard keyword, 542
functions, 542-545
if/else clauses, 542
loops, 541

fragment shaders
beach ball texture fragment shader,

592-595
blur fragment shader, 575-576
capabilities of, 525-526
checkerboard texture fragment shader,

589-591
color inversion fragment shader, 570-571

GLSL 1175

diffuse lighting fragment shader, 582-584
dilation fragment shader, 578-579
edge detection fragment shader, 580-582
erosion fragment shader, 580
fog fragment shader, 572-574
grayscale conversion fragment shader,

568-569
heat signature fragment shader, 571-572
overview, 567-568
sepia-tone conversion fragment shader,

569-570
sharpen fragment shader, 577-578
simple example, 527
three colored lights fragment shader,

586-587
toy ball texture fragment shader, 595-599

program objects
attaching, 530
creating, 530
deleting, 530
detaching, 530
enabling, 532
linking, 531
validating, 531-532

rasterization, 524-525
shader objects

compiling, 529-530
creating, 528
deleting, 528
shader text, 528-529

variables
arrays, 534-535
built-in variables, 536-537
data types, 532-533
overview, 532
qualifiers, 535-536
structures, 534

vertex shaders
capabilities of, 523-524
diffuse lighting vertex shader, 549-551
fog vertex shader, 557-559
overview, 547
point size vertex shader, 560-561
procedural texture mapping vertex shader,

588-589
simple example, 526
simple examples, 548-549
specular lighting vertex shader, 551-553
squash/stretch vertex shader, 561-563
three colored lights vertex shader,

553-557, 585
vertex blending vertex shader, 563-566

glStencilFunc function, 122-125, 1076-1077
glStencilFuncSeparate function, 1077-1079
glStencilMask function, 125, 1079
glStencilMaskSeparate function, 1080
glStencilOp function, 123-125, 1080-1082
glStencilOpSeparate function, 1082-1084
gltDrawTorus function, 159
gltDrawUnitAxes function, 378
glTexCoord function, 309-310, 363, 1084-1085
glTexCoord1f function, 309
glTexCoord2f function, 309
glTexCoord3f function, 309, 360
glTexCoordPointer function, 433-434, 1085-1087
glTexEnv function, 317-318, 370, 1087-1091
glTexEnvf function, 317, 329, 371
glTexEnvfv function, 317
glTexEnvi function, 317, 369-371, 374, 506
glTexEnviv function, 317
glTexGen function, 1091-1093
glTexGenf function, 351
glTexGenfv function, 351, 354-356, 504
glTexGeni function, 354-356
glTexImage function, 304-307, 326, 348
glTexImage1D function, 304, 1094-1099
glTexImage2D function, 304, 316, 358, 603,

1099-1105
glTexImage3D function, 304, 1105-1110
glTexParameter function, 318, 346, 1110-1114
glTexParameterf function, 318, 346
glTexParameterfv function, 318
glTexParameteri function, 318, 320, 329, 338,

505-506
glTexParameteriv function, 318
glTexSubImage function, 307-308
glTexSubImage1D function, 307, 1115-1116
glTexSubImage2D function, 307, 1117-1119
glTexSubImage3D function, 308, 1119-1121
gltGetExtensionPointer function, 71, 679
gltIsExtSupported function, 70, 345, 678
gltLoadTGA function, 262-265
gltools.cpp file, 43
gltools.h file, 42-43
glTranslate function, 1121-1122
glTranslatef function, 137, 146
gltWriteTGA function, 266-268
glu.h file, 42
GLU_FILL quadric draw style, 380
GLU_LINE quadric draw style, 380
GLU_POINT quadric draw style, 380
GLU_SILHOUETTE quadric draw style, 380
gluBeginSurface function, 404

GLSL1176

gluBeginTrim function, 407-408
gluBuild1DMipmapLevels function, 328
gluBuild1DMipmaps function, 328
gluBuild2DMipmapLevels function, 329
gluBuild2DMipmaps function, 328
gluBuild3DMipmapLevels function, 329
gluBuild3DMipmaps function, 328
gluBuildMipmaps function, 328
gluCylinder function, 382
gluDeleteDess function, 411
gluDeleteNurbsRenderer function, 403
gluDeleteQuadric function, 379
gluDisk function, 384
gluEndSurface function, 404-405
gluEndTrim function, 407-408
gluGetString function, 68
gluLookAt function, 164, 496
gluNewNurbsRenderer function, 403
gluNewQuadric function, 379-380
glUniform function, 1122-1126
glUniformMatrix3fv function, 566
glUnmapBuffer function, 454, 602
gluNurbsCurve function, 408-409
gluNurbsProperty function, 404
gluNurbsSurface function, 404-405, 408
gluPerspective function, 149
gluPickMatrix function, 464-465
gluPwlCurve function, 407-408
gluQuadricDrawStyle function, 380
gluQuadricNormals function, 380
GLUQuadricObj data type. See quadrics
gluQuadricOrientation function, 380
gluQuadricTexture function, 381
gluScaleImage function, 328
glUseProgram function, 532, 747, 1126-1128
gluSphere function, 381
GLUT (OpenGL utility toolkit)

active directory, 688
application frameworks, 687
configuring on Linux, 716-717
headers, 688
overview, 43, 47-48, 686
projects, setting up, 686-687
starting, 51

glut.h file, 43
glutCreateWindow function, 50
glutDisplayFunc function, 51
gluTessBeginContour function, 413
gluTessBeginPolygon function, 413
gluTessCallback function, 412-413
GLUtesselator, 411

gluTessEndContour function, 413
gluTessEndPolygon function, 413
gluTessVertex function, 413
glutInit function, 50
glutInitDisplayMode function, 50, 64, 117, 239
glutMainLoop function, 51
glutReshapeFunc function, 56, 58
glutSwapBuffers function, 64, 117
glutTimerFunc function, 61
glutWireCube function, 137
glValidateProgram function, 531, 1128-1129
glVertex function, 76-77, 422, 434, 1129-1130
glVertex3fv function, 422
glVertexAttrib function, 1130-1134
glVertexAttrib1f function, 564
glVertexAttribPointer function, 746, 1134-1135
glVertexPointer function, 433-434, 1136-1137
glViewport function, 58, 1137-1138
glWindowPos function, 283, 1138-1139
glWindowPos2i function, 256
GLX

config management
GLX 1.2, 722-723
GLX 1.3+, 719-721

context management, 724-726
GLX 1.2, 726
GLX 1.3+, 724-726

displays, 718
extending, 729
overview, 718
querying, 727
sample program, 729-733
strings, 727
synchronization, 726-727
windows and render surfaces

GLX 1.2, 724
GLX 1.3+, 723-724

X fonts, 728-729
GLX_ACCUM_ALPHA_SIZE config attribute,

720-722
GLX_ACCUM_BLUE_SIZE config attribute,

720-722
GLX_ACCUM_GREEN_SIZE config attribute,

720-722
GLX_ACCUM_RED_SIZE config attribute,

720-722
GLX_ALPHA_SIZE config attribute, 719, 722
GLX_AUX_BUFFERS config attribute, 720-722
GLX_BLUE_SIZE config attribute, 719, 722
GLX_BUFFER SIZE config attribute, 719, 722
GLX_CONFIG_CAVEAT config attribute, 719

GLX_CONFIG_CAVEAT config attribute 1177

GLX_DEPTH_SIZE config attribute, 719, 722
GLX_DOUBLEBUFFER config attribute, 719, 722
GLX_DRAWABLE_TYPE config attribute, 719
GLX_FBCONFIG_ID config attribute, 719
GLX_GREEN_SIZE config attribute, 719, 722
GLX_LEVEL config attribute, 719, 722
GLX_MAX_PBUFFER_HEIGHT config

attribute, 720
GLX_MAX_PBUFFER_WIDTH config

attribute, 720
GLX_MIN_PBUFFER_PIXELS config attribute, 720
GLX_RED_SIZE config attribute, 719, 722
GLX_RENDER_TYPE config attribute, 719
GLX_RGBA config attribute, 722
GLX_SAMPLES config attribute, 720
GLX_SAMPLE_BUFFERS config attribute, 720
GLX_STENCIL_SIZE config attribute, 719, 722
GLX_STEREO config attribute, 720-722
GLX_TRANSPARENT_ALPHA_VALUE config

attribute, 720
GLX_TRANSPARENT_BLUE_VALUE config

attribute, 720
GLX_TRANSPARENT_GREEN_VALUE config

attribute, 720
GLX_TRANSPARENT_INDEX_VALUE config

attribute, 720
GLX_TRANSPARENT_RED_VALUE config

attribute, 720
GLX_TRANSPARENT_TYPE config attribute, 720
GLX_USE_GL config attribute, 722
GLX_VISUAL_ID config attribute, 719
GLX_X_RENDERABLE config attribute, 719
GLX_X_VISUAL_TYPE config attribute, 719
glXChooseFBConfig function, 721-722
glXChooseFBConfigs function, 721
glXChooseVisual function, 722
glXCopyContext function, 725-726
glXCreateContext function, 726
glXCreateNewContext function, 724
glXCreateWindow function, 723
glXDestroyContext function, 725
glxDestroyWindow function, 724
glXGetClientString function, 727
glXGetConfig function, 723
glXGetCurrentContext function, 725
glXGetCurrentDisplay function, 725
glXGetCurrentDrawable function, 725
glXGetCurrentReadDrawable function, 725
glXGetFBConfigAttrib function, 720
glXGetFBConfigs function, 719, 721

glXGetProcAddress function, 729
glXGetProcAddressARB function, 729
glXGetVisualFromFBConfig function, 721, 723
glxinfo command, 714, 718
glXMakeContextCurrent function, 725
glXMakeCurrent function, 726
glXQueryContext function, 725
glXQueryDrawable function, 727
glXQueryExtensionsString function, 727
glXQueryExtensionString function, 729
glXQueryServerString function, 727
glXQueryVersion function, 727, 730
glXSwapBuffers function, 727, 732
glXUseXFont function, 728
glXWaitGL function, 726
glXWaitX function, 726
graphics cards, 177-179
graphics device interface (GDI), 38
grayscale conversion fragment shader, 568-569

H
half-float vertex format, 749
HandleNew function, 690
hardware accelerators, 40
hardware drivers, 715
hardware generation of mipmaps, 329
hardware implementations, 39-40
HDR (High Dynamic Range), 622-623
HDRBALL program, 630-632
headers

gl.h file, 42
glee.h file, 43
gltools.h file, 42-43
glu.h file, 42
GLUT, 688
glut.h file, 43
SIMPLE program example, 49

heat signature fragment shader, 571-572
Hercules graphics cards, 177
hidden surface removal, 14, 102-103
HideCursor function, 711
hierarchical picking, 466-471
High Dynamic Range (HDR), 622-623
high-precision floats and integers, 750
hints, specifying, 978-979
histogram table

defining, 979-980
resetting, 1063
returning, 942-943

GLX_DEPTH_SIZE config attribute1178

histograms, 297-300
histogram table

defining, 979-980
resetting, 1063
returning, 942-943

parameters, 944
history

of computer graphics, 10-14
CRTs (cathode ray tubes), 10
development of 3D graphic techniques,

11-13
foreshortening, 14
overview, 9-10
real-time graphics, 10-11

of OpenGL, 34-35
of OpenGL ES, 736-738

Hybrid Graphics Ltd. Rasteroid, 767

I
IBM_prefix, 71
ICD (Installable Client Driver), 642-643
identity matrices, 140-142
IdleFunction function, 664
if/else clauses (GLSL), 542
IMAGELOAD program

gltLoadTGA function, 262-265
RenderScene function, 261-262

images
attaching to FBOs (framebuffer objects),

610-611
blurring, 575-576
detecting edges of, 580-582
dilating, 578-579
eroding, 580
OpenEXR format, 623-626
processing with fragment shaders

blur fragment shader, 575-576
dilation fragment shader, 578-579
edge detection fragment shader, 580-582
erosion fragment shader, 580
sharpen fragment shader, 577-578

sharpening, 577-578
texture images

one-dimensional, specifying, 1094-1099
three-dimensional, specifying, 1105-1110
two-dimensional, specifying, 1099-1104

texture subimages
one-dimensional, 1115-1116
three-dimensional, 1119-1121
two-dimensional, 1117-1119

Imagination Technologies PowerVR, 767
imaging

bitmaps
BITMAPS sample program, 253-257
definition of, 252
drawing, 257
pixel packing, 257-258
raster position, 256

color matrix, 288-289
color tables

bias values, 291
color lookup, 289-290
proxies, 290-291
rendering, 291
replacing, 291-292
scaling factors, 291

convolutions
applying, 293
border modes, 296-297
combining with other imaging operations,

293-294
definition of, 292
kernels, 292
loading from color buffer, 295
one-dimensional filters, 296
separable filters, 296

histograms, 297-300
imaging pipeline, 288
IMAGING sample program

glColorTable function, 290
glConvolutionFilter2D function, 293
glMatrixMode function, 288
histograms, 298-300
RenderScene function, 284-287

imaging subset, 283-284
minmax operations, 301
OPERATIONS sample program

glPixelMap function, 282
glPixelTransferf function, 279
glPixelZoom function, 275-277
ProcessMenu function, 269, 274
RenderScene function, 270-275
SetupRC function, 269, 274
source code, 268-275

overview, 251
pixel mapping, 281-282
pixel transfer, 277-281
pixel zoom, 275-277
pixmaps

copying pixels, 265
data types, 259-260
definition of, 252

imaging 1179

drawing, 258
IMAGELOAD sample program, 261-265
moving pixels, 265-266
packed pixel formats, 260
pixel formats, 259
reading pixels, 265
saving pixels, 266-268

targa files
loading, 262-265
writing to, 266-268

IMAGING program
glColorTable function, 290
glConvolutionFilter2D function, 293
glMatrixMode function, 288
histograms, 298-300
RenderScene function, 284-287

immediate mode rendering, 23, 423
in qualifier, 536
indenting code, 78
indexed vertex arrays

creating, 442-445
CUBEDX sample program, 436-439
memory requirements, determining, 441-442
overview, 435-436
THUNDERGL sample program, 439

code listing, 446-449
creating indexed arrays, 442-445
DrawBody function, 440
memory requirements, determining,

441-442
rendering modes, 445-446

indexes, color index
defining array of, 982-983
logical pixel operation, 1002-1003
setting, 980-981

indexing arrays, 538
indices, unsigned integer element indices, 750
information logs

for programs, 956-957
for shaders, 961-962, 964

infrared light, 174
initializing

buffer data store, 806-807
Carbon window, 690-691
EGL, 758
name stack, 983
OpenGL, 51
rendering contexts, 663

inout qualifier, 536
Installable Client Driver (ICD), 642-643
installing Mesa, 715

int data type, 533
interleaved arrays, enabling, 984-985
internal formats (textures), 305
InvalidateRect function, 664
InvalWindowRect function, 696
invariant qualifier, 536
IRIS GL, 34-35
isotropic texture filtering, 345
ivec2 data type, 533
ivec3 data type, 533
ivec4 data type, 533

J-K
jaggies, 18, 234
JET program, 186-187

kernels, 292
keyboard polling, 171
Khronos Free Use License, 783
Khronos Group, 35, 737, 774
Kilgard, Mark, 47
knot multiplicity, 403
knots, 402-403

L
labeling objects for feedback, 473-475
Laplacian edge detection, 580-582
Last In First Out (LIFO) data structure, 66
LCD (Liquid Crystal Display), 177
length function, 535, 559
levels, mip, 328-329
libraries

GL Easy Extension (GLEE) library, 679
GLUT

active directory, 688
application frameworks, 687
headers, 688
overview, 47-48, 686
projects, setting up, 686-687
starting, 51

headers
gl.h file, 42
glee.h file, 43
gltools.h file, 42-43
glu.h file, 42
glut.h file, 43

overview, 41-42
licensing, 35-36

imaging1180

LIFO (Last In First Out) data structure, 66
light

adding to materials, 190
ambient light

calculating light effects, 190-191
material properties, 193-196
overview, 187-188

Bézier curves, 400-401
Cosmic Background Radiation (global

ambient light), 192-193
diffuse light

calculating light effects, 191
diffuse lighting fragment shader, 582-584
diffuse lighting vertex shader, 549-551
overview, 188

enabling, 192
fixed vertex processing, 518
fog

fog coordinates, 896
fog parameters, 894-895
vertex shader, 557-559

infrared light, 174
light sources

direction, specifying, 197
material properties, 205
normal averaging, 211-213
overview, 196
parameters, returning values, 945-946
parameters, setting, 991-993
polygons, specifying, 205-206
setting up, 203-205
surface normals, 197-200
unit normals, 201-203

lighting effects
normal averaging, 211-213
overview, 207
SHINYJET sample program, 210-211
specular exponent, 209-210
specular highlights, 207
specular light, 208
specular reflectance, 208-209

lighting model
material parameters, specifying,

1012-1014
parameters, setting, 993-995

material properties
light sources, 205
overview, 190
setting for ambient light, 193-196

overview, 15-16, 186-187

as particles, 175
RGBA values, 189
shadows

ambient lighting, 500-501
definition of, 222
depth buffer, 497-498
depth textures, 498-500
FBO shadow mapping, 613-615
GL_ARB_shadow_ambient extension, 509
modelview matrix, 496
overview, 221, 495-496
polygon offset, 510
projection matrix, 496-497
shadow maps, 501-509
shadow projection matrix, 223-225
SHADOW sample program, 223-226
SPHEREWORLD sample program, 227

specular light
calculating light effects, 191
equation, 551
overview, 188-189, 208
specular lighting vertex shader, 551-553
three colored lights fragment shader,

586-587
SPHEREWORLD sample program, 227
SPOT sample program

creating spotlights, 214-216
drawing spotlights, 216-220
overview, 213-214
RenderScene function, 216-220
SetupRC function, 214-216

spotlights
creating, 214-216
drawing, 216-220

three colored lights fragment shader, 586-587
three colored lights vertex shader,

553-557, 585
ultraviolet light, 174
visible spectrum, 174
wavelengths, 174

limitations of OpenGL ES environment, 755-756
line loops, 87-88
line strips, 87-89
LINES program, 85-87
lines, drawing

curves, approximating with straight lines,
88-89

glBegin function, 85
glEnd function, 85
line loops, 87-88
line strips, 87-89

lines, drawing 1181

line width, 89-91, 996-997
LINES program example, 85-87
stippling, 91-93, 995-996

LINESW program, 90-91
linking program objects, 531, 997-999
Linux, OpenGL on

configuration
GLUT, 716-717
glxinfo command, 714
hardware drivers, 715
Mesa installation, 715
X Server, 715-716

GLX
config management, 719-723
context management, 724-726
displays, 718
extending, 729
overview, 718
querying, 727
sample program, 729-733
strings, 727
synchronization, 726-727
windows and render surfaces, 723-724
X fonts, 728-729

glxinfo command, 714, 718
OpenGL programs, building, 716-717
overview, 713-714

Liquid Crystal Display (LCD), 177
lists, display

batch processing, 423-424
converting to, 426-428
creating, 425, 1023-1024
deleting, 425, 861
executing, 425-426, 808-810
generating, 900-901
immediate mode rendering, 423
limitations of, 426
naming, 425
overview, 422-423
preprocessed batches, 424-426
querying, 988

LITJET program, 203
output, 206-207
RenderScene program, 205-206
SetupRC program, 204-205

loading
compressed textures, 349-350
convolution kernels from color buffer, 295
cube maps, 358-360
feedback buffer, 478-480
geometry into arrays, 432

matrices, 142, 156-160, 999-1002
names onto name stack, 1001
OpenEXR images into floating-point textures,

623-626
shaders, 751-752
targa files, 262-265
textures, 304-307

from color buffer, 307
glCopyTexImage1D function, 307
glCopyTexImage2D function, 307
glTexImage function, 304-307
glTexImage1D function, 304
glTexImage2D function, 304
glTexImage3D function, 304

vertex buffer objects, 451
LOD BIAS (mipmapping), 329-330
logical operations, 248-249
logs, information logs

for programs, 956-957
for shaders, 961-962, 964

lookup, color, 289-290
loops (GLSL), 541
loops (lines), drawing, 87-88
LSTIPPLE program, 92-93
LSTRIPS program, 88-89

M
m3dDegToRad function, 158
m3dFindNormal function, 203, 206
m3dGetPlaneEquation function, 223
m3dMakePlanarShadowMatrix function, 223
M3DMatrix44f function, 158
m3dMatrixMultiply function, 160
m3dNormalizeVector function, 201
m3dRotationMatrix44 function, 158
m3dTransformVector3 function, 158
Mac OS X, OpenGL on

Carbon
bitmap fonts, 697-698
Carbon window, initializing, 690-691
cleanup, 695
event handling, 695-696
OpenGL setup, 689-690
overview, 689
pixel format, 692-693
rendering context, 694-695

Cocoa
buffer swaps, 705-706
Cocoa source module, deleting, 688

lines, drawing1182

COCOAGL program, 699-700
custom classes, creating, 701-705
OpenGL views, creating, 700-701
overview, 699

full-screen rendering
AGL full-screen support, 708-711
display management, 706-707
overview, 706

GLUT
active directory, 688
application frameworks, 687
headers, 688
overview, 686
projects, setting up, 686-687

overview, 685-686
magnification filters, 318
main functions, 50, 542
MakeSelection function, 478-479
mapping

buffer data stores, 1009-1010
buffers, 750
pixels, 281-282
shadow maps

alpha testing, 506
depth test, 505
generating and binding to, 505-506
initialization, 505
lighting coefficients, 501
percentage-closer filtering, 506
polygon offset, 510
projecting, 501-504
sample program, 507-509

textures
cube mapping, 357-361
eye linear mapping, 355-356
object linear mapping, 354
overview, 16
sphere mapping, 356-357

tone mapping, 626-630
masks

color masking, 248
depth buffer, 119
polygon stippling, 110
stencil buffer, 125

mat2 data type, 533
mat2x2 data type, 533
mat2x3 data type, 533
mat2x4 data type, 533
mat3 data type, 533
mat3x2 data type, 533
mat3x3 data type, 533

mat3x4 data type, 533
mat4 data type, 533
mat4x2 data type, 533
mat4x3 data type, 533
mat4x4 data type, 533
materials

adding light to, 190
parameters, returning, 948-949
properties

light sources, 205
overview, 190
setting for ambient light, 193-196

math, fixed-point, 756-757
math3d functions

m3dDegToRad, 158
m3dFindNormal, 203, 206
m3dGetPlaneEquation, 223
m3dMakePlanarShadowMatrix, 223
M3DMatrix44f, 158
m3dMatrixMultiply, 160
m3dNormalizeVector, 201
m3dRotationMatrix44, 158
m3dTransformVector3, 158

matrices
color matrix, 288-289
column-major matrix ordering, 154-155
creating, 157-159
current matrix, specifying, 1014
definition of, 134
frustrum, 898-899
identity matrices, 140-142
loading, 156-160, 999-1002
matrix stacks, 142-143
modelview matrices, 136

rotation, 138
scaling, 139
setting with gluLookAt function, 496
translation, 137-138

multiplying
glMultMatrix function, 1020-1021
glMultTransposeMatrix function,

1022-1023
glOrtho function, 1027

OpenGL ES specifications, 744-745
orthographic matrices, 1027
overview, 134-135
projection matrix, 496-497
rotating, 1064-1065
scaling, 1066
shadow projection matrices, 223-225
stack, pushing/popping, 1053

matrices 1183

texture matrix, 311
translation, 1121-1122
vectors, 155

max function, 551
maximum pixel values, returning, 949-950
MCD (Mini-Client Driver), 643
MDA (Monochrome Display Adapter), 177
memory buffers. See buffers
Mesa

3D OpenGL website, 775
installation, 715

meshes, defining, 1011-1012
message programming, 660
messages, Windows

WM_CREATE, 660
WM_DESTROY, 660
WM_PAINT, 664-665
WM_SIZE, 664
WM_TIMER, 664

Microsoft Windows. See Windows
Mini-Client Driver (MCD), 643
mini-drivers, 643-644
minification filters, 318
minimum pixel values, returning, 949-950
minmax operations, 301
minmax parameters, returning, 951
minmax table

defining, 1015-1016
resetting, 1063-1064

mipmaps
generating with FBOs (framebuffer

objects), 613
hardware generation of mipmaps, 329
LOD BIAS, 329-330
mip levels, 328-329
mipmap filters, 327-328
OpenGL ES specifications, 749
overview, 325-327

mirrored surface effect, creating, 360-361
mixing static and dynamic data, 453-454
modeling with quadrics, 385-388
modeling transformations, 129-130
modelview matrices, 136

rotation, 138
scaling, 139
setting with gluLookAt function, 496
translation, 137-138

modelview transformations, 129, 132
modes

blend equation modes, 234
fog modes, 242

immediate mode, 23
polygon modes, 107
rendering modes, 460-461
retained mode, 23
texture environment mode, 316-318

monitors
color, 176-177
display modes, 179-180

Monochrome Display Adapter (MDA), 177
monopolies, 36
moon/earth/sun program, 151-154
MOONS program

ProcessPlanet function, 470-471
RenderScene function, 467-469

motion blur
MOTIONBLUR program, 245-247
PBO (pixel buffer objects), 604-608

MOTIONBLUR program, 245-247
MouseCallback function, 461
moving pixels, 265-266
multiplying matrices

glMultMatrix function, 1020-1021
glMultTransposeMatrix function, 1022-1023
glOrtho function, 1027

multisampling, 238-240
multisampled buffers, 652
multitexture

managing multiple textures, 331-338
multiple texture coordinates, 363-364
MULTITEXTURE sample program, 364-369
overview, 362-363

MULTITEXTURE program, 364-369
multithreaded rendering (Windows), 675-676

N
name stack

initializing, 983
loading names onto, 1001
pushing/popping, 1054

names
buffer names, generating, 900
loading onto name stack, 1001
query names, generating, 901

naming conventions
display lists, 425
functions, 45-46
occlusion queries, 486
primitives, 458-460

non-power-of-two extended support, 750
non–real-time 3D applications, 22

matrices1184

non-uniform rational B-splines. See NURBS
nonconvex polygons, 114-116
nonrational numbers, 81
normal averaging, 211-213
normal vectors

Bézier curves, 400-401
normal averaging, 211-213
setting, 1024-1025
surface normals

definition of, 197-198
specifying, 198-200

unit normals
calculating, 202-203
converting surface normals to, 201
definition of, 201

normalization, 201
normalize function, 551
normals, arrays of, 1025-1026
NSOpenGL, 686
numbers

nonrational numbers, 81
scalars, 135

NURB program, 405-408
NURBS (non-uniform rational B-spline)

B-splines, 402
curves, 409
defining, 404-406
knots, 402-403
overview, 401
properties, 404
rendering, 403-404
trimming, 406-408

NV_prefix, 71
NVIDIA’s developer home page, 774

O
object linear mapping, 354
objects

FBOs (framebuffer objects)
attaching images, 610-611
creating, 609-610
destroying, 609-610
draw buffers, 611
environment map generation sample

program, 615-618
framebuffer completeness, 612-613
mipmap generation, 613
multiple target rendering, 619-621
offscreen rendering, 613-615

overview, 608-609
shadow mapping sample program,

613-615
GLUQuadricObj. See quadrics
labeling for feedback, 473-475
PBOs (pixel buffer objects)

benefits of, 603-604
functions, 602-603, 608
motion blur sample program, 604-608
overview, 601-602

program objects
attaching, 530
creating, 530
deleting, 530
detaching, 530
enabling, 532
linking, 531
validating, 531-532

query objects
deleting, 487
querying, 490-491

shader objects
compiling, 529-530
creating, 528
deleting, 528
shader text, 528-529

texture objects
allocating, 330
binding, 330
deleting, 330
multiple textures, managing, 331-338
overview, 330
resident textures, 338
testing, 331
texture priorities, 339

vertex buffer objects
binding, 450
creating, 450
initializing arrays, 452-453
loading, 451
mixing static and dynamic data, 453-454
overview, 450
rendering from, 451-455

occludees, 483-485
occluders, 482-483
occlusion queries

best practices, 492-493
bounding boxes

bounding volumes, 485
creating, 485-486
rendering, 487-490

occlusion queries 1185

creating, 487-490
ensuring support for, 491-492
naming, 486
occludees, 483-485
occluders, 482-483
overview, 481
querying the query object, 490-491

OES_byte_coordinates extension, 741
OES_compressed_ETC1_RGB8_texture

extension, 750
OES_compressed_paletted_textures

extension, 742
OES_draw_texture extension, 745
OES_element_index_uint extension, 750
OES_fbo_render_mipmap extension, 749
OES_fixed_point extension, 741
OES_fragment_precision_high extension, 750
OES_framebuffer_object extension, 749
OES_mapbuffer extension, 750
OES_matrix_get extension, 745
OES_matrix_palette extension, 744
OES_point_sprite extension, 745
OES_query_matrix extension, 742
OES_read_format extension, 742
OES_shader_binary extension, 751-752
OES_shader_source extension, 751
OES_single_precision_commands extension, 742
OES_stencil8 extension, 749
OES_texture_3D extension, 750
OES_texture_float extension, 750
OES_texture_half_float extension, 750
OES_texture_npot extension, 750
OES_vertex_half_float extension, 749
offscreen rendering, 613-615
one-dimensional convolution filters, 296

copying pixels into, 845-846
defining, 836-838

one-dimensional evaluators, defining, 1003-1005
OpenEXR file format, 623-626
OpenGL

ARB (Architecture Review Board), 35
competition, 36
definition of, 33
future of, 37
generic implementations, 38-39
hardware implementations, 39-40
history of, 34-35
licensing and conformance, 35-36
OpenGL Specification, 35
overview, 33-34, 38

pipeline, 40-41
State Machine, 82
version, identifying, 68-69
on Vista, 644
website, 774

OpenGL ES
application design, 754-755
EGL

buffers, 764-765
context management, 763-764
display configs, 759-763
displays, 758-759
embedded system diagram, 758
errors, 765
extending, 765-766
initializing, 758
overview, 757
rendering surfaces, 763
rendering synchronization, 764-765
strings, 765

embedded environments, 766-767
environment limitations, 755-756
environment setup, 768-769
ES 1.0

byte coordinates, 741
color, 740
compressed paletted texture, 742
development of, 737
fixed-point data type, 741
framebuffer operations, 741
per-fragment operations, 741
query matrix, 742
rasterization, 740
Read Format, 742
single-precision commands, 742
state, 741
textures, 740-741
transformations, 740
unsupported features, 741
vertex specification, 739

ES 1.1
development of, 737
draw texture, 745
matrix palette, 744
matrix state, reading, 745
point sprites, 745
rasterization, 743
state, 743-744
textures, 743
vertex processing and coloring, 742-743

occlusion queries1186

ES 2.0
3D textures, 750
development of, 737
Ericsson compressed texture format, 750
floating-point textures, 750
fragment operations, 748
framebuffer objects, 749
framebuffer texture mipmap

rendering, 749
half-float vertex format, 749
high-precision floats and integers, 750
mapping buffers, 750
non-power-of-two extended support, 750
overview, 746
programmable pipeline, 746-748
rasterization, 748
render buffer storage formats, 749
shader loading, 751-752
shader source loading and compiling, 751
state, 749
textures, 748
unsigned integer element indices, 750
vertex processing and coloring, 746

ES SC
core additions, 754
development of, 738
fragment operations, 753
overview, 752
rasterization, 753
state, 754
vertex processing and coloring, 753

fixed-point math, 756-757
history of, 736-738
overview, 735-736
PowerVR, 767
Rasteroid, 767
rendering, 770-771
sample program

cleanup, 771-772
environment setup, 768-769
rendering, 770-771
state, 769-770

state, 769-770
Vincent, 767

OpenGL Extension Registry, 774
OpenGL SDK, 774
OpenGL Shading Language. See GLSL
OpenGL SuperBible website, 5, 774
OpenGL utility toolkit. See GLUT
operands, texture combiner, 371

OPERATIONS program
glPixelMap function, 282
glPixelTransferf function, 279
glPixelZoom function, 275-277
ProcessMenufunction, 269, 274
RenderScene function, 270-275
SetupRC function, 269, 274
source code, 268-275

operators, 537-538
order of Bézier curves, 390
origins (2D Cartesian coordinate systems), 24
orthographic matrices, 1027
orthographic projections, 29, 133, 147-148
orthonormal vectors, 155
out qualifier, 536
overloading function names, 543

P
packed pixel formats, 260
parallel projections, 29, 133, 147-148
parallelization, 423
parameters, point, 85
parsing feedback buffer, 478-480
particles of light, 175
passthrough markers, 473
PBOs (pixel buffer objects)

benefits of, 603-604
bloom effect, 638
functions, 602-603, 608
motion blur sample program, 604-608
overview, 601-602

per-fragment operations, 741
percentage-closer filtering, 506
perception of color, 176
PERSPECT program, 150-151
perspective

definition of, 14
foreshortening, 14
hidden surface removal, 14
overview, 11-13
perspective projections, 133, 148-149

gluPerspective function, 149
overview, 30
PERSPECT sample program, 150-151
SOLAR sample program, 151-154

PFD_DEPTH_DONTCARE flag (pixel rendering
buffer), 650

PFD_DOUBLEBUFFER flag (pixel rendering
buffer), 649

PFD_DOUBLEBUFFER flag 1187

PFD_DOUBLE_BUFFER_DONTCARE flag (pixel
rendering buffer), 650

PFD_DRAW_TO_BITMAP flag (pixel rendering
buffer), 649

PFD_DRAW_TO_WINDOW flag (pixel rendering
buffer), 649

PFD_GENERIC_ACCELERATED flag (pixel
rendering buffer), 649

PFD_GENERIC_FORMAT flag (pixel rendering
buffer), 649

PFD_NEED_PALETTE flag (pixel rendering
buffer), 649

PFD_NEED_SYSTEM_PALETTE flag (pixel
rendering buffer), 649

PFD_STEREO flag (pixel rendering buffer), 649
PFD_SUPPORT_GDI flag (pixel rendering

buffer), 649
PFD_SUPPORT_OPENGL flag (pixel rendering

buffer), 649
PFD_SWAP_COPY flag (pixel rendering

buffer), 650
PFD_SWAP_EXCHANGE flag (pixel rendering

buffer), 650
PFD_SWAP_LAYER_BUFFERS flag (pixel rendering

buffer), 650
photons, 175
picking

definition of, 457
gluPickMatrix function, 464-465
hierarchical picking, 466-471
PLANETS example, 465-466

piecewise curves, 390
pipeline, 40-41. See also state

fixed functionality rendering pipeline
antialiasing application, 521
clipping, 519-520
color sum, 520
fog application, 521
lighting, 518
overview, 515-516
texture application and environment, 520
texture coordinate generation and

transformation, 519
vertex transformation, 518

imaging pipeline, 288
OpenGL ES specifications, 746-748
transformation pipeline, 135-136

pitch, 163
pixel buffer objects. See PBOs
pixel buffers. See color buffers

pixel formats
Mac OS X, setting, 692-693
WGL_ARB_pixel_format extension, 680-683
Windows

enumerating, 650-652
overview, 647
pixel rendering buffer flags, 649-650
PIXELFORMATDESCRIPTOR structure,

647-649
selecting, 653-654
setting, 653-654

PIXELFORMATDESCRIPTOR structure, 647-649
pixelmaps. See pixmaps
pixels. See also bitmaps; pixmaps

copying, 265
into 1D texture image, 850-852
into 2D texture image, 852-854
into color tables, 843-845
in frame buffer, 848-850
into one-dimensional convolution filters,

845-846
into two-dimensional convolution filters,

846-848
data types, 259-260
minimum/maximum values, returning,

949-950
moving, 265-266
pixel mapping, 281-282, 1028-1031
pixel packing, 257-258
pixel transfer, 277-281, 1036-1039
pixel zoom, 275-277, 1040
reading, 265, 1057-1060
saving, 266-268
storage modes, setting, 1031-1035
writing to frame buffer, 871-876

pixmaps
data types, 259-260
definition of, 252
drawing, 258
IMAGELOAD sample program

gltLoadTGA function, 262-265
RenderScene function, 261-262

OPERATIONS sample program
glPixelMap function, 282
glPixelTransferf function, 279
glPixelZoom function, 275-277
ProcessMenu function, 269, 274
RenderScene function, 270-275
SetupRC function, 269, 274
source code, 268-275

PFD_DOUBLE_BUFFER_DONTCARE flag1188

packed pixel formats, 260
pixel formats, 259
pixel mapping, 281-282
pixel transfer, 277-281
pixel zoom, 275-277
pixels

copying, 265
moving, 265-266
reading, 265
saving, 266-268

returning, 951-953
planes, 24

clipping planes, returning coefficients of, 934
PLANETS program

gluPickMatrix function, 464-465
naming primitives, 458-460
picking, 464-466
ProcessPlanet function, 465-466
selection buffer, 462-463

platform independence, 46. See also GLUT
(OpenGL utility toolkit)

point sprites
OpenGL ES specifications, 745
overview, 371-372
point parameters, 374
POINTSPRITES sample program, 372-373
texture application, 374

pointers
returning address of, 953-954, 977-978
to vertex arrays, 433-434

points
drawing

glBegin function, 78
glEnd function, 78
glVertex function, 76-77
overview, 74
point parameters, 85, 1040-1041
point size, 81-85, 1042-1043
POINTS program example, 78-80
POINTSZ program example, 82-85

point size vertex shader, 560-561
point sprites

overview, 371-372
point parameters, 374
POINTSPRITES sample program, 372-373
texture application, 374

POINTS program, 78-80
POINTSPRITES program, 372-373
POINTSZ program, 82-85
polling keyboard, 171

polygons, drawing
edge flags, 114-116
depth offset, 1044-1045
front-facing polygons, defining, 898
general polygons, 108-109
nonconvex polygons, 114-116
overview, 94
polygon construction rules, 113-114
polygon offset, 510
quad strips, 108
quadrilaterals, 108
rasterization mode, 1043-1044
rectangles, 1061-1062
simple example, 94-95
solid polygons

backface culling, 104-106
colors, 101-102, 182-183
depth testing, 103
hidden surface removal, 102-103
polygon modes, 107
shading, 183-186
stippling, 109-113, 954, 1045-1046
TRIANGLE program example, 98-101

triangle fans, 97
triangle strips, 96-97
windings, 95-96, 201

popping
client attribute stack, 1052
matrix stack, 142, 1053
name stack, 1054
server attribute stack, 1047-1051

PowerVR, 767
preferences, setting with glHint function, 69
prefixes for extensions, 71
preprocessed batches, 424-426
Prewitt edge detection, 580
primitives, drawing, 27

general polygons, 108-109
lines

curves, approximating with straight lines,
88-89

glBegin function, 85
glEnd function, 85
line loops, 87-88
line strips, 87-89
line width, 89-91
LINES program example, 85-87
stippling, 91-93

names, 458-460
points

glBegin function, 78
glEnd function, 78

primitives, drawing 1189

glVertex function, 76-77
overview, 74
point parameters, 85
point size, 81-85
POINTS program example, 78-80
POINTSZ program example, 82-85

quad strips, 108
quadrilaterals, 108
rendering from array data, 867, 870-871,

876-877, 1016-1017
solid objects

backface culling, 104-106
colors, 101-102, 182-183
depth testing, 103
edge flags, 114-116
hidden surface removal, 102-103
polygon construction rules, 113-114
polygon modes, 107
shading, 183-186
stippling, 109-113
TRIANGLE program example, 98-101

triangles
overview, 94
simple example, 94-95
triangle fans, 97-98
triangle strips, 96-97
windings, 95-96, 201

viewing volume, setting up, 74-76
priorities, textures, 339, 1046-1047
ProcessMenu function

OPERATIONS program, 269, 274
SMOOTHER program, 237
TEXGEN program, 351-352
TUNNEL program, 332

ProcessPlanet function, 465-466, 470
ProcessSelection function, 476-477
program objects. See also programs

active attributes, returning information
about, 926-927

active uniform variables, returning
information about, 928-929

attaching, 530
attribute variables, returning location of,

930-931
creating, 530, 858-859
deleting, 530, 862
detaching, 530
enabling, 532
information logs, returning, 956-957
installing as part of current rendering state,

1126-1128
linking, 531, 997-999

parameters, returning, 954-956
querying, 988
uniform variables, specifying value of,

1122-1126
validating, 531-532, 1128-1129

programs. See also program objects; shaders
AMBIENT, 195-196
ANISOTROPIC, 346
ATOM, 143-146
BEZ3D, 397-399
BEZIER, 391-393
BEZLIT, 401
BITMAPS, 253-255

glBitmap function, 257
glRasterPos2i function, 256
glWindowPos2i function, 256
RenderScene function, 255

bloom effect
bright pass, 633-634
drawing scene, 630-633
framebuffer, 636-638
Gaussian blur, 634-636
overview, 630
PBOs (pixel buffer objects), 638

CARBONGLFONTS, 698
COCOAGL, 699-700

buffer swaps, 705-706
OpenGL views, creating, 700-701
ThunderGLView class, 701-705

CUBEDX, 436-439
CUBEMAP, 358-362
FLORIDA, 414-419

complex polygon, tessellating, 417-418
convex polygon, drawing, 415-416
vertex data and drawing code for state

outline, 414-415
font.c, 728-729
GLRect

animation, 62-64
clipped viewing volume, 59-60
device contexts, 657-660
overview, 655
rectangles, drawing, 56
rendering contexts, 660-664
scaling to window, 56
source code, 53-55
viewport, 58
Win32, 658
windows, resizing, 58
WinMain function, 655, 657, 673-674
WM_CREATE message, 660
WM_DESTROY message, 660

primitives, drawing1190

WM_PAINT message, 664-665
WM_SIZE message, 664
WM_TIMER message, 664

HDRBALL, 630-632
IMAGELOAD

gltLoadTGA function, 262-265
RenderScene function, 261-262

IMAGING
glColorTable function, 290
glConvolutionFilter2D function, 293
glMatrixMode function, 288
histograms, 298-300
RenderScene function, 284-287

JET, 186-187
LINES, 85, 87
LINESW, 90-91
LITJET, 203

output, 206-207
RenderScene program, 205-206
SetupRC program, 204-205

LSTIPPLE, 92-93
LSTRIPS, 88-89
MOONS, 467-471

ProcessPlanet function, 470-471
RenderScene function, 467-469

MOTIONBLUR, 245-247
MULTITEXTURE, 364-369
NURBS, 405-408
OPERATIONS

glPixelMap function, 282
glPixelTransferf function, 279
glPixelZoom function, 275-277
ProcessMenu function, 269, 274
RenderScene function, 270-275
SetupRC function, 269, 274
source code, 268-275

PERSPECT, 150-151
PLANETS

gluPickMatrix function, 464-465
naming primitives, 458-460
picking, 464-466
ProcessPlanet function, 465-466
selection buffer, 462-463

POINTSPRITES, 372-373
PSTIPPLE, 112-113
PYRAMID, 311-316

RenderScene function, 313, 316
SetupRC function, 313, 316
source code, 312-315

REFLECTION, 232-233
SCISSOR, 120-121

SELECT
DrawObjects function, 474
labeling objects for feedback, 473-475
loading and parsing feedback buffer,

478-480
MakeSelection function, 478-479
ProcessSelection function, 476-477
RenderScene function, 474-475
selecting objects, 476-477

SHADOW
output, 223
RenderScene function, 225-226
SetupRC function, 223-225

SHINYJET, 210-211
SIMPLE

body, 50
color buffer, clearing, 52-53
display callback function, 51
display mode, 50
graphics calls, 51-52
header, 49
OpenGL initialization, 51
OpenGL window, creating, 50
queue, flushing, 53
source code, 48-49

SINGLE, 117-119
SMOOTHER, 236-238
SNOWMAN, 385-388
SOLAR, 151-154
SPHEREWORLD, 165, 227, 342-344

ApplyActorTransform function, 169
converting to display lists, 426-428
DrawGround function, 166-168
fog, 241
RenderScene function, 166-169
SetupRC function, 165, 168
SpecialKeys function, 167, 171

SPHEREWORLD32, 683-684
SPOT

creating spotlights, 214-216
drawing spotlights, 216-220
overview, 213-214
RenderScene function, 216-220
SetupRC function, 214-216

STAR, 115-116
STARRYNIGHT

array sizes and data types, 434
code listing, 429-431
enabling arrays, 432-433
loading geometry, 432
pointer functions, 433-434
rendering with, 434-435

programs 1191

STENCIL, 123-124
TEXGEN, 351-354
TEXT2D, 669, 671
TEXT3D, 666-668
THUNDERGL, 439

code listing, 446-449
DrawBody function, 440
indexed vertex arrays, creating, 442-445
memory requirements, determining,

441-442
rendering modes, 445-446

TOON, 321-325
TRANSFORM, 157
TRANSFORMGL, 159-160
TRIANGLE, 98-101, 184-185
TUNNEL, 331-336

projecting shadow maps, 501-504
projections

definition of, 129
orthographic projections, 29, 133, 147-148
overview, 28, 132-133
perspective projections, 133, 148-149

gluPerspective function, 149
overview, 30
PERSPECT sample program, 150-151
SOLAR sample program, 151-154

projection matrix, 496-497
proxies, 290-291
PSTIPPLE program, 112-113
pushing

attributes
onto client stack, 1052
onto server stack, 1047-1051

matrix stack, 142, 1053
name stack, 1054

PYRAMID program, 311-316
RenderScene function, 313, 316
SetupRC function, 313, 316
source code, 312-315

Q
quad strips, 108
quadratic surfaces. See quadrics
quadrics

cylinders, 382
disks, 384-385
drawing, 381-384
modeling with, 385-388
overview, 108, 378, 390
quadric states, 379-381

SNOWMAN sample program, 385-388
spheres, 381-382

qualifiers, 535-536
quaternions, 163
queries, occlusion

best practices, 492-493
bounding boxes, 485-490
creating, 487-490
deleting, 862-863
delimiting boundaries of, 791-792
ensuring support for, 491-492
naming, 486, 901
occludees, 483-485
occluders, 482-483
overview, 481
parameters, returning, 957-958
querying the query object, 490-491

query matrix (ES 1.0), 742
queue, flushing, 53

R
radians, 81
raster position, 256, 1054-1056, 1138-1139
rasterization

OpenGL ES specifications
ES 1.0, 740
ES 1.1, 743
ES 2.0, 748
ES SC, 753

overview, 524-525
rasterization mode (polygons), 1043-1044

setting, 1062-1063
Rasteroid, 767
Read Format (ES 1.0), 742
reading pixels, 265, 1057-1060
real-time 3D applications, 19-22
real-time graphics, 10-11
rectangles

drawing, 56, 1061-1062
scaling to window, 56

refDisplayMode function, 707
references

3D graphics books, 773-774
OpenGL books, 773
websites, 774

reflection, specular reflectance, 208-209
REFLECTION program, 232-233
RegenerateEnvMap function, 616
region of influence, 564
ReleaseDC function, 658

programs1192

rendering. See also buffers
bounding volumes, 487-490
color tables, 291
definition of, 14
double-buffered rendering, 117
EGL, 763-765
fixed functionality rendering pipeline

antialiasing application, 521
clipping, 519-520
color sum, 520
fog application, 521
lighting, 518
overview, 515-516
texture application and environment, 520
texture coordinate generation and

transformation, 519
vertex transformation, 518

full-screen rendering on Mac OS X
AGL full-screen support, 708-711
display management, 706-707
overview, 706

immediate mode rendering, 423
modes, 460-461
NURBS surfaces, 403-404
OpenGL ES, 770-771
rendering context, 694-695
scissor test, 119, 121
single-buffered rendering, 117-119
vertex arrays, 434-435, 788
from vertex buffer objects, 451-455
Windows rendering. See also GLRect program

full-screen rendering, 671-673, 675
GDI device contexts, 646
multithreaded rendering, 675-676
pixel formats, 647-654
rendering context, 654-655, 660-664

rendering contexts (Windows), 654-655, 660
creating/deleting, 660-663
initializing, 663
shutting down, 664

RenderOnce function, 678
RenderScene function

ATOM program, 143-145
BEZ3D program, 398
BEZIER program, 392-395
BITMAPS program, 255
CUBEDX program, 438
IMAGELOAD program, 261-262
IMAGING program, 284-287
LINESW program, 90-91
LITGET program, 205-206

LSTIPPLE program, 93
MOONS program, 467-469
MOTIONBLUR program, 247
MULTITEXTURE program, 367-369
OPERATIONS program, 270-275
PBO motion blur, 606-608
PLANETS program, 459-460
POINTS program, 79
POINTSZ program, 83-84
PSTIPPLE program, 112
PYRAMID program, 313, 316
REFLECTION program, 233
SCISSOR program, 120
SELECT program, 474-475
shadow maps, 507-509
SHADOW program, 225-226
SINGLE program, 118
SNOWMAN program, 386-388
SOLAR program, 152-153
SPHEREWORLD program, 166-169
SPOT program, 216-220
STARRYNIGHT program, 430-431
STENCIL program, 123
TEXGEN program, 352-354
TEXT2D program, 669, 671
TOON program, 324
TRANSFORM program, 157
TRIANGLE program, 98-101
TUNNEL program, 334-336

replacing color tables, 291-292
resetting minmax table, 1063-1064
resident textures, 338
resizing windows, 58
resolution, screen, 179
resources, 5
restoring states, 66-67
retained mode, 23
RGB colorspace, 180-181
RGBA values (light), 189
Robust Shadow Mapping with Light Space

Perspective Shadow Maps, 497
roll, 163
rotation, 138, 1064-1065
row-major order, 155

S
sampler1D data type, 533
sampler1DShadow data type, 533
sampler2D data type, 533
sampler2DShadow data type, 533

sampler2DShadow data type 1193

sampler3D data type, 533
samplerCube data type, 533
saving

pixels, 266-268
states, 66-67

scalars, 135
Scale function, 445
scaling, 139

drawings to window, 56
matrices, 1066
scaling factors, applying with color

tables, 291
Scherzer, Daniel, 497
Schüler, Christian, 510
scintillation, 325
scissor box, defining, 1067
SCISSOR program, 120-121
scissor test, 119-121
screen resolution, 179
secondary colors

defining array of, 1069-1070
setting, 1067-1069

SELECT program
DrawObjects function, 474
labeling objects for feedback, 473-475
loading and parsing feedback buffer, 478-480
MakeSelection function, 478-479
ProcessSelection function, 476-477
RenderScene function, 474-475
selecting objects, 476-477

selection
definition of, 457
naming primitives, 458-460
overview, 458
picking

definition of, 457
gluPickMatrix function, 464-465
hierarchical picking, 466-471
PLANETS example, 465-466

pixel formats, 653-654
rendering modes, 460-461
selection buffer, 461-463, 1070-1071

separable convolution filters, 296, 959-960
separable two-dimensional convolution filters,

defining, 1072-1074
sepia-tone conversion fragment shader, 569-570
servers, pushing attributes onto attribute stack,

1047-1051
SetDCPixelFormat function, 660, 663
SetPixelFormat function, 653
SetTimer function, 663

SetupGL function, 708
SetupRC function

AMBIENT program, 196
FBO environment map generation, 616
FBO shadow mapping, 614
LITJET program, 204-205
MULTITEXTURE program, 365-367
OPERATIONS program, 269, 274
POINTS program, 78-79
PSTIPPLE program, 112
PYRAMID program, 313, 316
SHADOW program, 223-225
SHINYJET program, 210-211
SIMPLE program, 51
SPHEREWORLD program, 165, 168, 241, 427
SPOT program, 214-216
TEXT2D program, 669, 671
TEXT3D program, 666-667
THUNDERGL program, 444
TOON program, 325
TRIANGLE program, 98-101
TUNNEL program, 333

SetupTextures function, 623
SGI_prefix, 71
shaders, 22-23. See also GLSL (OpenGL Shading

Language)
attached shaders, 788-789, 929-930
clipping, 524
compiling, 825-826
creating, 859-860
deleting, 863
detaching, 866-867
fragment shaders

beach ball texture fragment shader,
592-595

blur fragment shader, 575-576
capabilities of, 525-526
checkerboard texture fragment shader,

589-591
color inversion fragment shader, 570-571
diffuse lighting fragment shader, 582-584
dilation fragment shader, 578-579
edge detection fragment shader, 580-582
erosion fragment shader, 580
fog fragment shader, 572-574
grayscale conversion fragment shader,

568-569
heat signature fragment shader, 571-572
overview, 567-568
sepia-tone conversion fragment shader,

569-570

sampler3D data type1194

sharpen fragment shader, 577-578
simple example, 527
three colored lights fragment shader,

586-587
toy ball texture fragment shader, 595-599

information logs, returning, 961-962, 964
OpenGL ES specifications, 751-752
overview, 521
parameters, returning, 960-961
program objects

attaching, 530
creating, 530
deleting, 530
detaching, 530
enabling, 532
linking, 531
validating, 531-532

querying, 990
rasterization, 524-525
shader objects

compiling, 529-530
creating, 528
deleting, 528
shader text, 528-529

source, setting, 1075-1076
tone mapping, 626-630
vertex shaders

capabilities of, 523-524
diffuse lighting vertex shader, 549-551
fog vertex shader, 557-559
overview, 547
point size vertex shader, 560-561
procedural texture mapping vertex shader,

588-589
simple example, 526
simple examples, 548-549
specular lighting vertex shader, 551-553
squash/stretch effects vertex shader,

561-563
three colored lights vertex shader,

553-557, 585
vertex blending vertex shader, 563-566

shading
definition of, 183
flat shading, 186
overview, 15
selecting, 1074-1075
smooth shading, 183-185

Shading Language. See GLSL (OpenGL Shading
Language)

shadow maps
alpha testing, 506
depth test, 505
generating and binding to, 505-506
initialization, 505
lighting coefficients, 501
percentage-closer filtering, 506
polygon offset, 510
projecting, 501-504
sample program, 507-509

SHADOW program
output, 223
RenderScene function, 225-226
SetupRC function, 223-225

shadow1D function, 544
shadow1DLod function, 545
shadow1DProj function, 545
shadow1DProjLod function, 545
shadow2D function, 545
shadow2DLod function, 545
shadow2DProj function, 545
shadow2DProjLod function, 545
shadows

ambient lighting, 500-501
definition of, 222
depth buffer, 497-498
depth textures

overview, 498-499
size, 499-500

FBO shadow mapping, 613-615
GL_ARB_shadow_ambient extension, 509
modelview matrix, 496
overview, 15-16, 221, 495-496
polygon offset, 510
projection matrix, 496-497
shadow maps

alpha testing, 506
depth test, 505
generating and binding to, 505-506
initialization, 505
lighting coefficients, 501
percentage-closer filtering, 506
projecting, 501-504
sample program, 507-509

shadow projection matrix, 223-225
SHADOW sample program

output, 223
RenderScene function, 225-226
SetupRC function, 223-225

SPHEREWORLD sample program, 227

shadows 1195

shapes, 381
frustums, 148-149
general polygons, 108-109
lines

curves, approximating with straight lines,
88-89

glBegin function, 85
glEnd function, 85
line loops, 87-88
line strips, 87-89
line width, 89-91
LINES program example, 85-87
stippling, 91-93

naming, 458-460
points

glBegin function, 78
glEnd function, 78
glVertex function, 76-77
overview, 74
point parameters, 85
point size, 81-85
POINTS program example, 78, 80
POINTSZ program example, 82-85

primitives, 27
quad strips, 108
quadrics

cylinders, 382
disks, 384-385
drawing, 381-384
modeling with, 385-388
overview, 108, 378, 390
quadric states, 379-381
SNOWMAN sample program, 385-388
spheres, 381-382

rectangles
drawing, 56, 1061-1062
scaling to window, 56

solid objects
backface culling, 104-106
colors, 101-102, 182-183
depth testing, 103
edge flags, 114-116
hidden surface removal, 102-103
polygon construction rules, 113-114
polygon modes, 107
shading, 183-186
stippling, 109-113
TRIANGLE program example, 98-101

triangles
overview, 94
simple example, 94-95

triangle fans, 97-98
triangle strips, 96-97
windings, 95-96, 201

viewing volume, setting up, 74-76
sharpen fragment shader, 577-578
sharpening images, 577-578
SHINYJET program, 210-211
ShutdownRC function, 695
shutting down rendering contexts, 664
SIMPLE program

body, 50
color buffer, clearing, 52-53
display callback function, 51
display mode, 50
graphics calls, 51-52
header, 49
OpenGL initialization, 51
OpenGL window, creating, 50
queue, flushing, 53
source code, 48-49

single-buffered rendering, 117-119
single-buffered windows, 50
single-precision commands, 742
SINGLE program, 117-119
size

of depth textures, 499-500
of points, 81-85
of vertex arrays, 434

sizeof function, 442
smooth shading, 183-185
SMOOTHER program, 236-238
smoothstep function, 595
SNOWMAN program, 385-388
Sobel edge detection, 580
SOLAR program, 151-154
solid objects, drawing

backface culling, 104-106
colors, 101-102, 182-183
depth testing, 103
edge flags, 114-116
hidden surface removal, 102-103
polygon construction rules, 113-114
polygon modes, 107
shading

definition of, 183
flat shading, 186
smooth shading, 183-185

stippling, 109
masks, 110
PSTIPPLE program example, 112-113

TRIANGLE program example, 98-101

shapes1196

sorting state, 240
source color, 230
Sourceforge Vincent, 767
special effects. See effects
SpecialKeys function, 167, 171
specular exponent, 209-210
specular light

calculating light effects, 191
equation, 551
overview, 188-189, 207-208
specular lighting vertex shader, 551-553
three colored lights fragment shader, 586-587
three colored lights vertex shader,

553-557, 585
specular reflectance, 208-209
spheres

drawing, 381-382
mapping, 356-357

SPHEREWORLD program, 165, 227, 342-344
ApplyActorTransform function, 169
converting to display lists, 426-428
DrawGround function, 166-168
fog, 241
RenderScene function, 166-169
SetupRC function, 165, 168
SpecialKeys function, 167, 171

SPHEREWORLD32 program, 683-684
SPOT program

creating spotlights, 214-216
drawing spotlights, 216-220
overview, 213-214
RenderScene function, 216-220
SetupRC function, 214-216

spotlights
creating, 214-216
drawing, 216-220

sprites
overview, 371-372
point parameters, 374
POINTSPRITES sample program, 372-373
texture application, 374

squash/stretch effects vertex shader, 561-563
stack, 66
standard libraries. See libraries
STAR program, 115-116
STARRYNIGHT program

array sizes and data types, 434
code listing, 429-431
enabling arrays, 432-433
loading geometry, 432
pointer functions, 433-435

starting GLUT, 51
state

OpenGL ES specifications, 769-770
ES 1.0, 741
ES 1.1, 743-744
ES 2.0, 749
ES SC, 754

quadric states, 379-381
restoring, 66-67
saving, 66-67
sorting, 240
state variables, 82
texture state, 304
variables, enabling/disabling, 65-66

State Machine, 82
stencil buffer, 121-126
STENCIL program, 123-124
stencil testing

glStencilFunc function, 1076-1077
glStencilFuncSeparate function, 1077-1079
glStencilOp function, 1080-1082
glStencilOpSeparate function, 1082-1084

step function, 595
stippling, 91

line stippling, 91-93
patterns

returning, 954
specifying, 995-996

polygon stippling, 109, 1045-1046
masks, 110
PSTIPPLE program example, 112-113

storing pixels, 257
strings

EGL, 765
GLX, 727
returning, 963

structures, 534
subimages (texture)

one-dimensional, 1115-1116
three-dimensional, 1119-1121
two-dimensional, 1117-1119

sun/earth/moon program, 151-154
Super-VGA cards, 178
surfaces

backface culling, 104-106
Bézier curves

2D curves, 391-396
3D Bézier surfaces, 397-400
breakpoints, 390
continuity, 390-391
control points, 390
cubic curves, 390

surfaces 1197

degree of, 390
evaluating, 396-397
lighting and normal vectors, 400-401
order of, 390
overview, 388
parametric equation, 388-389
piecewise curves, 390
quadratic curves, 390

hidden surface removal, 14, 102-103
normals

definition of, 197-198
specifying, 198-200

NURBS
B-splines, 402
curves, 409
defining, 404-406
knots, 402-403
overview, 401
properties, 404
rendering, 403-404
trimming, 406-408

quadrics
cylinders, 382
disks, 384-385
drawing, 381-384
modeling with, 385-388
overview, 378
quadric states, 379-381
SNOWMAN sample program, 385-388
spheres, 381-382

rendering surfaces, creating with EGL, 763
tessellation

FLORIDA sample program, 414-419
GLUtesselator, 411
overview, 409-410
tessellator callbacks, 412-413
vertex data, specifying, 413

synchronization
EGL, 764-765
GLX, 726-727

T
tables

color
bias values, 291
color lookup, 289-290
copying pixels into, 843-845
defining, 821-824
parameters, 824-825, 936-937

proxies, 290-291
rendering, 291
replacing, 291-292
respecifying portion of, 820-821, 843
retrieving contents of, 934-935
scaling factors, 291

histogram
defining, 979-980
resetting, 1063
returning, 942-943

minmax
defining, 1015-1016
resetting, 1063-1064

targa files
loading, 262-263, 265
writing to, 266-268

tessellation
FLORIDA sample program, 414-419

complex polygon, tessellating, 417-418
convex polygon, drawing, 415-416
vertex data and drawing code for state

outline, 414-415
GLUtesselator, 411
overview, 409-410
tessellator callbacks, 412-413
vertex data, specifying, 413

tessError function, 412
testing

alpha testing, 249, 786
stencil testing

glStencilFunc function, 1076-1077
glStencilFuncSeparate function, 1077-1079
glStencilOp function, 1080-1082
glStencilOpSeparate function, 1082-1084

texture objects, 331
texels

definition of, 16, 304
formats, 306

TEXGEN program, 351-354
text. See also fonts

bitmap fonts, 697-698
shader text, 528-529

TEXT2D program, 669, 671
TEXT3D program, 666-668
texture combiners, 369-371
texture lookup functions, 544-545
texture1D function, 544
texture1DLod function, 544
texture1DProj function, 544
texture1DProjLod function, 544
texture2D function, 544

surfaces1198

texture2DLod function, 544
texture2DProj function, 544
texture2DProjLod function, 544
texture3D function, 544
texture3DLod function, 544
texture3DProj function, 544
texture3DProjLod function, 544
textureCube function, 544
textureCubeLod function, 544
textures

active texture, selecting, 785, 814
anisotropic texture filtering, 344-346
beach ball texture fragment shader, 592-595
binding, 795-796
checkerboard texture fragment shader,

589-591
compressing, 347-349, 937-938
data types, 306-307
deleting, 863-864
dependent texture lookups, 572
depth textures, 498-500
environment parameters

returning, 964-966
setting, 1087-1091

filtering, 318-319
fixed fragment processing, 520
fixed vertex processing, 519
floating-point textures

High Dynamic Range (HDR), 622-623
OpenEXR file format, 623-626
overview, 622
tone mapping, 626-630

internal formats, 305
isotropic texture filtering, 345
loading, 304-307

from color buffer, 307
glCopyTexImage1D function, 307
glCopyTexImage2D function, 307
glTexImage function, 304-307
glTexImage1D function, 304
glTexImage2D function, 304
glTexImage3D function, 304

loading compressed textures, 349-350
mipmapping

hardware generation of mipmaps, 329
LOD BIAS, 329-330
mip levels, generating, 328-329
mipmap filters, 327-328
overview, 325-327

multitexture
multiple texture coordinates, 363-364
MULTITEXTURE sample program, 364-369
overview, 362-363

names, generating, 902
one-dimensional texture images, specifying,

1094-1099
OpenGL ES specifications

ES 1.0, 740-741
ES 1.1, 743-745
ES 2.0, 748-750

overview, 16, 303-304
parameters, 318

returning, 970-973
setting, 1110-1114

point sprites
overview, 371-372
point parameters, 374
POINTSPRITES sample program, 372-373
texture application, 374

priorities, 1046-1047
procedural texture mapping vertex shader,

588-589
PYRAMID sample program, 311-316

RenderScene function, 313, 316
SetupRC function, 313, 316
source code, 312-315

querying, 990-991
resident status, 787
secondary specular color, 341-344
stacks, 143
state, 304
subimages

one-dimensional, 1115-1116
three-dimensional, 1119-1121
two-dimensional, 1117-1119

texels
definition of, 304
formats, 306

texture combiners, 369-371
texture coordinate generation, 350-354

cube mapping, 357-361
disabling, 350
enabling, 350
eye linear mapping, 355-356
object linear mapping, 354
parameters, returning, 966-967
sphere mapping, 356-357
TEXGEN sample program, 351-354

textures 1199

texture coordinates, 308-310
arrays of, 1085-1087
controlling generation of, 1091-1093
setting, 1018-1020, 1084-1085

texture environment mode, 316-318
texture images, returning, 967-969
texture lookup functions, 544-545
texture matrix, 311
texture names, generating, 902
texture objects

allocating, 330
binding, 330
deleting, 330
multiple textures, managing, 331-338
overview, 330
resident textures, 338
testing, 331
texture priorities, 339

three-dimensional texture images, specifying,
1105-1110

toon-shading (cell-shading), 321-325
toy ball texture fragment shader, 595-599
two-dimensional texture images, specifying,

1099-1104
updating, 307-308
vertex arrays, 434
wrap modes, 320-321

three-dimensional graphics. See 3D graphics
throughput. See geometry throughput
Thunderbird model. See THUNDERGL program
THUNDERGL program, 439

code listing, 446-449
DrawBody function, 440
indexed vertex arrays, creating, 442-445
memory requirements, determining, 441-442
rendering modes, 445-446

ThunderGLView class, 701-705
tone mapping, 626-630
TOON program, 321-325
toon-shading (cell-shading), 321-325
toonDrawTorus function, 322
toy ball program

bloom effect
bright pass, 633-634
drawing scene, 630-633
framebuffer, 636-638
Gaussian blur, 634-636
overview, 630
PBOs (pixel buffer objects), 638

toy ball texture fragment shader, 595-599
tracking color, 194
transfer modes (pixels), setting, 1036-1039

transferring pixels, 277-281
TRANSFORM program, 157
transformations

actors
actor frames, 161-163
definition of, 161

adding together, 160-161
ATOM sample program, 143-146
camera transformation, 164-165
eye coordinates, 129
fixed vertex processing, 518
matrices

column-major matrix ordering, 154-155
creating, 157-159
definition of, 134
identity matrices, 140-142
loading, 156-160
matrix stacks, 142-143
modelview matrices, 136-139
overview, 134-135

modeling transformations, 129-130
modelview transformations, 129, 132
OpenGL ES specifications, 740
overview, 127-128
pipeline, 135-136
projections

definition of, 129
orthographic projections, 133, 147-148
overview, 132-133
perspective projections, 133, 148-154

rotation, 138
scaling, 139
SPHEREWORLD sample program

ApplyActorTransform function, 169
DrawGround function, 166, 168
RenderScene function, 166-169
SetupRC function, 165, 168
SpecialKeys function, 167, 171

translation, 137-138
vectors, 155
viewing transformations, 129-130
viewport transformations, 129, 134

TRANSFORMGL program, 159-160
translation, 137-138

matrices, 1121-1122
transparency, 18
triangle fans, 97-98
TRIANGLE program, 98-101, 184-185
triangle strips, 96-97
triangles, drawing

overview, 94
simple example, 94-95

textures1200

triangle fans, 97-98
triangle strips, 96-97
windings, 95-96, 201

trigonometry, 81
trimming NURBS surfaces, 406-408
troubleshooting

error codes, 68
error flags, displaying, 67-68
FBOs (framebuffer objects), 612-613
overview, 67

TrueType fonts
2D fonts and text, 669, 671
3D fonts and text, 666-668
overview, 666

TUNNEL program, 331-336
turning on/off state variables, 65-66
two-dimensional convolution filters

copying pixels into, 846-848
defining, 839-841

two-dimensional evaluators, defining, 1006-1009
two-dimensional graphics. See 2D graphics
types (data), 532-533

U
ultraviolet light, 174
uniform qualifier, 535
uniform variables

returning location of, 975
returning value of, 974
specifying value of, 1122-1126

unit normals
averaging, 211-213
calculating, 202-203
converting surface normals to, 201
definition of, 201

unsigned integer element indices, 750
updating

buffer data store, 807-808
textures, 307-308

UseMultiPassTechnique function, 678
UserMultiPassTechnique function, 678

V
ValidateRect function, 665
validating program objects, 531-532, 1128-1129
variables

arrays, 534-535
built-in variables, 536-537
data types, 532-533

overview, 532
qualifiers, 535-536
state variables, 65-66, 82
structures, 534
uniform variables

returning location of, 975
returning value of, 974
specifying value of, 1122-1126

varying qualifier, 535
vec2 data type, 533
vec3 data type, 533
vec4 data type, 533
vectors

definition of, 134
normal vectors

Bézier curves, 400-401
normal averaging, 211-213
setting, 1024-1025
surface normals, 197-200
unit normals, 201-203

orthonormal, 155
versions of OpenGL, identifying, 68-69
vertex arrays

enabling, 432-433
indexed vertex arrays

creating, 442-445
CUBEDX sample program, 436-439
memory requirements, determining,

441-442
overview, 435-436
THUNDERGL sample program, 439-449

loading geometry, 432
overview, 428-429
pointer functions, 433-434
rendering with, 434-435
sizes and data types, 434
STARRYNIGHT sample program, 429-431
texture, 434

vertex attribute arrays, enabling/disabling, 886
vertex blending vertex shader, 563-566
vertex buffer objects

binding, 450
creating, 450
initializing arrays, 452-453
loading, 451
mixing static and dynamic data, 453-454
overview, 450
rendering from, 451-455

vertex shaders
capabilities of, 523-524
diffuse lighting vertex shader, 549, 551
fog vertex shader, 557-559

vertex shaders 1201

overview, 547
point size vertex shader, 560-561
procedural texture mapping vertex shader,

588-589
simple example, 526
simple examples, 548-549
specular lighting vertex shader, 551-553
squash/stretch vertex shader, 561-563
three colored lights vertex shader,

553-557, 585
vertex blending vertex shader, 563-566

vertices
attribute pointers, returning address of,

977-978
attributes, returning, 976-977
delimiting, 789-791
generic vertex attributes

arrays of, 1134-1135
specifying value of, 1130-1134

OpenGL ES specifications
ES 1.0, 739
ES 1.1, 742-743
ES 2.0, 746
ES SC, 753

overview, 27
rendering with array elements, 788
specifying, 1129-1130
tessellation, 413
transformation, 518
vertex arrays, 1136-1137

enabling, 432-433
indexed vertex arrays, 435-449
loading geometry, 432
overview, 428-429
pointer functions, 433-434
rendering with, 434-435
sizes and data types, 434
STARRYNIGHT sample program, 429-431
texture, 434

vertex attribute arrays, enabling/disabling, 886
vertex buffer objects

binding, 450
creating, 450
initializing arrays, 452-453
loading, 451
mixing static and dynamic data, 453-454
overview, 450
rendering from, 451-455

vertex shaders
capabilities of, 523-524
diffuse lighting vertex shader, 549-551

fog vertex shader, 557-559
overview, 547
point size vertex shader, 560-561
procedural texture mapping vertex shader,

588-589
simple example, 526
simple examples, 548-549
specular lighting vertex shader, 551-553
squash/stretch vertex shader, 561-563
three colored lights vertex shader,

553-557, 585
vertex blending vertex shader, 563-566

VGA (Video Graphics Array) cards, 178
viewing transformations, 129-130
viewing volumes, 28, 74-76
viewport transformations, 129, 134
viewports, 58, 1137
Vincent, 767
visible spectrum of light, 174
void data type, 533

W
wavelengths of light, 174
websites

list of, 774
OpenGL SuperBible, 5

WGF (Windows Graphics Foundation), 646
WGL extensions

GLEE library, 679
new entrypoints, 678-679
overview, 676-677
simple extensions, 677-678
WGL_ARB_extensions_string extension, 680
WGL_ARB_pixel_format extension, 680-683

WGL_prefix, 71
wglCreateContext function, 654
wglDeleteContext function, 664
wglGetExtensionsStringARB function, 680
wglGetPixelFormatAttribARB function, 683
wglGetPixelFormatAttribfvARB function, 681
wglGetPixelFormatAttribivARB function, 680
wglGetPixelFormatAttributeivARB function, 683
wglGetProcAddress function, 677
wglMakeCurrent function, 655, 663-664
wglUseFontBitmaps function, 666, 671
wglUseFontOutlines function, 666-667
WGL_ACCELERATION_ARB constant (pixel

format), 681
WGL_ACCUM_ALPHA_BITS_ARB constant (pixel

format), 682

vertex shaders1202

WGL_ACCUM_BITS_ARB constant (pixel
format), 682

WGL_ACCUM_BLUE_BITS_ARB constant (pixel
format), 682

WGL_ACCUM_GREEN_BITS_ARB constant (pixel
format), 682

WGL_ACCUM_RED_BITS_ARB constant (pixel
format), 682

WGL_ALPHA_BITS_ARB constant (pixel
format), 682

WGL_ALPHA_SHIFT_ARB constant (pixel
format), 682

WGL_ARB_extensions_string extension, 680
WGL_ARB_pixel_format extension, 680-683
WGL_AUX_BUFFERS_ARB constant (pixel

format), 682
WGL_BLUE_BITS_ARB constant (pixel

format), 682
WGL_BLUE_SHIFT_ARB constant (pixel

format), 682
WGL_COLOR_BITS_ARB constant (pixel

format), 682
WGL_DEPTH_BITS_ARB constant (pixel

format), 681
WGL_DOUBLE_BUFFER_ARB constant (pixel

format), 682
WGL_DRAW_TO_BITMAP_ARB constant (pixel

format), 681
WGL_DRAW_TO_WINDOW_ARB constant (pixel

format), 681
WGL_FULL_ACCELERATION_ARB constant

(acceleration flags), 682
WGL_GENERIC_ACCELERATION_ARB constant

(acceleration flags), 682
WGL_GREEN_BITS_ARB constant (pixel

format), 682
WGL_GREEN_SHIFT_ARB constant (pixel

format), 682
WGL_NEED_PALETTE_ARB constant (pixel

format), 681
WGL_NEED_SYSTEM_PALETTE_ARB constant

(pixel format), 681
WGL_NO_ACCELERATION_ARB constant

(acceleration flags), 682
WGL_NUMBER_OVERLAYS_ARB constant (pixel

format), 681
WGL_NUMBER_PIXEL_FORMATS_ARB constant

(pixel format), 681
WGL_NUMBER_UNDERLAYS_ARB constant (pixel

format), 681
WGL_PIXEL_TYPE_ARB constant (pixel

format), 682

WGL_RED_BITS_ARB constant (pixel
format), 682

WGL_RED_SHIFT_ARB constant (pixel
format), 682

WGL_SHARE_ACCUM_ARB constant (pixel
format), 681

WGL_SHARE_DEPTH_ARB constant (pixel
format), 681

WGL_SHARE_STENCIL_ARB constant (pixel
format), 681

WGL_STENCIL_BITS_ARB constant (pixel
format), 681

WGL_STEREO_ARB constant (pixel format), 682
WGL_SUPPORT_GDI_ARB constant (pixel

format), 682
WGL_SUPPORT_OPENGL_ARB constant (pixel

format), 682
WGL_SWAP_COPY_ARB buffer swap value, 682
WGL_SWAP_EXCHANGE_ARB buffer swap

value, 682
WGL_SWAP_LAYER_BUFFERS_ARB constant

(pixel format), 681
WGL_SWAP_METHOD_ARB constant (pixel

format), 681
WGL_SWAP_UNDEFINED_ARB buffer swap

value, 682
WGL_TRANSPARENT_ALPHA_VALUE_ARB

constant (pixel format), 681
WGL_TRANSPARENT_ARB constant (pixel

format), 681
WGL_TRANSPARENT_BLUE_VALUE_ARB constant

(pixel format), 681
WGL_TRANSPARENT_GREEN_VALUE_ARB

constant (pixel format), 681
WGL_TRANSPARENT_RED_VALUE_ARB constant

(pixel format), 681
width of lines, 89-91, 996-997
wiggle functions

definition of, 641
wglCreateContext, 654
wglDeleteContext, 664
wglGetExtensionsStringARB, 680
wglGetPixelFormatAttribfvARB, 681
wglGetPixelFormatAttribivARB, 680
wglGetProcAddress, 677
wglMakeCurrent, 655, 663-664
wglUseFontBitmaps, 666, 671
wglUseFontOutlines, 666-667

Wimmer, Michael, 497
Win32, 658. See also Windows, OpenGL on
windings (triangles), 95-96, 201

windings 1203

windows, 50
clearing, 51-53
creating with EGL

display configs, 759-763
rendering surfaces, 763

creating with GLX
GLX 1.2, 724
GLX 1.3+, 723-724

frameless windows, creating, 672
full-screen windows, creating, 672-675
raster position in window coordinates,

1138-1139
resizing, 58
scaling drawings to, 56

Windows Graphics Foundation (WGF), 646
Windows, OpenGL on

extended OpenGL, 644-645
fonts

2D fonts and text, 669, 671
3D fonts and text, 666-668
overview, 666

full-screen rendering, 671
frameless windows, creating, 672
full-screen windows, creating, 672-675

GDI device contexts, 646
generic OpenGL, 642
GLRECT sample program

device contexts, 657-660
overview, 655
rendering contexts, 660-664
Win32, 658
WinMain function, 655, 657
WM_CREATE message, 660
WM_DESTROY message, 660
WM_PAINT message, 664-665
WM_SIZE message, 664
WM_TIMER message, 664

Installable Client Driver (ICD), 642-643
Mini-Client Driver (MCD), 643
mini-drivers, 643-644
multithreaded rendering, 675-676
OpenGL on Vista, 644
overview, 641-642
pixel formats

enumerating, 650-652
overview, 647
pixel rendering buffer flags, 649-650

PIXELFORMATDESCRIPTOR structure,
647-649

selecting, 653-654
setting, 653-654
WGL_ARB_pixel_format extension,

680-683
rendering context, 654-655, 660

creating/deleting, 660-663
initializing, 663
shutting down, 664

SPHEREWORLD32 sample program, 683-684
WGL extensions

GLEE library, 679
new entrypoints, 678-679
overview, 676-677
simple extensions, 677-678
WGL_ARB_extensions_string

extension, 680
WGL_ARB_pixel_format extension,

680-683
Windows messages

WM_CREATE, 660
WM_DESTROY, 660
WM_PAINT, 664-665
WM_SIZE, 664
WM_TIMER, 664

WinMain function (GLRECT program), 655, 657,
673-674

WM_CREATE message, 660
WM_DESTROY message, 660
WM_PAINT message, 664-665
WM_SIZE message, 664
WM_TIMER message, 664
Womack, Ed, 439
wrap modes (texture), 320-321
writing to targa files, 266-268

X–Z
X fonts, 728-729
X Server configuration, 715-716
X Windows, GLX

config management, 719-723
context management, 724-726
displays, 718
extending, 729
overview, 718

windows1204

querying, 727
sample program, 729-733
strings, 727
synchronization, 726-727
windows and render surfaces, 723-724
X fonts, 728-729

XCloseDisplay function, 718
Xcode, 686
XCreateWindow function, 723
XDestroyWindow function, 724
xfree86.org, 775
XOpenDisplay function, 718-719

yaw, 163

z-fighting, 225
zoom, pixel, 275-277, 1040

zoom, pixel 1205

This page intentionally left blank

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

www.awprofessional.com/register
http://www.awprofessional.com

OpenGL® Titles from Addison-Wesley

OpenGL® Programming Guide, Sixth Edition
The Official Guide to Learning OpenGL® Version 2.1
OpenGL Architecture Review Board, Dave Shreiner,
Mason Woo, Jackie Neider, and Tom Davis
0-321-48100-3

OpenGL® Programming Guide, Sixth Edition, provides
definitive, comprehensive information on OpenGL and
the OpenGL Utility Library. This sixth edition of the best-
selling “red book” describes the latest features of OpenGL
Version 2.1.

OpenGL® Shading Language, Second Edition
Randi Rost
0-321-33489-2

OpenGL® Shading Language, Second Edition, is the experi-
enced application programmer’s guide to writing shaders.
Part reference, part tutorial, this book explains the shift
from fixed-functionality graphics hardware to the new era
of programmable graphics hardware and the additions to
the OpenGL API that support it.

OpenGL® Library, Fourth Edition
0-321-51432-7

This special boxed set contains both OpenGL®

Programming Guide, Sixth Edition, and OpenGL®

Shading Language, Second Edition.

Available wherever technical books are sold. For more information, including free
sample chapters, go to www.awprofessional.com.

OpenGL® SuperBible, Fourth Edition
Comprehensive Tutorial and Reference
Richard S. Wright Jr., Benjamin Lipchak,
and Nicholas Haemel
0-321-49882-8

OpenGL® SuperBible, Fourth Edition, offers compre-
hensive coverage of applying and using OpenGL in your
day-to-day work. It covers topics such as OpenGL ES
programming for handhelds and OpenGL implementations
on multiple platforms, including Windows, Mac OS X, and
Linux/UNIX.

OpenGL® Distilled
Paul Martz
0-321-33679-8

OpenGL® Distilled provides the fundamental information
you need to start programming 3D graphics, from set-
ting up an OpenGL development environment to creating
realistic textures and shadows. Written in an engaging,
easy-to-follow style, you’ll quickly learn the essential and
most-often-used features of OpenGL, along with the best
coding practices and troubleshooting tips.

OpenGL® Programming on Mac® OS X
Architecture, Performance, and Integration
Robert P. Kuehne and J. D. Sullivan
0-321-35652-7

Apple’s highly efficient, modern OpenGL implementation
makes Mac OS X one of today’s best platforms for OpenGL
development. OpenGL® Programming on Mac OS® X is the
first comprehensive resource for every graphics program-
mer who wants to create, port, or optimize OpenGL
applications for this high-volume platform.

www.awprofessional.com

COLOR PLATE 2 Shaders allow for unprecedented real-time realism (image courtesy of
Software Bisque, Inc.). (For Figure 1.20 in Chapter 1)

COLOR PLATE 1 (not associated with any chapter) Software Bisque’s next generation
sky charting application, TheSkyX Astronomy Software, uses only OpenGL fixed pipeline
rendering for increased compatibility with older 3D hardware (image courtesy of Software
Bisque, Inc.).

COLOR PLATE 3
OpenGL’s imaging
subset at work:
color image, color
negative,
embossed, and
grayscale conver-
sions. (For figures
in Chapter 7)

COLOR PLATE 4 Linear filtering up close. (For Figure 8.8 in Chapter 8)

COLOR PLATE 6 The Final Thunderbird model. (For Figure 11.8 in Chapter 11)

COLOR PLATE 5 Output
from the CUBEMAP sample
program. (For Figure 9.11 in
Chapter 9)

COLOR PLATE 7
This vertex shader
computes diffuse
lighting. (For
Figure 16.2 in
Chapter 16)

COLOR PLATE 8
This vertex shader
computes diffuse
and specular
lighting. (For
Figure 16.3 in
Chapter 16)

COLOR PLATE 9 The per-vertex specular highlight is improved by using separate specular
or a specular exponent texture. (For Figure 16.4 in Chapter 16)

COLOR PLATE 10 Three lights are better than one. (For Figure 16.5 in Chapter 16)

COLOR PLATE 11
Applying per-
vertex fog using a
vertex shader.
(For Figure 16.6
in Chapter 16)

COLOR PLATE 12
Per-vertex point
size makes distant
points smaller.
(For Figure 16.7
in Chapter 16)

COLOR PLATE 13
This simple elbow
joint without
vertex blending
just begs for skin.
(For Figure 16.9 in
Chapter 16)

COLOR PLATE 14
The stiff two-
cylinder arm is
now a fun, curvy,
flexible object.
(For Figure 16.10
in Chapter 16)

COLOR PLATE 15
This fragment
shader performs
sepia tone color
conversion.
(This image shows
the result of
Listing 17.2 in
Chapter 17)

COLOR PLATE 16
This fragment
shader simulates a
heat signature by
looking up a color
from a 1D texture.
(For Figure 17.3
in Chapter 17)

COLOR PLATE 17
This fragment
shader blurs the
scene. (For
Figure 17.5 in
Chapter 17)

COLOR PLATE 18
This fragment
shader sharpens
the scene. (For
Figure 17.6 in
Chapter 17)

COLOR PLATE 19
This fragment
shader implements
Laplacian edge
detection. (For
Figure 17.9 in
Chapter 17)

COLOR PLATE 20
An overhead view
showing how the
beachball colors
are assigned.
(For Figure 17.14
in Chapter 17)

N N

NE

NW

NE

NW

COLOR PLATE 21
You have built
your own beach
ball from scratch!
(For Figure 17.15
in Chapter 17)

COLOR PLATE 22
The toy ball
shader describes a
relatively complex
shape. (For Figure
17.17 in
Chapter 17)

COLOR PLATE 23
PBOs improve the
performance of
our motion blur
sample. (For
Figure 18.2 in
Chapter 18)

COLOR PLATE 24
FBOs improve the
image quality of
our shadow
mapping sample.
(For Figure 18.3
in Chapter 18)

COLOR PLATE 25
Render to texture
with FBOs to
improve perfor-
mance of dynamic
environment
mapping. (For
Figure 18.5 in
Chapter 18)

COLOR PLATE 26
Fragment shaders
can simultaneously
output multiple
distinct colors to
separate color
buffers attached
to FBOs. (For
Figure 18.6 in
Chapter 18)

COLOR PLATE 27
Data is thrown
away when colors
outside [0,1] are
clamped (left)
rather than
mapped to [0,1]
(right). (For
Chapter 18—not
associated with
any black and
white figure)

COLOR PLATE 28
The HDR image
of the silhouetted
tree (left) reveals
surprising detail
when the aperture
is adjusted (right).
(For Chapter 18—
not associated
with any black
and white figure)

COLOR PLATE 29
The still life sheds
its warm candle
glow (left)
courtesy of a
white balance
tone mapping
shader (right).
(For Chapter 18—
not associated
with any black
and white figure)

COLOR PLATE 30
Bloom and after-
glow effects help
give the impres-
sion of extreme
brightness even
when we can’t
display colors
brighter than
100% white. (For
Chapter 18—not
associated with
any black and
white figure)

COLOR PLATE 31
OpenGL ES rendering on a
cellphone. (For Figure 22.1
in Chapter 22)

COLOR PLATE 32 (not associated with any chapter) This scene from Software Bisque’s Seeker solar
system simulator is rendered entirely with OpenGL shaders (image courtesy of Software Bisque, Inc.).

	OpenGL superbible, 4th Edition
	Table of Contents
	Preface
	About the Authors
	Introduction
	What’s New in This Edition
	How This Book Is Organized
	Part I: The Old Testament
	Part II: The New Testament
	Part III: The Apocrypha

	Conventions Used in This Book
	About the Companion Web Site
	Part I: The Old Testament
	1 Introduction to 3D Graphics and OpenGL
	A Brief History of Computer Graphics
	A Survey of 3D Effects
	Common Uses for 3D Graphics
	Basic 3D Programming Principles
	Summary

	2 Using OpenGL
	What Is OpenGL?
	How Does OpenGL Work?
	OpenGL: An API, Not a Language
	API Specifics
	Platform Independence
	Animation with OpenGL and GLUT
	The OpenGL State Machine
	OpenGL Errors
	Identifying the Version
	Getting a Clue with glHint
	Using Extensions
	Summary

	3 Drawing in Space: Geometric Primitives and Buffers
	Drawing Points in 3D
	Setting Up a 3D Canvas
	A 3D Point: The Vertex
	Draw Something!
	Setting the Point Size
	Drawing Lines in 3D
	Drawing Triangles in 3D
	Building Solid Objects
	Other Primitives
	Other Buffer Tricks
	Summary

	4 Geometric Transformations: The Pipeline
	Is This the Dreaded Math Chapter?
	Understanding Transformations
	The Matrix: Mathematical Currency for 3D Graphics
	Using Projections
	Advanced Matrix Manipulation
	Moving Around in OpenGL Using Cameras and Actors
	Bringing It All Together
	Summary

	5 Color, Materials, and Lighting: The Basics
	What Is Color?
	PC Color Hardware
	PC Display Modes
	Using Color in OpenGL
	Color in the Real World
	Materials in the Real World
	Adding Light to a Scene
	Using a Light Source
	Lighting Effects
	Putting It All Together
	Shadows
	Summary

	6 More on Colors and Materials
	Blending
	Applying Fog
	Accumulation Buffer
	Other Color Operations
	Summary

	7 Imaging with OpenGL
	Bitmaps
	Pixel Packing
	Pixmaps
	More Fun with Pixels
	The Imaging “Subset” and Pipeline
	Summary

	8 Texture Mapping: The Basics
	Loading Textures
	A Simple 2D Example
	Texture Environment
	Texture Parameters
	Texture Objects
	Summary

	9 Texture Mapping: Beyond the Basics
	Secondary Colour
	Anisotropic Filtering
	Texture Compression
	Texture Coordinate Generation
	Multitexture
	Texture Combiners
	Point Sprites
	Summary

	10 Curves and Surfaces
	Built-in Surfaces
	Bézier Curves and Surfaces
	NURBS
	Tessellation
	Summary

	11 It’s All About the Pipeline: Faster Geometry Throughput
	Display Lists
	Vertex Arrays
	Vertex Buffer Objects
	Summary

	12 Interactive Graphics
	Selection
	A Feedback Example
	Summary

	13 Occlusion Queries: Why Do More Work Than You Need To?
	The World Before Occlusion Queries
	Bounding Boxes
	Querying the Query Object
	Best Practices
	Summary

	14 Depth Textures and Shadows
	Be That Light
	A New Kind of Texture
	Draw the Shadows First?!
	And Then There Was Light
	Two Out of Three Ain’t Bad
	A Few Words About Polygon Offset
	Summary

	Part II: The New Testament
	15 Programmable Pipeline: This Isn't Your Father's OpenGL
	Out with the Old
	In with the New
	OpenGL Shading Language: A First Glimpse
	Managing GLSL Shaders
	Variables
	Expressions
	Control Flow
	Summary

	16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen
	Getting Your Feet Wet
	Diffuse Lighting
	Specular Lighting
	Improved Specular Lighting
	Per-Vertex Fog
	Per-Vertex Point Size
	Customized Vertex Transformation
	Vertex Blending
	Summary

	17 Fragment Shading: Empower Your Pixel Processing
	Color Conversion
	Image Processing
	Lighting
	Procedural Texture Mapping
	Summary

	18 Advanced Buffers
	Pixel Buffer Objects
	Framebuffer Objects
	Floating-Point Textures
	Making Your Whites Whiter and Your Brights Brighter
	Summary

	Part III: The Apocrypha
	19 Wiggle: OpenGL on Windows
	OpenGL Implementations on Windows
	Basic Windows Rendering
	Putting It All Together
	OpenGL and Windows Fonts
	Full-Screen Rendering
	Multithreaded Rendering
	OpenGL and WGL Extensions
	Summary

	20 OpenGL on Mac OS X
	GLUT
	OpenGL with Carbon
	OpenGL with Cocoa
	Full-Screen Rendering
	Summary

	21 OpenGL on Linux
	The Basics
	Setup
	GLUT
	GLX—Dealing with the X Windows Interface
	Putting It All Together
	Summary

	22 OpenGL ES: OpenGL on the Small
	OpenGL on a Diet
	Which Version Is Right for You?
	The ES Environment
	EGL: A New Windowing Environment
	Negotiating Embedded Environments
	Putting OpenGL ES into Action
	Summary

	A: Further Reading/References
	Other Good OpenGL Books
	3D Graphics Books
	Web Sites

	B: Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

	C: API Reference
	Overview of Appendix C

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

