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Preface

My career has been built on a long history of making “stupid” choices and accidentally
being right. First, I went to Microsoft’s DOS, instead of the wildly popular CP/M. Later,

I recall, friends counseled me that Windows was dead, and too hard to program for, and
that OS/2 was the future (you couldn’t lose by sticking with IBM, they’d say).

Just got lucky, I guess.

There were a few other minor wrong turns that just happened to fortunately have me
pointed away from some other collapsing industry segment, but my next really big stupid
decision was writing the first edition of this book. I had already built a nice comfortable
career out of fixing SQL database problems, and was making the transition to large-scale
enterprise IT solutions in the healthcare industry. A book on OpenGL? I had no idea what
I was doing. The first time I read the official OpenGL specification, I had to all but breathe
in a paper bag, my first co-author quit in disgust, and the whole project was very nearly
canceled before the book was half-finished.

As soon as the book came out, I had some meager credibility outside my normal field of
expertise. I was offered a job at Lockheed-Martin/Real3D doing “real” OpenGL work. My
then-current boss (God bless you, David, wherever you are!) tried really hard to talk me
out of throwing my career away. Everybody knows, he insisted, that whatever Microsoft
does is going to be the way the industry goes, and Microsoft’s Talisman graphics platform
was going to bury OpenGL into obscurity. Besides, there was only one other book on
OpenGL in existence; how big a thing could it possibly be?

Eleven years have passed, and as I finish yet the fourth edition of this book (and looking
at a shelf full of OpenGL books), the number of people reading this who remember the
short-lived hype of Talisman would probably fit in the back of my minivan. An OpenGL
engineer I used to know at IBM had in her e-mail signature: “OpenGL. It's everywhere.
Do the math.” This has never been truer than it is today.

OpenGL today is the industry-leading standard graphics API on nearly every conceivable
platform. This includes not only desktop Windows PCs and Macs, but UNIX workstations,
location-based entertainment systems, major game consoles (all but one), hand-held
gaming devices, cellphones, and a myriad of other embedded systems such as avionic and
vehicle instrumentation.

Across platforms, OpenGL is the undisputed champion of 3D content creation applica-

tions, 3D games, visualization, simulation, scientific modeling, and even 2D image and
video editing. OpenGL's widespread success can be attributed to its elegance and ease of
use, its power and flexibility, and the overwhelming support it has received from the
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developer and IHV communities. OpenGL can be extended as well, providing all the bene-
fits of an open standard, as well as giving vendors the ability to add their own proprietary
added value to implementations.

You have probably heard that programmable hardware is the future of 3D graphics
programming, and of graphics APIs. This is no longer true. Programmable hardware is no
longer in the future; it is here now, today, even on the lowest cost motherboard embedded
3D chipsets. It is not a fluke that this edition follows the last at the closest interval of the
series. The pace of evolving graphics technology is simply staggering, and this edition
brings you up-to-date on the now-latest OpenGL version 2.1.

We have reinforced the chapters on fixed-pipeline programming, which is not going away
anytime soon, and have affectionately deemed them “The Old Testament;” still relevant,
illustrative, and the foundation on which the “New Testament” of programmable hard-
ware is based. I find the analogy quite appropriate, and I would refute anyone who thinks
the fixed pipeline is completely dead and irrelevant. The rank and file of application devel-
opers (not necessarily cutting-edge game developers) would, I'm sure, agree.

That said, we have still trimmed some dead weight. Color Index mode is ignored as much
as possible, some old paletted rendering material from the Windows chapter has been
pruned, and we have eliminated all the old low-level assembly-style shader material to
make room for updated and expanded coverage of the high-level shading language (GLSL).
You’ll also find a whole new chapter on OpenGL on hand-held systems, totally rewritten
Mac OS X and Linux chapters, and a really great new chapter on advanced buffer tech-
niques such as offscreen rendering, and floating-point textures.

Another big change some readers will notice is that the OpenGL SuperBible has been
acquired and adopted into the Addison-Wesley Professional OpenGL series. I can’t begin to
express how grateful I am and humbled I feel by this honor. I myself have worn out the
covers on at least one edition of every volume in this series.

One of the reasons, I think, for the longevity of this book has been the unique approach it
takes among OpenGL books. As much as possible, we look at things through the eyes of
someone who is excited by 3D graphics but knows very little about the topic. The purpose
of a tutorial is to get you started, not teach you everything you will ever need to know.
Every professional knows that you never reach this place. I do occasionally get some criti-
cism for glossing over things too much, or not explaining things according to the strictest
engineering accuracy. These almost never come from those for whom this book was
intended. We hope for a great many of you that this will be your first book on OpenGL
and 3D graphics. We hope for none of you that it will be your last.

Well, I did make one really “smart” decision about my career once. Once upon a time in
the early 1980s, I was a student looking at a computer in an electronics store. The sales-
man approached and began making his pitch. I told him I was just learning to program
and was considering an Amiga over his model. I was briskly informed that I needed to get
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serious with a computer that the rest of the world was using. An Amiga, he told me, was
not good for anything but “making pretty pictures.” No one, he assured me, could make a
living making pretty pictures on his computer. Unfortunately, I listened to this “smart”
advice and regretted it for over ten years. Thank God I finally got stupid.

As for making a living “making pretty pictures?” Do the math.

Oh, and my latest stupid decision? I've left Windows and switched to the Mac. Time will
tell if my luck holds out.

—Richard S. Wright Jr.
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Preface to the Previous,
Third Edition

I have a confession to make. The first time I ever heard of OpenGL was at the 1992 Win32
Developers Conference in San Francisco. Windows NT 3.1 was in early beta (or late alpha),
and many vendors were present, pledging their future support for this exciting new graph-
ics technology. Among them was a company called Silicon Graphics, Inc. (SGI). The SGI
representatives were showing off their graphics workstations and playing video demos of
special effects from some popular movies. Their primary purpose in this booth, however,
was to promote a new 3D graphics standard called OpenGL. It was based on SGI's propri-
etary IRIS GL and was fresh out of the box as a graphics standard. Significantly, Microsoft
was pledging future support for OpenGL in Windows NT.

I had to wait until the beta release of NT 3.5 before I got my first personal taste of
OpenGL. Those first OpenGL-based screensavers only scratched the surface of what was
possible with this graphics APIL. Like many other people, I struggled through the Microsoft
help files and bought a copy of the OpenGL Programming Guide (now called simply “The
Red Book” by most). The Red Book was not a primer, however, and it assumed a lot of
knowledge that I just didn’t have.

Now for that confession I promised. How did I learn OpenGL? I learned it by writing a
book about it. That'’s right, the first edition of the OpenGL SuperBible was me learning how
to do 3D graphics myself...with a deadline! Somehow I pulled it off, and in 1996 the first
edition of the book you are holding was born. Teaching myself OpenGL from scratch
enabled me somehow to better explain the API to others in a manner that a lot of people
seemed to like. The whole project was nearly canceled when Waite Group Press was
acquired by another publisher halfway through the publishing process. Mitchell Waite
stuck to his guns and insisted that OpenGL was going to be “the next big thing” in
computer graphics. Vindication arrived when an emergency reprint was required because
the first run of the book sold out before ever making it to the warehouse.

That was a long time ago, and in what seems like a galaxy far, far away...

Only three years later 3D accelerated graphics were a staple for even the most stripped-
down PCs. The “API Wars,” a political battle between Microsoft and SGI, had come and
gone; OpenGL was firmly established in the PC world; and 3D hardware acceleration was
as common as CD-ROMs and sound cards. I had even managed to turn my career more
toward an OpenGL orientation and had the privilege of contributing in some small ways
to the OpenGL specification for version 1.2 while working at Lockheed-Martin/Real3D.
The second edition of this book, released at the end of 1999, was significantly expanded
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and corrected. We even made some modest initial attempts to ensure that all the sample
programs were more friendly in non-Windows platforms by using the GLUT framework.

Now, nearly five years later (eight since the first edition!), we bring you yet again another
edition, the third, of this book. OpenGL is now without question the premier cross-plat-
form real-time 3D graphics API. Excellent OpenGL stability and performance are available
on even the most stripped-down bargain PC today. OpenGL is also the standard for UNIX
and Linux operating systems, and Apple has made OpenGL a core fundamental technol-
ogy for the new Mac OS X operating system. OpenGL is even making inroads via a new
specification, OpenGL ES, into embedded and mobile spaces. Who would have thought
five years ago that we would see Quake running on a cellphone?

It is exciting that, today, even laptops have 3D acceleration, and OpenGL is truly every-
where and on every mainstream computing platform. Even more exciting, however, is the
continuing evolution of computer graphics hardware. Today, most graphics hardware is
programmable, and OpenGL even has its own shading language, which can produce stun-
ningly realistic graphics that were undreamed of on commodity hardware back in the last
century (I just had to squeeze that in someplace!).

With this third edition, I am pleased that we have added Benjamin Lipchak as a co-author.
Benj is primarily responsible for the chapters that deal with OpenGL shader programs; and
coming from the ARB groups responsible for this aspect of OpenGL, he is one of the most
qualified authors on this topic in the world.

We have also fully left behind the “Microsoft Specific” characteristics of the first edition
and have embraced a more multiplatform approach. All the programming examples in
this book have been tested on Windows, Mac OS X, and at least one version of Linux.
There is even one chapter apiece on these operating systems, with information about
using OpenGL with native applications.

—Richard S. Wright Jr.

XXXi
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Introduction

Welcome to the fourth edition of the OpenGL SuperBible. For more than ten years, we have
striven to provide the world’s best introduction to not only OpenGL, but 3D graphics
programming in general. This book is both a comprehensive reference of the entire
OpenGL API and a tutorial that will teach you how to use this powerful API to create stun-
ning 3D visualizations, games, and other graphics of all kinds. Starting with basic 3D
terminology and concepts, we take you through basic primitive assembly, transformations,
lighting, texturing, and eventually bring you into the full power of the programmable
graphics pipeline with the OpenGL Shading Language.

Regardless of whether you are programming on Windows, Mac OS X, Linux, or a hand-
held gaming device, this book is a great place to start learning OpenGL, and how to make
the most of it on your specific platform. The majority of the book is highly portable C++
code hosted by the GLUT or FreeGLUT toolkit. You will also find OS-specific chapters that
show how to wire OpenGL into your native window systems. Throughout the book, we
try to make few assumptions about how much previous knowledge the reader has of 3D
graphics programming topics. This yields a tutorial that is accessible by both the begin-
ning programmer and the experienced programmer beginning OpenGL.

What's New in This Edition

Readers of the previous editions will notice right away that the reference material has
been reorganized. Instead of attempting to place individual functions with chapters that
use them, we now have Appendix C, which contains the complete OpenGL API reference
for the GL function. This is a much more appropriate and useful organizational structure
for this material. These reference pages are also now based on the “official” OpenGL man
pages, which means there will be no more incomplete or missing function calls. Detailed
function entries will also be more concise and complete.

The Mac OS X and Linux chapters in this edition have been totally rewritten from the
ground up. Sometimes a revision is not sufficient, and the best thing to do is just start
over. We think readers will like these two newly rewritten chapters, which will be useful to
anyone needing an introduction to the specifics of getting OpenGL up and running on
their particular platform. Also, on the platform topic, the Windows chapter has been
updated and pruned of some older and obsolete topics. Of note is the fact that OpenGL's
widely rumored demise on Vista has, in fact, NOT occurred.

We have also added two completely new chapters. In this edition, we bring you full cover-
age of the latest OpenGL ES specification. We also provide a very exciting chapter on
advanced OpenGL buffer usage, including off screen rendering, floating point buffers and
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textures, and pixel buffer objects. Throughout all the chapters, coverage has been touched
up to include OpenGL 2.1 functionality, and to focus more on current OpenGL program-
ming techniques. (Chapter 11, for example, deals with geometry submission and was
modified heavily for this purpose.)

Finally, you'll find a Color insert with a gallery of images for which black and white just
does not do adequate justice. A book on graphics programming is certainly more useful
with color images. Some techniques, for example, are impossible to demonstrate on the
printed page without the use of color. Other images are provided because the black-and-
white versions simply do not convey the same information about how a particular image
should look.

How This Book Is Organized

The OpenGL SuperBible is divided into three parts: The Old Testament, The New Testament,
and the Apocrypha. Each section covers a particular personality of OpenGL—namely, the
fixed pipeline, programmable hardware, and finally some platform-specific bindings. We
certainly would not equate our humble work with anyone’s sacred texts. However, the
informed reader will certainly see how strong and irresistible this metaphor actually is.

Part I: The Old Testament

You'll learn how to construct a program that uses OpenGL, how to set up your 3D-render-
ing environment, and how to create basic objects and light and shade them. Then we'll
delve deeper into using OpenGL and some of its advanced features and different special
effects. These chapters are a good way to introduce yourself to 3D graphics programming
with OpenGL and provide the conceptual foundation on which the more advanced capa-
bilities later in the book are based.

Chapter 1—Introduction to 3D Graphics and OpenGL. This introductory chapter is
for newcomers to 3D graphics. It introduces fundamental concepts and some common
vocabulary.

Chapter 2—Using OpenGL. In this chapter, we provide you with a working knowledge of
what OpenGL is, where it came from, and where it is going. You will write your first
program using OpenGL, find out what headers and libraries you need to use, learn how to
set up your environment, and discover how some common conventions can help you
remember OpenGL function calls. We also introduce the OpenGL state machine and error-
handling mechanism.

Chapter 3—Drawing in Space: Geometric Primitives and Buffers. Here, we present
the building blocks of 3D graphics programming. You'll basically find out how to tell a
computer to create a three-dimensional object with OpenGL. You’ll also learn the basics
of hidden surface removal and ways to use the stencil buffer.
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Chapter 4—Geometric Transformations: The Pipeline. Now that you're creating three-
dimensional shapes in a virtual world, how do you move them around? How do you
move yourself around? These are the things you'll learn here.

Chapter 5—Color, Materials, and Lighting: The Basics. In this chapter, you’ll take your
three-dimensional “outlines” and give them color. You'll learn how to apply material
effects and lights to your graphics to make them look real.

Chapter 6—More on Colors and Materials. Now it’s time to learn about blending objects
with the background to make transparent (see-through) objects. You'll also learn some
special effects with fog and the accumulation buffer.

Chapter 7—Imaging with OpenGL. This chapter is all about manipulating image data
within OpenGL. This information includes reading a TGA file and displaying it in an
OpenGL window. You'll also learn some powerful OpenGL image-processing capabilities.

Chapter 8—Texture Mapping: The Basics. Texture mapping is one of the most useful
teatures of any 3D graphics toolkit. You'll learn how to wrap images onto polygons and
how to load and manage multiple textures at once.

Chapter 9—Texture Mapping: Beyond the Basics. In this chapter, you'll learn how to
generate texture coordinates automatically, use advanced filtering modes, and use built-in
hardware support for texture compression. You'll also learn about OpenGL's support for
point sprites.

Chapter 10—Curves and Surfaces. The simple triangle is a powerful building block. This
chapter gives you some tools for manipulating the mighty triangle. You'll learn about
some of OpenGL'’s built-in quadric surface generation functions and ways to use automatic
tessellation to break complex shapes into smaller, more digestible pieces. You'll also
explore the utility functions that evaluate Bézier and NURBS curves and surfaces. You can
use these functions to create complex shapes with an amazingly small amount of code.

Chapter 11—It’s All About the Pipeline: Faster Geometry Throughput. For this chapter,
we introduce OpenGL display lists, vertex arrays, and vertex buffer objects for improving
performance and organizing your models. You'll also learn how to create a detailed analy-
sis showing how to best represent large, complex models.

Chapter 12—Interactive Graphics. This chapter explains two OpenGL features: selection
and feedback. These groups of functions make it possible for the user to interact with
objects in the scene. You can also get rendering details about any single object in the
scene.

Chapter 13—Occlusion Queries: Why Do More Work Than You Need To? Here, you'll
learn about the OpenGL occlusion query mechanism. This feature effectively lets you
perform an inexpensive test-render of objects in your scene to find out whether they will
be hidden behind other objects, in which case you can save time by not drawing the
actual full-detail version.
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Chapter 14—Depth Textures and Shadows. This chapter covers OpenGL's depth textures
and shadow comparisons. You'll learn how to introduce real-time shadow effects to your
scene, regardless of the geometry’s complexity.

Part II: The New Testament

In the second part of the book, you'll find chapters on the new features in OpenGL
supporting programmable hardware, in particular the OpenGL Shading Language (GLSL).
These chapters don't represent just the newest OpenGL features, they cover the fundamen-
tal shift that has occurred in graphics programming—a shift that is fundamentally differ-
ent, yet complementary, and descended from the old fixed-pipeline-based hardware.

Chapter 15—Programmable Pipeline: This Isn’t Your Father’s OpenGL. Out with the
old, in with the new. This chapter revisits the conventional fixed-functionality pipeline
before introducing the new programmable vertex and fragment pipeline stages.
Programmability via the OpenGL Shading Language allows you to customize your render-
ing in ways never before possible.

Chapter 16—Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen. This
chapter illustrates the usage of vertex shaders by surveying a handful of examples, includ-
ing lighting, fog, squash and stretch, and skinning.

Chapter 17—Fragment Shading: Empower Your Pixel Processing. You learn by
example—with a variety of fragment shaders. Examples include per-pixel lighting, color
conversion, image processing, bump mapping, and procedural texturing. Some of these
examples also use vertex shaders; these examples are representative of real-world usage,
where you often find vertex and fragment shaders paired together.

Chapter 18—Advanced Buffers. Here, we discuss some of the latest and most exciting
features in OpenGL, including offscreen accelerated rendering, faster ways to copy pixel
data asynchronously, and floating-point color data for textures and color buffers.

Part Ill: The Apocrypha

Where do we put material that does not belong in the OpenGL canon? The Apocrypha!
The third and last part of the book is less about OpenGL than about how different operat-
ing systems interface with and make use of OpenGL. Here we wander outside the “official”
OpenGL specification to see how OpenGL is supported and interfaced with on Windows,
Mac OS X, Linux, and hand-held devices.

Chapter 19—Wiggle: OpenGL on Windows. Here, you'll learn how to write real
Windows (message-based) programs that use OpenGL. You'll learn about Microsoft’s
“wiggle” functions that glue OpenGL rendering code to Windows device contexts.
You'll also learn how to respond to Windows messages for clean, well-behaved OpenGL
applications. Yes, we also talk about OpenGL on Vista.
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Chapter 20—OpenGL on Mac OS X. In this chapter, you'll learn how to use OpenGL in
native Mac OS X applications. Sample programs show you how to start working with
GLUT, Carbon, or Cocoa using the Xcode development environment.

Chapter 21—GLX: OpenGL on Linux. This chapter discusses GLX, the OpenGL exten-
sion used to support OpenGL applications through the X Window System on UNIX and
Linux. You'll learn how to create and manage OpenGL contexts as well as how to create
OpenGL drawing areas.

Chapter 22—OpenGL ES: OpenGL on the Small. This chapter is all about how OpenGL
is pared down to fit on hand-held and embedded devices. We cover what's gone, what'’s
new, and how to get going even with an emulated environment.

Conventions Used in This Book

The following typographic conventions are used in this book:

e Code lines, commands, statements, variables, and any text you type or see onscreen
appear in a computer typeface.

e Placeholders in syntax descriptions appear in an italic computer typeface. You
should replace the placeholder with the actual filename, parameter, or whatever
element it represents.

e [talics highlight technical terms when they first appear in the text and are being
defined.

About the Companion Web Site

This is the first time this book has shipped without a CD-ROM. Welcome to the age of the
Internet! Instead, all our source code is available online at our support Web site:

www.opengl.org/superbible

Here you’ll find the source code to all the sample programs in the book, as well as prebuilt
projects for Developers Studio (Windows), and Xcode (Mac OS X). For Linux users we’ll
have make files for command-line building of the projects as well. We even plan to post a
few tutorials, so check back from time to time, even after you’ve downloaded all the
source code.


www.opengl.org/superbible
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PART |
The Old Testament

The first 14 chapters of this “Super Book” (Bible is from the
Greek word for book) are about the beginnings of hardware-
accelerated 3D graphics. Today, we refer to this body of func-
tionality as fixed-pipeline rendering. Although it is certainly
true that most of the recent press and excitement in the 3D
graphics world revolves around the New Testament of
computer graphics, shaders, the historical fixed-pipeline
functionality of OpenGL is still quite pertinent, and useful.

For many, the fixed pipeline is completely adequate for their
rendering needs, and they will find this part of the book
instructive, and helpful for learning to use OpenGL. The
true promise of hardware rendering for many, however, will
be held in the second part of this book. Still, for those, the
fixed pipeline is the foundation on which shaders are built.
An understanding of the fixed pipeline is arguably even
necessary before one can appreciate the power, flexibility,
and freedom afforded by programmable hardware.
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Introduction to 3D Graphics
and OpenGL

by Richard S. Wright Jr.

WHAT YOU'LL LEARN IN THIS CHAPTER:

e A brief overview of the history of computer graphics
e How we make 3D graphics on a 2D screen

e About the basic 3D effects and terminology

* How a 3D coordinate system and the viewport works
e What vertices are, and how we use them

e About the different kinds of 3D projections

This book is about OpenGL, a programming interface for creating real-time 3D graphics.
Before we begin talking about what OpenGL is and how it works, you should have at least
a high-level understanding of real-time 3D graphics in general. Perhaps you picked up this
book because you want to learn to use OpenGL, but you already have a good grasp of real-
time 3D principles. If so, great: Skip directly to Chapter 2, “Using OpenGL.” If you bought
this book because the pictures look cool and you want to learn how to do this on your
PC...you should probably start here.

A Brief History of Computer Graphics

The first computers consisted of rows and rows of switches and lights. Technicians and
engineers worked for hours, days, or even weeks to program these machines and read the
results of their calculations. Patterns of illuminated bulbs conveyed useful information to
the computer users, or some crude printout was provided. You might say that the first
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form of computer graphics was a panel of blinking lights. (This idea is supported by stories
of early programmers writing programs that served no useful purpose other than creating
patterns of blinking and chasing lights!)

Times have changed. From those first “thinking machines,” as some called them, sprang
fully programmable devices that printed on rolls of paper using a mechanism similar to a
teletype machine. Data could be stored efficiently on magnetic tape, on disk, or even on
rows of hole-punched paper or stacks of paper-punch cards. The “hobby” of computer
graphics was born the day computers first started printing. Because each character in the
alphabet had a fixed size and shape, creative programmers in the 1970s took delight in
creating artistic patterns and images made up of nothing more than asterisks (*).

Going Electric

Paper as an output medium for computers is useful and persists today. Laser printers and
color inkjet printers have replaced crude ASCII art with crisp presentation quality and
photographic reproductions of artwork. Paper and ink, however, can be expensive to
replace on a regular basis, and using them consistently is wasteful of our natural resources,
especially because most of the time we don’t really need hard-copy output of calculations
or database queries.

The cathode ray tube (CRT) was a tremendously useful addition to the computer. The orig-
inal computer monitors, CRTs were initially just video terminals that displayed ASCII text
just like the first paper terminals—but CRTs were perfectly capable of drawing points and
lines as well as alphabetic characters. Soon, other symbols and graphics began to supple-
ment the character terminal. Programmers used computers and their monitors to create
graphics that supplemented textual or tabular output. The first algorithms for creating
lines and curves were developed and published; computer graphics became a science
rather than a pastime.

The first computer graphics displayed on these terminals were two-dimensional, or 2D.
These flat lines, circles, and polygons were used to create graphics for a variety of
purposes. Graphs and plots could display scientific or statistical data in a way that tables
and figures could not. More adventurous programmers even created simple arcade games
such as Lunar Lander and Pong using simple graphics consisting of little more than line
drawings that were refreshed (redrawn) several times a second.

The term real-time was first applied to computer graphics that were animated. A broader
use of the word in computer science simply means that the computer can process input as
fast as or faster than the input is being supplied. For example, talking on the phone is a
real-time activity in which humans participate. You speak and the listener hears your
communication immediately and responds, allowing you to hear immediately and
respond again, and so on. In reality, there is some delay involved due to the electronics,
but the delay is usually imperceptible to those having the conversation. In contrast,
writing a letter is not a real-time activity.



A Brief History of Computer Graphics

Applying the term real-time to computer graphics means that the computer is producing
an animation or a sequence of images directly in response to some input, such as joystick
movement or keyboard strokes. Real-time computer graphics can display a wave form
being measured by electronic equipment, numerical readouts, or interactive games and
visual simulations.

Going 3D

The term three-dimensional, or 3D, means that an object being described or displayed has
three dimensions of measurement: width, height, and depth. An example of a two-dimen-
sional object is a piece of paper on your desk with a drawing or writing on it, having no
perceptible depth. A three-dimensional object is the can of soda next to it. The soft drink
can is round (width and depth) and tall (height). Depending on your perspective, you can
alter which side of the can is the width or height, but the fact remains that the can has
three dimensions. Figure 1.1 shows how we might measure the dimensions of the can and
piece of paper.
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FIGURE 1.1 Measuring two- and three-dimensional objects.

For centuries, artists have known how to make a painting appear to have real depth. A
painting is inherently a two-dimensional object because it is nothing more than canvas
with paint applied. Similarly, 3D computer graphics are actually two-dimensional images
on a flat computer screen that provide an illusion of depth, or a third dimension.

2D + Perspective = 3D

The first computer graphics no doubt appeared similar to what’s shown in Figure 1.2,
where you can see a simple three-dimensional cube drawn with 12 line segments. What
makes the cube look three-dimensional is perspective, or the angles between the lines that
lend the illusion of depth.

11
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FIGURE 1.2 A simple wireframe 3D cube.

To truly see in 3D, you need to actually view an object with both eyes or supply each eye
with separate and unique images of the object. Look at Figure 1.3. Each eye receives a two-
dimensional image that is much like a temporary photograph displayed on each retina (the
back part of your eye). These two images are slightly different because they are received at
two different angles. (Your eyes are spaced apart on purpose.) The brain then combines
these slightly different images to produce a single, composite 3D picture in your head.

Left eye Right eye

Retina image 1 Retina image 2

FIGURE 1.3 How you see three dimensions.

In Figure 1.3, the angle between the images becomes smaller as the object goes farther
away. You can amplify this 3D effect by increasing the angle between the two images.
View-Master (those hand-held stereoscopic viewers you probably had as a kid) and 3D
movies capitalize on this effect by placing each of your eyes on a separate lens or by
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providing color-filtered glasses that separate two superimposed images. These images are
usually overenhanced for dramatic or cinematic purposes. Of late this effect has become
more popular on the PC as well. Shutter glasses that work with your graphics card and
software will switch between one eye and the other, with a changing perspective displayed
onscreen to each eye, thus giving a “true” stereo 3D experience. Unfortunately, many
people complain that this effect gives them a headache or makes them dizzy!

A computer screen is one flat image on a flat surface, not two images from different
perspectives falling on each eye. As it turns out, most of what is considered to be 3D
computer graphics is actually an approximation of true 3D. This approximation is
achieved in the same way that artists have rendered drawings with apparent depth for
years, using the same tricks that nature provides for people with one eye.

You might have noticed at some time in your life that if you cover one eye, the world does
not suddenly fall flat. What happens when you cover one eye? You might think you are
still seeing in 3D, but try this experiment: Place a glass or some other object just out of
arm’s reach, off to your left side. (If it is close, this trick won’t work.) Cover your right eye
with your right hand and reach for the glass. (Maybe you should use an empty plastic
one!) Most people will have a more difficult time estimating how much farther they need
to reach (if at all) before touching the glass. Now, uncover your right eye and reach for the
glass, and you can easily discern how far you need to lean to reach the glass. You now
know why people with one eye often have difficulty with distance perception.

Perspective alone is enough to create the appearance of three dimensions. Note the cube
shown previously in Figure 1.2. Even without coloring or shading, the cube still has the
appearance of a three-dimensional object. Stare at the cube for long enough, however, and
the front and back of the cube switch places. Your brain is confused by the lack of any
surface coloration in the drawing. Figure 1.4 shows the output from the sample program
BLOCK from this chapter’s subdirectory in the source distribution. Run this program as we
progress toward a more and more realistic-appearing cube. We see here that the cube
resting on a plane has an exaggerated perspective but still can produce the “popping”
effect when you stare at it. By pressing the spacebar, you will progress toward a more and
more believable image.

- A

FIGURE 1.4 A line-drawn three-dimensional cube.

13
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3D Artifacts

The reason the world doesn’t suddenly look flat when you cover one eye is that many of
the 3D world’s effects are still present when viewed two-dimensionally. The effects are just
enough to trigger your brain’s ability to discern depth. The most obvious cue is that
nearby objects appear larger than distant objects. This perspective effect is called foreshort-
ening. This effect and color changes, textures, lighting, shading, and variations of color
intensities (due to lighting) together add up to our perception of a three-dimensional
image. In the next section, we take a survey of these tricks.

A Survey of 3D Effects

Now you have some idea that the illusion of 3D is created on a flat computer screen by
means of a bag full of perspective and artistic tricks. Let’s review some of these effects so
we can refer to them later in the book, and you’ll know what we are talking about.

The first term you should know is render. Rendering is the act of taking a geometric
description of a three-dimensional object and turning it into an image of that object
onscreen. All the following 3D effects are applied when the objects or scene are rendered.

Perspective

Perspective refers to the angles between lines that lend the illusion of three dimensions.
Figure 1.4 shows a three-dimensional cube drawn with lines. This is a powerful illusion,
but it can still cause perception problems as we mentioned earlier. (Just stare at this cube
for a while, and it starts popping in and out.) In Figure 1.5, on the other hand, the brain is
given more clues as to the true orientation of the cube because of hidden line removal.
You expect the front of an object to obscure the back of the object from view. For solid
surfaces, we call this hidden surface removal.

- V-

FIGURE 1.5 A more convincing solid cube.
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Color and Shading

If we stare at the cube in Figure 1.5 long enough, we can convince ourselves that we are
looking at a recessed image, and not the outward surfaces of a cube. To further our percep-
tion, we must move beyond line drawing and add color to create solid objects. Figure 1.6
shows what happens when we naively add red to the color of the cube. It doesn’t look like
a cube anymore. By applying different colors to each side, as shown in Figure 1.7, we
regain our perception of a solid object.

L V-

FIGURE 1.6 Adding color alone can create further confusion.

FIGURE 1.7 Adding different colors increases the illusion of three dimensions.

Light and Shadows

Making each side of the cube a different color helps your eye pick out the different sides of
the object. By shading each side appropriately, we can give the cube the appearance of
being one solid color (or material) but also show that it is illuminated by a light at an
angle, as shown in Figure 1.8. Figure 1.9 goes a step further by adding a shadow behind
the cube. Now we are simulating the effects of light on one or more objects and their
interactions. Our illusion at this point is very convincing.
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FIGURE 1.8 Proper shading creates the illusion of illumination.
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FIGURE 1.9 Adding a shadow to further increase realism.

Texture Mapping

Achieving a high level of realism with nothing but thousands or millions of tiny lit and
shaded polygons is a matter of brute force and a lot of hard work. Unfortunately, the more
geometry you throw at graphics hardware, the longer it takes to render. A clever technique
allows you to use simpler geometry but achieve a higher degree of realism. This technique
takes an image, such as a photograph of a real surface or detail, and then applies that
image to the surface of a polygon.

Instead of plain-colored materials, you can have wood grains, cloth, bricks, and so on. This
technique of applying an image to a polygon to supply additional detail is called texture
mapping. The image you supply is called a texture, and the individual elements of the
texture are called texels. Finally, the process of stretching or compressing the texels over
the surface of an object is called filtering. Figure 1.10 shows the now-familiar cube example
with textures applied to each polygon.
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FIGURE 1.10 Texture mapping adds detail without adding additional geometry.

Fog

Most of us know what fog is. Fog is an atmospheric effect that adds haziness to objects in
a scene, which is usually a relation of how far away the objects in the scene are from the
viewer and how thick the fog is. Objects very far away (or nearby if the fog is thick) might
even be totally obscured.

Figure 1.11 shows the skyfly GLUT demo (included with most GLUT distributions) with
fog enabled. Despite the crudeness of the canyon walls, note how the fog lends substan-
tially to the believability of the scene.

FIGURE 1.11 Fog effects provide a convincing illusion for wide-open spaces.
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Blending and Transparency

Blending is the combination of colors or objects on the screen. This is similar to the effect
you get with double-exposure photography, where two images are superimposed. You can
use the blending effect for a variety of purposes. By varying the amount each object is
blended with the scene, you can make objects look transparent such that you see the
object and what is behind it (such as glass or a ghost image).

You can also use blending to achieve an illusion of reflection, as shown in Figure 1.12. You
see a textured cube rendered twice. First, the cube is rendered upside down below the floor
level. The marble floor is then blended with the scene, allowing the cube to show
through. Finally, the cube is drawn again right side up and floating over the floor. The
result is the appearance of a reflection in a shiny marble surface.

FIGURE 1.12 Blending used to achieve a reflection effect.

Antialiasing

Aliasing is an effect that is visible onscreen due to the fact that an image consists of
discrete pixels. In Figure 1.13, you can see that the lines that make up the cube on the left
have jagged edges (sometimes called jaggies). By carefully blending the lines with the back-
ground color, you can eliminate the jagged edges and give the lines a smooth appearance,
as shown in the cube on the right. This blending technique is called antialiasing. You can

also apply antialiasing to polygon edges, making an object or a scene look more realistic
and natural.
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FIGURE 1.13 Cube with jagged lines versus cube with smooth lines.

Common Uses for 3D Graphics

Three-dimensional graphics have many uses in modern computer applications.
Applications for real-time 3D graphics range from interactive games and simulations to
data visualization for scientific, medical, or business uses. Higher-end 3D graphics find
their way into movies and technical and educational publications as well.

Real-Time 3D

As defined earlier, real-time 3D graphics are animated and interactive with the user. One
of the earliest uses for real-time 3D graphics was in military flight simulators. Even today,
flight simulators are a popular diversion for the home enthusiast. Figure 1.14 shows a
screenshot from a popular flight simulator that uses OpenGL for 3D rendering
(www.flightgear.org).

FIGURE 1.14 A popular OpenGL-based flight simulator from Flight Gear.


www.flightgear.org
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The applications for 3D graphics on the PC are almost limitless. Perhaps the most
common use today is for computer gaming. Hardly a title ships today that does not
require a 3D graphics card in your PC to play. Although 3D has always been popular for
scientific visualization and engineering applications, the explosion of cheap 3D hardware
has empowered these applications like never before. Business applications are also taking
advantage of the new availability of hardware to incorporate more and more complex
business graphics and database mining visualization techniques. Even the modern GUI is
being affected, and is beginning to evolve to take advantage of 3D hardware capabilities.
The Macintosh OS X, for example, uses OpenGL to render all its windows and controls for
a powerful and eye-popping visual interface.

Figures 1.15 through 1.19 show some of the myriad applications of real-time 3D graphics
on the modern PC. All these images were rendered using OpenGL.

FIGURE 1.15
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FIGURE 1.16 3D graphics used for architectural or civil planning (image courtesy of Real 3D,
Inc.).
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FIGURE 1.17 3D graphics used for medical imaging applications (VolView by Kitware).
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FIGURE 1.18 3D graphics used for scientific visualization (image courtesy of Software Bisque,
Inc.).
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FIGURE 1.19 3D graphics used for entertainment (Descent 3 from Outrage Entertainment,
Inc.).

Non-Real-Time 3D

Some compromise is required for real-time 3D applications. Given more processing time,
you can generate higher quality 3D graphics. Typically, you design models and scenes, and
a ray tracer processes the definition to produce a high-quality 3D image. The typical
process is that some modeling application uses real-time 3D graphics to interact with the
artist to create the content. Then the frames are sent to another application (the ray
tracer) or subroutine, which renders the image. Rendering a single frame for a movie such
as Toy Story or Shrek could take hours on a very fast computer, for example. The process of
rendering and saving many thousands of frames generates an animated sequence for play-
back. Although the playback might appear real-time, the content is not interactive, so it is
not considered real-time, but rather pre-rendered.

Shaders

The current state of the art in real-time computer graphics is programmable shading. Today'’s
graphics cards are no longer dumb rendering chips, but highly programmable rendering
computers in their own right. Like the term CPU (central processing unit), the term GPU
has been coined, meaning graphics processing unit, referring to the programmable chips
on today’s graphics cards. These are highly parallelized and very, very fast. Just as impor-
tant, the programmer can reconfigure how the card works to achieve virtually any special
effect imaginable.

Every year, shader-based graphics hardware gains ground on tasks traditionally done by
the high-end ray tracing and software rendering tools mentioned previously. Figure 1.20
shows an image of the earth in Software Bisque’s Seeker solar system simulator. This
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application uses a custom OpenGL shader to generate a realistic and animated view of the
earth over 60 times a second. This includes atmospheric effects, the sun’s reflection in the
water, and even the stars in the background. A color version of this figure is shown in
Color Plate 2 in the Color insert.

FIGURE 1.20 Shaders allow for unprecedented real-time realism (image courtesy of Software
Bisque, Inc.).

Basic 3D Programming Principles

Now, you have a pretty good idea of the basics of real-time 3D. We’ve covered some termi-
nology and some sample applications on the PC. How do you actually create these images
on your PC? Well, that’s what the rest of this book is about! You still need a little more
introduction to the basics, which we present here.

Immediate Mode and Retained Mode

There are two different approaches to low-level programming APIs for real-time 3D
graphics—both of which are well supported by OpenGL. The first approach is called
retained mode. In retained mode, you provide the API or toolkit with higher level geometric
descriptions of your objects in the scene. These blocks of geometry data can be transferred
quickly to the graphics hardware, or even stored directly in the hardware’s local memory
for faster access.

The second approach to 3D rendering is called immediate mode. In immediate mode, you
procedurally build up geometric objects one piece at a time. Although flexible, this suffers
performance-wise. We will discuss why this happens and ways to get around it in Chapter
11, “It’s All About the Pipeline: Faster Geometry Throughput.”

23
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With both immediate mode and retained mode, new commands have no effect on render-
ing commands that have already been executed. This gives you a great deal of low-level
control. For example, you can render a series of textured unlit polygons to represent the
sky. Then you issue a command to turn off texturing, followed by a command to turn on
lighting. Thereafter, all geometry (probably drawn on the ground) that you render is
affected by the light but is not textured with the sky image.

Coordinate Systems

Let’s consider now how we describe objects in three dimensions. Before you can specify an
object’s location and size, you need a frame of reference to measure and locate against.
When you draw lines or plot points on a simple flat computer screen, you specify a posi-
tion in terms of a row and column. For example, a standard VGA screen has 640 pixels
from left to right and 480 pixels from top to bottom. To specify a point in the middle of
the screen, you specify that a point should be plotted at (320,240)—that is, 320 pixels
from the left of the screen and 240 pixels down from the top of the screen.

In OpenGL, or almost any 3D API, when you create a window to draw in, you must also
specify the coordinate system you want to use and how to map the specified coordinates
into physical screen pixels. Let’s first see how this applies to two-dimensional drawing and
then extend the principle to three dimensions.

2D Cartesian Coordinates

The most common coordinate system for two-dimensional plotting is the Cartesian coor-
dinate system. Cartesian coordinates are specified by an x coordinate and a y coordinate.
The x coordinate is a measure of position in the horizontal direction, and y is a measure

of position in the vertical direction.

The origin of the Cartesian system is at x=0, y=0. Cartesian coordinates are written as coor-
dinate pairs in parentheses, with the x coordinate first and the y coordinate second, sepa-
rated by a comma. For example, the origin is written as (0,0). Figure 1.21 depicts the
Cartesian coordinate system in two dimensions. The x and y lines with tick marks are
called the axes and can extend from negative to positive infinity. This figure represents the
true Cartesian coordinate system pretty much as you used it in grade school. Today, differ-
ing window mapping modes can cause the coordinates you specify when drawing to be
interpreted differently. Later in the book, you'll see how to map this true coordinate space
to window coordinates in different ways.

The x-axis and y-axis are perpendicular (intersecting at a right angle) and together define
the xy plane. A plane is, most simply put, a flat surface. In any coordinate system, two
axes (or two lines) that intersect at right angles define a plane. In a system with only two
axes, there is naturally only one plane to draw on.
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FIGURE 1.21 The Cartesian plane.

Coordinate Clipping

A window is measured physically in terms of pixels. Before you can start plotting points,
lines, and shapes in a window, you must tell OpenGL how to translate specified coordi-
nate pairs into screen coordinates. You do this by specifying the region of Cartesian space
that occupies the window; this region is known as the clipping region. In two-dimensional
space, the clipping region is the minimum and maximum x and y values that are inside
the window. Another way of looking at this is specifying the origin’s location in relation
to the window. Figure 1.22 shows two common clipping regions.
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FIGURE 1.22 Two clipping regions.
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In the first example, on the left of Figure 1.22, x coordinates in the window range left to
right from O to +150, and the y coordinates range bottom to top from O to +100. A point
in the middle of the screen would be represented as (75,50). The second example shows a
clipping area with x coordinates ranging left to right from -75 to +75 and y coordinates
ranging bottom to top from -50 to +50. In this example, a point in the middle of the
screen would be at the origin (0,0). It is also possible using OpenGL functions (or ordinary
Windows functions for GDI drawing) to turn the coordinate system upside down or flip it
right to left. In fact, the default mapping for Windows windows is for positive y to move
down from the top to bottom of the window. Although useful when drawing text from
top to bottom, this default mapping is not as convenient for drawing graphics.

Viewports: Mapping Drawing Coordinates to Window Coordinates

Rarely will your clipping area width and height exactly match the width and height of the
window in pixels. The coordinate system must therefore be mapped from logical Cartesian
coordinates to physical screen pixel coordinates. This mapping is specified by a setting
known as the viewport. The viewport is the region within the window’s client area that is
used for drawing the clipping area. The viewport simply maps the clipping area to a region
of the window. Usually, the viewport is defined as the entire window, but this is not
strictly necessary; for instance, you might want to draw only in the lower half of the
window.

Figure 1.23 shows a large window measuring 300x200 pixels with the viewport defined as
the entire client area. If the clipping area for this window were set to O to 150 along the x-
axis and 0O to 100 along the y-axis, the logical coordinates would be mapped to a larger
screen coordinate system in the viewing window. Each increment in the logical coordinate
system would be matched by two increments in the physical coordinate system (pixels) of
the window.
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FIGURE 1.23 A viewport defined as twice the size of the clipping area.



Basic 3D Programming Principles

In contrast, Figure 1.24 shows a viewport that matches the clipping area. The viewing
window is still 300x200 pixels, however, and this causes the viewing area to occupy the
lower-left side of the window.
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FIGURE 1.24 A viewport defined as the same dimensions as the clipping area.

You can use viewports to shrink or enlarge the image inside the window and to display
only a portion of the clipping area by setting the viewport to be larger than the window’s
client area.

The Vertex—A Position in Space

In both 2D and 3D, when you draw an object, you actually compose it with several
smaller shapes called primitives. Primitives are one- or two-dimensional entities or surfaces
such as points, lines, and polygons (a flat, multisided shape) that are assembled in 3D
space to create 3D objects. For example, a three-dimensional cube consists of six two-
dimensional squares, each placed on a separate face. Each corner of the square (or of any
primitive) is called a vertex. These vertices are then specified to occupy a particular coordi-
nate in 3D space. A vertex is nothing more than a coordinate in 2D or 3D space. Creating
solid 3D geometry is little more than a game of connect-the-dots! You'll learn about all the
OpenGL primitives and how to use them in Chapter 3, “Drawing in Space: Geometric
Primitives and Buffers.”

3D Cartesian Coordinates

Now, we extend our two-dimensional coordinate system into the third dimension and add
a depth component. Figure 1.25 shows the Cartesian coordinate system with a new axis, z.
The z-axis is perpendicular to both the x- and y-axes. It represents a line drawn perpendic-
ularly from the center of the screen heading toward the viewer. (We have rotated our view
of the coordinate system from Figure 1.21 to the left with respect to the y-axis and down
and back with respect to the x-axis. If we hadn’t, the z-axis would come straight out at
you, and you wouldn'’t see it.) Now, we specify a position in three-dimensional space with
three coordinates: x, y, and z. Figure 1.25 shows the point (-4,4,4) for clarification.
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FIGURE 1.25 Cartesian coordinates in three dimensions.

Projections: Getting 3D to 2D

You've seen how to specify a position in 3D space using Cartesian coordinates. No matter
how we might convince your eye, however, pixels on a screen have only two dimensions.
How does OpenGL translate these Cartesian coordinates into two-dimensional coordinates
that can be plotted on a screen? The short answer is “trigonometry and simple matrix
manipulation.” Simple? Well, not really; we could actually go on for many pages explain-
ing this “simple” technique and lose most of our readers who didn’t take or don’t remem-
ber their linear algebra from college. You’ll learn more about it in Chapter 4, “Geometric
Transformations: The Pipeline,” and for a deeper discussion, you can check out the refer-
ences in Appendix A, “Further Reading/References.” Fortunately, you don’t need a deep
understanding of the math to use OpenGL to create graphics. You might, however,
discover that the deeper your understanding goes, the more powerful a tool OpenGL
becomes!

The first concept you really need to understand is called projection. The 3D coordinates you
use to create geometry are flattened or projected onto a 2D surface (the window back-
ground). It's like tracing the outlines of some object behind a piece of glass with a black
marker. When the object is gone or you move the glass, you can still see the outline of the
object with its angular edges. In Figure 1.26, a house in the background is traced onto a
flat piece of glass. By specifying the projection, you specify the viewing volume that you
want displayed in your window and how it should be transformed.



Basic 3D Programming Principles 29

2D image

FIGURE 1.26 A 3D image projected onto a 2D surface.

Orthographic Projections

You are mostly concerned with two main types of projections in OpenGL. The first is
called an orthographic, or parallel, projection. You use this projection by specifying a square
or rectangular viewing volume. Anything outside this volume is not drawn. Furthermore,
all objects that have the same dimensions appear the same size, regardless of whether they
are far away or nearby. This type of projection (shown in Figure 1.27) is most often used
in architectural design, computer-aided design (CAD), or 2D graphs. Frequently, you will
also use an orthographic projection to add text or 2D overlays on top of your 3D graphic
scenes.
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FIGURE 1.27 The clipping volume for an orthographic projection.

You specify the viewing volume in an orthographic projection by specifying the far, near,
left, right, top, and bottom clipping planes. Objects and figures that you place within this
viewing volume are then projected (taking into account their orientation) to a 2D image
that appears on your screen.
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Perspective Projections

The second and more common projection is the perspective projection. This projection adds
the effect that distant objects appear smaller than nearby objects. The viewing volume (see
Figure 1.28) is something like a pyramid with the top shaved off. The remaining shape is
called the frustum. Objects nearer to the front of the viewing volume appear close to their
original size, but objects near the back of the volume shrink as they are projected to the
front of the volume. This type of projection gives the most realism for simulation and 3D
animation.
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FIGURE 1.28 The clipping volume (frustum) for a perspective projection.

Summary

In this chapter, we introduced the basics of 3D graphics. You saw why you actually need
two images of an object from different angles to be able to perceive true three-dimensional
space. You also saw the illusion of depth created in a 2D drawing by means of perspective,
hidden line removal, coloring, shading, and other techniques. The Cartesian coordinate
system was introduced for 2D and 3D drawing, and you learned about two methods used
by OpenGL to project three-dimensional drawings onto a two-dimensional screen.
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We purposely left out the details of how these effects are actually created by OpenGL. In
the chapters that follow, you will find out how to employ these techniques and take
maximum advantage of OpenGL's power. In the sample code distribution, you’ll find one
program for this chapter that demonstrates some of the 3D effects covered here. In this
program, BLOCK, pressing the spacebar advances you from a wireframe cube to a fully lit
and textured block complete with shadow. You won’t understand the code at this point,
but it makes a powerful demonstration of what is to come. By the time you finish this
book, you will be able to revisit this example and improve on it yourself, or even be able
to write it from scratch.
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Using OpenGL

by Richard S. Wright Jr.

WHAT YOU'LL LEARN IN THIS CHAPTER:

* Where OpenGL came from and where it’s going

e Which headers need to be included in your project

* How to use GLUT with OpenGL to create a window and draw in it
e How to set colors using RGB (red, green, blue) components

e How viewports and viewing volumes affect image dimensions

¢ How to perform a simple animation using double buffering

* How the OpenGL state machine works

* How to check for OpenGL errors

e How to make use of OpenGL extensions

Now that you have had an introduction to the basic terminology and the ideas behind 3D
graphics, it’s time to get down to business. Before using OpenGL, we will need to talk
about what OpenGL is and what it is not so that you have an understanding of both and
the power and the limits of this API. This chapter is about the “Big Picture” of how
OpenGL operates and how to set up the rendering framework for your 3D masterpieces.

What Is OpenGL?

OpenGL is strictly defined as “a software interface to graphics hardware.” In essence, it is
a 3D graphics and modeling library that is highly portable and very fast. Using OpenGL,
you can create elegant and beautiful 3D graphics with exceptional visual quality. The
greatest advantage to using OpenGL is that it is orders of magnitude faster than a ray
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tracer or software rendering engine. Initially, it used algorithms carefully developed and
optimized by Silicon Graphics, Inc. (SGI), an acknowledged world leader in computer
graphics and animation. Over time, OpenGL has evolved as other vendors have
contributed their expertise and intellectual property to develop high-performance imple-
mentations of their own.

OpenGL is not a programming language like C or C++. It is more like the C runtime
library, which provides some prepackaged functionality. There really is no such thing as an
“OpenGL program” (okay, maybe with shaders there is, but that comes much later in this
book!) but rather a program the developer wrote that “happens” to use OpenGL as one of
its Application Programming Interfaces (APIs). You might use the C runtime library to
access a file or the Internet, and you might use OpenGL to create real-time 3D graphics.

OpenGL is intended for use with computer hardware that is designed and optimized for the
display and manipulation of 3D graphics. Software-only implementations of OpenGL are
also possible, and the older Microsoft implementations, and Mesa3D (www.mesa3d.org) fall
into this category. Apple also makes a software implementation available on OS X. With
these software-only implementations, rendering may not be performed as quickly, and
some advanced special effects may not be available at all. However, using a software imple-
mentation means that your program can potentially run on a wider variety of computer
systems that may not have a 3D accelerated graphics card installed.

OpenGL is used for various purposes, from CAD engineering and architectural applications
to modeling programs used to create computer-generated monsters in blockbuster movies.
The introduction of an industry-standard 3D API to mass-market operating systems such
as Microsoft Windows and the Macintosh OS X has some exciting repercussions. With
hardware acceleration and fast PC microprocessors becoming commonplace, 3D graphics
are now typical components of consumer and business applications, not only of games
and scientific applications.

Evolution of a Standard

The forerunner of OpenGL was IRIS GL from Silicon Graphics. Originally a 2D graphics
library, it evolved into the 3D programming API for that company’s high-end IRIS graphics
workstations. These computers were more than just general-purpose computers; they had
specialized hardware optimized for the display of sophisticated graphics. The hardware
provided ultra-fast matrix transformations (a prerequisite for 3D graphics), hardware
support for depth buffering, and other features.

Sometimes, however, the evolution of technology is hampered by the need to support
legacy systems. IRIS GL had not been designed from the onset to have a vertex-style geom-
etry processing interface, and it became apparent that to move forward SGI needed to
make a clean break.

OpenGL is the result of SGI’s efforts to evolve and improve IRIS GL's portability. The new
graphics API would offer the power of GL but would be an “open” standard, with input
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from other graphics hardware vendors, and would allow for easier adaptability to other
hardware platforms and operating systems. OpenGL would be designed from the ground
up for 3D geometry processing.

The OpenGL ARB

An open standard is not really open if only one vendor controls it. SGI's business at the
time was high-end computer graphics. Once you're at the top, you find that the opportu-
nities for growth are somewhat limited. SGI realized that it would also be good for the
company to do something good for the industry to help grow the market for high-end
computer graphics hardware. A truly open standard embraced by a number of vendors
would make it easier for programmers to create applications and content that is available
for a wider variety of platforms. Software is what really sells computers, and if SGI wanted
to sell more computers, it needed more software that would run on its computers. Other
vendors realized this, too, and the OpenGL Architecture Review Board (ARB) was born.

Although SGI originally controlled licensing of the OpenGL API, the founding members of
the OpenGL ARB were SGI, Digital Equipment Corporation, IBM, Intel, and Microsoft. On
July 1, 1992, version 1.0 of the OpenGL specification was introduced. Over time, the ARB
grew to consist of many more members, many from the PC hardware community, and it
met four times a year to maintain and enhance the specification and to make plans to
promote the OpenGL standard.

Over time, SGI's business fortunes declined for reasons well beyond the scope of this book.
In 2006, an essentially bankrupt SGI transferred control of the OpenGL standard from the
ARB to a new working group at The Khronos Group (www.khronos.org). The Khronos
Group is a member-funded industry consortium focused on the creation and maintenance
of open media standards. Most ARB members were already members of Khronos, and the
transition was essentially painless. Today, the Khronos Group continues to evolve and
promote OpenGL and its sibling API, OpenGL ES, which is covered in Chapter 22,
“OpenGL ES—OpenGL on the Small.”

OpenGL exists in two forms. The industry standard is codified in the OpenGL Specification.
The specification describes OpenGL in very complete and specific (the similarity in words
here is not an accident!) terms. The API is completely defined, as is the entire state
machine, and how various features work and operate together. Hardware vendors such as
ATI, NVIDIA, or Apple then take this specification and implement it. This implementation,
then, is the embodiment of OpenGL in a form that software developers and customers can
use to generate real-time graphics. For example, a software driver and a graphics card in
your PC together make up an OpenGL implementation.

Licensing and Conformance

An implementation of OpenGL is either a software library that creates three-dimensional
images in response to the OpenGL function calls or a driver for a hardware device (usually
a display card) that does the same. Hardware implementations are many times faster than
software implementations and are now common even on inexpensive PCs.
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A vendor who wants to create and market an OpenGL implementation must first license
OpenGL from The Khronos Group. They provide the licensee with a sample implementa-
tion (entirely in software) and a device driver kit if the licensee is a PC hardware vendor.
The vendor then uses this to create its own optimized implementation and can add value
with its own extensions. Competition among vendors typically is based on performance,
image quality, and driver stability.

In addition, the vendor’s implementation must pass the OpenGL conformance tests. These
tests are designed to ensure that an implementation is complete (it contains all the neces-
sary function calls) and produces 3D rendered output that is reasonably acceptable for a
given set of functions.

Software developers do not need to license OpenGL or pay any fees to make use of
OpenGL drivers. OpenGL is natively supported by most operating systems, and licensed
drivers are provided by the hardware vendors themselves.

The APl Wars

Standards are good for everyone, except for vendors who think that they should be the
only vendors customers can choose from because they know best what customers need.
We have a special legal word for vendors who manage to achieve this status: monopoly.
Most companies recognize that competition is good for everyone in the long run and will
endorse, support, and even contribute to industry standards. An interesting diversion from
this ideal occurred during OpenGL's youth on the Windows platform.

When low-cost 3D graphics accelerators began to become available for the PC, many hard-
ware vendors and game developers were attracted to OpenGL for its ease of use compared
to Microsoft’s Direct 3D. Microsoft provided a driver kit that made it very easy to make an
OpenGL driver for Windows 98. This kit saved literally years of effort in creating a robust
OpenGL driver for Windows NT and Windows 98. Microsoft discouraged vendors from
using a more rigorous driver model, and every PC graphics card vendor had created
OpenGL drivers ready to ship with Windows 98.

This attention to OpenGL by game developers created quite a political stir at the 1997
SigGraph and Game Developers conferences. Just before Windows 98 was released,
Microsoft announced that it would not extend the OpenGL driver code license beyond the
Windows 98 beta period, and that hardware vendors were forbidden to release their
drivers.

Virtually every PC hardware vendor had a robust and fast OpenGL driver ready to roll for
consumer PCs, but couldn’t ship them. To further complicate things, shortly thereafter a
struggling SGI announced a new Windows NT-based workstation. SGI simultaneously
pledged to discontinue promoting OpenGL for consumer applications, and to work with
Microsoft on a new API called Fahrenheit. OpenGL was as good as dead.
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The Future of OpenGL

A funny thing happened on the way to oblivion, and even without SGI, OpenGL began to
take on a life of its own. Hardware vendors with some help from SGI (pre-Fahrenheit)
continued to support OpenGL with new drivers. Games aren’t the only application that
OpenGL was well suited for, and most developers wanted their Windows NT software to
be able to run on the consumer version of Windows, too. When OpenGL was again widely
available on consumer hardware, developers didn’t really need SGI or anyone else touting
the virtues of OpenGL. OpenGL was easy to use and had been around for years. This
meant there was an abundance of documentation (including the first edition of this
book), sample programs, SigGraph papers, and so on. OpenGL began to flourish.

As more developers began to use OpenGL, it became clear who was really in charge of the
industry: the developers. The more applications that shipped with OpenGL support, the
more pressure mounted on hardware vendors to produce better OpenGL hardware and
high-quality drivers. Consumers don't really care about API technology. They just want
software that works, and they will buy whatever graphics card runs their favorite game or
application the best. Developers care about time to market, portability, and code reuse.
(Go ahead. Try to recompile that old Direct3D 4.0 program. I dare you!) Using OpenGL
enabled many developers to meet customer demand better, and in the end it’s the
customers who pay the bills.

As time passed, Fahrenheit fell solely into Microsoft’s hands and was eventually discontin-
ued altogether. Direct3D has evolved further to include more and more OpenGL features,
functionality, and ease of use. Ten years later, today’s Direct3D bears little resemblance to
the tortured API it once was. OpenGL'’s popularity, however, has continued to grow as an
alternative to Windows-specific rendering technology and is now widely supported across
all major operating systems and hardware devices. Even cellphones with 3D graphics tech-
nology support a subset of OpenGL, called OpenGL ES. Today, all new 3D accelerated
graphics cards for the PC ship with both OpenGL and Direct3D drivers. This is largely due
to the fact that many developers continue to prefer OpenGL for new development.
OpenGL today is widely recognized and accepted as the industry-standard API for real-time
3D and 2D graphics. Yes, even 2D! The OpenGL imaging subset and fragment processing
programmability has made it the darling of hardware accelerated image and video process-
ing applications as well.

This momentum will carry OpenGL into the foreseeable future as the API of choice for a
wide range of applications and hardware platforms. All this also makes OpenGL well posi-
tioned to take advantage of future 3D graphics innovations. Because of OpenGL’s exten-
sion mechanism, vendors can expose new hardware features without waiting on Microsoft
or some industry committee, and cutting-edge developers can exploit them as soon as
updated drivers are available. With the addition of the OpenGL shading language (see Part
II, “The New Testament”), OpenGL has shown its continuing adaptability to meet the
challenge of an evolving 3D graphics programming pipeline. Finally, OpenGL is a specifi-
cation that has shown that it can be applied to a wide variety of programming paradigms.
From C/C++ to Java and Visual Basic, even newer languages such as C# are now being
used to create PC games and applications using OpenGL. OpenGL is here to stay.
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How Does OpenGL Work?

OpenGL is a procedural rather than a descriptive graphics API. Instead of describing the scene
and how it should appear, the programmer actually prescribes the steps necessary to achieve a
certain appearance or effect. These “steps” involve calls to the many OpenGL commands.
These commands are used to draw graphics primitives such as points, lines, and polygons in
three dimensions. In addition, OpenGL supports lighting and shading, texture mapping,
blending, transparency, animation, and many other special effects and capabilities.

OpenGL does not include any functions for window management, user interaction, or file
I/0. Each host environment (such as Mac OS X or Microsoft Windows) has its own func-
tions for this purpose and is responsible for implementing some means of handing over to
OpenGL the drawing control of a window.

There is no “OpenGL file format” for models or virtual environments. Programmers
construct these environments to suit their own high-level needs and then carefully
program them using the lower-level OpenGL commands.

Generic Implementations

As mentioned previously, a generic implementation is a software implementation.
Hardware implementations are created for a specific hardware device, such as a graphics
card or game console. A generic implementation can technically run just about anywhere
as long as the system can display the generated graphics image.

Figure 2.1 shows the typical place that OpenGL and a generic implementation occupy when a
Windows application is running. The typical program calls many functions, some of which
the programmer creates and some of which are provided by the operating system or the
programming language’s runtime library. Windows applications wanting to create output
onscreen usually call a Windows API called the graphics device interface (GDI). The GDI
contains methods that allow you to write text in a window, draw simple 2D lines, and so on.

Application Program
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FIGURE 2.1 OpenGL’s place in a typical application program.
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Usually, graphics-card vendors supply a hardware driver that the operating system inter-
faces with to create output on your monitor. A software implementation of OpenGL takes
graphics requests from an application and constructs (rasterizes) a color image of the 3D
graphics. It then supplies this image for display on the monitor. On other operating
systems, the process is reasonably equivalent, but you replace the GDI with that operating
system’s native display services.

OpenGL has a couple of common generic implementations. Microsoft has shipped its soft-
ware implementation with every version of Windows NT since version 3.5 and Windows
95 (Service Release 2 and later). Windows 2000 and XP also contain support for a generic
implementation of OpenGL. These versions of OpenGL are typically slow, and only
support OpenGL functionality up to version 1.1. This by no means limits the capabilities
or efficiency of native vendor-provided OpenGL drivers. We'll discuss this in more detail
in Chapter 19, “Wiggle: OpenGL on Windows.”

During the height of the so-called “API Wars,” SGI released a software implementation of
OpenGL for Windows that greatly outperformed Microsoft’s implementation. This imple-
mentation is not officially supported but is still occasionally used by a few developers in
niche markets. MESA 3D is another “unofficial” OpenGL software implementation that is
widely supported in the open-source community. Mesa 3D is not an OpenGL license, so it
is an “OpenGL work-alike” rather than an official implementation. In any respect other
than legal, you can essentially consider it to be an OpenGL implementation nonetheless.
The Mesa contributors even make a good attempt to pass the OpenGL conformance tests.

Hardware Implementations

A hardware implementation of OpenGL usually takes the form of a graphics card driver.
Figure 2.2 shows its relationship to the application much as Figure 2.1 did for software
implementations. Note that OpenGL API calls are passed to a hardware driver. This driver
does not pass its output to the Windows GDI for display; the driver interfaces directly with
the graphics display hardware.
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FIGURE 2.2 Hardware-accelerated OpenGL's place in a typical application program.
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A hardware implementation is often referred to as an accelerated implementation because
hardware-assisted 3D graphics usually far outperform software-only implementations. What
isn’t shown in Figure 2.2 is that sometimes part of the OpenGL functionality is still imple-
mented in software as part of the driver, and other features and functionality can be passed
directly to the hardware. This idea brings us to our next topic: the OpenGL pipeline.

The Pipeline

The word pipeline is used to describe a process that can take two or more distinct stages or
steps. Figure 2.3 shows a simplified version of the OpenGL pipeline. As an application
makes OpenGL API function calls, the commands are placed in a command buffer. This
buffer eventually fills with commands, vertex data, texture data, and so on. When the
buffer is flushed, either programmatically or by the driver’s design, the commands and
data are passed to the next stage in the pipeline.

OpenGL Transform Rasferization Frame buffer
OpenGL L 5 sform | _)
API Calls > COI;Tlljlfol:rﬂd and Lighting

FIGURE 2.3 A simplified version of the OpenGL pipeline.

Vertex data is usually transformed and lit initially. In subsequent chapters, you'll find out
more about what this means. For now, you can consider “transform and lighting” to be a
mathematically intensive stage where points used to describe an object’s geometry are
recalculated for the given object’s location and orientation. Lighting calculations are
performed as well to indicate how bright the colors should be at each vertex.

When this stage is complete, the data is fed to the rasterization portion of the pipeline.
The rasterizer actually creates the color image from the geometric, color, and texture data.
The image is then placed in the frame buffer. The frame buffer is the memory of the graph-
ics display device, which means the image is displayed on your screen.

This diagram provides a simplistic view of the OpenGL pipeline, but it is sufficient for
your current understanding of 3D graphics rendering. At a high level, this view is accurate,
so we aren’t compromising your understanding, but at a low level, many more boxes
appear inside each box shown here. There are also some exceptions, such as the arrow in
the figure indicating that some commands skip the transform and lighting stage altogether
(such as displaying raw image data on the screen).

Early OpenGL hardware accelerators were nothing more than fast rasterizers. They acceler-
ated only the rasterization portion of the pipeline. The host system’s CPU did transform
and lighting in a software implementation of that portion of the pipeline. Higher-end
(more expensive) accelerators had transform and lighting on the graphics accelerator. This
arrangement put more of the OpenGL pipeline in hardware and thus provided for higher
performance.
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Even most low-end consumer hardware today has the transform and lighting stage in
hardware. The net effect of this arrangement is that higher detailed models and more
complex graphics are possible at real-time rendering rates on inexpensive consumer hard-
ware. Games and applications developers can capitalize on this effect, yielding far more
detailed and visually rich environments.

OpenGL: An API, Not a Language

For the most part, OpenGL is not a programming language; it is an application program-
ming interface (API). Whenever we say that a program is OpenGL-based or an OpenGL
application, we mean that it was written in some programming language (such as C or
C++) that makes calls to one or more of the OpenGL libraries. We are not saying that the
program uses OpenGL exclusively to do drawing. It might combine the best features of
two different graphics packages. Or it might use OpenGL for only a few specific tasks and
environment-specific graphics (such as the Windows GDI) for others. The only exception
to this rule of thumb is, of course, the OpenGL Shading Language, which is covered in

Part II.

As an API, the OpenGL library follows the C calling convention. As it turns out, this
choice of calling convention makes it possible to easily call OpenGL directly from most
other languages as well. In this book, the sample programs are written in C++. C++
programs can easily access C functions and APIs in the same manner as C, with only some
minor considerations. C++ is the modern language of choice for most performance-
minded applications. Very basic C++ classes can dramatically simplify most programming
tasks as well. We promise to keep the object usage to a minimum, no STL/Template/
Operator Overloaded/Meta blah blah...we promise!

Other programming languages—such as Visual Basic—that can call functions in C libraries
can also make use of OpenGL, and OpenGL bindings are available for many other
programming languages. Using OpenGL from these other languages is, however, outside
the scope of this book and can be somewhat tedious to explain. To keep things simple and
easily portable, we'll stick with C++ for our examples.

Standard Libraries and Headers

Although OpenGL is a “standard” programming library, this library has many implemen-
tations and versions. On Microsoft Windows, for example, the actual Microsoft software
implementation is in the opengl32.d11 dynamic link library, located in the Windows
system directory. On most platforms, the OpenGL library is accompanied by the OpenGL
utility library (GLU), which on Windows is in glu32.d11, also located in the system direc-
tory. The utility library is a set of utility functions that perform common (but sometimes
complex) tasks, such as special matrix calculations, or provide support for common

types of curves and surfaces. On Mac OS X, OpenGL and the GLU libraries are both
included in the OpenGL Framework. Frameworks on OS X are similar in many respects
to Windows DLLs.
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The steps for setting up your compiler tools to use the correct OpenGL headers and to link
to the correct OpenGL libraries vary from tool to tool and from platform to platform.
They also change over time as newer versions of these tools are released. It is usually safe
to assume that if you are reading a book on programming 3D graphics, you already know
how to actually compile programs with your preferred development environment. Note
the italics on the word usually! For this reason, in the source code distribution, you'll find
preconfigured projects for Visual Studio on Windows, XCode on Mac OS X, and some
generic “make” files for Linux. On our Web site (www.opengl.org/superbible) you'll find
some more detailed tutorials to walk you through this if necessary.

On all platforms, the prototypes for all OpenGL functions, types, and macros are
contained (by convention) in the header file g1.h. The utility library functions are proto-
typed in a different file, glu.h. These files are usually located in a special directory in your
include path, set up automatically when you install your development tools. For example,
the following code shows the initial header inclusions for a basic Windows program that
uses OpenGL:

#include<windows.h>
#include<gl/gl.h>
#include<gl/glu.h>

On an Apple OS X system, your include files might look more like this:

#include <Carbon/Carbon.h>
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>

Some Header Customizations

To keep things from getting too complicated, all the examples in the book (with the
exception being those in Part III, “The Apocrypha,” all on platform-specific code) include
one header file that takes care of all the platform-specific variations:

#include "../../shared/gltools.h" // OpenGL toolkit
This file is in the /shared folder, and all the sample programs have the same relative posi-

tion to this folder. If you look in this header, near the top, you'll find the platform-specific
code broken out like this:

// Windows

#ifdef WIN32

#include <windows.h> // Must have for Windows platform builds
#include "glee.h" // OpenGL Extension "autoloader"

#include <gl\gl.h> // Microsoft OpenGL headers (version 1.1 by themselves)
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#include <gl\glu.h> // OpenGL Utilities

#include "glut.h" /] Glut (Free-Glut on Windows)

#endif

/] Mac 0S8 X

#ifdef _ APPLE__

#include <Carbon/Carbon.h> // Brings in most Apple specific stuff

#include "glee.h" // OpenGL Extension "autoloader"

#include <OpenGL/gl.h> // Apple OpenGL shaders (version depends on
// 0S X SDK version)

#include <OpenGL/glu.h> // OpenGL Utilities

#include <Glut/glut.h> // Apples Implementation of GLUT

#endif

You'll also notice a few other headers we haven’t discussed yet. The first is glee.h. This
header belongs to the GLEE library, which stands for OpenGL Easy Extension library. This
library (or accompanying glee.c source file in our examples) transparently adds OpenGL
extensions to your projects. The basic Microsoft headers include only OpenGL 1.1 func-
tionality, and GLEE adds the rest of the API to your project. Apple keeps their headers
more up-to-date, but still there may be some extensions or later functions you may need.
GLEE works almost like magic!

Finally you'll see glut.h. We'll explain what GLUT is soon (all our samples use it). GLUT
is natively supported on OS X and is supplied by Apple with their development tools.
On Windows, we have used freeglut, which is an open-source implementation of the
GLUT library. In addition to this header, on Windows builds, you need to add
freeglut_static.lib. On Mac OS X with XCode, you add the GLUT Framework,

and on Linux, GLUT is included in the library list in the make files.

If you look in the /examples/src/shared folder where gltools.h is located, you'll also
find gltools.cpp. This source file is also added to many of the sample projects. This
contains a collection of useful and frequently used functions written and used regularly by
the authors in their own OpenGL-based work. A few other headers contain some simple
C++ classes as well, and we’ll discuss these in more detail as they come up.

API Specifics

OpenGL was designed by some clever people who had a lot of experience designing graph-
ics programming APIs. They applied some standard rules to the way functions were named
and variables were declared. The API is simple and clean and easy for vendors to extend.
OpenGL tries to avoid as much policy as possible. Policy refers to assumptions that the
designers make about how programmers will use the API. Examples of policies include
assuming that you always specify vertex data as floating-point values, assuming that fog is
always enabled before any rendering occurs, or assuming that all objects in a scene are
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affected by the same lighting parameters. Making these kinds of assumptions would elimi-
nate many of the popular rendering techniques that have developed over time.

This philosophy has contributed to the longevity and evolution of OpenGL. Still, as time
marches on, unanticipated advances in hardware capabilities, and the creativity of devel-
opers and hardware vendors, has taken its toll on OpenGL as it has progressed through
the years. Despite this, OpenGL'’s basic API has shown surprising resilience to new unantic-
ipated features. The ability to compile ten-year-old source code with little to no changes is
a substantial advantage to application developers, and OpenGL has managed for years to
add new features with as little impact on old code as possible. Future versions of OpenGL
are in the works with “lean and mean” profiles, where some older features and models
may eventually be dropped.

Data Types

To make it easier to port OpenGL code from one platform to another, OpenGL defines its
own data types. These data types map to normal C/C++ data types that you can use
instead, if you want. The various compilers and environments, however, have their own
rules for the size and memory layout of various variable types. By using the OpenGL
defined variable types, you can insulate your code from these types of changes.

Table 2.1 lists the OpenGL data types, their corresponding C/C++ data types under most
32-bit environments (Win32/0S X, etc.), and the appropriate suffix for literals. In this
book, we use the suffixes for all literal values. You will see later that these suffixes are also
used in many (but not all) OpenGL function names. The internal representation is the
same on all platforms (even 64-bit OSs), regardless of machine size or compiler used
(provided you have an appropriate SDK!).

TABLE 2.1 OpenGL Variable Types’ Corresponding C Data Types

OpenGL Data Internal Defined as C C

Type Representation Type Literal Suffix

GLbyte 8-bit integer signed char b

GLshort 16-bit integer short s

GLint, GLsizei 32-bit integer long 1

GLfloat, 32-bit floating float f

GLclampf point

GLdouble, 64-bit floating double d

GLclampd point

GLubyte, 8-bit unsigned unsigned char ub

GLboolean integer

GLushort 16-bit unsigned unsigned short us
integer

GLuint, GLenum,
GLbitfield

32-bit unsigned
integer

unsigned long

ui
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TABLE 2.1 Continued

OpenGL Data Internal Defined as C C

Type Representation Type Literal Suffix
GLchar 8-bit character char None
GLsizeiptr,

GLintptr native pointer ptrdiff_t None

All data types start with a GL to denote OpenGL. Most are followed by their corresponding
C data types (byte, short, int, float, and so on). Some have a u first to denote an
unsigned data type, such as ubyte to denote an unsigned byte. For some uses, a more
descriptive name is given, such as size to denote a value of length or depth. For example,
GLsizei is an OpenGL variable denoting a size parameter that is represented by an integer.
The clamp designation is a hint that the value is expected to be “clamped” to the range
0.0-1.0. The GLboolean variables are used to indicate true and false conditions; GLenum, for
enumerated variables; and GLbitfield, for variables that contain binary bit fields.

Pointers and arrays are not given any special consideration. An array of 10 GLshort vari-
ables is simply declared as

GLshort shorts[10];

and an array of 10 pointers to GLdouble variables is declared with

GLdouble *doubles[10];

Some other pointer object types are used for NURBS and quadrics. They require more
explanation and are covered in later chapters.

Function-Naming Conventions

Most OpenGL functions follow a naming convention that tells you which library the
function is from and often how many and what types of arguments the function takes. All
functions have a root that represents the function’s corresponding OpenGL command. For
example, glColor3f has the root Color. The gl prefix represents the gl library, and the 3f
suffix means the function takes three floating-point arguments. All OpenGL functions take
the following format:

<Library prefix><Root command><Optional argument count><Optional argument type>

Figure 2.4 illustrates the parts of an OpenGL function. This sample function with the
suffix 3f takes three floating-point arguments. Other variations take three integers
(glColordi), three doubles (g1Color3d), and so forth. This convention of adding the
number and types of arguments (see Table 2.1) to the end of OpenGL functions makes it
easy to remember the argument list without having to look it up. Some versions of
glColor take four arguments to specify an alpha component (transparency) as well.
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glColor3f(...)
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FIGURE 2.4 A dissected OpenGL function.

In the reference section (Appendix C) of this book, these “families” of functions are listed
by their library prefix and root. All the variations of glColor (glColor3f, glColor4f,
glColor3di, and so on) are listed under a single entry—glColor.

Any conformant C/C++ compiler will assume that any floating-point literal value is of
type double unless explicitly told otherwise via the suffix mechanism. When you're using
literals for floating-point arguments, if you don’t specify that these arguments are of type
float instead of double, many compilers will issue a warning while compiling because it
detects that you are passing a double to a function defined to accept only floats, resulting
in a possible loss of precision, not to mention a costly runtime conversion from double to
float. As OpenGL programs grow, these warnings quickly number in the hundreds and
make it difficult to find any real syntax errors. You can turn off these warnings using the
appropriate compiler options, but we advise against doing so. It’s better to write clean,
portable code the first time. So clean up those warning messages by cleaning up the code
(in this case, by explicitly using the float type)—not by disabling potentially useful
warnings.

Additionally, you might be tempted to use the functions that accept double-precision
floating-point arguments rather than go to all the bother of specifying your literals as
floats. However, OpenGL uses floats internally, and using anything other than the
single-precision floating-point functions adds a performance bottleneck because the values
are converted to floats anyhow before being processed by OpenGL—not to mention that
every double takes up twice as much memory as a float. For a program with a lot of
numbers “floating” around, these performance hits can add up pretty fast!

Platform Independence

OpenGL is a powerful and sophisticated API for creating 3D graphics, with more than 300
commands that cover everything from setting material colors and reflective properties to
doing rotations and complex coordinate transformations. You might be surprised that
OpenGL does not have a single function or command relating to window or screen
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management. In addition, there are no functions for keyboard input or mouse interaction.
Consider, however, that one of the OpenGL designers’ primary goals was for OpenGL to
be a platform independent abstraction of graphics hardware. Creating and managing
windows and polling for user input are inherently operating system related tasks. You do
not ask your graphics card if the user has pressed the enter key! There are, of course, some
other very good platform independent abstractions of this sort, too, but these tasks fall
outside the scope of graphics rendering. Remember the first sentence of this chapter,
“OpenGL is a software interface to graphics hardware.”

Using GLUT

In the beginning, there was AUX, the OpenGL auxiliary library. The AUX library was
created to facilitate the learning and writing of OpenGL programs without the program-
mer being distracted by the minutiae of any particular environment, be it UNIX,
Windows, or whatever. You wouldn’t write “final” code when using AUX; it was more of a
preliminary staging ground for testing your ideas. A lack of basic GUI features limited the
library’s use for building useful applications.

AUX has since been replaced by the GLUT library for cross-platform programming exam-
ples and demonstrations. GLUT stands for OpenGL utility toolkit (not to be confused with
the standard GLU—OpenGL utility library). Mark Kilgard, while at SGI, wrote GLUT as a
more capable replacement for the AUX library and included some GUI features to at least
make sample programs more usable under X Windows. This replacement includes using
pop-up menus, managing other windows, and even providing joystick support. GLUT is
not public domain, but it is free and free to redistribute. GLUT is widely available on most
UNIX distributions (including Linux), and is natively supported by Mac OS X, where
Apple maintains and extends the library. On Windows, GLUT development has been
discontinued. Since GLUT was originally not licensed as open source, a new GLUT imple-
mentation, freeglut, has sprung up to take its place. All the Windows GLUT-based samples
in this book make use of the freeglut library, which is also available on our Web site.

For most of this book, we use GLUT as our program framework. This decision serves two
purposes. The first is that it makes most of the book accessible to a wider audience. With a
little effort, experienced Windows, Linux, or Mac programmers should be able to set up
GLUT for their programming environments and follow most of the examples in this book.

The second point is that using GLUT eliminates the need to know and understand basic
GUI programming on any specific platform. Although we explain the general concepts, we
do not claim to write a book about GUI programming, but rather about OpenGL. Using
GLUT for the basic coverage of the API, we make life a bit easier for Windows/Mac/Linux
novices as well.

It’s unlikely that all the functionality of a commercial application will be embodied
entirely in the code used to draw in 3D. Although GLUT does have some limited GUI
functionality, it is very simple and abbreviated as far as GUI toolkits go. Thus you can’t
rely entirely on the GLUT library for everything. Nevertheless, the GLUT library excels in
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its role for learning and demonstration exercises, and hiding all the platform specific
details of window creation and OpenGL context initialization. Even for an experienced
programmer, it is still easier to employ the GLUT library to iron out 3D graphics code
before integrating it into a complete application.

Your First Program

To understand the GLUT library better, look at possibly the world’s shortest OpenGL
program, which was written using the GLUT library. Listing 2.1 presents the SIMPLE
program. Its output is shown in Figure 2.5. You'll also learn just a few things about
OpenGL along the way!

LISTING 2.1 Source Code for SIMPLE: A Very Simple OpenGL Program
#include "../../shared/gltools.h" // OpenGL toolkit

LHEPEETEEEEEE b ni i i n i ri i it l
// Called to draw scene
void RenderScene(void)
{
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER BIT);

// Flush drawing commands
glFlush();
}

LHEPEETEEEEE i ri i rr i rr e rn i i rrrt
// Set up the rendering state
void SetupRC(void)

{

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

}

LHOPEETEEEEE i ri e rr i rr i ri i irirt
// Main program entry point
void main(void)
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGBA);
glutCreateWindow("Simple");
glutDisplayFunc(RenderScene);
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LISTING 2.1 Continued
SetupRC();

glutMainLoop();

return 0;

}

i Simple

FIGURE 2.5 Output from the SIMPLE program.

The SIMPLE program doesn’t do much. When run from the command line (or develop-
ment environment), it creates a standard GUI window with the caption Simple and a clear
blue background. If you are running Visual C++, when you terminate the program, you
see the message Press any key to continue in the console window. You need to press a
key to terminate the program. This standard feature of the Microsoft IDE for running a
console application ensures that you can see whatever output your program places
onscreen (the console window) before the window vanishes. If you run the program from
the command line, you don't get this behavior. If you double-click on the program file
from Explorer, you see the console window, but it vanishes when the program terminates.

This simple program contains four GLUT library functions (prefixed with glut) and three
“real” OpenGL functions (prefixed with gl1). Let’s examine the program line by line, after
which we will introduce some more functions and substantially improve on the first
example.

The Header
Listing 2.1 contains only one include file:
#include "../../shared/gltools.h" // OpenGL toolkit

This file, which we mentioned earlier, includes the gl.h and glut.h headers, which bring
in the function prototypes used by the program.
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The Body
Next, we skip down to the entry point of all C programs:

int main(int argc, char* argv[])
{
glutInit(&argc, argv);

Console-mode C and C++ programs always start execution with the function main. If you
are an experienced Windows nerd, you might wonder where WinMain is in this example.
It's not there because we start with a console-mode application, so we don’t have to start
with window creation and a message loop. With Win32, you can create graphical windows
from console applications, just as you can create console windows from GUI applications.
These details are buried within the GLUT library. (Remember, the GLUT library is designed
to hide just these kinds of platform details.)

The first line of code in main is a call to glutInit, which simply passes along the
command-line parameters and initializes the GLUT library.

Display Mode: Single Buffered
Next we must tell the GLUT library what type of display mode to use when creating the
window:

glutInitDisplayMode (GLUT SINGLE ! GLUT_RGBA);

The flags here tell it to use a single-buffered window (GLUT_SINGLE) and to use RGBA color
mode (GLUT_RGBA). A single-buffered window means that all drawing commands are
performed on the window displayed. An alternative is a double-buffered window, where
the drawing commands are actually executed on an offscreen buffer and then quickly
swapped into view on the window. This method is often used to produce animation
effects and is demonstrated later in this chapter. In fact, we use double-buffered mode for
the rest of the book. RGBA color mode means that you specify colors by supplying sepa-
rate intensities of red, green, blue, and alpha components. The alternative is color index
mode, which is now largely obsolete, in which you specify colors by using an index into a
color palette.

Creating the OpenGL Window
The next call to the GLUT library actually creates the window on the screen. The follow-
ing code creates the window and sets the caption to Simple:

glutCreateWindow("Simple");

The single argument to glutCreateWindow is the caption for the window’s title bar.
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Displaying Callback
The next line of GLUT-specific code is

glutDisplayFunc(RenderScene);

This line establishes the previously defined function RenderScene as the display callback
function. This means that GLUT calls the function pointed to here whenever the window
needs to be drawn. This call occurs when the window is first displayed or when the
window is resized or uncovered, for example. This is the place where we put our OpenGL
rendering function calls.

Set Up the Context and Go!
The next line is neither GLUT- nor OpenGL-specific but is a convention that we follow
throughout the book:

SetupRC();

In this function, we do any OpenGL initialization that should be performed before render-
ing. Many of the OpenGL states need to be set only once and do not need to be reset
every time you render a frame (a screen full of graphics).

The last GLUT function call comes at the end of the program:

glutMainLoop();

This function starts the GLUT framework running. After you define callbacks for screen
display and other functions (coming up), you turn GLUT loose. glutMainLoop never
returns after it is called until the main window is closed, and needs to be called only once
from an application. This function processes all the operating system-specific messages,
keystrokes, and so on until you terminate the program.

OpenGL Graphics Calls
The SetupRC function contains a single OpenGL function call:

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

This function sets the color used for clearing the window. The prototype for this
function is

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);

GLclampf is defined as a float under most implementations of OpenGL. In OpenGL, a
single color is represented as a mixture of red, green, and blue components. The range for
each component can vary from 0.0 to 1.0. This is similar to the Windows specification of
colors using the RGB macro to create a COLORREF value. The difference is that in Windows
each color component in a COLORREF can range from O to 255, giving a total of
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256x256x256—or more than 16 million colors. With OpenGL, the values for each compo-
nent can be any valid floating-point value between O and 1, thus yielding a virtually infi-
nite number of potential colors. Practically speaking, color output is limited on most
devices to 24 bits (16 million colors) total.

Naturally, OpenGL takes this color value and converts it internally to the nearest possible
exact match with the available video hardware. Table 2.2 lists some common colors and
their component values. You can use these values with any of the OpenGL color-related
functions.

TABLE 2.2 Some Common Composite Colors

Composite Red Green Blue
Color Component Component Component
Black 0.0 0.0 0.0
Red 1.0 0.0 0.0
Green 0.0 1.0 0.0
Yellow 1.0 1.0 0.0
Blue 0.0 0.0 1.0
Magenta 1.0 0.0 1.0
Cyan 0.0 1.0 1.0
Dark gray 0.25 0.25 0.25
Light gray 0.75 0.75 0.75
Brown 0.60 0.40 0.12
Pumpkin orange 0.98 0.625 0.12
Pastel pink 0.98 0.04 0.7
Barney purple 0.60 0.40 0.70
White 1.0 1.0 1.0

The last argument to glClearColor is the alpha component, which is used for blending
and special effects such as transparency. Transparency refers to an object’s capability to
allow light to pass through it. Suppose you would like to create a piece of red stained glass,
and a blue light happens to be shining behind it. The blue light affects the appearance of
the red in the glass (blue + red = purple). You can use the alpha component value to
generate a red color that is semitransparent so that it works like a sheet of glass—an object
behind it shows through. There is more to this type of effect than just using the alpha
value, and in Chapter 6, “More on Colors and Materials,” you’ll learn more about this
topic; until then, you should leave the alpha value as 1.

Clearing the Color Buffer
All we have done at this point is set OpenGL to use blue for the clearing color. In our
RenderScene function, we need an instruction to do the actual clearing:

glClear(GL_COLOR_BUFFER_BIT);



Platform Independence 53

The glClear function clears a particular buffer or combination of buffers. A buffer is a
storage area for image information. The red, green, and blue components of a drawing are
usually collectively referred to as the color buffer or pixel buffer.

More than one kind of buffer (color, depth, stencil, and accumulation) is available in
OpenGL, and these buffers are covered in more detail later in the book. For the next
several chapters, all you really need to understand is that the color buffer is the place
where the displayed image is stored internally and that clearing the buffer with glClear
removes the last drawing from the window. You will also see the term framebuffer, which
refers to all these buffers collectively since they work in tandem.

Flushing That Queue
The final OpenGL function call comes last:

glFlush();

This line causes any unexecuted OpenGL commands to be executed. We have one at this
point: glClear.

Internally, OpenGL uses a rendering pipeline that processes commands sequentially.
OpenGL commands and statements often are queued up until the OpenGL driver
processes several “commands” at once. This setup improves performance because commu-
nication with hardware is inherently slow. Making one trip to the hardware with a truck-
load of data is much faster than making several smaller trips for each command or
instruction. We'll discuss this feature of OpenGL'’s operation further in Chapter 11, “It’s All
About the Pipeline: Faster Geometry Throughput.” In the short program in Listing 2.1, the
glFlush function simply tells OpenGL that it should proceed with the drawing instruc-
tions supplied thus far before waiting for any more drawing commands.

SIMPLE might not be the most interesting OpenGL program in existence, but it demon-
strates the basics of getting a window up using the GLUT library, and it shows how to
specify a color and clear the window. Next, we want to spruce up our program by adding
some more GLUT library and OpenGL functions.

Drawing Shapes with OpenGL

The SIMPLE program made an empty window with a blue background. Now, let’s do some
drawing in the window. In addition, we want to be able to move and resize the window
and have our rendering code respond appropriately. In Listing 2.2, you can see the modifi-
cations. Figure 2.6 shows the output of this program (GLRect).

LISTING 2.2 Drawing a Centered Rectangle with OpenGL
#include "../../shared/gltools.h" // OpenGL toolkit

JILLEEEIEEE T i ri it riiriirtig i
// Called to draw scene
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LISTING 2.2 Continued

void RenderScene(void)
{
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER BIT);

// Set current drawing color to red
/! R G B
glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color
glRectf(-25.0f, 25.0f, 25.0f, -25.0f);

// Flush drawing commands
glFlush();
}

LIETEETEEE T ri i n i i rinirririrrrsi
// Set up the rendering state
void SetupRC(void)

{

/! Set clear color to blue

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

}

LEETEETEEET i ri i i i irirrrsi
// Called by GLUT library when the window has chanaged size
void ChangeSize(GLsizei w, GLsizei h)

{
GLfloat aspectRatio;

/] Prevent a divide by zero
if(h == 0)
h =1;

// Set Viewport to window dimensions
glviewport(0, @, w, h);

// Reset coordinate system
glMatrixMode (GL_PROJECTION);
glLoadIdentity();



Platform Independence

LISTING 2.2 Continued

/| Establish clipping volume (left, right, bottom, top, near, far)
aspectRatio = (GLfloat)w / (GLfloat)h;
if (w <= h)
glortho (-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio,
1.0, -1.0);
else
glOortho (-100.0 * aspectRatio, 100.0 * aspectRatio,
-100.0, 100.0, 1.0, -1.0);

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
}

LELTEELEEEL i i ni bt riiriririrg i
// Main program entry point
void main(void)
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutCreateWindow("GLRect");
glutDisplayFunc (RenderScene);
glutReshapeFunc(ChangeSize);
SetupRC();

glutMainLoop();

return 0;

}

i GLRect

FIGURE 2.6 Output from the GLRect program.
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Drawing a Rectangle
Previously, all our program did was clear the screen. We’ve now added the following lines
of drawing code:

// Set current drawing color to red
Il R G B
glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color
glRectf(-25.0f, 25.0f, 25.0f, -25.0f);

These lines set the color used for future drawing operations (lines and filling) with the call
to glColor3f. Then glRectf draws a filled rectangle.

The glColor3f function selects a color in the same manner as glClearColor, but no alpha
translucency component needs to be specified (the default value for alpha is 1.0 for
completely opaque):

void glColor3f(GLfloat red, GLfloat green, GLfloat blue);

The glRectf function takes floating-point arguments, as denoted by the trailing f. The
number of arguments is not used in the function name because all glRect variations take
four arguments. The four arguments of glRectf, shown here, represent two coordinate
pairs, (x1, y1) and (x2, y2):

void glRectf(GLfloat x7, GLfloat y7, GLfloat x2, GLfloat y2);

The first pair represents the upper-left corner of the rectangle, and the second pair repre-
sents the lower-right corner.

How does OpenGL map these coordinates to actual window positions? This is done in the
callback function ChangeSize. This function is set as the callback function for whenever
the window changes size (when it is stretched, maximized, and so on). This is set by the
glutReshapeFunc in the same way that the display callback function is set:

glutReshapeFunc(ChangeSize);
Any time the window size or dimensions change, you need to reset the coordinate system.

Scaling to the Window

In nearly all windowing environments, the user can at any time change the size and
dimensions of the window. Even if you are writing a game that always runs in full-screen
mode, the window is still considered to change size once—when it is created. When this
happens, the window usually responds by redrawing its contents, taking into considera-
tion the window’s new dimensions. Sometimes, you might want to simply clip the
drawing for smaller windows or display the entire drawing at its original size in a larger
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window. For our purposes, we usually want to scale the drawing to fit within the window,
regardless of the size of the drawing or window. Thus, a very small window would have a
complete but very small drawing, and a larger window would have a similar but larger
drawing. You see this effect in most drawing programs when you stretch a window as
opposed to enlarging the drawing. Stretching a window usually doesn’t change the
drawing size, but magnifying the image makes it grow.

Setting the Viewport and Clipping Volume

In Chapter 1 we discussed how the viewport and viewing volume affect the coordinate
range and scaling of 2D and 3D drawings in a 2D window on the computer screen. Now,
we examine the setting of viewport and clipping volume coordinates in OpenGL.

Although our drawing is a 2D flat rectangle, we are actually drawing in a 3D coordinate
space. The glRectf function draws the rectangle in the xy plane at z = 0. Your perspective
is along the positive z-axis to see the square rectangle at z = 0. (If you're feeling lost here,
review this material in Chapter 1, “Introduction to 3D Graphics and OpenGL.")

Whenever the window size changes, the viewport and clipping volume must be redefined
for the new window dimensions. Otherwise, you see an effect like the one shown in Figure
2.7, where the mapping of the coordinate system to screen coordinates stays the same
regardless of the window size.

250

-
<

Y

A -1 GLRect

250

-
<

Y

' GLRect

A

250

250

FIGURE 2.7 The effects of changing the window size but not the coordinate system.
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Because window size changes are detected and handled differently under various environ-
ments, the GLUT library provides the function glutReshapeFunc, which registers a call-
back that the GLUT library will call whenever the window dimensions change. The
function you pass to glutReshapeFunc is prototyped like this:

void ChangeSize(GLsizei w, GLsizei h);

We have chosen ChangeSize as a descriptive name for this function, and we will use that
name for our future examples.

The ChangeSize function receives the new width and height whenever the window size
changes. We can use this information to modify the mapping of our desired coordinate
system to real screen coordinates, with the help of two OpenGL functions: glviewport
and glOrtho.

Defining the Viewport

To understand how the viewport definition is achieved, let’s look more carefully at the
ChangeSize function. It first calls glviewport with the new width and height of the
window. The glviewport function is defined as

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-left corner of the viewport within the window,
and the width and height parameters specify these dimensions in pixels. Usually, x and y
are both 0, but you can use viewports to render more than one drawing in different areas
of a window. The viewport defines the area within the window in actual screen coordi-
nates that OpenGL can use to draw in (see Figure 2.8). The current clipping volume is
then mapped to the new viewport. If you specify a viewport that is smaller than the
window coordinates, the rendering is scaled smaller, as you see in Figure 2.8.
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FIGURE 2.8 Viewport-to-window mapping.
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Defining the Clipped Viewing Volume

The last requirement of our ChangeSize function is to redefine the clipping volume so that
the aspect ratio remains square. The aspect ratio is the ratio of the number of pixels along
a unit of length in the vertical direction to the number of pixels along the same unit of
length in the horizontal direction. In English, this just means the width of the window
divided by the height. An aspect ratio of 1.0 defines a square aspect ratio. An aspect ratio
of 0.5 specifies that for every two pixels in the horizontal direction for a unit of length,
there is one pixel in the vertical direction for the same unit of length.

If you specify a viewport that is not square and it is mapped to a square clipping volume,
the image will be distorted. For example, a viewport matching the window size and
dimensions but mapped to a square clipping volume would cause images to appear tall
and thin in tall and thin windows and wide and short in wide and short windows. In this
case, our square would appear square only when the window was sized to be a square.

In our example, an orthographic projection is used for the clipping volume. The OpenGL
command to create this projection is glortho:

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far );

In 3D Cartesian space, the left and right values specify the minimum and maximum
coordinate value displayed along the x-axis; bottom and top are for the y-axis. The near
and far parameters are for the z-axis, generally with negative values extending away from
the viewer (see Figure 2.9). Many drawing and graphics libraries use window coordinates
(pixels) for drawing commands. Using a real floating-point (and seemingly arbitrary) coor-
dinate system for rendering is one of the hardest things for many beginners to get used to.
After you work through a few programs, though, it quickly becomes second nature.
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FIGURE 2.9 Cartesian space.
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Just before the code using gl0rtho, notice these two function calls:

// Reset coordinate system
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();

The subject of matrices and the OpenGL matrix stacks comes up in Chapter 4, “Geometric
Transformations: The Pipeline,” where we discuss this topic in more detail. The projection
matrix is the place where you actually define your viewing volume. The single call to
glLoadIdentity is needed because glOrtho doesn’t really establish the clipping volume,
but rather modifies the existing clipping volume. It multiplies the matrix that describes
the current clipping volume by the matrix that describes the clipping volume described in
its arguments. For now, you just need to know that glLoadIdentity serves to “reset” the
coordinate system before any matrix manipulations are performed. Without this “reset,”
every time glOrtho is called, each successive call to glortho could result in a further
corruption of the intended clipping volume, which might not even display the rectangle.

The last two lines of code, shown here, tell OpenGL that all future transformations will
affect our models (what we draw):

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

We purposely do not cover model transformation until Chapter 4. You do need to know now,
however, how to set up these things with their default values. Otherwise, if you become
adventurous and start experimenting, your output might not match what you expect.

Keeping a Square Square
The following code does the actual work of keeping our square square:

// Establish clipping volume (left, right, bottom, top, near, far)
aspectRatio = (GLfloat)w / (GLfloat)h;
if (w <= h)
glOortho (-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio,
1.0, -1.0);
else
glOortho (-100.0 * aspectRatio, 100.0 * aspectRatio,
-100.0, 100.0, 1.0, -1.0);

Our clipping volume (visible coordinate space) is modified so that the left side is always at
x =-100 and the right side extends to 100 unless the window is wider than it is tall. In
that case, the horizontal extent is scaled by the aspect ratio of the window. In the same
manner, the bottom is always at y = =100 and extends upward to 100 unless the window is
taller than it is wide. In that case, the upper coordinate is scaled by the inverse of the
aspect ratio. This serves to keep a square coordinate region 200x200 available (with 0,0 in
the center) regardless of the shape of the window. Figure 2.10 shows how this works.
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FIGURE 2.10 The clipping region for three different windows.

Animation with OpenGL and GLUT

So far, we’ve discussed the basics of using the GLUT library for creating a window and
using OpenGL commands for the actual drawing. You will often want to move or rotate
your images and scenes, creating an animated effect. Let’s take the previous example,
which draws a square, and make the square bounce off the sides of the window. You could
create a loop that continually changes your object’s coordinates before calling the
RenderScene function. This would cause the square to appear to move around within the
window.

The GLUT library enables you to register a callback function that makes it easier to set up
a simple animated sequence. This function, glutTimerFunc, takes the name of a function
to call and the amount of time to wait before calling the function:

void glutTimerFunc(unsigned int msecs, void (*func)(int value), int value);

This code sets up GLUT to wait msecs milliseconds before calling the function func. You
can pass a user-defined value in the value parameter. The function called by the timer has
the following prototype:

void TimerFunction(int value);

When the time expires, this function is fired only once. To effect a continuous animation,
you must reset the timer again in the timer function.

In our GLRect program, we can change the hard-coded values for the location of our
rectangle to variables and then constantly modify those variables in the timer function.
This causes the rectangle to appear to move across the window. Let’s look at an example of
this kind of animation. In Listing 2.3, we modify Listing 2.2 to bounce around the square
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off the inside borders of the window. We need to keep track of the position and size of the
rectangle as we go along and account for any changes in window size.

LISTING 2.3 Animated Bouncing Square
#include "../../shared/gltools.h" // OpenGL toolkit

// Initial square position and size
GLfloat x1 0.0f;
GLfloat yi 0.0f;
GLfloat rsize = 25;

// Step size in x and y directions

// (number of pixels to move each time)
GLfloat xstep = 1.0f;

GLfloat ystep = 1.0f;

// Keep track of windows changing width and height
GLfloat windowWidth;
GLfloat windowHeight;

LHOTEETEEEEEE i ni i rr i ri i n i ity
// Called to draw scene
void RenderScene(void)
{
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER BIT);

// Set current drawing color to red
/1] R G B
glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color
glRectf(x1, y1, x1 + rsize, y1 - rsize);

// Flush drawing commands and swap
glutSwapBuffers();
}

LHEPEETEEEECE i ni i i r i rr i n i irirt
// Called by GLUT library when idle (window not being

// resized or moved)

void TimerFunction(int value)

{
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LISTING 2.3 Continued

// Reverse direction when you reach left or right edge
if(x1 > windowWidth-rsize |} x1 < -windowWidth)
xstep = -xstep;

// Reverse direction when you reach top or bottom edge
if(y1 > windowHeight |} y1 < -windowHeight + rsize)
ystep = -ystep;

// Actually move the square
x1 += xstep;
y1 += ystep;

/| Check bounds. This is in case the window is made
/| smaller while the rectangle is bouncing and the
/] rectangle suddenly finds itself outside the new
// clipping volume
if(x1 > (windowWidth-rsize + xstep))

x1 = windowWidth-rsize-1;
else if(x1 < -(windowWidth + xstep))
x1 = - windowsWidth -1;

if(y1 > (windowHeight + ystep))

y1 = windowHeight-1;
else if(y1 < -(windowHeight - rsize + ystep))
y1 = -windowHeight + rsize -1;

// Redraw the scene with new coordinates
glutPostRedisplay();
glutTimerFunc(33,TimerFunction, 1);

}

LELTEEEEEEL T i ni it iririrrr
// Main program entry point
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize (800,600);
glutCreateWindow("Bounce");
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LISTING 2.3 Continued

glutDisplayFunc(RenderScene);
glutReshapeFunc(ChangeSize);
glutTimerFunc (33, TimerFunction, 1);

SetupRC();
glutMainLoop();

return 0;

Double Buffering

One of the most important features of any graphics package is support for double buffering.
This feature allows you to execute your drawing code while rendering to an offscreen
buffer. Then a swap command places your drawing onscreen instantly.

Double buffering can serve two purposes. The first is that some complex drawings might
take a long time to draw, and you might not want each step of the image composition to
be visible. Using double buffering, you can compose an image and display it only after it is
complete. The user never sees a partial image; only after the entire image is ready is it
shown onscreen.

A second use for double buffering is animation. Each frame is drawn in the offscreen
buffer and then swapped quickly to the screen when ready. The GLUT library supports
double-buffered windows. In Listing 2.3 note the following line:

glutInitDisplayMode (GLUT_DOUBLE ! GLUT RGBA);
We have changed GLUT_SINGLE to GLUT_DOUBLE. This change causes all the drawing code to
render in an offscreen buffer.

Next, we also changed the end of the RenderScene function:

/] Flush drawing commands and swap
glutSwapBuffers();
}

No longer are we calling g1Flush. This function is no longer needed because when we
perform a buffer swap, we are implicitly performing a flush operation.

These changes cause a smoothly animated bouncing rectangle, shown in Figure 2.11. The
function glutSwapBuffers still performs the flush, even if you are running in single-
buffered mode. Simply change GLUT_DOUBLE back to GLUT_SINGLE in the bounce sample to
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see the animation without double buffering. As you'll see, the rectangle constantly blinks
and stutters, a very unpleasant and poor animation with single buffering.

: Bounce =l E3

FIGURE 2.11 Follow the bouncing square.

The GLUT library is a reasonably complete framework for creating sophisticated sample
programs and perhaps even full-fledged commercial applications (assuming you do not
need to use OS-specific or GUI features). It is not the purpose of this book to explore
GLUT in all its glory and splendor, however. Here and in the reference section to come, we
restrict ourselves to the small subset of GLUT needed to demonstrate the various features
of OpenGL.

The OpenGL State Machine

Drawing 3D graphics is a complicated affair. In the chapters ahead, we will cover many
OpenGL functions. For a given piece of geometry, many things can affect how it is drawn.
Is a light shining on it? What are the properties of the light? What are the properties of
the material? Which, if any, texture should be applied? The list could go on and on.

We call this collection of variables the state of the pipeline. A state machine is an abstract
model of a collection of state variables, all of which can have various values, be turned on
or off, and so on. It simply is not practical to specify all the state variables whenever we
try to draw something in OpenGL. Instead, OpenGL employs a state model, or state
machine, to keep track of all the OpenGL state variables. When a state value is set, it
remains set until some other function changes it. Many states are simply on or off.
Lighting, for example (see Chapter 5, “Color, Materials, and Lighting: The Basics”), is
either turned on or turned off. Geometry drawn without lighting is drawn without any
lighting calculations being applied to the colors set for the geometry. Any geometry drawn
after lighting is turned back on is then drawn with the lighting calculations applied.

To turn these types of state variables on and off, you use the following OpenGL function:

void glEnable(GLenum capability);
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You turn the variable back off with the corresponding function:

void glDisable(GLenum capability);

For the case of lighting, for instance, you can turn it on by using the following:

glEnable (GL_LIGHTING);

And you turn it back off with this function:

glDisable(GL_LIGHTING);

If you want to test a state variable to see whether it is enabled, OpenGL again has a conve-
nient mechanism:

Glboolean glIsEnabled(GLenum capability);

Not all state variables, however, are simply on or off. Many of the OpenGL functions yet
to come set up values that “stick” until changed. You can query what these values are at
any time as well. A set of query functions allows you to query the values of Booleans, inte-
gers, floats, and double variables. These four functions are prototyped thus:

void glGetBooleanv(GLenum pname, GLboolean *params);
void glGetDoublev(GLenum pname, GLdouble *params);
void glGetFloatv(GLenum pname, GLfloat *params);
void glGetIntegerv(GLenum pname, GLint *params);

Each function returns a single value or a whole array of values, storing the results at the
address you supply. The various parameters are documented in the reference section in
Appendix C, “API Reference” (there are a lot of them!). Most may not make much sense to
you right away, but as you progress through the book, you will begin to appreciate the
power and simplicity of the OpenGL state machine.

Saving and Restoring States

OpenGL also has a convenient mechanism for saving a whole range of state values and
restoring them later. The stack is a convenient data structure that allows values to be
pushed on the stack (saved) and popped off the stack later to retrieve them. Items are
popped off in the opposite order in which they were pushed on the stack. We call this a
Last In First Out (LIFO) data structure. It’s an easy way to just say, “Hey, please save this”
(push it on the stack), and then a little later say, “Give me what I just saved” (pop it off
the stack). You'll see that the concept of the stack plays a very important role in matrix
manipulation when you get to Chapter 4.

A single OpenGL state value or a whole range of related state values can be pushed on the
attribute stack with the following command:



OpenGL Errors 67

void glPushAttrib(GLbitfield mask);

Values are correspondingly restored with this command:

void glPopAttrib(GLbitfield mask);

Note that the argument to these functions is a bit field. This means that you use a bitwise
mask, which allows you to perform a bitwise OR (in C using the | operator) of multiple
state values with a single function call. For example, you could save the lighting and
texturing state with a single call like this:

glPushAttrib(GL_TEXTURE_BIT ! GL_LIGHTING_BIT);

A complete list of all the OpenGL state values that can be saved and restored with these
functions is located in the reference section in Appendix C, for the glPushAttrib function
listing.

OpenGL Errors

In any project, you want to write robust and well-behaved programs that respond politely
to their users and have some amount of flexibility. Graphical programs that use OpenGL
are no exception, and if you want your programs to run smoothly, you need to account
for errors and unexpected circumstances. OpenGL provides a useful mechanism for you to
perform an occasional sanity check in your code. This capability can be important
because, from the code’s standpoint, it’s not really possible to tell whether the output was
the Space Station Freedom or the Space Station Melted Crayons!

When Bad Things Happen to Good Code

Internally, OpenGL maintains a set of six error flags. Each flag represents a different type
of error. Whenever one of these errors occurs, the corresponding flag is set. To see whether
any of these flags is set, call glGetError:

Glenum glGetError(void);

The glGetError function returns one of the values listed in Table 2.3. The GLU library
defines three errors of its own, but these errors map exactly to two flags already present. If
more than one of these flags is set, glGetError still returns only one distinct value. This
value is then cleared when glGetError is called, and glGetError again will return either
another error flag or GL_NO_ERROR. Usually, you want to call glGetError in a loop that
continues checking for error flags until the return value is GL_NO_ERROR.

You can use another function in the GLU library, gluErrorString, to get a string describ-
ing the error flag:

const GLubyte* gluErrorString(GLenum errorCode);
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This function takes as its only argument the error flag (returned from glGetError) and
returns a static string describing that error. For example, the error flag GL_INVALID_ENUM
returns this string:

invalid enumerant

TABLE 2.3 OpenGL Error Codes

Error Code Description

GL_INVALID_ENUM The enum argument is out of range.
GL_INVALID_VALUE The numeric argument is out of range.
GL_INVALID_OPERATION The operation is illegal in its current state.
GL_STACK_OVERFLOW The command would cause a stack overflow.
GL_STACK_UNDERFLOW The command would cause a stack underflow.
GL_OUT_OF_MEMORY Not enough memory is left to execute the command.
GL_TABLE_TOO_LARGE The specified table is too large.

GL_NO_ERROR No error has occurred.

You can take some peace of mind from the assurance that if an error is caused by an
invalid call to OpenGL, the command or function call is ignored. The only exceptions to
this are any OpenGL functions that take pointers to memory (that may cause a program
to crash if the pointer is invalid).

Identifying the Version

As mentioned previously, sometimes you want to take advantage of a known behavior in a
particular implementation. If you know for a fact that you are running on a particular
vendor’s graphics card, you may rely on some known performance characteristics to
enhance your program. You may also want to enforce some minimum version number for
particular vendors’ drivers. What you need is a way to query OpenGL for the vendor and
version number of the rendering engine (the OpenGL driver). Both the GL library and the
GLU library can return version- and vendor-specific information about themselves.

For the GL library, you can call glGetString:
const GLubyte *glGetString(GLenum name);
This function returns a static string describing the requested aspect of the GL library. The

valid parameter values are listed under glGetString in Appendix C, along with the aspect
of the GL library they represent.

The GLU library has a corresponding function, gluGetString:

const GLubyte *gluGetString(GLenum name);

It returns a string describing the requested aspect of the GLU library.
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Getting a Clue with glHint

There is more than one way to skin a cat; so goes the old saying. The same is true with 3D
graphics algorithms. Often a trade-off must be made for the sake of performance, or
perhaps if visual fidelity is the most important issue, performance is less of a considera-
tion. Often an OpenGL implementation may contain two ways of performing a given
task—a fast way that compromises quality slightly and a slower way that improves visual
quality. The function glHint allows you to specify certain preferences of quality or speed
for different types of operations. The function is defined as follows:

void glHint(GLenum target, GLenum mode);

The target parameter allows you to specify types of behavior you want to modify. These
values, listed under glHint in Appendix C, include hints for fog quality, antialiasing accu-
racy, and so on. The mode parameter tells OpenGL what you care most about—faster
render time and nicest output, for instance—or that you don’t care (the only way to get
back to the default behavior). Be warned, however, that all implementations are not
required to honor calls into glHint; it’s the only function in OpenGL whose behavior is
intended to be entirely vendor-specific.

Using Extensions

With OpenGL being a “standard” API, you might think that hardware vendors are able to
compete only on the basis of performance and perhaps visual quality. However, the field
of 3D graphics is very competitive, and hardware vendors are constantly innovating, not
just in the areas of performance and quality, but in graphics methodologies and special
effects. OpenGL allows vendor innovation through its extension mechanism. This mecha-
nism works in two ways. First, vendors can add new functions to the OpenGL API that
developers can use. Second, new tokens or enumerants can be added that will be recog-
nized by existing OpenGL functions such as glEnable.

Making use of new enumerants or tokens is simply a matter of adding a vendor-supplied
header file to your project. Vendors must register their extensions with the OpenGL
Working Group (a subset of the Khronos Group), thus keeping one vendor from using a
value used by someone else. Conveniently, there is a standard header file glext.h that
includes the most common extensions.

Checking for an Extension

Gone are the days when games would be recompiled for a specific graphics card. You have
already seen that you can check for a string identifying the vendor and version of the
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OpenGL driver. You can also get a string that contains identifiers for all OpenGL exten-
sions supported by the driver. One line of code returns a character array of extension
names:

const char *szExtensions = glGetString(GL_EXTENSIONS);

This string contains the space-delimited names of all extensions supported by the driver.
You can then search this string for the identifier of the extension you want to use. For
example, you might do a quick search for a Windows-specific extension like this:

if (strstr(extensions, "WGL_EXT_swap_control" != NULL))
{
wglSwapIntervalEXT =
(PFNWGLSWAPINTERVALEXTPROC)wglGetProcAddress ("wglSwapIntervalEXT");

if (wglSwapIntervalEXT != NULL)
wglSwapIntervalEXT(1);

If you use this method, you should also make sure that the character following the name
of the extension is either a space or a NULL. What if, for example, this extension is
superceded by the WGL_EXT_swap_control2 extension? In this case, the C runtime function
strstr would still find the first string, but you may not be able to assume that the second
extension behaves exactly like the first. A more robust toolkit function is included in the
file gltools.cpp in the source distribution from our Web site:

int gltIsExtSupported(const char *extension);

This function returns 1 if the named extension is supported or 0 if it is not. The
examples/src/shared directory contains a whole set of helper and utility functions for use
with OpenGL, and many are used throughout this book. All the functions are prototyped
in the file gltools.h.

This example also shows how to get a pointer to a new OpenGL function under Windows.
The windows function wglGetProcAddress returns a pointer to an OpenGL function
(extension) name. Getting a pointer to an extension varies from OS to OS; this topic is
dealt with in more detail in Part IIT of this book. Fortunately, 99% of the time you can just
use the GLEE library as we have and you “auto-magically” get extension function pointers
for whatever functionality is supported by the driver.

The Windows-specific extension and the typedef (PFNWGLSWAPINTERVALEXTPROC) for
the function type is located in the wglext.h header file, also included in the
examples/src/shared directory. We also discuss this particular important extension in
Chapter 19, “Wiggle: OpenGL on Windows.”
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In the meantime, again the gltools library comes to the rescue with the following function:

void *gltGetExtensionPointer(const char *szExtensionName);

This function provides a platform-independent wrapper that returns a pointer to the
named OpenGL extension.

Whose Extension Is This?

Using OpenGL extensions, you can provide code paths in your code to improve rendering
performance and visual quality or even add special effects that are supported only by a
particular vendor’s hardware. But who owns an extension? That is, which vendor created
and supports a given extension? You can usually tell just by looking at the extension
name. Each extension has a three-letter prefix that identifies the source of the extension.
Table 2.4 provides a sampling of extension identifiers.

TABLE 2.4 A Sampling of OpenGL Extension Prefixes

Prefix Vendor

SGI_ Silicon Graphics
ATI_ ATl Technologies
NV_ NVIDIA

IBM_ IBM

WGL_ Microsoft

EXT_ Cross-Vendor
ARB_ ARB Approved

It is not uncommon for one vendor to support another vendor’s extension. For example,
some NVIDIA extensions are widely popular and supported on ATI hardware. When this
happens, the competing vendor must follow the original vendor’s specification (details on
how the extension is supposed to work). Frequently, everyone agrees that the extension is
a good thing to have, and the extension has an EXT_ prefix to show that it is (supposed) to
be vendor neutral and widely supported across implementations.

Finally, we also have ARB-approved extensions. The specification for these extensions has
been reviewed (and argued about) by the OpenGL ARB. These extensions usually signal
the final step before some new technique or function finds its way into the core OpenGL
specification.

Summary

We covered a lot of ground in this chapter. We introduced you to OpenGL, told you a
little bit about its history, introduced the OpenGL utility toolkit (GLUT), and presented
the fundamentals of writing a program that uses OpenGL. Using GLUT, we showed you
the easiest possible way to create a window and draw in it using OpenGL commands. You
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learned to use the GLUT library to create windows that can be resized, as well as create a
simple animation. You were also introduced to the process of using OpenGL for drawing—
composing and selecting colors, clearing the screen, drawing a rectangle, and setting the
viewport and clipping volume to scale images to match the window size. We discussed the
various OpenGL data types and the headers required to build programs that use OpenGL.

With a little coding finally under your belt, you are ready to dive into some other ideas
you need to be familiar with before you move forward. The OpenGL state machine under-
lies almost everything you do from here on out, and the extension mechanism will make
sure you can access all the OpenGL features supported by your hardware driver, regardless
of your development tool. You also learned how to check for OpenGL errors along the way
to make sure you aren’t making any illegal state changes or rendering commands. With
this foundation, you can move forward to the chapters ahead.
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Drawing in Space:
Geometric Primitives and Buffers

by Richard S. Wright Jr.

WHAT YOU'LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use
Draw points, lines, and shapes glBegin/glEnd/glVertex
Set shape outlines to wireframe glPolygonMode

or solid objects

Set point sizes for drawing glPointSize

Set line drawing width glLinewidth

Perform hidden surface removal glCullFace/glClear

Set patterns for broken lines glLineStipple

Set polygon fill patterns glPolygonStipple

Use the OpenGL Scissor box glScissor

Use the stencil buffer glStencilFunc/glStencilMask/glStencilOp

If you've ever had a chemistry class (and probably even if you haven'’t), you know that all
matter consists of atoms and that all atoms consist of only three things: protons,
neutrons, and electrons. All the materials and substances you have ever come into contact
with—from the petals of a rose to the sand on the beach—are just different arrangements
of these three fundamental building blocks. Although this explanation is a little oversim-
plified for almost anyone beyond the third or fourth grade, it demonstrates a powerful
principle: With just a few simple building blocks, you can create highly complex and
beautiful structures.
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The connection is fairly obvious. Objects and scenes that you create with OpenGL also
consist of smaller, simpler shapes, arranged and combined in various and unique ways.
This chapter explores these building blocks of 3D objects, called primitives. All primitives
in OpenGL are one-, two-, or three-dimensional objects, ranging from single points to
lines and complex polygons. In this chapter, you learn everything you need to know to
draw objects in three dimensions from these simpler shapes.

Drawing Points in 3D

When you first learned to draw any kind of graphics on any computer system, you proba-
bly started with pixels. A pixel is the smallest element on your computer monitor, and on
color systems that pixel can be any one of many available colors. This is computer graph-
ics at its simplest: Draw a point somewhere on the screen, and make it a specific color.
Then build on this simple concept, using your favorite computer language to produce
lines, polygons, circles, and other shapes and graphics. Perhaps even a GUI...

With OpenGL, however, drawing on the computer screen is fundamentally different.
You're not concerned with physical screen coordinates and pixels, but rather positional
coordinates in your viewing volume. You let OpenGL worry about how to get your points,
lines, and everything else projected from your established 3D space to the 2D image made
by your computer screen.

This chapter and the next cover the most fundamental concepts of OpenGL or any 3D
graphics toolkit. In the upcoming chapter, we provide substantial detail about how this
transformation from 3D space to the 2D landscape of your computer monitor takes place,
as well as how to transform (rotate, translate, and scale) your objects. For now, we take
this capability for granted to focus on plotting and drawing in a 3D coordinate system.
This approach might seem backward, but if you first know how to draw something and
then worry about all the ways to manipulate your drawings, the material in Chapter 4,
“Geometric Transformations: The Pipeline,” is more interesting and easier to learn. When
you have a solid understanding of graphics primitives and coordinate transformations,
you will be able to quickly master any 3D graphics language or API.

Setting Up a 3D Canvas

Figure 3.1 shows a simple viewing volume that we use for the examples in this chapter.
The area enclosed by this volume is a Cartesian coordinate space that ranges from -100 to
+100 on all three axes—X, y, and z. (For a review of Cartesian coordinates, see Chapter 1,
“Introduction to 3D Graphics and OpenGL.”) Think of this viewing volume as your three-
dimensional canvas on which you draw with OpenGL commands and functions.



Setting Up a 3D Canvas 75

+y
+100
/
-100
+X
=100 100
W
/ +100
View z//
direction # 100
+7

FIGURE 3.1 A Cartesian viewing volume measuring 100x100x100.

We established this volume with a call to gl0rtho, much as we did for others in the
preceding chapter. Listing 3.1 shows the code for the ChangeSize function that is called
when the window is sized (including when it is first created). This code looks a little differ-
ent from that in the preceding chapter, and you'll notice some unfamiliar functions
(91lMatrixMode, glLoadIdentity). We'll spend more time on these functions in Chapter 4,
exploring their operation in more detail.

LISTING 3.1 Code to Establish the Viewing Volume in Figure 3.1

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)

{
GLfloat nRange = 100.0f;

/| Prevent a divide by zero
if(h == 0)
h=1;

/] Set Viewport to window dimensions
glviewport(@, @, w, h);

// Reset projection matrix stack
glMatrixMode (GL_PROJECTION);
glLoadIdentity();

/| Establish clipping volume (left, right, bottom, top, near, far)
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LISTING 3.1 Continued
if (w <= h)
glortho (-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange, nRange);
else
glortho (-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange, nRange);

// Reset Model view matrix stack
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

}
WHY THE CART BEFORE THE HORSE?

Look at any of the source code in this chapter, and you’ll notice some new functions in the
RenderScene functions: glRotate, glPushMatrix, and glPopMatrix. Although they’re covered in
more detail in Chapter 4, we're introducing them now. They implement some important features
that we want you to have as soon as possible. These functions let you plot and draw in 3D and
help you easily visualize your drawing from different angles. All this chapter’s sample programs
employ the arrow keys for rotating the drawing around the x- and y-axes. Look at any 3D drawing
dead-on (straight down the z-axis), and it might still look two-dimensional. But when you can spin
the drawings around in space, it's much easier to see the 3D effects of what you’re drawing.

There is a lot to learn about drawing in 3D, and in this chapter we want you to focus on that. By
changing only the drawing code for any of the examples that follow, you can start experimenting
right away with 3D drawing and still get interesting results. Later, you'll learn how to manipulate
drawings using the other functions.

A 3D Point: The Vertex

To specify a drawing point in this 3D “palette,” we use the OpenGL function glvertex—
without a doubt one of the most used functions in all the OpenGL API. This is the “lowest
common denominator” of all the OpenGL primitives: a single point in space. The
glvertex function can take from one (a pointer) to four parameters of any numerical type,
from bytes to doubles, subject to the naming conventions discussed in Chapter 2, “Using
OpenGL.”

The following single line of code specifies a point in our coordinate system located 50
units along the x-axis, 50 units along the y-axis, and O units along the z-axis:

glVertex3f(50.0f, 50.0f, 0.0f);
Figure 3.2 illustrates this point. Here, we chose to represent the coordinates as floating-

point values, as we do for the remainder of the book. Also, the form of glvertex that we
use takes three arguments for the X, y, and z coordinate values, respectively.
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FIGURE 3.2 The point (50,50,0) as specified by glvertex3f (50.0f, 50.0f, 0.0f).

Two other forms of glvertex take two and four arguments, respectively. We can represent
the same point in Figure 3.2 with this code:

glVertex2f(50.0f, 50.0f);

This form of glvertex takes only two arguments, specifying the x and y values, and
assumes the z coordinate to be 0.0 always.

The form of glvertex taking four arguments, glvertex4, uses a fourth coordinate value,
w (set to 1.0 by default when not specified) for scaling purposes. You will learn more
about this coordinate in Chapter 4 when we spend more time exploring coordinate
transformations.

Draw Something!

Now, we have a way of specifying a point in space to OpenGL. What can we make of it,
and how do we tell OpenGL what to do with it? Is this vertex a point that should just be
plotted? Is it the endpoint of a line or the corner of a cube? The geometric definition of a
vertex is not just a point in space, but rather the point at which an intersection of two
lines or curves occurs. This is the essence of primitives.

A primitive is simply the interpretation of a set or list of vertices into some shape drawn
on the screen. There are 10 primitives in OpenGL, from a simple point drawn in space to a
closed polygon of any number of sides. One way to draw primitives is to use the glBegin
command to tell OpenGL to begin interpreting a list of vertices as a particular primitive.
You then end the list of vertices for that primitive with the glEnd command. Kind of intu-
itive, don’t you think?



78

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers

Drawing Points
Let’s begin with the first and simplest of primitives: points. Look at the following code:

glBegin(GL_POINTS); // Select points as the primitive
glVertex3f(0.0f, 0.0f, 0.0f); // Specify a point
glVertex3f(50.0f, 50.0f, 50.0f); // Specify another point
glEnd(); // Done drawing points

The argument to glBegin, GL_POINTS tells OpenGL that the following vertices are to be
interpreted and drawn as points. Two vertices are listed here, which translates to two
specific points, both of which would be drawn.

This example brings up an important point about glBegin and glEnd: You can list multi-
ple primitives between calls as long as they are for the same primitive type. In this way,
with a single g1Begin/glEnd sequence, you can include as many primitives as you like.
This next code segment is wasteful and will execute more slowly than the preceding code:

glBegin(GL_POINTS); /! Specify point drawing
glVertex3f(0.0f, 0.0f, 0.0f);

glEnd();

glBegin(GL_POINTS); /1 Specify another point
glVertex3f(50.0f, 50.0f, 50.0f);

glEnd()

INDENTING YOUR CODE

In the foregoing examples, did you notice the indenting style used for the calls to glvertex?
Most OpenGL programmers use this convention to make the code easier to read. It is not
required, but it does make finding where primitives start and stop easier.

Our First Example

The code in Listing 3.2 draws some points in our 3D environment. It uses some simple
trigonometry to draw a series of points that form a corkscrew path up the z-axis. This code
is from the POINTS program, which is in the source distribution for this chapter. All the
sample programs use the framework we established in Chapter 2. Notice that in the
SetupRC function, we are setting the current drawing color to green.

LISTING 3.2 Rendering Code to Produce a Spring-Shaped Path of Points

// Define a constant for the value of PI
#define GL_PI 3.1415f

// This function does any needed initialization on the rendering
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LISTING 3.2 Continued

/] context.
void SetupRC()
{
// Black background
glClearColor(0.0f, 0.0f, 0.0f, 1.0f );

// Set drawing color to green
glColor3f(0.0f, 1.0f, 0.0f);

}

// Called to draw scene
void RenderScene(void)

{

GLfloat x,y,z,angle; // Storage for coordinates and angles

/| Clear the window with current clearing color
glClear(GL_COLOR BUFFER BIT);

/| Save matrix state and do the rotation
glPushMatrix();

glRotatef (xRot, 1.0f, 0.0f, 0.0f);
glRotatef (yRot, 0.0f, 1.0f, 0.0f);

// Call only once for all remaining points
glBegin(GL_POINTS);

z = -50.0f;

for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
{
x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Specify the point and move the Z value up a little
glVertex3f(x, y, z);

z += 0.5f;

}

// Done drawing points
glEnd();

// Restore transformations
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LISTING 3.2 Continued
glPopMatrix();

// Flush drawing commands
glutSwapBuffers();
}

Only the code between calls to glBegin and glEnd is important for our purpose in this and
the other examples for this chapter. This code calculates the x and y coordinates for an
angle that spins between 0° and 360° three times. We express this programmatically in
radians rather than degrees; if you don’t know trigonometry, you can take our word for it.
If you're interested, see the box “The Trigonometry of Radians/Degrees.” Each time a point
is drawn, the z value is increased slightly. When this program is run, all you see is a circle
of points because you are initially looking directly down the z-axis. To see the effect, use
the arrow keys to spin the drawing around the x- and y-axes. The effect is illustrated in
Figure 3.3.

= Points Example

FIGURE 3.3 Output from the POINTS sample program.

ONE THING AT A TIME

Again, don’t get too distracted by the functions in this example that we haven’t covered yet
(91PushMatrix, glPopMatrix, and glRotate). These functions are used to rotate the image
around so you can better see the positioning of the points as they are drawn in 3D space. We
cover these functions in some detail in Chapter 4. If we hadn’t used these features now, you
wouldn’t be able to see the effects of your 3D drawings, and this and the following sample
programs wouldn’t be very interesting to look at. For the rest of the sample code in this chapter,
we show only the code that includes the g1Begin and glEnd statements.
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THE TRIGONOMETRY OF RADIANS/DEGREES

y

The figure in this box shows a circle drawn in the xy plane. A line segment from the origin (0,0)
to any point on the circle makes an angle (a) with the x-axis. For any given angle, the trigono-
metric functions sine and cosine return the x and y values of the point on the circle. By stepping
a variable that represents the angle all the way around the origin, we can calculate all the points
on the circle. Note that the C runtime functions sin() and cos() accept angle values measured
in radians instead of degrees. There are 2*PI radians in a circle, where Pl is a nonrational number
that is approximately 3.1415. (Nonrational means it is a repeating decimal number that cannot
be represented as a fraction.)

Setting the Point Size

When you draw a single point, the size of the point is one pixel by default. You can
change this size with the function glPointSize:

void glPointSize(GLfloat size);

The glPointSize function takes a single parameter that specifies the approximate diameter
in pixels of the point drawn. Not all point sizes are supported, however, and you should
make sure the point size you specify is available. Use the following code to get the range
of point sizes and the smallest interval between them:

GLfloat sizes[2]; // Store supported point size range
GLfloat step; // Store supported point size increments

// Get supported point size range and step size
glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
glGetFloatv(GL_POINT_SIZE GRANULARITY,&step);
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Here, the sizes array will contain two elements that contain the smallest and largest valid
value for glPointsize. In addition, the variable step will hold the smallest step size allow-
able between the point sizes. The OpenGL specification requires only that one point size,
1.0, be supported. The Microsoft software implementation of OpenGL, for example, allows
for point sizes from 0.5 to 10.0, with 0.125 the smallest step size. Specifying a size out of
range is not interpreted as an error. Instead, the largest or smallest supported size is used,
whichever is closest to the value specified.

By default, points, unlike other geometry, are not affected by the perspective division.
That is, they do not become smaller when they are further from the viewpoint, and they
do not become larger as they move closer. Points are also always square pixels, even if you
use glPointSize to increase the size of the points. You just get bigger squares! To get
round points, you must draw them antialiased (coming up in Chapter 6, “More on Colors
and Materials”).

OPENGL STATE VARIABLES

As we discussed in Chapter 2, OpenGL maintains the state of many of its internal variables and
settings. This collection of settings is called the OpenGL State Machine. You can query the State
Machine to determine the state of any of its variables and settings. Any feature or capability you
enable or disable with glEnable/glDisable, as well as numeric settings set with glSet, can be
queried with the many variations of glGet.

Let’s look at a sample that uses these new functions. The code in Listing 3.3 produces the
same spiral shape as our first example, but this time, the point sizes are gradually
increased from the smallest valid size to the largest valid size. This example is from the
program POINTSZ in source distribution for this chapter. The output from POINTSZ
shown in Figure 3.4 was run on Microsoft’s software implementation of OpenGL. Figure
3.5 shows the same program run on a hardware accelerator that supports much larger
point sizes.

1 Points Size Example

FIGURE 3.4 Output from the POINTSZ program.



Setting the Point Size

I Points Size Example
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FIGURE 3.5 Output from POINTSZ on hardware supporting much larger point sizes.

LISTING 3.3 Code from POINTSZ That Produces a Spiral with Gradually Increasing Point
Sizes

// Define a constant for the value of PI
#define GL_PI 3.1415f

// Called to draw scene
void RenderScene(void)

{

GLfloat x,y,z,angle; // Storage for coordinates and angles
GLfloat sizes[2]; // Store supported point size range
GLfloat step; // Store supported point size increments
GLfloat curSize; // Store current point size

// Get supported point size range and step size
glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
glGetFloatv(GL_POINT_SIZE GRANULARITY,&step);

// Set the initial point size
curSize = sizes[0];

// Set beginning z coordinate
z = -50.0f;

// Loop around in a circle three times
for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
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LISTING 3.3 Continued
{

// Calculate x and y values on the circle
x = 50.0f*sin(angle);
y = 50.0f*cos(angle);

/| Specify the point size before the primitive is specified
glPointSize(curSize);

// Draw the point
glBegin(GL_POINTS);

glVertex3f(x, y, z);
glEnd();

// Bump up the z value and the point size

z += 0.5f;
curSize += step;
}

This example demonstrates a couple of important things. For starters, notice that
glPointSize must be called outside the glBegin/glEnd statements. Not all OpenGL func-
tions are valid between these function calls. Although glPointSize affects all points
drawn after it, you don’t begin drawing points until you call glBegin(GL_POINTS). For a
complete list of valid functions that you can call within a g1Begin/glEnd sequence, see the
reference section in Appendix C.

If you specify a point size larger than what is returned in the size variable, you also may
notice (depending on your hardware) that OpenGL uses the largest available point size but
does not keep growing. This is a general observation about OpenGL function parameters
that have a valid range. Values outside the range are clamped to the range. Values too low
are made the lowest valid value, and values too high are made the highest valid value.

The most obvious thing you probably noticed about the POINTSZ excerpt is that the larger
point sizes are represented simply by larger cubes. This is the default behavior, but it typi-
cally is undesirable for many applications. Also, you might wonder why you can increase
the point size by a value less than one. If a value of 1.0 represents one pixel, how do you
draw less than a pixel, or, say, 2.5 pixels?
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The answer is that the point size specified in glPointSize isn’t the exact point size in
pixels, but the approximate diameter of a circle containing all the pixels that are used to
draw the point. You can get OpenGL to draw the points as better points (that is, small
filled circles) by enabling point smoothing. Together with line smoothing, point smooth-
ing falls under the topic of antialiasing. Antialiasing is a technique used to smooth out
jagged edges and round out corners; it is covered in more detail in Chapter 6.

Points can also be made to grow and shrink with the perspective projection, but this is not
the default behavior. A feature called point parameters makes this possible, and is a bit deep
for this early in the book. We will discuss point parameters along with another interesting
point texturing feature called point sprites in Chapter 9, “Texture Mapping: Beyond the
Basics.”

Drawing Lines in 3D

The GL_POINTS primitive we have been using thus far is reasonably straightforward; for
each vertex specified, it draws a point. The next logical step is to specify two vertices and
draw a line between them. This is exactly what the next primitive, GL_LINES, does. The
following short section of code draws a single line between two points (0,0,0) and
(50,50,50):

glBegin(GL_LINES);
glVertex3f(0.0f, 0.0f, 0.0f);
glVertex3f(50.0f, 50.0f, 50.0f);
glEnd();

Note here that two vertices specify a single primitive. For every two vertices specified, a
single line is drawn. If you specify an odd number of vertices for GL_LINES, the last vertex
is just ignored. Listing 3.4, from the LINES sample program, shows a more complex
sample that draws a series of lines fanned around in a circle. Each point specified in this
sample is paired with a point on the opposite side of a circle. The output from this
program is shown in Figure 3.6.
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"ILines Example Q@

FIGURE 3.6 Output from the LINES sample program.

LISTING 3.4 Code from the Sample Program LINES That Displays a Series of Lines Fanned in
a Circle

// Call only once for all remaining points
glBegin(GL_LINES);

// All lines lie in the xy plane.

z = 0.0f,;
for(angle = 0.0f; angle <= GL_PI; angle += (GL_PI/20.0f))
{

// Top half of the circle

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

glVertex3f(x, y, z); // First endpoint of line

// Bottom half of the circle
x = 50.0f*sin(angle + GL_PI);
y = 50.0f*cos(angle + GL_PI);
glVertex3f(x, y, z); // Second endpoint of line
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LISTING 3.4 Continued
}

// Done drawing points
glEnd();

Line Strips and Loops

The next two OpenGL primitives build on GL_LINES by allowing you to specify a list of
vertices through which a line is drawn. When you specify GL_LINE_STRIP, a line is drawn
from one vertex to the next in a continuous segment. The following code draws two lines
in the xy plane that are specified by three vertices. Figure 3.7 shows an example.

glBegin(GL_LINE_STRIP);

glVertex3f(0.0f, 0.0f, 0.0f); /1 Vo
glVertex3f(50.0f, 50.0f, 0.0f); /1 VA
glVertex3f(50.0f, 100.0f, 0.0f); /] V2
glEnd();
y
o '2(50,100,0)
I V;(50,50,0)
X
V5(0.0,0)

FIGURE 3.7 An example of a GL_LINE_STRIP specified by three vertices.

The last line-based primitive is GL_LINE_LOOP. This primitive behaves just like
GL_LINE_STRIP, but one final line is drawn between the last vertex specified and the first
one specified. This is an easy way to draw a closed-line figure. Figure 3.8 shows a
GL_LINE_LOOP drawn using the same vertices as for the GL_LINE_STRIP in Figure 3.7.
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FIGURE 3.8 The same vertices from Figure 3.7 used by a GL_LINE_LOOP primitive.

Approximating Curves with Straight Lines

The POINTS sample program, shown earlier in Figure 3.3, showed you how to plot points
along a spring-shaped path. You might have been tempted to push the points closer and
closer together (by setting smaller values for the angle increment) to create a smooth
spring-shaped curve instead of the broken points that only approximated the shape. This
perfectly valid operation can move quite slowly for larger and more complex curves with
thousands of points.

A better way of approximating a curve is to use GL_LINE_STRIP to play connect-the-dots.
As the dots move closer together, a smoother curve materializes without you having to
specify all those points. Listing 3.5 shows the code from Listing 3.2, with GL_POINTS
replaced by GL_LINE_STRIP. The output from this new program, LSTRIPS, is shown in
Figure 3.9. As you can see, the approximation of the curve is quite good. You will find this
handy technique almost ubiquitous among OpenGL programs.

1 Line Stips Example

FIGURE 3.9 Output from the LSTRIPS program approximating a smooth curve.
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LISTING 3.5 Code from the Sample Program LSTRIPS, Demonstrating Line Strips

// Call only once for all remaining points
g1lBegin(GL_LINE_STRIP);

z = -50.0f;

for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
{
X = 50.0f*sin(angle);
y = 50.0f*cos(angle);

/| Specify the point and move the z value up a little
glVertex3f(x, y, z);

z += 0.5f;

}

// Done drawing points
glEnd();

Setting the Line Width

Just as you can set different point sizes, you can also specify various line widths when
drawing lines by using the glLineWidth function:

void glLineWidth(GLfloat width);

The glLineWidth function takes a single parameter that specifies the approximate width,
in pixels, of the line drawn. Just as with point sizes, not all line widths are supported, and
you should make sure that the line width you want to specify is available. Use the follow-
ing code to get the range of line widths and the smallest interval between them:

GLfloat sizes[2]; // Store supported line width range
GLfloat step; /| Store supported line width increments

// Get supported line width range and step size
glGetFloatv(GL_LINE_WIDTH_RANGE,sizes);
glGetFloatv(GL_LINE_WIDTH_GRANULARITY,&step);

Here, the sizes array will contain two elements that contain the smallest and largest valid
value for glLineWidth. In addition, the variable step will hold the smallest step size allow-
able between the line widths. The OpenGL specification requires only that one line width,
1.0, be supported. The Microsoft implementation of OpenGL allows for line widths from
0.5 to 10.0, with 0.125 the smallest step size.
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Listing 3.6 shows code for a more substantial example of glLinewidth. It's from the
program LINESW and draws 10 lines of varying widths. It starts at the bottom of the
window at -90 on the y-axis and climbs the y-axis 20 units for each new line. Every time
it draws a new line, it increases the line width by 1. Figure 3.10 shows the output for this
program.

i Line Width Example

FIGURE 3.10 A demonstration of glLineWidth from the LINESW program.

LISTING 3.6 Drawing Lines of Various Widths

// Called to draw scene
void RenderScene(void)

{

GLfloat y; // Storage for varying Y coordinate
GLfloat fSizes[2]; // Line width range metrics

GLfloat fCurrSize; // Save current size

// Get line size metrics and save the smallest value
glGetFloatv(GL_LINE_WIDTH_RANGE,fSizes);
fCurrSize = fSizes[0];

// Step up y axis 20 units at a time
for(y = -90.0f; y < 90.0f; y += 20.0f)
{
// Set the line width
glLineWidth(fCurrSize);

// Draw the line
glBegin(GL_LINES);
glvertex2f(-80.0f, y);
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LISTING 3.6 Continued

glVertex2f(80.0f, y);
glEnd();

// Increase the line width
fCurrSize += 1.0f;

}

Notice that we used glVertex2f this time instead of glVertex3f to specify the coordinates
for the lines. As mentioned, using this technique is only a convenience because we are
drawing in the xy plane, with a z value of 0. To see that you are still drawing lines in three
dimensions, simply use the arrow keys to spin your lines around. You easily see that all
the lines lie on a single plane.

Line Stippling
In addition to changing line widths, you can create lines with a dotted or dashed pattern,
called stippling. To use line stippling, you must first enable stippling with a call to

glEnable(GL_LINE_STIPPLE);

Then the function glLineStipple establishes the pattern that the lines use for drawing:

void glLineStipple(GLint factor, GLushort pattern);

Any feature or capability that is enabled by a call to glEnable can be disabled by a call to
glDisable.

The pattern parameter is a 16-bit value that specifies a pattern to use when drawing the
lines. Each bit represents a section of the line segment that is either on or off. By default,
each bit corresponds to a single pixel, but the factor parameter serves as a multiplier to

increase the width of the pattern. For example, setting factor to 5 causes each bit in the
pattern to represent five pixels in a row that are either on or off. Furthermore, bit O (the

least significant bit) of the pattern is used first to specify the line. Figure 3.11 illustrates a
sample bit pattern applied to a line segment.
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FIGURE 3.11 A stipple pattern is used to construct a line segment.

WHY ARE THESE PATTERNS BACKWARD?

You might wonder why the bit pattern for stippling is used in reverse when the line is drawn.
Internally, it’s much faster for OpenGL to shift this pattern to the left one place each time it needs
to get the next mask value. OpenGL was designed for high-performance graphics and frequently
employs similar tricks elsewhere.

Listing 3.7 shows a sample of using a stippling pattern that is just a series of alternating on
and off bits (0101010101010101). This code is taken from the LSTIPPLE program, which
draws 10 lines from the bottom of the window up the y-axis to the top. Each line is stip-
pled with the pattern 0x5555, but for each new line, the pattern multiplier is increased by
1. You can clearly see the effects of the widened stipple pattern in Figure 3.12.

1 Stippled Line Example

FIGURE 3.12 Output from the LSTIPPLE program.
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LISTING 3.7 Code from LSTIPPLE That Demonstrates the Effect of factor on the Bit Pattern

// Called to draw scene
void RenderScene(void)

{

GLfloat y; // Storage for varying y coordinate
GLint factor = 1; // Stippling factor

GLushort pattern = 0x5555; // Stipple pattern

/! Enable Stippling
glEnable (GL_LINE STIPPLE);

// Step up Y axis 20 units at a time

for(y = -90.0f; y < 90.0f; y += 20.0f)
{
// Reset the repeat factor and pattern
glLineStipple(factor,pattern);

// Draw the line
glBegin(GL_LINES);
glvertex2f(-80.0f, y);
glvertex2f(80.0f, y);
glEnd();

factor++;

}

Just the ability to draw points and lines in 3D gives you a significant set of tools for creat-
ing your own 3D masterpiece. Figure 3.13 shows a 3D weather mapping program with an
OpenGL-rendered map that is rendered entirely of solid and stippled line strips.
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FIGURE 3.13 A 3D map rendered with solid and stippled lines.

Drawing Triangles in 3D

You've seen how to draw points and lines and even how to draw some enclosed polygons
with GL_LINE_LOOP. With just these primitives, you could easily draw any shape possible
in three dimensions. You could, for example, draw six squares and arrange them so they
form the sides of a cube.

You might have noticed, however, that any shapes you create with these primitives are not
filled with any color; after all, you are drawing only lines. In fact, arranging six squares
produces just a wireframe cube, not a solid cube. To draw a solid surface, you need more
than just points and lines; you need polygons. A polygon is a closed shape that may or
may not be filled with the currently selected color, and it is the basis of all solid-object
composition in OpenGL.

Triangles: Your First Polygon

The simplest polygon possible is the triangle, with only three sides. The GL_TRIANGLES
primitive draws triangles by connecting three vertices together. The following code draws
two triangles using three vertices each, as shown in Figure 3.14:

glBegin(GL_TRIANGLES) ;

glvertex2f(0.0f, 0.0f); /] Vo
glvertex2f(25.0f, 25.0f); /1 V1
glvertex2f(50.0f, 0.0f); /] V2

glvertex2f(-50.0f, 0.0f); /] V3
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glVertex2f(-75.0f, 50.0f); /1 V4
glVertex2f(-25.0f, 0.0f); /] V5
glEnd();
y
Vs
2 v,
1 1 2
4 4 ~< @ X
V3 3 V5 Vo 3 VZ

FIGURE 3.14 Two triangles drawn using GL_TRIANGLES.

NOTE

The triangles will be filled with the currently selected drawing color. If you don’t specify a
drawing color yourself at some point, you will get the default, which is white.

Winding

An important characteristic of any polygonal primitive is illustrated in Figure 3.14. Notice
the arrows on the lines that connect the vertices. When the first triangle is drawn, the
lines are drawn from VO to V1, then to V2, and finally back to VO to close the triangle.
This path is in the order in which the vertices are specified, and for this example, that
order is clockwise from your point of view. The same directional characteristic is present
for the second triangle as well.

The combination of order and direction in which the vertices are specified is called
winding. The triangles in Figure 3.14 are said to have clockwise winding because they are
literally wound in the clockwise direction. If we reverse the positions of V4 and VS5 on the
triangle on the left, we get counterclockwise winding. Figure 3.15 shows two triangles, each
with opposite windings.
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FIGURE 3.15 Two triangles with different windings.

OpenGL, by default, considers polygons that have counterclockwise winding to be front
facing. This means that the triangle on the left in Figure 3.15 shows the front of the trian-
gle, and the one on the right shows the back of the triangle.

Why is this issue important? As you will soon see, you will often want to give the front
and back of a polygon different physical characteristics. You can hide the back of a
polygon altogether or give it a different color and reflective property (see Chapter 5,
“Color, Materials, and Lighting: The Basics”). It’s important to keep the winding of all
polygons in a scene consistent, using front-facing polygons to draw the outside surface of
any solid objects. In the upcoming section on solid objects, we demonstrate this principle
using some models that are more complex.

If you need to reverse the default behavior of OpenGL, you can do so by calling the
following function:

glFrontFace(GL_CW);

The GL_CW parameter tells OpenGL that clockwise-wound polygons are to be considered
front facing. To change back to counterclockwise winding for the front face, use GL_CCW.

Triangle Strips

For many surfaces and shapes, you need to draw several connected triangles. You can save
a lot of time by drawing a strip of connected triangles with the GL_TRIANGLE_STRIP primi-
tive. Figure 3.16 shows the progression of a strip of three triangles specified by a set of five
vertices numbered VO through V4. Here, you see that the vertices are not necessarily
traversed in the same order in which they were specified. The reason for this is to preserve
the winding (counterclockwise) of each triangle. The pattern is VO, V1, V2; then V2, V1,
V3; then V2, V3, V4; and so on.
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FIGURE 3.16 The progression of a GL_TRIANGLE_STRIP.

For the rest of the discussion of polygonal primitives, we don’t show any more code frag-
ments to demonstrate the vertices and the glBegin statements. You should have the swing
of things by now. Later, when we have a real sample program to work with, we’ll resume
the examples.

There are two advantages to using a strip of triangles instead of specifying each triangle
separately. First, after specifying the first three vertices for the initial triangle, you need to
specify only a single point for each additional triangle. This saves a lot of program or data
storage space when you have many triangles to draw. The second advantage is mathemati-
cal performance and bandwidth savings. Fewer vertices means a faster transfer from your
computer’s memory to your graphics card and fewer vertex transformations (see Chapter 4).

TIP

Another advantage to composing large flat surfaces out of several smaller triangles is that when
lighting effects are applied to the scene, OpenGL can better reproduce the simulated effects.
You'll learn more about lighting in Chapter 5.

Triangle Fans

In addition to triangle strips, you can use GL_TRIANGLE_FAN to produce a group of
connected triangles that fan around a central point. Figure 3.17 shows a fan of three trian-
gles produced by specifying four vertices. The first vertex, VO, forms the origin of the fan.
After the first three vertices are used to draw the initial triangle, all subsequent vertices are
used with the origin (V0) and the vertex immediately preceding it (Vn-1) to form the next
triangle.
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V3
Vo Vo

FIGURE 3.17 The progression of GL_TRIANGLE_FAN.

Building Solid Objects

Composing a solid object out of triangles (or any other polygon) involves more than
assembling a series of vertices in a 3D coordinate space. Let’s examine the sample program
TRIANGLE, which uses two triangle fans to create a cone in our viewing volume. The first
fan produces the cone shape, using the first vertex as the point of the cone and the
remaining vertices as points along a circle farther down the z-axis. The second fan forms a
circle and lies entirely in the xy plane, making up the bottom surface of the cone.

The output from TRIANGLE is shown in Figure 3.18. Here, you are looking directly down
the z-axis and can see only a circle composed of a fan of triangles. The individual triangles
are emphasized by coloring them alternately green and red.

: Triangle Culling Example

FIGURE 3.18 Initial output from the TRIANGLE sample program.

The code for the SetupRC and RenderScene functions is shown in Listing 3.8. (This listing
contains some unfamiliar variables and specifiers that are explained shortly.) This program
demonstrates several aspects of composing 3D objects. Right-click in the window, and you
will notice an Effects menu; it will be used to enable and disable some 3D drawing features
so that we can explore some of the characteristics of 3D object creation. We'll describe
these features as we progress.
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LISTING 3.8 SetupRC and RenderScene Code for the TRIANGLE Sample Program

/! This function does any needed initialization on the rendering
/] context.
void SetupRC()

{

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f );

// Set drawing color to green
glColor3f(0.0f, 1.0f, 0.0f);

// Set color shading model to flat
glShadeModel (GL_FLAT);

// Clockwise-wound polygons are front facing; this is reversed
/| because we are using triangle fans

glFrontFace (GL_CW);

}

// Called to draw scene
void RenderScene(void)

{
GLfloat x,y,angle; // Storage for coordinates and angles
int iPivot = 1; // Used to flag alternating colors

// Clear the window and the depth buffer
glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

// Turn culling on if flag is set
if(bCull)

glEnable (GL_CULL_FACE);
else

glDisable(GL_CULL_FACE);

// Enable depth testing if flag is set
if (bDepth)

glEnable(GL_DEPTH_TEST);
else

glDisable(GL_DEPTH_TEST);

// Draw the back side as a wireframe only, if flag is set
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LISTING 3.8 Continued

if (bOutline)

glPolygonMode (GL_BACK,GL_LINE);
else

glPolygonMode (GL_BACK,GL_FILL);

// Save matrix state and do the rotation
glPushMatrix();

glRotatef (xRot, 1.0f, 0.0f, 0.0f);
glRotatef(yRot, 0.0f, 1.0f, 0.0f);

// Begin a triangle fan
glBegin(GL_TRIANGLE_FAN);

// Pinnacle of cone is shared vertex for fan, moved up z-axis
// to produce a cone instead of a circle
glVertex3f(0.0f, 0.0f, 75.0f);

// Loop around in a circle and specify even points along the circle
/! as the vertices of the triangle fan
for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))

{

// Calculate x and y position of the next vertex

x = 50.0f*sin(angle);

y = 50.0f*cos(angle);

// Alternate color between red and green
if((iPivot %2) == 0)

glColor3f(0.0f, 1.0f, 0.0f);
else

glColor3f(1.0f, 0.0f, 0.0f);

// Increment pivot to change color next time
iPivot++;

/| Specify the next vertex for the triangle fan
glVertex2f(x, y);
}
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LISTING 3.8 Continued

// Done drawing fan for cone
glEnd();

// Begin a new triangle fan to cover the bottom
g1Begin (GL_TRIANGLE_FAN);

/| Center of fan is at the origin
glvVertex2f(0.0f, 0.0f);
for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))
{
// Calculate x and y position of the next vertex
X = 50.0f*sin(angle);
y = 50.0f*cos(angle);

// Alternate color between red and green
if ((iPivot %2) == 0)

glColor3f(0.0f, 1.0f, 0.0f);
else

glColor3f(1.0f, 0.0f, 0.0f);

// Increment pivot to change color next time
iPivot++;

// Specify the next vertex for the triangle fan
glVertex2f(x, y);
}

// Done drawing the fan that covers the bottom
glEnd();

// Restore transformations
glPopMatrix();

glutSwapBuffers ();
}

Setting Polygon Colors

Until now, we have set the current color only once and drawn only a single shape. Now,
with multiple polygons, things get slightly more interesting. We want to use different
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colors so we can see our work more easily. Colors are actually specified per vertex, not per
polygon. The shading model affects whether the polygon is solidly colored (using the
current color selected when the last vertex was specified) or smoothly shaded between the
colors specified for each vertex.

The line

glShadeModel (GL_FLAT);

tells OpenGL to fill the polygons with the solid color that was current when the polygon’s
last vertex was specified. This is why we can simply change the current color to red or
green before specifying the next vertex in our triangle fan. On the other hand, the line

glShadeModel (GL_SMOOTH) ;

would tell OpenGL to shade the triangles smoothly from each vertex, attempting to inter-
polate the colors between those specified for each vertex. You'll learn much more about
color and shading in Chapter 5.

Hidden Surface Removal

Hold down one of the arrow keys to spin the cone around, and don’t select anything from
the Effects menu yet. You'll notice something unsettling: The cone appears to be swinging
back and forth plus and minus 180°, with the bottom of the cone always facing you, but
not rotating a full 360°. Figure 3.19 shows this effect more clearly.

+180

o

FIGURE 3.19 The rotating cone appears to be wobbling back and forth.

This wobbling happens because the bottom of the cone is drawn after the sides of the
cone are drawn. No matter how the cone is oriented, the bottom is drawn on top of it,
producing the “wobbling” illusion. This effect is not limited to the various sides and parts
of an object. If more than one object is drawn and one is in front of the other (from the
viewer'’s perspective), the last object drawn still appears over the previously drawn object.
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You can correct this peculiarity with a simple feature called depth testing. Depth testing is
an effective technique for hidden surface removal, and OpenGL has functions that do this
for you behind the scenes. The concept is simple: When a pixel is drawn, it is assigned a
value (called the z value) that denotes its distance from the viewer’s perspective. Later,
when another pixel needs to be drawn to that screen location, the new pixel’s z value is
compared to that of the pixel that is already stored there. If the new pixel’s z value is
higher, it is closer to the viewer and thus in front of the previous pixel, so the previous
pixel is obscured by the new pixel. If the new pixel’s z value is lower, it must be behind
the existing pixel and thus is not obscured. This maneuver is accomplished internally by a
depth buffer with storage for a depth value for every pixel on the screen. Almost all the
samples in this book use depth testing.

You should request a depth buffer when you set up your OpenGL window with GLUT. For
example, you can request a color and a depth buffer like this:

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

To enable depth testing, simply call

glEnable (GL_DEPTH_TEST);

If you do not have a depth buffer, then enabling depth testing will just be ignored. Depth
testing is enabled in Listing 3.8 when the bDepth variable is set to True, and it is disabled
if bDepth is False:

// Enable depth testing if flag is set
if (bDepth)

glEnable (GL_DEPTH_TEST);
else

glDisable(GL_DEPTH_TEST);

The bDepth variable is set when you select Depth Test from the Effects menu. In addition,
the depth buffer must be cleared each time the scene is rendered. The depth buffer is anal-
ogous to the color buffer in that it contains information about the distance of the pixels
from the observer. This information is used to determine whether any pixels are hidden by
pixels closer to the observer:

// Clear the window and the depth buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

A right-click with the mouse opens a pop-up menu that allows you to toggle depth testing
on and off. Figure 3.20 shows the TRIANGLE program with depth testing enabled. It also
shows the cone with the bottom correctly hidden behind the sides. You can see that depth
testing is practically a prerequisite for creating 3D objects out of solid polygons.
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: Triangle Culling Example

FIGURE 3.20 The bottom of the cone is now correctly placed behind the sides for this
orientation.

Culling: Hiding Surfaces for Performance

You can see that there are obvious visual advantages to not drawing a surface that is
obstructed by another. Even so, you pay some performance overhead because every pixel
drawn must be compared with the previous pixel’s z value. Sometimes, however, you
know that a surface will never be drawn anyway, so why specify it? Culling is the term
used to describe the technique of eliminating geometry that we know will never be seen.
By not sending this geometry to your OpenGL driver and hardware, you can make signifi-
cant performance improvements. One culling technique is backface culling, which elimi-
nates the backsides of a surface.

In our working example, the cone is a closed surface, and we never see the inside. OpenGL
is actually (internally) drawing the back sides of the far side of the cone and then the front
sides of the polygons facing us. Then, by a comparison of z buffer values, the far side of
the cone is either overwritten or ignored. Figures 3.21a and 3.21b show our cone at a
particular orientation with depth testing turned on (a) and off (b). Notice that the green
and red triangles that make up the cone sides change when depth testing is enabled.
Without depth testing, the sides of the triangles at the far side of the cone show through.

: Triangle Culling Example

FIGURE 3.21A With depth testing.
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: Triangle Culling Example

FIGURE 3.21B Without depth testing.

Earlier in the chapter, we explained how OpenGL uses winding to determine the front and
back sides of polygons and that it is important to keep the polygons that define the outside
of our objects wound in a consistent direction. This consistency is what allows us to tell
OpenGL to render only the front, only the back, or both sides of polygons. By eliminating
the back sides of the polygons, we can drastically reduce the amount of processing necessary
to render the image. Even though depth testing will eliminate the appearance of the inside
of objects, internally OpenGL must take them into account unless we explicitly tell it not to.

Backface culling is enabled or disabled for our program via the following code from Listing 3.8:

/1 Clockwise-wound polygons are front facing; this is reversed
// because we are using triangle fans
glFrontFace (GL_CW);

// Turn culling on if flag is set
if(bCull)

glEnable(GL_CULL_FACE);
else

glDisable(GL_CULL_FACE);

Note that we first changed the definition of front-facing polygons to assume clockwise
winding (because our triangle fans are all wound clockwise).

Figure 3.22 demonstrates that the bottom of the cone is gone when culling is enabled. The
reason is that we didn’t follow our own rule about all the surface polygons having the
same winding. The triangle fan that makes up the bottom of the cone is wound clockwise,
like the fan that makes up the sides of the cone, but the front side of the cone’s bottom
section is then facing the inside (see Figure 3.23).
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1 Triangle Culling Example [_[O]x]

I\

FIGURE 3.22 The bottom of the cone is culled because the front-facing triangles are inside.
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FIGURE 3.23 How the cone was assembled from two triangle fans.

We could have corrected this problem by changing the winding rule, by calling

glFrontFace (GL_CCW);

just before we drew the second triangle fan. But in this example, we wanted to make it
easy for you to see culling in action, as well as set up for our next demonstration of
polygon tweaking.

WHY DO WE NEED BACKFACE CULLING?

You might wonder, “If backface culling is so desirable, why do we need the ability to turn it on
and off?” Backface culling is useful for drawing closed objects or solids, but you won’t always be
rendering these types of geometry. Some flat objects (such as paper) can still be seen from both
sides. If the cone we are drawing here were made of glass or plastic, you would actually be able
to see the front and the back sides of the geometry. (See Chapter 6 for a discussion of drawing
transparent objects.)
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Polygon Modes

Polygons don’t have to be filled with the current color. By default, polygons are drawn
solid, but you can change this behavior by specifying that polygons are to be drawn as
outlines or just points (only the vertices are plotted). The function glPolygonMode allows
polygons to be rendered as filled solids, as outlines, or as points only. In addition, you can
apply this rendering mode to both sides of the polygons or only to the front or back. The
following code from Listing 3.8 shows the polygon mode being set to outlines or solid,
depending on the state of the Boolean variable bOutline:

// Draw back side as a polygon only, if flag is set
if (bOutline)

glPolygonMode (GL_BACK,GL_LINE);
else

glPolygonMode (GL_BACK,GL_FILL);

Figure 3.24 shows the back sides of all polygons rendered as outlines. (We had to disable
culling to produce this image; otherwise, the inside would be eliminated and you would
get no outlines.) Notice that the bottom of the cone is now wireframe instead of solid,
and you can see up inside the cone where the inside walls are also drawn as wireframe
triangles.

1 Triangle Culling Example

FIGURE 3.24 Using glPolygonMode to render one side of the triangles as outlines.

Other Primitives

Triangles are the preferred primitive for object composition because most OpenGL hard-
ware specifically accelerates triangles, but they are not the only primitives available. Some
hardware provides for acceleration of other shapes as well, and programmatically, using a
general-purpose graphics primitive might be simpler. The remaining OpenGL primitives
provide for rapid specification of a quadrilateral or quadrilateral strip, as well as a general-
purpose polygon.
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Four-Sided Polygons: Quads

If you add one more side to a triangle, you get a quadrilateral, or a four-sided figure.
OpenGL's GL_QUADS primitive draws a four-sided polygon. In Figure 3.25, a quad is drawn
from four vertices. Note also that these quads have clockwise winding. One important rule
to bear in mind when you use quads is that all four corners of the quadrilateral must lie in
a plane (no bent quads!).

FIGURE 3.25 An example of GL_QUADS.

Quad Strips

As you can for triangle strips, you can specify a strip of connected quadrilaterals with the
GL_QUAD_STRIP primitive. Figure 3.26 shows the progression of a quad strip specified by six
vertices. Note that these quad strips maintain a clockwise winding.

VO VZ

FIGURE 3.26 The progression of GL_QUAD_STRIP.

General Polygons

The final OpenGL primitive is the GL_POLYGON, which you can use to draw a polygon
having any number of sides. Figure 3.27 shows a polygon consisting of five vertices.
Polygons, like quads, must have all vertices on the same plane. An easy way around this
rule is to substitute GL_TRIANGLE_FAN for GL_POLYGON!
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FIGURE 3.27 The progression of GL_POLYGON.

WHAT ABOUT RECTANGLES?

All 10 of the OpenGL primitives are used with glBegin/glEnd to draw general-purpose polygonal
shapes. Although in Chapter 2 we used the function glRect as an easy and convenient mecha-
nism for specifying 2D rectangles, henceforth we will resort to using GL_QUADS.

Filling Polygons, or Stippling Revisited

There are two methods for applying a pattern to solid polygons. The customary method is
texture mapping, in which an image is mapped to the surface of a polygon, and this is
covered in Chapter 8, “Texture Mapping: The Basics.” Another way is to specify a stippling
pattern, as we did for lines. A polygon stipple pattern is nothing more than a 32x32
monochrome bitmap that is used for the fill pattern.

To enable polygon stippling, call

glEnable (GL_POLYGON_STIPPLE);

and then call

glPolygonStipple(pBitmap);

pBitmap is a pointer to a data area containing the stipple pattern. Hereafter, all polygons
are filled using the pattern specified by pBitmap (GLubyte *). This pattern is similar to that
used by line stippling, except the buffer is large enough to hold a 32-by-32-bit pattern.
Also, the bits are read with the most significant bit (MSB) first, which is just the opposite
of line stipple patterns. Figure 3.28 shows a bit pattern for a campfire that we use for a
stipple pattern.
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FIGURE 3.28 Building a polygon stipple pattern.

PIXEL STORAGE

As you will learn in Chapter 7, “Imaging with OpenGL,” you can modify the way pixels for
stipple patterns are interpreted by using the g1lPixelStore function. For now, however, we stick
to the simple default polygon stippling.

To construct a mask to represent this pattern, we store one row at a time from the bottom
up. Fortunately, unlike line stipple patterns, the data is, by default, interpreted just as it is
stored, with the most significant bit read first. Each byte can then be read from left to
right and stored in an array of GLubyte large enough to hold 32 rows of 4 bytes apiece.

Listing 3.9 shows the code used to store this pattern. Each row of the array represents a
row from Figure 3.28. The first row in the array is the last row of the figure, and so on, up
to the last row of the array and the first row of the figure.
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LISTING 3.9 Mask Definition for the Campfire in Figure 3.28

// Bitmap of campfire

GLubyte fire[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xcO, 0x00, 0x00, Ox01, OxfO,
0x00, 0x00, 0x07, 0xfO, Ox0f, 0x00, Ox1f, 0Oxed,
ox1f, 0x80, Ox1f, OxcO, 0x0f, Oxcd, Ox3f, 0x80,
0x07, 0Oxed, O0x7e, 0x00, 0x03, Oxf0, Oxff, 0x80,
0x03, Oxf5, Oxff, O0xed, 0x07, 0xfd, Oxff, Oxf8,
ox1f, Oxfc, Oxff, 0xe8, Oxff, 0xe3, Oxbf, 0x70,
O0xde, 0x80, 0xb7, 0x00, 0x71, 0x10, Ox4a, 0x80,
0x03, 0x10, O0x4e, 0x40, 0x02, 0x88, 0x8c, 0x20,
0x05, 0x05, 0x04, 0x40, 0x02, 0x82, 0x14, 0x40,
0x02, 0x40, 0x10, 0x80, 0x02, 0x64, Ox1a, 0x80,
0x00, 0x92, 0x29, 0x00, 0x00, 0xbd, 0x48, 0x00,
0x00, 0xc8, 0x90, 0x00, 0x00, 0x85, 0x10, 0x00,
0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00 };

To make use of this stipple pattern, we must first enable polygon stippling and then
specify this pattern as the stipple pattern. The PSTIPPLE sample program does this and
then draws an octagon using the stipple pattern. Listing 3.10 shows the pertinent code,
and Figure 3.29 shows the output from PSTIPPLE.

:1 Polygon Stippling

FIGURE 3.29 Output from the PSTIPPLE program.
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LISTING 3.10 Code from PSTIPPLE That Draws a Stippled Octagon

// This function does any needed initialization on the rendering
/] context.
void SetupRC()

{

// Black background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f );

// Set drawing color to red
glColor3f(1.0f, 0.0f, 0.0f);

/! Enable polygon stippling
glEnable (GL_POLYGON STIPPLE);

// Specify a specific stipple pattern
glPolygonStipple(fire);
}

// Called to draw scene

void RenderScene(void)
{
// Clear the window
glClear(GL_COLOR_BUFFER BIT);

// Begin the stop sign shape,
// use a standard polygon for simplicity
glBegin(GL_POLYGON);
glVertex2f(-20.0f, 50.0f);
glVertex2f(20.0f, 50.0f);
glVertex2f (50.0f, 20.0f);
glVertex2f (50.0f, -20.0f);
glVertex2f(20.0f, -50.0f);
(
(
(

)

glVertex2f(-20.0f, -50.0f)

glVertex2f(-50.0f, -20.0f)

glVertex2f(-50.0f, 20.0f);
glEnd();

)

glutSwapBuffers ();
}
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Figure 3.30 shows the octagon rotated somewhat. Notice that the stipple pattern is still
used, but the pattern is not rotated with the polygon. The stipple pattern is used only for
simple polygon filling onscreen. If you need to map an image to a polygon so that it
mimics the polygon’s surface, you must use texture mapping (see Chapter 8).

-  Polygon Stippling M[=1E3

FIGURE 3.30 PSTIPPLE output with the polygon rotated, showing that the stipple pattern is
not rotated.

Polygon Construction Rules
When you are using many polygons to construct a complex surface, you need to remem-
ber two important rules.

The first rule is that all polygons must be planar. That is, all the vertices of the polygon
must lie in a single plane, as illustrated in Figure 3.31. The polygon cannot twist or bend
in space.

Planar polygon Nonplanar polygon

FIGURE 3.31 Planar versus nonplanar polygons.

Here is yet another good reason to use triangles. No triangle can ever be twisted so that all
three points do not line up in a plane because mathematically it takes only three points to
define a plane. (If you can plot an invalid triangle, aside from winding it in the wrong



114

CHAPTER 3 Drawing in Space: Geometric Primitives and Buffers

direction, the Nobel Prize committee might be looking for you! No cheating! Three points
in a straight line do not count!)

The second rule of polygon construction is that the polygon’s edges must not intersect,
and the polygon must be convex. A polygon intersects itself if any two of its lines cross.
Convex means that the polygon cannot have any indentions. A more rigorous test of a
convex polygon is to draw some lines through it. If any given line enters and leaves the
polygon more than once, the polygon is not convex. Figure 3.32 gives examples of good
and bad polygons.

Valid polygons Invalid polygons

FIGURE 3.32 Some valid and invalid primitive polygons.

WHY THE LIMITATIONS ON POLYGONS?

You might wonder why OpenGL places the restrictions on polygon construction. Handling poly-
gons can become quite complex, and OpenGL's restrictions allow it to use very fast algorithms
for rendering these polygons. We predict that you'll not find these restrictions burdensome and
that you’ll be able to build any shapes or objects you need using the existing primitives. Chapter
10, “Curves and Surfaces,” discusses some techniques for breaking a complex shape into smaller
triangles.

Subdivision and Edges

Even though OpenGL can draw only convex polygons, there’s still a way to create a
nonconvex polygon: by arranging two or more convex polygons together. For example,
let’s take a four-point star, as shown in Figure 3.33. This shape is obviously not convex
and thus violates OpenGL’s rules for simple polygon construction. However, the star on
the right is composed of six separate triangles, which are legal polygons.
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FIGURE 3.33 A nonconvex four-point star made up of six triangles.

When the polygons are filled, you won’t be able to see any edges and the figure will seem
to be a single shape onscreen. However, if you use glPolygonMode to switch to an outline
drawing, it is distracting to see all those little triangles making up some larger surface area.

OpenGL provides a special flag called an edge flag to address those distracting edges. By
setting and clearing the edge flag as you specify a list of vertices, you inform OpenGL
which line segments are considered border lines (lines that go around the border of your
shape) and which ones are not (internal lines that shouldn’t be visible). The glEdgeFlag
function takes a single parameter that sets the edge flag to True or False. When the func-
tion is set to True, any vertices that follow mark the beginning of a boundary line
segment. Listing 3.11 shows an example of this from the STAR sample program.

LISTING 3.11 Sample Usage of glEdgeFlag from the STAR Program

// Begin the triangles
glBegin(GL_TRIANGLES);

glEdgeFlag(bEdgeFlag);
glvVertex2f(-20.0f, 0.0f);
glEdgeFlag(TRUE);
glVertex2f(20.0f, 0.0f);
glVertex2f(0.0f, 40.0f);

glVertex2f(-20.0f,0.0f);
glVertex2f(-60.0f,-20.0T);
glEdgeFlag(bEdgeFlag);
glVertex2f(-20.0f,-40.0T);
glEdgeFlag(TRUE);

glVertex2f(-20.0f,-40.0T);
glvertex2f(0.0f, -80.0f);
glEdgeFlag(bEdgeFlag);
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LISTING 3.11 Continued

glVertex2f(20.0f, -40.0f);
glEdgeFlag(TRUE);

glVertex2f(20.0f, -40.0f);
glVertex2f(60.0f, -20.0f);
glEdgeFlag(bEdgeFlag);
glVertex2f(20.0f, 0.0f);
glEdgeFlag(TRUE);

// Center square as two triangles
glEdgeFlag(bEdgeFlag);
glVertex2f(-20.0f, 0.0f);
glVertex2f(-20.0f,-40.0f);
glVertex2f(20.0f, 0.0f);

glVertex2f(-20.0f,-40.0f);
glVertex2f(20.0f, -40.0f);
glVertex2f(20.0f, 0.0f);
glEdgeFlag(TRUE);

// Done drawing triangles
glEnd();

The Boolean variable bEdgeFlag is toggled on and off by a menu option to make the edges
appear and disappear. If this flag is True, all edges are considered boundary edges and
appear when the polygon mode is set to GL_LINES. In Figure 3.34, you can see the output
from STAR, showing the wireframe star with and without edges.

1 Solid and Outlined Star i Solid and Dutlined Star

FIGURE 3.34 The STAR program with edges enabled (left) and without edges enabled
(right).
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Other Buffer Tricks

You learned from Chapter 2 that OpenGL does not render (draw) these primitives directly
on the screen. Instead, rendering is done in a buffer, which is later swapped to the

screen. We refer to these two buffers as the front (the screen) and back color buffers. By
default, OpenGL commands are rendered into the back buffer, and when you call
glutSwapBuffers (or your operating system-specific buffer swap function), the front and
back buffers are swapped so that you can see the rendering results. You can, however,
render directly into the front buffer if you want. This capability can be useful for display-
ing a series of drawing commands so that you can see some object or shape actually being
drawn. There are two ways to do this; both are discussed in the following section.

Using Buffer Targets

The first way to render directly into the front buffer is to just tell OpenGL that you want
drawing to be done there. You do this by calling the following function:

void glDrawBuffer(Glenum mode);

Specifying GL_FRONT causes OpenGL to render to the front buffer, and GL_BACK moves
rendering back to the back buffer. OpenGL implementations can support more than just a
single front and back buffer for rendering, such as left and right buffers for stereo render-
ing, and auxiliary buffers. These other buffers are documented further in Appendix C, “API
Reference.”

The second way to render to the front buffer is to simply not request double-buffered
rendering when OpenGL is initialized. OpenGL is initialized differently on each OS plat-
form, but with GLUT, we initialize our display mode for RGB color and double-buffered
rendering with the following line of code:

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

To get single-buffered rendering, you simply omit the bit flag GLUT_DOUBLE, as shown here:

glutInitDisplayMode (GLUT_RGB) ;

When you do single-buffered rendering, it is important to call either glFlush or glFinish
whenever you want to see the results actually drawn to screen. A buffer swap implicitly
performs a flush of the pipeline and waits for rendering to complete before the swap actu-
ally occurs. We'll discuss the mechanics of this process in more detail in Chapter 11, “It's
All About the Pipeline: Faster Geometry Throughput.”

Listing 3.12 shows the drawing code for the sample program SINGLE. This example uses a
single rendering buffer to draw a series of points spiraling out from the center of the
window. The RenderScene function is called repeatedly and uses static variables to cycle
through a simple animation. The output of the SINGLE sample program is shown in
Figure 3.35.
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060 e OpenGL Single Buffered

FIGURE 3.35 Output from the single-buffered rendering example.

LISTING 3.12 Drawing Code for the SINGLE Sample

LHETEETEETT i ri i i rrrrirrrt
// Called to draw scene
void RenderScene(void)

{

static GLdouble dRadius = 0.1;

static GLdouble dAngle = 0.0;

// Clear blue window
glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

if (dAngle == 0.0)
glClear(GL_COLOR_BUFFER BIT);

glBegin(GL_POINTS);
glVertex2d(dRadius * cos(dAngle), dRadius * sin(dAngle));
glEnd();

dRadius *= 1.01;
dAngle += 0.1;
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LISTING 3.12 Continued

if (dAngle > 30.0)
{
dRadius = 0.1;
dAngle = 0.0;
}

glFlush();
}

Manipulating the Depth Buffer

The color buffers are not the only buffers that OpenGL renders into. In the preceding
chapter, we mentioned other buffer targets, including the depth buffer. However, the
depth buffer is filled with depth values instead of color values. Requesting a depth buffer
with GLUT is as simple as adding the GLUT_DEPTH bit flag when initializing the display
mode:

glutInitDisplayMode (GLUT_RGB ; GLUT_DOUBLE | GLUT_DEPTH);

You've already seen that enabling the use of the depth buffer for depth testing is as easy as
calling the following:

glEnable (GL_DEPTH_TEST);

Even when depth testing is not enabled, if a depth buffer is created, OpenGL will write
corresponding depth values for all color fragments that go into the color buffer.
Sometimes, though, you may want to temporarily turn off writing values to the depth
buffer as well as depth testing. You can do this with the function glDepthMask:

void glDepthMask(GLboolean mask);

Setting the mask to GL_FALSE disables writes to the depth buffer but does not disable
depth testing from being performed using any values that have already been written to
the depth buffer. Calling this function with GL_TRUE re-enables writing to the depth buffer,
which is the default state. Masking color writes is also possible but is a bit more involved;
it's mentioned in Chapter 6.

Cutting It Out with Scissors

One way to improve rendering performance is to update only the portion of the screen
that has changed. You may also need to restrict OpenGL rendering to a smaller rectangular
region inside the window. OpenGL allows you to specify a scissor rectangle within your
window where rendering can take place. By default, the scissor rectangle is the size of the
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window, and no scissor test takes place. You turn on the scissor test with the ubiquitous
glEnable function:

glEnable (GL_SCISSOR_TEST);

You can, of course, turn off the scissor test again with the corresponding glDisable func-
tion call. The rectangle within the window where rendering is performed, called the scissor
box, is specified in window coordinates (pixels) with the following function:

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-left corner of the scissor box, with width and
height being the corresponding dimensions of the scissor box. Listing 3.13 shows the
rendering code for the sample program SCISSOR. This program clears the color buffer
three times, each time with a smaller scissor box specified before the clear. The result is a
set of overlapping colored rectangles, as shown in Figure 3.36.

"] OpenGL Scissor L__JLD_[E

FIGURE 3.36 Shrinking scissor boxes.

LISTING 3.13 Using the Scissor Box to Render a Series of Rectangles

void RenderScene(void)

{

// Clear blue window
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LISTING 3.13 Continued

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);
glClear (GL_COLOR_BUFFER BIT);

// Now set scissor to smaller red sub region
glClearColor(1.0f, 0.0f, 0.0f, 0.0f);
glScissor (100, 100, 600, 400);

glEnable (GL_SCISSOR_TEST);
glClear(GL_COLOR_BUFFER BIT);

// Finally, an even smaller green rectangle
glClearColor(0.0f, 1.0f, 0.0f, 0.0f);
glScissor (200, 200, 400, 200);

glClear (GL_COLOR_BUFFER BIT);

// Turn scissor back off for next render
glDisable(GL_SCISSOR TEST);

glutSwapBuffers();
}

Using the Stencil Buffer

Using the OpenGL scissor box is a great way to restrict rendering to a rectangle within the
window. Frequently, however, we want to mask out an irregularly shaped area using a
stencil pattern. In the real world, a stencil is a flat piece of cardboard or other material
that has a pattern cut out of it. Painters use the stencil to apply paint to a surface using
the pattern in the stencil. Figure 3.37 shows how this process works.

FIGURE 3.37 Using a stencil to paint a surface in the real world.
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In the OpenGL world, we have the stencil buffer instead. The stencil buffer provides a
similar capability but is far more powerful because we can create the stencil pattern
ourselves with rendering commands. To use OpenGL stenciling, we must first request a
stencil buffer using the platform-specific OpenGL setup procedures. When using GLUT, we
request one when we initialize the display mode. For example, the following line of code
sets up a double-buffered RGB color buffer with stencil:

glutInitDisplayMode (GLUT_RGB ! GLUT DOUBLE ! GLUT_STENCIL);

The stencil operation is relatively fast on modern hardware-accelerated OpenGL imple-
mentations. It can also be turned on and off with glEnable/glDisable. For example, we
turn on the stencil test with the following line of code:

glEnable (GL_STENCIL_TEST);

With the stencil test enabled, drawing occurs only at locations that pass the stencil test.
You set up the stencil test that you want to use with this function:

void glStencilFunc(GLenum func, GLint ref, GLuint mask);

The stencil function that you want to use, func, can be any one of these values: GL_NEVER,
GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, and GL_NOTEQUAL. These
values tell OpenGL how to compare the value already stored in the stencil buffer with the
value you specify in ref. These values correspond to never or always passing, passing if
the reference value is less than, less than or equal, greater than or equal, greater than, and
not equal to the value already stored in the stencil buffer, respectively. In addition, you
can specify a mask value that is bitwise ANDed with both the reference value and the value
from the stencil buffer before the comparison takes place.

STENCIL BITS

You need to realize that the stencil buffer may be of limited precision. Stencil buffers are typically
only between 1 and 8 bits deep. Each OpenGL implementation may have its own limits on the
available bit depth of the stencil buffer, and each operating system or environment has its own
methods of querying and setting this value. In GLUT, you just get the most stencil bits available,
but for finer-grained control, you need to refer to the operating system-specific chapters later in
the book. Values passed to ref and mask that exceed the available bit depth of the stencil buffer
are simply truncated, and only the maximum number of least significant bits is used.

Creating the Stencil Pattern

You now know how the stencil test is performed, but how are values put into the stencil
buffer to begin with? First, we must make sure that the stencil buffer is cleared before we
start any drawing operations. We do this in the same way that we clear the color and
depth buffers with glClear—using the bit mask GL_STENCIL_BUFFER_BIT. For example, the
following line of code clears the color, depth, and stencil buffers simultaneously:



Other Buffer Tricks 123

glClear(GL_COLOR BUFFER_BIT ! GL_DEPTH BUFFER_BIT ! GL_STENCIL BUFFER_BIT);

The value used in the clear operation is set previously with a call to

glClearStencil(GLint s);

When the stencil test is enabled, rendering commands are tested against the value in the
stencil buffer using the glStencilFunc parameters we just discussed. Fragments (color
values placed in the color buffer) are either written or discarded based on the outcome of
that stencil test. The stencil buffer itself is also modified during this test, and what goes
into the stencil buffer depends on how you’ve called the g1StencilOp function:

void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);

These values tell OpenGL how to change the value of the stencil buffer if the stencil test
fails (fail), and even if the stencil test passes, you can modify the stencil buffer if the
depth test fails (zfail) or passes (zpass). The valid values for these arguments are GL_KEEP,
GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR, GL_INVERT, GL_INCR_WRAP, and GL_DECR_WRAP.
These values correspond to keeping the current value, setting it to zero, replacing with the
reference value (from glStencilFunc), incrementing or decrementing the value, inverting
it, and incrementing/decrementing with wrap, respectively. Both GL_INCR and GL_DECR
increment and decrement the stencil value but are clamped to the minimum and
maximum value that can be represented in the stencil buffer for a given bit depth.
GL_INCR_WRAP and likewise GL_DECR_WRAP simply wrap the values around when they
exceed the upper and lower limits of a given bit representation.

In the sample program STENCIL, we create a spiral line pattern in the stencil buffer, but
not in the color buffer. The bouncing rectangle from Chapter 2 comes back for a visit, but
this time, the stencil test prevents drawing of the red rectangle anywhere the stencil buffer
contains a 0x1 value. Listing 3.14 shows the relevant drawing code.

LISTING 3.14 Rendering Code for the STENCIL Sample

void RenderScene(void)

{
GLdouble dRadius = 0.1; // Initial radius of spiral
GLdouble dAngle; // Looping variable

// Clear blue window
glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

// Use @ for clear stencil, enable stencil test
glClearStencil(0.0f);
glEnable (GL_STENCIL_ TEST);
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LISTING 3.14 Continued

// Clear color and stencil buffer
glClear(GL_COLOR_BUFFER BIT ! GL_STENCIL BUFFER BIT);

// All drawing commands fail the stencil test, and are not
// drawn, but increment the value in the stencil buffer.
glStencilFunc (GL_NEVER, 0x0, 0x0);

glStencilOp(GL_INCR, GL_INCR, GL_INCR);

// Spiral pattern will create stencil pattern

// Draw the spiral pattern with white lines. We

// make the lines white to demonstrate that the

// stencil function prevents them from being drawn

glColor3f(1.0f, 1.0f, 1.0f);

glBegin(GL_LINE_STRIP);

for(dAngle = 0; dAngle < 400.0; dAngle += 0.1)

{
glVertex2d(dRadius * cos(dAngle), dRadius * sin(dAngle));
dRadius *= 1.002;

I3
glEnd();

// Now, allow drawing, except where the stencil pattern is 0x1
// and do not make any further changes to the stencil buffer
glStencilFunc (GL_NOTEQUAL, 0x1, Ox1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

// Now draw red bouncing square

// (x and y) are modified by a timer function
glColor3f(1.0f, 0.0f, 0.0f);

glRectf(x, y, x + rsize, y - rsize);

// All done, do the buffer swap
glutSwapBuffers();

}

The following two lines cause all fragments to fail the stencil test. The values of ref and
mask are irrelevant in this case and are not used.

glStencilFunc(GL_NEVER, 0x0, 0x0);
glStencilOp(GL_INCR, GL_INCR, GL_INCR);
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The arguments to g1StencilOp, however, cause the value in the stencil buffer to be written
(incremented actually), regardless of whether anything is seen on the screen. Following these
lines, a white spiral line is drawn, and even though the color of the line is white so you can
see it against the blue background, it is not drawn in the color buffer because it always fails
the stencil test (GL_NEVER). You are essentially rendering only to the stencil buffer!

Next, we change the stencil operation with these lines:

glStencilFunc (GL_NOTEQUAL, 0x1, 0x1);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

Now, drawing will occur anywhere the stencil buffer is not equal (GL_NOTEQUAL) to 0x1,
which is anywhere onscreen that the spiral line is not drawn. The subsequent call to
glStencilOp is optional for this example, but it tells OpenGL to leave the stencil buffer
alone for all future drawing operations. Although this sample is best seen in action, Figure
3.38 shows an image of what the bounding red square looks like as it is “stenciled out.”

‘jOpenGLSlienciliTesl’ — _— " — - o - . 7@@@

FIGURE 3.38 The bouncing red square with masking stencil pattern.

Just as with the depth buffer, you can also mask out writes to the stencil buffer by using
the function glStencilMask:

void glStencilMask(GLboolean mask);
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Setting the mask to false does not disable stencil test operations but does prevent any
operation from writing values into the stencil buffer.

Summary

We covered a lot of ground in this chapter. At this point, you can create your 3D space for
rendering, and you know how to draw everything from points and lines to complex poly-
gons. We also showed you how to assemble these two-dimensional primitives as the
surface of three-dimensional objects.

You also learned about some of the other buffers that OpenGL renders into besides the
color buffer. As we move forward throughout the book, we will use the depth and stencil
buffers for many other techniques and special effects. In Chapter 6, you will learn about
yet another OpenGL buffer, the Accumulation buffer. You'll see later that all these buffers
working together can create some outstanding and very realistic 3D graphics.

We encourage you to experiment with what you have learned in this chapter. Use your
imagination and create some of your own 3D objects before moving on to the rest of the
book. You'll then have some personal samples to work with and enhance as you learn and
explore new techniques throughout the book.
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Geometric Transformations:
The Pipeline

by Richard S. Wright Jr.

WHAT YOU'LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use
Establish your position in the scene gluLookAt

Position objects within the scene glTranslate/glRotate

Scale objects glScale

Establish a perspective transformation gluPerspective

Perform your own matrix transformations glLoadMatrix/glMultMatrix
Use a camera to move around in a scene gluLookAt

In Chapter 3, “Drawing in Space: Geometric Primitives and Buffers,” you learned how to
draw points, lines, and various primitives in 3D. To turn a collection of shapes into a
coherent scene, you must arrange them in relation to one another and to the viewer. In
this chapter, you start moving shapes and objects around in your coordinate system.
(Actually, you don’t move the objects, but rather shift the coordinate system to create the
view you want.) The ability to place and orient your objects in a scene is a crucial tool for
any 3D graphics programmer. As you will see, it is actually convenient to describe your
objects’ dimensions around the origin and then fransform the objects into the desired
position.

Is This the Dreaded Math Chapter?

In most books on 3D graphics programming, yes, this would be the dreaded math chapter.
However, you can relax; we take a more moderate approach to these principles than some
texts.
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The keys to object and coordinate transformations are two matrices maintained by
OpenGL. To familiarize you with these matrices, this chapter strikes a compromise
between two extremes in computer graphics philosophy. On the one hand, we could
warn you, “Please review a textbook on linear algebra before reading this chapter.” On the
other hand, we could perpetuate the deceptive reassurance that you can “learn to do 3D
graphics without all those complex mathematical formulas.” But we don't agree with
either camp.

In reality, you can get along just fine without understanding the finer mathematics of 3D
graphics, just as you can drive your car every day without having to know anything at all
about automotive mechanics and the internal combustion engine. But you had better
know enough about your car to realize that you need an oil change every so often, that
you have to fill the tank with gas regularly, and that you must change the tires when they
get bald. This knowledge makes you a responsible (and safe!) automobile owner. If you
want to be a responsible and capable OpenGL programmer, the same standards apply. You
need to understand at least the basics so you know what can be done and what tools best
suit the job. If you are a beginner, you will find that, with some practice, matrix math and
vectors will gradually make more and more sense, and you will develop a more intuitive
(and powerful) ability to make full use of the concepts we introduce in this chapter.

So even if you don't already have the ability to multiply two matrices in your head, you
need to know what matrices are and that they are the means to OpenGL’s 3D magic. But
before you go dusting off that old linear algebra textbook (doesn’t everyone have one?),
have no fear: OpenGL does all the math for you. Think of using OpenGL as using a calcu-
lator to do long division when you don’t know how to do it on paper. Although you don’t
have to do it yourself, you still know what it is and how to apply it. See—you can eat your
cake and have it too!

Understanding Transformations

If you think about it, most 3D graphics aren’t really 3D. We use 3D concepts and termi-
nology to describe what something looks like; then this 3D data is “squished” onto a 2D
computer screen. We call the process of squishing 3D data down into 2D data projection,
and we introduced both orthographic and perspective projections back in Chapter 1,
“Introduction to 3D Graphics and OpenGL.” We refer to the projection whenever we want
to describe the type of transformation (orthographic or perspective) that occurs during
projection, but projection is only one of the types of transformations that occur in
OpenGL. Transformations also allow you to rotate objects around; move them about; and
even stretch, shrink, and warp them.

Three types of geometric transformations occur between the time you specify your vertices
and the time they appear on the screen: viewing, modeling, and projection. In this
section, we examine the principles of each type of transformation, which are summarized
in Table 4.1.
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TABLE 4.1 Summary of the OpenGL Transformation Terminology

Transformation Use

Viewing Specifies the location of the viewer or camera

Modeling Moves objects around the scene

Modelview Describes the duality of viewing and modeling transformations
Projection Sizes and reshapes the viewing volume.

Viewport A pseudo-transformation that scales the final output to the window

Eye Coordinates

An important concept throughout this chapter is that of eye coordinates. Eye coordinates
are from the viewpoint of the observer, regardless of any transformations that may occur;
you can think of them as “absolute” screen coordinates. Thus, eye coordinates represent a
virtual fixed coordinate system that is used as a common frame of reference. All the trans-
formations discussed in this chapter are described in terms of their effects relative to the
eye coordinate system.

Figure 4.1 shows the eye coordinate system from two viewpoints. On the left (a), the eye
coordinates are represented as seen by the observer of the scene (that is, perpendicular to
the monitor). On the right (b), the eye coordinate system is rotated slightly so you can
better see the relation of the z-axis. Positive x and y are pointed right and up, respectively,
from the viewer’s perspective. Positive z travels away from the origin toward the user, and
negative z values travel farther away from the viewpoint into the screen.
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FIGURE 4.1 Two perspectives of eye coordinates.

When you draw in 3D with OpenGL, you use the Cartesian coordinate system. In the
absence of any transformations, the system in use is identical to the eye coordinate system
just described.
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Viewing Transformations

The viewing transformation is the first to be applied to your scene. It is used to determine
the vantage point of the scene. By default, the point of observation in a perspective
projection is at the origin (0,0,0) looking down the negative z-axis (“into” the monitor
screen). This point of observation is moved relative to the eye coordinate system to
provide a specific vantage point. When the point of observation is located at the origin, as
in a perspective projection, objects drawn with positive z values are behind the observer.
In an orthographic projection, however, the viewer is assumed to be infinitely far away on
the positive Z axis, and can see everything within the viewing volume.

The viewing transformation allows you to place the point of observation anywhere you
want and look in any direction. Determining the viewing transformation is like placing
and pointing a camera at the scene.

In the grand scheme of things, you must specify the viewing transformation before any
other modeling transformations. The reason is that it appears to move the current working
coordinate system in respect to the eye coordinate system. All subsequent transformations
then occur based on the newly modified coordinate system. Later, you'll see more easily
how this works, when we actually start looking at how to make these transformations.

Modeling Transformations

Modeling transformations are used to manipulate your model and the particular objects
within it. These transformations move objects into place, rotate them, and scale them.
Figure 4.2 illustrates three of the most common modeling transformations that you will
apply to your objects. Figure 4.2a shows translation, in which an object is moved along a
given axis. Figure 4.2b shows a rotation, in which an object is rotated about one of the
axes. Finally, Figure 4.2c shows the effects of scaling, where the dimensions of the object
are increased or decreased by a specified amount. Scaling can occur nonuniformly (the
various dimensions can be scaled by different amounts), so you can use scaling to stretch
and shrink objects.

The final appearance of your scene or object can depend greatly on the order in which the
modeling transformations are applied. This is particularly true of translation and rotation.
Figure 4.3a shows the progression of a square rotated first about the z-axis and then trans-
lated down the newly transformed x-axis. In Figure 4.3b, the same square is first translated
down the x-axis and then rotated around the z-axis. The difference in the final disposi-
tions of the square occurs because each transformation is performed with respect to the
last transformation performed. In Figure 4.3a, the square is rotated with respect to the
origin first. In 4.3b, after the square is translated, the rotation is performed around the
newly translated origin.
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FIGURE 4.3 Modeling transformations: rotation/translation and translation/rotation.
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The Modelview Duality

The viewing and modeling transformations are, in fact, the same in terms of their internal
effects as well as their effects on the final appearance of the scene. The distinction between
the two is made purely as a convenience for the programmer. There is no real difference
visually between moving an object backward and moving the reference system forward; as
shown in Figure 4.4, the net effect is the same. (You experience this effect firsthand when
you're sitting in your car at an intersection and you see the car next to you roll forward; it
might seem to you that your own car is rolling backward.) The viewing transformation is
simply a modeling-like transformation that is applied to the entire scene, where objects in
your scene will often each have their own individual model transformation, applied after
the viewing transformation. The term modelview indicates that these two transformations
are combined in the transformation pipeline into a single matrix—the modelview matrix.

/ : A g i
> e @
A ! A
Moving the observer Moving the coordinate system
(a) (b)

FIGURE 4.4 Two ways of looking at the viewing transformation.

The viewing transformation, therefore, is essentially nothing but a modeling transforma-
tion that you apply to a virtual object (the viewer) before drawing objects. As you will
soon see, new transformations are repeatedly specified as you place more objects in the
scene. By convention, the initial transformation provides a reference from which all other
transformations are based.

Projection Transformations

The projection transformation is applied to your vertices after the modelview transforma-
tion. This projection actually defines the viewing volume and establishes clipping planes.
The clipping planes are plane equations in 3D space that OpenGL uses to determine
whether geometry can be seen by the viewer. More specifically, the projection transforma-
tion specifies how a finished scene (after all the modeling is done) is projected to the final
image on the screen. You'll learn about two types of projections in this chapter: ortho-
graphic and perspective.
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In an orthographic, or parallel, projection, all the polygons are drawn onscreen with exactly
the relative dimensions specified. Lines and polygons are mapped directly to the 2D screen
using parallel lines, which means no matter how far away something is, it is still drawn
the same size, just flattened against the screen. This type of projection is typically used for
rendering two-dimensional images such as blueprints or two-dimensional graphics such as
text or onscreen menus.

A perspective projection shows scenes more as they appear in real life instead of as a blue-
print. The trademark of perspective projections is foreshortening, which makes distant
objects appear smaller than nearby objects of the same size. Lines in 3D space that might
be parallel do not always appear parallel to the viewer. With a railroad track, for instance,
the rails are parallel, but using perspective projection, they appear to converge at some
distant point.

The benefit of perspective projection is that you don’t have to figure out where lines
converge or how much smaller distant objects are. All you need to do is specify the scene
using the modelview transformations and then apply the perspective projection. OpenGL
works all the magic for you. Figure 4.5 compares orthographic and perspective projections

on two different scenes.

4

A

Everything same size

Objects shrink in
distance

FIGURE 4.5 A side-by-side example of an orthographic versus perspective projection.

Orthographic projections are used most often for 2D drawing purposes where you want an
exact correspondence between pixels and drawing units. You might use them for a
schematic layout, text, or perhaps a 2D graphing application. You also can use an ortho-
graphic projection for 3D renderings when the depth of the rendering has a very small
depth in comparison to the distance from the viewpoint. Perspective projections are used
for rendering scenes that contain wide-open spaces or objects that need to have the fore-
shortening applied. For the most part, perspective projections are typical for 3D graphics. In
fact, looking at a 3D object with an orthographic projection can be somewhat unsettling.

133




134

CHAPTER 4 Geometric Transformations: The Pipeline

Viewport Transformations

When all is said and done, you end up with a two-dimensional projection of your scene
that will be mapped to a window somewhere on your screen. This mapping to physical
window coordinates is the last transformation that is done, and it is called the viewport
transformation. Usually, a one-to-one correspondence exists between the color buffer and
window pixels, but this is not always strictly the case. In some circumstances, the viewport
transformation remaps what are called “normalized” device coordinates to window coordi-
nates. Fortunately, this is something you don’t need to worry about.

The Matrix: Mathematical Currency for 3D Graphics

Now that you're armed with some basic vocabulary and definitions of transformations,
you're ready for some simple matrix mathematics. Let’s examine how OpenGL performs
these transformations and get to know the functions you call to achieve the desired
effects.

The mathematics behind these transformations are greatly simplified by the mathematical
notation of the matrix. You can achieve each of the transformations we have discussed by
multiplying a matrix that contains the vertices (usually, this is a simple vector) by a matrix
that describes the transformation. Thus, all the transformations achievable with OpenGL
can be described as the product of two or more matrix multiplications.

What Is a Matrix?

The Matrix is not just a Hollywood movie trilogy, but an exceptionally powerful mathemati-
cal tool that greatly simplifies the process of solving one or more equations with variables
that have complex relationships to each other. One common example of this, near and
dear to the hearts of graphics programmers, is coordinate transformations. For example, if
you have a point in space represented by X, y, and z coordinates, and you need to know
where that point is if you rotate it some number of degrees around some arbitrary point
and orientation, you would use a matrix. Why? Because the new x coordinate depends not
only on the old x coordinate and the other rotation parameters, but also on what the y and
z coordinates were as well. This kind of dependency between the variables and solution is
just the sort of problem that matrices excel at. For fans of the Matrix movies who have a
mathematical inclination, the term matrix is indeed an appropriate title.

Mathematically, a matrix is nothing more than a set of numbers arranged in uniform rows
and columns—in programming terms, a two-dimensional array. A matrix doesn’t have to
be square, but each row or column must have the same number of elements as every other
row or column in the matrix. Figure 4.6 presents some examples of matrices. They don't
represent anything in particular, but serve only to demonstrate matrix structure. Note that
it is also valid for a matrix to have a single column or row. A single row or column of
numbers is also more simply called a vector, and vectors also have some interesting and
useful applications all their own.
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1
14 7 0 4 2
27 5 8 1.5 0877 3
3 6 9 7 14 4

FIGURE 4.6 Three examples of matrices.

Matrix and vector are two important terms that you will see often in 3D graphics program-
ming literature. When dealing with these quantities, you will also see the term scalar. A
scalar is just an ordinary single number used to represent magnitude or a specific quantity
(you know—a regular old, plain, simple number...like before you cared or had all this
jargon added to your vocabulary).

Matrices can be multiplied and added together, but they can also be multiplied by vectors
and scalar values. Multiplying a point (a vector) by a matrix (a transformation) yields a
new transformed point (a vector). Matrix transformations are actually not too difficult to
understand but can be intimidating at first. Because an understanding of matrix transfor-
mations is fundamental to many 3D tasks, you should still make an attempt to become
familiar with them. Fortunately, only a little understanding is enough to get you going
and doing some pretty incredible things with OpenGL. Over time, and with a little more
practice and study (see Appendix A, “Further Reading/References”), you will master this
mathematical tool yourself.

In the meantime, you can find a number of useful matrix and vector functions and
features available, with source code, in the files math3d.h and math3d.cpp in the /shared
folder. This 3d math library (referred to for now on simply as math3d) will greatly simplify
many tasks in this chapter and the ones to come. One “useful” feature of this library is
that it lacks incredibly clever and highly optimized code! This makes the library highly
portable and very easy to understand. You'll also find it has a very OpenGL-like API.

The Transformation Pipeline

To effect the types of transformations described in this chapter, you modify two matrices
in particular: the modelview matrix and the projection matrix. Don’t worry; OpenGL
provides some high-level functions that you can call for these transformations. After
you’ve mastered the basics of the OpenGL API, you will undoubtedly start trying some of
the more advanced 3D rendering techniques. Only then will you need to call the lower-
level functions that actually set the values contained in the matrices.

The road from raw vertex data to screen coordinates is a long one. Figure 4.7 provides a
flowchart of this process. First, your vertex is converted to a 1x4 matrix in which the first
three values are the X, y, and z coordinates. The fourth number is a scaling factor that you
can apply manually by using the vertex functions that take four values. This is the w coor-
dinate, usually 1.0 by default. You will seldom modify this value directly.
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FIGURE 4.7 The vertex transformation pipeline.

Window coordinates

The vertex is then multiplied by the modelview matrix, which yields the transformed eye
coordinates. The eye coordinates are then multiplied by the projection matrix to yield clip
coordinates. OpenGL effectively eliminates all data outside this clipping space. The clip
coordinates are then divided by the w coordinate to yield normalized device coordinates.
The w value may have been modified by the projection matrix or the modelview matrix,
depending on the transformations that occurred. Again, OpenGL and the high-level
matrix functions hide this process from you.

Finally, your coordinate triplet is mapped to a 2D plane by the viewport transformation.
This is also represented by a matrix, but not one that you specify or modify directly.
OpenGL sets it up internally depending on the values you specified to glviewport.

The Modelview Matrix

The modelview matrix is a 4x4 matrix that represents the transformed coordinate system
you are using to place and orient your objects. The vertices you provide for your primi-
tives are used as a single-column matrix and multiplied by the modelview matrix to yield
new transformed coordinates in relation to the eye coordinate system.

In Figure 4.8, a matrix containing data for a single vertex is multiplied by the modelview
matrix to yield new eye coordinates. The vertex data is actually four elements with an
extra value, w, that represents a scaling factor. This value is set by default to 1.0, and rarely
will you change it yourself.
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IR

FIGURE 4.8 A matrix equation that applies the modelview transformation to a single vertex.
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Translation
Let’s consider an example that modifies the modelview matrix. Say you want to draw a
cube using the GLUT library’s glutWireCube function. You simply call

glutWireCube(10.0f);

A cube that measures 10 units on a side is then centered at the origin. To move the cube
up the y-axis by 10 units before drawing it, you multiply the modelview matrix by a
matrix that describes a translation of 10 units up the y-axis and then do your drawing. In
skeleton form, the code looks like this:

// Construct a translation matrix for positive 10 Y

// Multiply it by the modelview matrix

// Draw the cube
glutWireCube(10.0f);

Actually, such a matrix is fairly easy to construct, but it requires quite a few lines of code.
Fortunately, OpenGL provides a high-level function that performs this task for you:

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

This function takes as parameters the amount to translate along the x, y, and z directions.

It then constructs an appropriate matrix and multiplies it onto the current matrix stack.
The pseudocode looks like the following, and the effect is illustrated in Figure 4.9:

// Translate up the y-axis 10 units

glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the cube
glutWireCube(10.0f);
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FIGURE 4.9 A cube translated 10 units in the positive y direction.

IS TRANSLATION ALWAYS A MATRIX OPERATION?

The studious reader may note that translations do not always require a full matrix multiplication,
but can be simplified with a simple scalar addition to the vertex position. However, for more
complex transformations that include combined simultaneous operations, it is correct to describe
translation as a matrix operation. Fortunately, if you let OpenGL do the heavy lifting for you, as
we have done here, the implementation can usually figure out the optimum method to use.

Rotation
To rotate an object about one of the three coordinate axes, or indeed any arbitrary vector,
you have to devise a rotation matrix. Again, a high-level function comes to the rescue:

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

Here, we perform a rotation around the vector specified by the x, y, and z arguments. The
angle of rotation is in the counterclockwise direction measured in degrees and specified by
the argument angle. In the simplest of cases, the rotation is around only one of the coor-

dinate systems cardinal axes (X, Y, or Z).

You can also perform a rotation around an arbitrary axis by specifying x, y, and z values
for that vector. To see the axis of rotation, you can just draw a line from the origin to the
point represented by (x,y,z). The following code rotates the cube by 45° around an arbi-
trary axis specified by (1,1,1), as illustrated in Figure 4.10:

// Perform the transformation
glRotatef (45.0f, 1.0f, 1.0f, 1.0f);

// Draw the cube
glutWireCube (10.0f);
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FIGURE 4.10 A cube rotated about an arbitrary axis.

Scaling
A scaling transformation changes the size of your object by expanding or contracting all
the vertices along the three axes by the factors specified. The function

glScalef(GLfloat x, GLfloat y, GLfloat z);

multiplies the x, y, and z values by the scaling factors specified.

Scaling does not have to be uniform, and you can use it to both stretch and squeeze
objects along different directions. For example, the following code produces a cube that is
twice as large along the x- and z-axes as the cubes discussed in the previous examples, but
still the same along the y-axis. The result is shown in Figure 4.11.

// Perform the scaling transformation
glScalef(2.0f, 1.0f, 2.0f);

// Draw the cube
glutWireCube(10.0f);

1
FIGURE 4.11 A nonuniform scaling of a cube.
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The Identity Matrix

About now, you might be wondering why we had to bother with all this matrix stuff in
the first place. Can’t we just call these transformation functions to move our objects
around and be done with it? Do we really need to know that it is the modelview matrix
that is modified?

The answer is yes and no (but it’s no only if you are drawing a single object in your
scene). The reason is that the effects of these functions are cumulative. Each time you call
one, the appropriate matrix is constructed and multiplied by the current modelview
matrix. The new matrix then becomes the current modelview matrix, which is then multi-
plied by the next transformation, and so on.

Suppose you want to draw two spheres—one 10 units up the positive y-axis and one 10
units out the positive x-axis, as shown in Figure 4.12. You might be tempted to write code
that looks something like this:

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
glutSolidSphere(1.0f,15,15);

// Go 1@ units out the x-axis
glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere
glutSolidSphere(1.0f);

Z

FIGURE 4.12 Two spheres drawn on the y- and x-axes.
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Consider, however, that each call to glTranslate is cumulative on the modelview matrix,
so the second call translates 10 units in the positive x direction from the previous transla-
tion in the y direction. This yields the results shown in Figure 4.13.

1

FIGURE 4.13 The result of two consecutive translations.

You can make an extra call to glTranslate to back down the y-axis 10 units in the nega-
tive direction, but this makes some complex scenes difficult to code and debug—not to
mention that you throw extra transformation math at the CPU or GPU. A simpler method
is to reset the modelview matrix to a known state—in this case, centered at the origin of
the eye coordinate system.

You reset the origin by loading the modelview matrix with the identity matrix. The identity
matrix specifies that no transformation is to occur, in effect saying that all the coordinates
you specify when drawing are in eye coordinates. An identity matrix contains all Os, with
the exception of a diagonal row of 1s. When this matrix is multiplied by any vertex
matrix, the result is that the vertex matrix is unchanged. Figure 4.14 shows this equation.
Later in the chapter, we discuss in more detail why these numbers are where they are.

100 0 0
0 100 0
o 010 0| |
0 0 0 10

FIGURE 4.14 Multiplying a vertex by the identity matrix yields the same vertex matrix.
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As we've already stated, the details of performing matrix multiplication are outside the
scope of this book. For now, just remember this: Loading the identity matrix means that
no transformations are performed on the vertices. In essence, you are resetting the
modelview matrix to the origin.
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The following two lines load the identity matrix into the modelview matrix:

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

The first line specifies that the current operating matrix is the modelview matrix. After
you set the current operating matrix (the matrix that your matrix functions are affecting),
it remains the active matrix until you change it. The second line loads the current matrix
(in this case, the modelview matrix) with the identity matrix.

Now, the following code produces the results shown earlier in Figure 4.12:

// Set current matrix to modelview and reset
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
glutSolidSphere(1.0f, 15, 15);

// Reset modelview matrix again
glLoadIdentity();

// Go 10 units out the x-axis
glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere
glutSolidSphere(1.0f, 15, 15);

The Matrix Stacks

Resetting the modelview matrix to identity before placing every object is not always desir-
able. Often, you want to save the current transformation state and then restore it after
some objects have been placed. This approach is most convenient when you have initially
transformed the modelview matrix as your viewing transformation (and thus are no
longer located at the origin).

To facilitate this procedure, OpenGL maintains a matrix stack for both the modelview and
projection matrices. A matrix stack works just like an ordinary program stack. You can
push the current matrix onto the stack with glPushMatrix to save it and then make your
changes to the current matrix. Popping the matrix off the stack with glPopMatrix then
restores it. Figure 4.15 shows the stack principle in action.
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glPushMatrix h glPopMatrix

Matrix stac

FIGURE 4.15 The matrix stack in action.

TEXTURE MATRIX STACK

The texture stack is another matrix stack available to you. You use it to transform texture coordi-
nates. Chapter 8, “Texture Mapping: The Basics,” examines texture mapping and texture coordi-
nates and contains a discussion of the texture matrix stack.

The stack depth can reach a maximum value that you can retrieve with a call to either

glGet (GL_MAX_MODELVIEW_STACK_DEPTH);

or

g1Get (GL_MAX_PROJECTION STACK DEPTH);

If you exceed the stack depth, you get a GL_STACK_OVERFLOW error; if you try to pop a
matrix value off the stack when there is none, you generate a GL_STACK_UNDERFLOW error.
The stack depth is implementation dependent. For the Microsoft software implementa-
tion, the values are 32 for the modelview and 2 for the projection stack.

A Nuclear Example

Let’s put to use what we have learned. In the next example, we build a crude, animated
model of an atom. This atom has a single sphere at the center to represent the nucleus
and three electrons in orbit about the atom. We use an orthographic projection, as we
have in all the examples so far in this book.

Our ATOM program uses the GLUT timer callback mechanism (discussed in Chapter 2,
“Using OpenGL”) to redraw the scene about 10 times per second. Each time the
RenderScene function is called, the angle of revolution about the nucleus is incremented.
Also, each electron lies in a different plane. Listing 4.1 shows the RenderScene function
for this example, and the output from the ATOM program is shown in Figure 4.16.
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LISTING 4.1 RenderScene Function from ATOM Sample Program
// Called to draw scene

void RenderScene(void)

{
// Angle of revolution around the nucleus
static GLfloat fElect1 = 0.0f;

// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT);

// Reset the modelview matrix

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

// Translate the whole scene out and into view
// This is the initial viewing transformation
glTranslatef(0.0f, 0.0f, -100.0f);

// Red Nucleus

glColor3ub (255, 0, 0);
glutSolidSphere(10.0f, 15, 15);

// Yellow Electrons
glColor3ub(255,255,0);

// First Electron Orbit

// Save viewing transformation

glPushMatrix();

// Rotate by angle of revolution
glRotatef (fElect1, 0.0f, 1.0f, 0.0f);

// Translate out from origin to orbit distance
glTranslatef(90.0f, 0.0f, 0.0f);

// Draw the electron
glutSolidSphere(6.0f, 15, 15);

// Restore the viewing transformation
glPopMatrix();
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LISTING 4.1 Continued

/| Second Electron Orbit
glPushMatrix();

glRotatef (45.0f, 0.0f, 0.0f, 1.0f);
glRotatef (fElect1, 0.0f, 1.0f, 0.0f);
glTranslatef(-70.0f, 0.0f, 0.0f);
glutSolidSphere(6.0f, 15, 15);
glPopMatrix();

// Third Electron Orbit

glPushMatrix();

glRotatef (360.0f, -45.0f, 0.0f, 0.0f, 1.0f);
glRotatef (fElect1, 0.0f, 1.0f, 0.0f);
glTranslatef(0.0f, 0.0f, 60.0f);
glutSolidSphere(6.0f, 15, 15);
glPopMatrix();

// Increment the angle of revolution
fElect1 += 10.0f;
if (fElect1 > 360.07)

fElectl = 0.0f;

/] Show the image
glutSwapBuffers();

1 OpenGL Atom

FIGURE 4.16 Output from the ATOM sample program.

Let’s examine the code for placing one of the electrons, a couple of lines at a time. The first
line saves the current modelview matrix by pushing the current transformation on the stack:
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/| First Electron Orbit
// Save viewing transformation
glPushMatrix();

Now the coordinate system appears to be rotated around the y-axis by an angle, fElect1:

// Rotate by angle of revolution
glRotatef (fElect1, 0.0f, 1.0f, 0.0f);

The electron is drawn by translating down the newly rotated coordinate system:

// Translate out from origin to orbit distance
glTranslatef(90.0f, 0.0f, 0.0f);

Then the electron is drawn (as a solid sphere), and we restore the modelview matrix by
popping it off the matrix stack:

// Draw the electron
glutSolidSphere(6.0f, 15, 15);

// Restore the viewing transformation
glPopMatrix();

The other electrons are placed similarly.

Using Projections

In our examples so far, we have used the modelview matrix to position our vantage point
of the viewing volume and to place our objects therein. The projection matrix actually
specifies the size and shape of our viewing volume.

Thus far in this book, we have created a simple parallel viewing volume using the function
glortho, setting the near and far, left and right, and top and bottom clipping coordinates.
In OpenGL, when the projection matrix is loaded with the identity matrix, the diagonal
line of 1s specifies that the clipping planes extend from the origin to +1 or -1 in all direc-
tions. The projection matrix by itself does no scaling or perspective adjustments unless
you load a perspective projection matrix.

The next two sample programs, ORTHO and PERSPECT, are not covered in detail from the
standpoint of their source code. These examples use lighting and shading that we haven't
covered yet to help highlight the differences between an orthographic and a perspective
projection. These interactive samples make it much easier for you to see firsthand how the
projection can distort the appearance of an object. If possible, you should run these exam-
ples while reading the next two sections.
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Orthographic Projections

The orthographic projection that we have used for most of this book so far is square on all
sides. The logical width is equal at the front, back, top, bottom, left, and right sides. This
produces a parallel projection, which is useful for drawings of specific objects that do not
have any foreshortening when viewed from a distance. This is good for 2D graphics such
as text, or architectural drawings for which you want to represent the exact dimensions
and measurements onscreen.

Figure 4.17 shows the output from the sample program ORTHO in this chapter’s subdirec-
tory in the source distribution. To produce this hollow, tubelike box, we used an ortho-
graphic projection just as we did for all our previous examples. Figure 4.18 shows the same
box rotated more to the side so you can see how long it actually is.

.- Orthographic: Projection Example H[=] E3

Eile Help

FIGURE 4.17 A hollow square tube shown with an orthographic projection.

.- Drthographic Projection Example M [=]

File  Help

FIGURE 4.18 A side view showing the length of the square tube.
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In Figure 4.19, you're looking directly down the barrel of the tube. Because the tube does
not converge in the distance, this is not an entirely accurate view of how such a tube
appears in real life. To add some perspective, we must use a perspective projection.

- Drthographic Projection Example
Fie Help

FIGURE 4.19 Looking down the barrel of the tube.

Perspective Projections

A perspective projection performs perspective division to shorten and shrink objects that
are farther away from the viewer. The width of the back of the viewing volume does not
have the same measurements as the front of the viewing volume after being projected to
the screen. Thus, an object of the same logical dimensions appears larger at the front of

the viewing volume than if it were drawn at the back of the viewing volume.

The picture in our next example is of a geometric shape called a frustum. A frustum is a
truncated section of a pyramid viewed from the narrow end to the broad end. Figure 4.20
shows the frustum, with the observer in place.

Perspective viewing volume

Observer

4

0 near - T for

FIGURE 4.20 A perspective projection defined by a frustum.
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You can define a frustum with the function glFrustum. Its parameters are the coordinates
and distances between the front and back clipping planes. However, glFrustum is not as
intuitive about setting up your projection to get the desired effects, and is typically used
for more specialized purposes (for example, stereo, tiles, asymmetric view volumes). The
utility function gluPerspective is easier to use and somewhat more intuitive for most
purposes:

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble zNear, GLdouble zFar);

Parameters for the gluPerspective function are a field-of-view angle in the vertical direc-
tion, the aspect ratio of the width to height, and the distances to the near and far clipping
planes (see Figure 4.21). You find the aspect ratio by dividing the width (w) by the height
(h) of the window or viewport.

Observer ( \
4 1

h

fovy

far

near

FIGURE 4.21 The frustum as defined by gluPerspective.

Listing 4.2 shows how we change our orthographic projection from the previous examples
to use a perspective projection. Foreshortening adds realism to our earlier orthographic
projections of the square tube (see Figures 4.22, 4.23, and 4.24). The only substantial
change we made for our typical projection code in Listing 4.2 was substituting the call to
gluOrtho2D with gluPerspective.

.. Perspective Projection Example
Fil= Help

FIGURE 4.22 The square tube with a perspective projection.
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.. Perspective Projection Example
Fie Help

FIGURE 4.23 A side view with foreshortening.

.. Perspective Projection Example
Fie Help

FIGURE 4.24 Looking down the barrel of the tube with perspective added.

LISTING 4.2 Setting Up the Perspective Projection for the PERSPECT Sample Program

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)

{
GLfloat fAspect;

/! Prevent a divide by zero
if(h == 0)
h =1;

// Set viewport to window dimensions
glviewport(@, @, w, h);
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LISTING 4.2 Continued
fAspect = (GLfloat)w/(GLfloat)h;

// Reset coordinate system
glMatrixMode (GL_PROJECTION);
glLoadIdentity();

/] Produce the perspective projection
gluPerspective(60.0f, fAspect, 1.0, 400.0);

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

}

We made the same changes to the ATOM example in ATOM2 to add perspective. Run the
two side by side, and you see how the electrons appear to be smaller as they swing far
away behind the nucleus.

A Far-Out Example

For a more complete example showing modelview manipulation and perspective projec-
tions, we have modeled the sun and the earth/moon system in revolution in the SOLAR
sample program. This is a classic example of nested transformations with objects being
transformed relative to one another using the matrix stack. We have enabled some light-
ing and shading for drama so that you can more easily see the effects of our operations.
You'll learn about shading and lighting in the next two chapters.

In our model, the earth moves around the sun, and the moon revolves around the earth.

A light source is placed at the center of the sun, which is drawn without lighting to make
it appear to be the glowing light source. This powerful example shows how easily you can
produce sophisticated effects with OpenGL.

Listing 4.3 shows the code that sets up the projection and the rendering code that keeps
the system in motion. A timer elsewhere in the program triggers a window redraw 10
times a second to keep the RenderScene function in action. Notice in Figures 4.25 and
4.26 that when the earth appears larger, it’s on the near side of the sun; on the far side, it
appears smaller.

LISTING 4.3 Code That Produces the Sun/Earth/Moon System

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)

{
GLfloat fAspect;
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LISTING 4.3 Continued

/] Prevent a divide by zero
if(h == 0)
h =1;

// Set viewport to window dimensions
glviewport (0, @, w, h);

// Calculate aspect ratio of the window
fAspect = (GLfloat)w/(GLfloat)h;

// Set the perspective coordinate system
glMatrixMode (GL_PROJECTION);
glLoadIdentity();

// Field of view of 45 degrees, near and far planes 1.0 and 425
gluPerspective(45.0f, fAspect, 1.0, 425.0);

// Modelview matrix reset
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

}

// Called to draw scene
void RenderScene(void)
{
// Earth and moon angle of revolution
static float fMoonRot = 0.0f;
static float fEarthRot = 0.0f;

// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT);

// Save the matrix state and do the rotations
glMatrixMode (GL_MODELVIEW) ;
glPushMatrix();

// Translate the whole scene out and into view
glTranslatef(0.0f, 0.0f, -300.0f);

/! Set material color, to yellow
/1 Sun
glColor3ub (255, 255, 0);
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LISTING 4.3 Continued

glDisable(GL_LIGHTING);
glutSolidSphere(15.0f, 15, 15);
glEnable (GL_LIGHTING);

// Position the light after we draw the Sun!
glLightfv(GL_LIGHTO,GL_POSITION,lightPos);

// Rotate coordinate system
glRotatef (fEarthRot, 0.0f, 1.0f, 0.0f);

// Draw the earth
glColor3ub(0,0,255);
glTranslatef(105.0f,0.0f,0.0f);
glutSolidSphere(15.0f, 15, 15);

// Rotate from Earth-based coordinates and draw moon
glColor3ub(200,200,200);
glRotatef (fMoonRot,0.0f, 1.0f, 0.0f);
glTranslatef(30.0f, 0.0f, 0.0f);
fMoonRot+= 15.0f;
if (fMoonRot > 360.0f)

fMoonRot = 0.0f;

glutSolidSphere(6.0f, 15, 15);

/| Restore the matrix state
glPopMatrix(); // Modelview matrix

// Step Earth orbit 5 degrees

fEarthRot += 5.0f;

if (FEarthRot > 360.0f)
fEarthRot = 0.0f;

// Show the image
glutSwapBuffers();
}
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.. Earth/Maon/Sun System (O] x]

FIGURE 4.25 The sun/earth/moon system with the earth on the near side.

.. Earth/Moon/Sun System =

FIGURE 4.26 The sun/earth/moon system with the earth on the far side.

Advanced Matrix Manipulation

These higher-level “canned” transformations (for rotation, scaling, and translation) are
great for many simple transformation problems. Real power and flexibility, however, are
afforded to those who take the time to understand using matrices directly. Doing so is not
as hard as it sounds, but first you need to understand the magic behind those 16 numbers
that make up a 4x4 transformation matrix.

OpenGL represents a 4x4 matrix not as a two-dimensional array of floating-point values,
but as a single array of 16 floating-point values. This approach is different from many
math libraries, which do take the two-dimensional array approach. For example, OpenGL
prefers the first of these two examples:

GLfloat matrix[16]; // Nice OpenGL friendly matrix
GLfloat matrix[4][4]; // Popular, but not as efficient for OpenGL

OpenGL can use the second variation, but the first is a more efficient representation. The
reason for this will become clear in a moment. These 16 elements represent the 4x4
matrix, as shown in Figure 4.27. When the array elements traverse down the matrix
columns one by one, we call this column-major matrix ordering. In memory, the 4x4
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approach of the two-dimensional array (the second option in the preceding code) is laid
out in a row-major order. In math terms, the two orientations are the transpose of one
another.

Gop Q4 Qg Q12
ay a5 Q9 g3
a G Q10 14
az dzy ap s

FIGURE 4.27 Column-major matrix ordering.

The real magic lies in the fact that these 16 values represent a particular position in space
and an orientation of the three axes with respect to the eye coordinate system (remember
that fixed, unchanging coordinate system we talked about earlier). Interpreting these
numbers is not hard at all. The four columns each represent a four-element vector. To keep
things simple for this book, we focus our attention on just the first three elements of these
vectors. The fourth column vector contains the x, y, and z values of the transformed coor-
dinate system’s origin. When you call glTranslate on the identity matrix, all it does is put
your values for X, y, and z in the 12th, 13th, and 14th position of the matrix.

The first three elements of the first three columns are just directional vectors that repre-
sent the orientation (vectors here are used to represent a direction) of the x-, y-, and z-axes
in space. For most purposes, these three vectors are always at 90° angles from each other,
and are usually each of unit length (unless you are also applying a scale or shear). The
mathematical term for this (in case you want to impress your friends) is orthonormal when
the vectors are unit length, and orthogonal when they are not. Figure 4.28 shows the 4x4
transformation matrix with the column vectors highlighted. Notice that the last row of
the matrix is all Os with the exception of the very last element, which is 1.

vV ovY
XXYXZXTX
Yy Yy Iy Ty
X, Y, L T,
000 0 1

FIGURE 4.28 How a 4x4 matrix represents a position and orientation in 3D space.
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The most amazing thing is that if you have a 4x4 matrix that contains the position and
orientation of a different coordinate system, and you multiply a vertex (as a column
matrix or vector) by this matrix, the result is a new vertex that has been transformed to
the new coordinate system. This means that any position in space and any desired orien-
tation can be uniquely defined by a 4x4 matrix, and if you multiply all of an object’s
vertices by this matrix, you transform the entire object to the given location and orienta-
tion in space!

HARDWARE TRANSFORMATIONS

Most OpenGL implementations have what is called hardware transform and lighting. This means
that the transformation matrix multiplies many thousands of vertices on special graphics hard-
ware that performs this operation very, very fast. (Intel and AMD can eat their hearts out!)
However, functions such as glRotate and glScale, which create transformation matrices for you,
are usually not hardware accelerated because typically they represent an exceedingly small frac-
tion of the enormous amount of matrix math that must be done to draw a scene.

Loading a Matrix

After you have a handle on the way the 4x4 matrix represents a given location and orien-
tation, you may to want to compose and load your own transformation matrices. You can
load an arbitrary column-major matrix into the projection, modelview, or texture matrix
stacks by using the following function:

glLoadMatrixf (GLfloat m);

or
glLoadMatrixd(GLfloat m);
Most OpenGL implementations store and manipulate pipeline data as floats and not

doubles; consequently, using the second variation may incur some performance penalty
because 16 double-precision numbers must be converted into single-precision floats.

The following code shows an array being loaded with the identity matrix and then being
loaded into the modelview matrix stack. This example is equivalent to calling
glLoadIdentity using the higher-level functions:

// Load an identity matrix

GLfloat m[] = { 1.0f, 0.0f, 0.0f, 0.0f, // X Column
0.0f, 1.0f, 0.0f, 0.0f, // Y Column
0.0f, 0.0f, 1.0f, 0.0f, /1 Z Column
0.0f, 0.0f, 0.0f, 1.0f }; /] Translation

glMatrixMode (GL_MODELVIEW);
glLoadMatrixf(m);
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Although OpenGL implementations use column-major ordering, OpenGL (versions 1.2
and later) does provide functions to load a matrix in row-major ordering. The following
two functions perform the transpose operation on the matrix when loading it on the
matrix stack:

void glLoadTransposeMatrixf (Glfloat* m);

and

void glLoadTransposeMatrixd(Gldouble* m);

Performing Your Own Transformations

Let’s look at an example now that shows how to create and load your own transformation
matrix—the hard way! In the sample program TRANSFORM, we draw a torus (a doughnut-
shaped object) in front of our viewing location and make it rotate in place. The function
DrawTorus does the necessary math to generate the torus’s geometry and takes as an argu-
ment a 4x4 transformation matrix to be applied to the vertices. We create the matrix and
apply the transformation manually to each vertex to transform the torus. Let’s start with
the main rendering function in Listing 4.4.

LISTING 4.4 Code to Set Up the Transformation Matrix While Drawing

void RenderScene(void)

{

M3DMatrix44f  transformationMatrix; // Storage for rotation matrix
static GLfloat yRot = 0.0f,; // Rotation angle for animation
yRot += 0.5f;

// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT |, GL_DEPTH BUFFER BIT);

// Build a rotation matrix

m3dRotationMatrix44 (transformationMatrix, m3dDegToRad(yRot),
0.0f, 1.0f, 0.0f);

transformationMatrix[12] = 0.0f;

transformationMatrix[13] 0.0f;

transformationMatrix[14] -2.5f;

DrawTorus(transformationMatrix);

// Do the buffer Swap
glutSwapBuffers();
}
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We begin by declaring storage for the matrix here:

M3DMatrix44f  transformationMatrix; // Storage for rotation matrix

The data type M3DMatrix44f is of our own design and is simply a typedef declared in
math3d.h for a floating-point array 16 elements long:

typedef GLfloat M3DMatrix44f[16]; // A column major 4x4 matrix of type GLfloat

The animation in this sample works by continually incrementing the variable yRot that
represents the rotation around the y-axis. After clearing the color and depth buffer, we
compose our transformation matrix as follows:

m3dRotationMatrix44 (transformationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);
transformationMatrix[12] 0.0f;
transformationMatrix[13] = 0.0f;
transformationMatrix[14] -2.5F;

Here, the first line contains a call to another math3d function, m3dRotationMatrix44. This
function takes a rotation angle in radians (for more efficient calculations) and three argu-
ments specifying a vector around which you want the rotation to occur. The macro func-
tion m3dDegToRad does an in-place conversion from degrees to radians. With the exception
of the angle being in radians instead of degrees, this is almost exactly like the OpenGL
function glRotate. The first argument is a matrix into which you want to store the result-
ing rotation matrix.

As you saw in Figure 4.28, the last column of the matrix represents the translation of the
transformation. Rather than do a full matrix multiplication, we can simply inject the
desired translation directly into the matrix. Now the resulting matrix represents both a
translation in space (a location to place the torus) and then a rotation of the object’s coor-
dinate system applied at that location.

Next, we pass this transformation matrix to the DrawTorus function. We do not need to
list the entire function to create a torus here, but focus your attention to these lines:

objectVertex[0] = x0*r;

objectVertex[1] = y0*r;

objectVertex[2] = z;

m3dTransformVector3(transformedVertex, objectVertex, mTransform);
glVertex3fv(transformedVertex);

The three components of the vertex are loaded into an array and passed to the function
m3dTransformvVector3. This math3d function performs the multiplication of the vertex
against the matrix and returns the transformed vertex in the array transformedvertex. We
then use the vector version of glvertex and send the vertex data down to OpenGL. The
result is a spinning torus, as shown in Figure 4.29.
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I Manual Transformations Demo

FIGURE 4.29 The spinning torus, doing our own transformations.

It is important that you see at least once the real mechanics of how vertices are trans-
formed by a matrix using such a drawn-out example. As you progress as an OpenGL
programmer, you will find that the need to transform points manually will arise for tasks
that are not specifically related to rendering operations, such as collision detection
(bumping into objects), frustum culling (throwing away and not drawing things you can’t
see), and some other special effects algorithms.

For geometry processing, however, the TRANSFORM sample program is very inefficient,
despite its instructional value. We are letting the CPU do all the matrix math instead of
letting OpenGL's dedicated hardware do the work for us (which is much faster than the
CPU!). In addition, because OpenGL has the modelview matrix, all our transformed points
are being multiplied yet again by the identity matrix. This does not change the value of
our transformed vertices, but it is still a wasted operation.

For the sake of completeness, we provide an improved example, TRANSFORMGL, that
instead uses our transformation matrix but hands it over to OpenGL using the function
glLoadMatrixf. We eliminate our DrawTorus function with its dedicated transformation
code and use a more general-purpose torus drawing function, gltDrawTorus, from the
glTools library. The relevant code is shown in Listing 4.5.
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LISTING 4.5 Loading the Transformation Matrix Directly into OpenGL

// Build a rotation matrix
m3dRotationMatrix44 (transformationMatrix, m3dDegToRad(yRot),
0.0f, 1.0f, 0.0f);
transformationMatrix[12] = 0.0f;
transformationMatrix[13] = 0.0f;
transformationMatrix[14] -2.5f;

glLoadMatrixf (transformationMatrix);

gltDrawTorus(0.35, 0.15, 40, 20);

Adding Transformations Together

In the preceding example, we simply constructed a single transformation matrix and
loaded it into the modelview matrix. This technique had the effect of transforming any
and all geometry that followed by that matrix before being rendered. As you've seen in
the previous examples, we often add one transformation to another. For example, we used
glTranslate followed by glRotate to first translate and then rotate an object before being
drawn. Behind the scenes, when you call multiple transformation functions, OpenGL
performs a matrix multiplication between the existing transformation matrix and the one
you are adding or appending to it. For example, in the TRANSFORMGL example, we
might replace the code in Listing 4.5 with something like the following:

glPushMatrix();
glTranslatef(0.0f, 0.0f, -2.5f);
glRotatef(yRot, 0.0f, 1.0f, 0.0f);

gltDrawTorus(0.35, 0.15, 40, 20);
glPopMatrix();

Using this approach has the effect of saving the current identity matrix, multiplying the
translation matrix, multiplying the rotation matrix, and then transforming the torus by
the result. You can do these multiplications yourself by using the math3d function
m3dMatrixMultiply, as shown here:

M3DMatrix44f rotationMatrix, translationMatrix, transformationMatrix;
m3dRotationMatrix44(rotationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);
m3dTranslationMatrix44(translationMatrix, 0.0f, 0.0f, -2.5f);

m3dMatrixMultiply44 (transformationMatrix, translationMatrix, rotationMatrix);
glLoadMatrixf (transformationMatrix);

gltDrawTorus(0.35f, 0.15f, 40, 20);
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OpenGL also has its own matrix multiplication function, glMultMatrix, that takes a
matrix and multiplies it by the currently loaded matrix and stores the result at the top of
the matrix stack. In our final code fragment, we once again show code equivalent to the
preceding, but this time we let OpenGL do the actual multiplication:

M3DMatrix44f rotationMatrix, translationMatrix, transformationMatrix;

glPushMatrix();
m3dRotationMatrix44 (rotationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);
gltTranslationMatrix44(translationMatrix, 0.0f, 0.0f, -2.5f);

glMultMatrixf(translationMatrix);
glMultMatirxf(rotationMatrix);

gltDrawTorus(0.35f, 0.15f, 40, 20);
glPopMatrix();

As you can see, there is considerable flexibility in how you handle model transformations.
Using the OpenGL functions allows you to offload as much as possible to the graphics
hardware. Using your own functions gives you ultimate control over any intermediate
steps. The freedom to mix and match approaches as needed is another reason OpenGL is
an extremely powerful and flexible API for doing 3D graphics.

Moving Around in OpenGL Using Cameras and Actors

To represent a location and orientation of any object in your 3D scene, you can use a
single 4x4 matrix that represents its transform. Working with matrices directly, however,
can still be somewhat awkward, so programmers have always sought ways to represent a
position and orientation in space more succinctly. Fixed objects such as terrain are often
untransformed, and their vertices usually specify exactly where the geometry should be
drawn in space. Objects that move about in the scene are often called actors, paralleling
the idea of actors on a stage.

Actors have their own transformations, and often other actors are transformed not only
with respect to the world coordinate system (eye coordinates), but also with respect to
other actors. Each actor with its own transformation is said to have its own frame of refer-
ence, or local object coordinate system. It is often useful to translate between local and
world coordinate systems and back again for many nonrendering-related geometric tests.

An Actor Frame

A simple and flexible way to represent a frame of reference is to use a data structure (or
class in C++) that contains a position in space, a vector that points forward, and a vector
that points upward. Using these quantities, you can uniquely identify a given position and
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orientation in space. The following class, GLFrame, makes use of the math3d library, and
stores this information all in one place:

class GLFrame
{
protected:
M3DVector3f vLocation;
M3DVector3f vUp;
M3DVector3f vForward;

public:

3
Using a frame of reference such as this to represent an object’s position and orientation is
a very powerful mechanism. To begin with, you can use this data directly to create a 4x4
transformation matrix. Referring to Figure 4.28, the up vector becomes the y column of
the matrix, whereas the forward-looking vector becomes the z column vector and the posi-
tion is the translation column vector. This leaves only the x column vector, and because
we know that all three axes are unit length and perpendicular to one another (orthonor-

mal), we can calculate the x column vector by performing the cross product of the y and z
vectors. Listing 4.6 shows the GLFrame method GetMatrix, which does exactly that.

LISTING 4.6 Code to Derive a 4x4 Matrix from a Frame

LHETEETEEREEE i ri e i n i r i i n i i ri i rrrl g

// Derives a 4x4 transformation matrix from a frame of reference

void GLFrame::GetMatrix (M3DTMatrix44f mMatrix, bool bRotationOnly = false)
{
// Calculate the right side (x) vector, drop it right into the matrix
M3DVector3f vXAxis;
m3dCrossProduct (vXAxis, vUp, vForward);

// Set matrix column does not fill in the fourth value...
m3dSetMatrixColumn44 (matrix, vXAxis, 0);
matrix[3] = 0.0f;

// Y Column
m3dSetMatrixColumn44 (matrix, vUp, 1);
matrix[7] = 0.0f;

// Z Column
m3dSetMatrixColumn44 (matrix, vForward, 2);
matrix[11] = 0.0f;
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LISTING 4.6 Continued

// Translation (already done)
if (bRotationOnly == true)

{
matrix[12] = 0.0f;
matrix[13] = 0.0f;
matrix[14] = 0.0f;
}

else

m3dSetMatrixColumn44(matrix, vOrigin, 3);

matrix[15] = 1.0f;
I3

Applying an actor’s transform is as simple as calling glMultMatrixf with the resulting
matrix.

Euler Angles: “Use the Frame, Luke!”

Many graphics programming books recommend an even simpler mechanism for storing
an object’s position and orientation: Euler angles. Euler angles require less space because
you essentially store an object’s position and then just three angles—representing a rota-
tion around the x-, y-, and z-axes—sometimes called yaw, pitch, and roll. A structure like
this might represent an airplane’s location and orientation:

struct EULER {
M3DVector3f vPosition;

GLfloat fRoll;
GLfloat fPitch;
GLfloat fYaw;
N

Euler angles are a bit slippery and are sometimes called “oily angles” by some in the indus-
try. The first problem is that a given position and orientation can be represented by more
than one set of Euler angles. Having multiple sets of angles can lead to problems as you
try to figure out how to smoothly move from one orientation to another. Occasionally, a
second problem called “gimbal lock” comes up; this problem makes it impossible to
achieve a rotation around one of the axes. Lastly, Euler angles make it more tedious to
calculate new coordinates for simply moving forward along your line of sight or trying to
figure out new Euler angles if you want to rotate around one of your own local axes.

Some literature today tries to solve the problems of Euler angles by using a mathematical
tool called quaternions. Quaternions, which can be difficult to understand, really don’t
solve any problems with Euler angles that you can’t solve on your own by just using the
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frame of reference method covered previously. We already promised that this book would
not get too heavy on the math, so we will not debate the merits of each system here. But
we should say that the quaternion versus linear algebra (matrix) debate is more than 100
years old and by far predates their application to computer graphics!

Camera Management

There is really no such thing as a camera transformation in OpenGL. We use the camera as
a useful metaphor to help us manage our point of view in some sort of immersive 3D
environment. If we envision a camera as an object that has some position in space and
some given orientation, we find that our current frame of reference system can represent
both actors and our camera in a 3D environment.

To apply a camera transformation, we take the camera’s actor transform and flip it so that
moving the camera backward is equivalent to moving the whole world forward. Similarly,
turning to the left is equivalent to rotating the whole world to the right. To render a given
scene, we usually take the approach outlined in Figure 4.30.

> Save Identity Matrix

Apply camera transform
Draw stuff that doesn’t move
Draw moving stuff (Actors)

Save camera transform

Loop

Apply actor transform

Loop

Draw actor geometry

Restore camera transform

L— Restore identity matrix

FIGURE 4.30 Typical rendering loop for a 3D environment.

The OpenGL utility library contains a function that uses the same data we stored in our
frame structure to create our camera transformation:

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz,
GLdouble upx, GLdouble upy, GLdouble upz);

This function takes the position of the eye point, a point directly in front of the eye point,
and the direction of the up vector. The GLFrame class also contains a shortcut function that
performs the equivalent action using its internal frame of reference:

void GLFrame::ApplyCameraTransform(bool bRotOnly = false);
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The GLFrame class has the added flexibility that you can apply the camera’s rotation trans-
form only. The C++ default parameter shown here allows you to ignore this unless you
have some special need for this feature.

Bringing It All Together

Now let’s work through one final example for this chapter to bring together all the
concepts we have discussed so far. In the sample program SPHEREWORLD, we create a
world populated by a number of spheres (Sphere World) placed at random locations on
the ground. Each sphere is represented by an individual GLFrame class instance for its loca-
tion and orientation. We also use the frame to represent a camera that can be moved
about Sphere World using the keyboard arrow keys. In the middle of Sphere World, we use
the simpler high-level transformation routines to draw a spinning torus with another
sphere in orbit around it.

This example combines all the ideas we have discussed thus far and shows them working
together. In addition to the main source file sphereworld.cpp, the project also includes
the gltools.cpp, math3d.cpp, and glframe.h modules from the \shared folder. We do not
provide the entire listing here because it uses the same GLUT framework as all the other
samples, but the important functions are shown in Listing 4.7.

LISTING 4.7 Main Functions for the SPHEREWORLD Sample

#define NUM_SPHERES 50
GLFrame spheres[NUM_SPHERES] ;
GLFrame frameCamera;

TEEEECEEETEEE R i i e i i irrn gy
/! This function does any needed initialization on the rendering
/] context.
void SetupRC()

{

int iSphere;

// Bluish background
glClearColor(0.0f, 0.0f, .50f, 1.0f );

// Draw everything as wire frame
glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

// Randomly place the sphere inhabitants

for(iSphere = 0; iSphere < NUM_SPHERES; iSphere++)
{
// Pick a random location between -20 and 20 at .1 increments
float x ((float) ((rand() % 400) - 200) * 0.1f);
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LISTING 4.7 Continued

float z = (float)((rand() % 400) - 200) * 0.1f;
spheres[iSphere].SetOrigin(x, 0.0f, z);
}

LEETEETEEE T n i i n i i rririrrrt
// Draw a gridded ground
void DrawGround(void)

{

GLfloat fExtent = 20.0f;

GLfloat fStep = 1.0f;

GLfloat y = -0.4f;

GLint ilLine;

glBegin(GL_LINES);
for(iLine = -fExtent; ilLine <= fExtent; iLine += fStep)
{
glvertex3f(iLine, y, fExtent); // Draw Z lines
glvertex3f(iLine, y, -fExtent);

glVertex3f(fExtent, y, ilLine);
glVertex3f(-fExtent, y, ilLine);
}

glEnd();
}

// Called to draw scene
void RenderScene(void)
{
int i;
static GLfloat yRot = 0.0f; // Rotation angle for animation
yRot += 0.5f;

// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT);

glPushMatrix();
frameCamera.ApplyCameraTransform();
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LISTING 4.7 Continued

// Draw the ground
DrawGround () ;

// Draw the randomly located spheres
for(i = @0; i < NUM_SPHERES; i++)
{
glPushMatrix();
spheres[i].ApplyActorTransform();
glutSolidSphere(0.1f, 13, 26);
glPopMatrix();
}

glPushMatrix();
glTranslatef(0.0f, 0.0f, -2.5f);

glPushMatrix();
glRotatef(-yRot * 2.0f, 0.0f, 1.0f, 0.0f);
glTranslatef(1.0f, 0.0f, 0.0f);
glutSolidSphere(0.1f, 13, 26);
glPopMatrix();

glRotatef(yRot, 0.0f, 1.0f, 0.0f);
gltDrawTorus(0.35, 0.15, 40, 20);
glPopMatrix();
glPopMatrix();

// Do the buffer Swap
glutSwapBuffers();

}

// Respond to arrow keys by moving the camera frame of reference
void SpecialKeys(int key, int x, int y)
{
if (key == GLUT_KEY_UP)
frameCamera.MoveForward(0.1f);

if (key == GLUT_KEY_DOWN)
frameCamera.MoveForward(-0.1f);

if (key == GLUT_KEY_LEFT)
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LISTING 4.7 Continued
frameCamera.RotateLocalY(0.1f);

if (key == GLUT_KEY_RIGHT)
frameCamera.RotateLocalY(-0.1f);

// Refresh the Window
glutPostRedisplay();
}

The first few lines contain a macro to define the number of spherical inhabitants as 50.
Then we declare an array of frames and another frame to represent the camera:

#define NUM_SPHERES 50
GLFrame spheres[NUM_SPHERES];
GLFrame frameCamera;

The GLFrame class has a constructor that initializes the camera or actor as being at the
origin and pointing down the negative z-axis (the OpenGL default viewing orientation).

The SetupRC function contains a loop that initializes the array of sphere frames and selects
a random x and z location for their positions:

// Randomly place the sphere inhabitants

for(iSphere = 0; iSphere < NUM_SPHERES; iSphere++)
{
// Pick a random location between -20 and 20 at .1 increments
float x = ((float)((rand() % 400) - 200) * 0.1f);
float z (float) ((rand() % 400) - 200) * 0.1f;
spheres[iSphere].SetOrigin(x, 0.0f, z);
}

The DrawGround function then draws the ground as a series of crisscross grids using a series
of GL_LINE segments:

LHETEETEEET i ri i n i rririrrrr i
// Draw a gridded ground
void DrawGround(void)

{

GLfloat fExtent = 20.0f;

GLfloat fStep = 1.0f;

GLfloat y = -0.4f;

GLint iline;
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glBegin(GL_LINES);

for(iLine = -fExtent; ilLine <= fExtent; iLine += fStep)
{
glVertex3f(iLine, y, fExtent); /] Draw Z lines

glVertex3f(iLine, y, -fExtent);

glVertex3f(fExtent, y, ilLine);
glVertex3f(-fExtent, y, ilLine);
}

glEnd();
}

The RenderScene function draws the world from our point of view. Note that we first save
the identity matrix and then apply the camera transformation using the GLFrame member
function ApplyCameraTransform. The ground is static and is transformed by the camera
only to appear that you are moving over it:

glPushMatrix();
frameCamera.ApplyCameraTransform();

// Draw the ground
DrawGround() ;

Then we draw each of the randomly located spheres. The ApplyActorTransform member
function creates a transformation matrix from the frame of reference and multiplies it by
the current matrix (which is the camera matrix). Each sphere must have its own transform
relative to the camera, so the camera is saved each time with a call to glPushMatrix and
restored again with glPopMatrix to get ready for the next sphere or transformation:

// Draw the randomly located spheres
for(i = @0; i < NUM_SPHERES; i++)
{
glPushMatrix();
spheres[i].ApplyActorTransform();
glutSolidSphere(0.1f, 13, 26);
glPopMatrix();
}

Now for some fancy footwork! First, we move the coordinate system a little farther down
the z-axis so that we can see what we are going to draw next. We save this location and
then perform a rotation, followed by a translation and the drawing of a sphere. This effect
makes the sphere appear to revolve around the origin in front of us. We then restore our
transformation matrix, but only so that the location of the origin is z = -2.5. Then another
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rotation is performed before the torus is drawn. This has the effect of making a torus that
spins in place:

glPushMatrix();
glTranslatef(0.0f, 0.0f, -2.5f);

glPushMatrix();
glRotatef(-yRot * 2.0f, 0.0f, 1.0f, 0.0f);
glTranslatef(1.0f, 0.0f, 0.0f);
glutSolidSphere(0.1f, 13, 26);
glPopMatrix();

glRotatef (yRot, 0.0f, 1.0f, 0.0f);
gltDrawTorus(0.35, 0.15, 40, 20);
glPopMatrix();
glPopMatrix();

The total effect is that we see a grid on the ground with many spheres scattered about at
random locations. Out in front, we see a spinning torus, with a sphere moving rapidly in
orbit around it. Figure 4.31 shows the result.

__1 OpenGL SphereWorld Demo

FIGURE 4.31 The output from the SPHEREWORLD program.
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Finally, the SpecialKeys function is called whenever one of the arrow keys is pressed. The
up- and down-arrow keys call the glTools function gltMoveFrameForward, which simply
moves the frame forward along its line of sight. The gltRotateFrameLocalY function
rotates a frame of reference around its local y-axis (regardless of orientation) in response to
the left- and right-arrow keys:

void SpecialKeys(int key, int x, int vy)

{
if(key == GLUT_KEY_UP)
frameCamera.MoveForward(0.1f);

if (key == GLUT_KEY_DOWN)
frameCamera.MoveForward(-0.1f);

if (key == GLUT_KEY_LEFT)
frameCamera.RotateLocalY(0.1f);

if(key == GLUT_KEY_RIGHT)
frameCamera.RotateLocalY(-0.1f);

// Refresh the Window
glutPostRedisplay();
}

A NOTE ON KEYBOARD POLLING

Moving the camera in response to keystroke messages can sometimes result in less than the
smoothest possible animation. The reason is that the keyboard repeat rate is usually no more
than about 20 times per second. For best results, you should render at least 30 frames per
second (with 60 being more optimal) and poll the keyboard once for each frame of animation.
Doing this with a portability library like GLUT is somewhat tricky, but in the OS-specific chapters
later in this book, we will cover ways to achieve the smoothest possible animation and methods
to best create time-based animation instead of the frame-based animation (moving by a fixed
amount each time the scene is redrawn) done here.

Summary

In this chapter, you learned concepts crucial to using OpenGL for creation of 3D scenes.
Even if you can’t juggle matrices in your head, you now know what matrices are and how
they are used to perform the various transformations. You also learned how to manipulate
the modelview and projection matrix stacks to place your objects in the scene and to
determine how they are viewed onscreen.
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We also showed you the functions needed to perform your own matrix magic, if you are
so inclined. These functions allow you to create your own matrices and load them onto
the matrix stack or multiply them by the current matrix first. The chapter also introduced
the powerful concept of a frame of reference, and you saw how easy it is to manipulate
frames and convert them into transformations.

Finally, we began to make more use of the glTools and math3d libraries that accompany
this book. These libraries are written entirely in portable C++ and provide you with a
handy toolkit of miscellaneous math and helper routines that can be used along with
OpenGL.
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Color, Materials, and Lighting:
The Basics

by Richard S. Wright Jr.

WHAT YOU'LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Specify a color in terms of RGB components glColor

Set the shading model glShadeModel

Set the lighting model glLightModel

Set lighting parameters glLight

Set material reflective properties glColorMaterial/glMaterial
Use surface normals glNormal

This is the chapter where 3D graphics really start to look interesting (unless you really dig
wireframe models!), and it only gets better from here. You've been learning OpenGL from
the ground up—how to put programs together and then how to assemble objects from
primitives and manipulate them in 3D space. Until now, we’ve been laying the founda-
tion, and you still can’t tell what the house is going to look like! To recoin a phrase,
“Where’s the beef?”

To put it succinctly, the beef starts here. For most of the rest of this book, science takes a
back seat and magic rules. According to Arthur C. Clarke, “Any sufficiently advanced tech-
nology is indistinguishable from magic.” Of course, there is no real magic involved in
color and lighting, but it sure can seem that way at times. If you want to dig into the
“sufficiently advanced technology” (mathematics), see Appendix A, “Further
Reading/References.”

Another name for this chapter might be “Adding Realism to Your Scenes.” You see, there is
more to an object’s color in the real world than just what color we might tell OpenGL to
make it. In addition to having a color, objects can appear shiny or dull or can even glow
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with their own light. An object’s apparent color varies with bright or dim lighting, and
even the color of the light hitting an object makes a difference. An illuminated object can
even be shaded across its surface when lit or viewed from an angle.

What Is Color?

First, let’s talk a little bit about color itself. How is a color made in nature, and how do we
see colors? Understanding color theory and how the human eye sees a color scene will
lend some insight into how you create a color programmatically. (If color theory is old hat
to you, you can probably skip this section.)

Light as a Wave

Color is simply a wavelength of light that is visible to the human eye. If you had any
physics classes in school, you might remember something about light being both a wave
and a particle. It is modeled as a wave that travels through space much like a ripple through
a pond, and it is modeled as a particle, such as a raindrop falling to the ground. If this
concept seems confusing, you know why most people don'’t study quantum mechanics!

The light you see from nearly any given source is actually a mixture of many different
kinds of light. These kinds of light are identified by their wavelengths. The wavelength of
light is measured as the distance between the peaks of the light wave, as illustrated in

Figure 5.1.

54— Wavelength——=
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FIGURE 5.1 How a wavelength of light is measured.

Wavelengths of visible light range from 390 nanometers (one billionth of a meter) for
violet light to 720 nanometers for red light; this range is commonly called the visible spec-
trum. You've undoubtedly heard the terms ultraviolet and infrared; they represent light not
visible to the naked eye, lying beyond the ends of the spectrum. You will recognize the
spectrum as containing all the colors of the rainbow (see Figure 5.2).
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FIGURE 5.2 The spectrum of visible light.



What Is Color?

Light as a Particle

“Okay, Mr. Smart Brain,” you might ask. “If color is a wavelength of light and the only
visible light is in this ‘rainbow’ thing, where is the brown for my Fig Newtons or the black
for my coffee or even the white of this page?” We begin answering that question by telling
you that black is not a color, nor is white. Actually, black is the absence of color, and
white is an even combination of all the colors at once. That is, a white object reflects all
wavelengths of colors evenly, and a black object absorbs all wavelengths evenly.

As for the brown of those fig bars and the many other colors that you see, they are indeed
colors. Actually, at the physical level, they are composite colors. They are made of varying
amounts of the “pure” colors found in the spectrum. To understand how this concept
works, think of light as a particle. Any given object when illuminated by a light source is
struck by “billions and billions” (my apologies to the late Carl Sagan) of photons, or tiny
light particles. Remembering our physics mumbo jumbo, each of these photons is also a
wave, which has a wavelength and thus a specific color in the spectrum.

All physical objects consist of atoms. The reflection of photons from an object depends on
the kinds of atoms, the number of each kind, and the arrangement of atoms (and their
electrons) in the object. Some photons are reflected and some are absorbed (the absorbed
photons are usually converted to heat), and any given material or mixture of materials
(such as your fig bar) reflects more of some wavelengths than others. Figure 5.3 illustrates
this principle.
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FIGURE 5.3 An object reflects some photons and absorbs others.
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Your Personal Photon Detector

The reflected light from your fig bar, when seen by your eye, is interpreted as color. The
billions of photons enter your eye and are focused onto the back of your eye, where your
retina acts as sort of a photographic plate. The retina’s millions of cone cells are excited
when struck by the photons, and this causes neural energy to travel to your brain, which
interprets the information as light and color. The more photons that strike the cone cells,
the more excited they get. This level of excitation is interpreted by your brain as the
brightness of the light, which makes sense; the brighter the light, the more photons there
are to strike the cone cells.

The eye has three kinds of cone cells. All of them respond to photons, but each kind
responds most to a particular wavelength. One is more excited by photons that have
reddish wavelengths; one, by green wavelengths; and one, by blue wavelengths. Thus,
light that is composed mostly of red wavelengths excites red-sensitive cone cells more
than the other cells, and your brain receives the signal that the light you are seeing is
mostly reddish. You do the math: A combination of different wavelengths of various
intensities will, of course, yield a mix of colors. All wavelengths equally represented thus
are perceived as white, and no light of any wavelength is black.

You can see that any “color” that your eye perceives actually consists of light all over the
visible spectrum. The “hardware” in your eye detects what it sees in terms of the relative
concentrations and strengths of red, green, and blue light. Figure 5.4 shows how brown is
composed of a photon mix of 60% red photons, 40% green photons, and 10% blue
photons.

Eye lens Brown light

Retina /
/ RS
o ~® <™
R G

R G
-~ @ @& < ® <@

6 red, 4 green, and 1 blue photon

FIGURE 5.4 How the “color” brown is perceived by the eye.

The Computer as a Photon Generator

Now that you understand how the human eye discerns colors, it makes sense that when
you want to generate a color with a computer, you do so by specifying separate intensities
for the red, green, and blue components of the light. It so happens that color computer
monitors are designed to produce three kinds of light (can you guess which three?), each
with varying degrees of intensity. For years the CRT (Cathode Ray Tube) reigned supreme.
In the back of these computer monitors is an electron gun that shoots electrons at the



PC Color Hardware

back of the screen. This screen contains phosphors that emit red, green, and blue light
when struck by the electrons. The intensity of the light emitted varies with the intensity
of the electron beam. These three color phosphors are packed closely together to make up
a single physical dot on the screen (see Figure 5.5).

A few hold-outs still prefer the CRT technology over LCD (Liquid Crystal Display) for
various reasons, such as higher refresh rate. LCDs work in a similar way by combining
three colors of light, except they are solid state. Each pixel on your LCD screen has a light
behind it and three very small computer-controlled polarized (red, green, and blue) filters.
Basic LCD technology is based on the polarization of light, and blocking that light with
the LCD material electronically. A huge technological achievement to be sure, but it still
all boils down to very crowded tiny dots emitting red, green, and blue light.

Electron gun

Computer screen

Individual screen
elements

Red, green, and
blue phosphors

FIGURE 5.5 How a computer monitor generates colors.

You might recall that in Chapter 2, “Using OpenGL,” we explained how OpenGL defines a
color exactly as intensities of red, green, and blue, with the glColor command.

PC Color Hardware

There once was a time (actually, 1982) when state-of-the-art PC graphics hardware meant
the Hercules graphics card. This card could produce bitmapped images with a resolution of
720348, and crisper text than the original IBM Monochrome Display Adapter (MDA)
developed for the original IBM PC. The drawback was that each pixel had only two states:
on and off. At that time, bitmapped graphics of any kind on a PC were a big deal, and you
could produce some great monochrome graphics—even 3D!
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Actually predating the Hercules card by one year was the Color Graphics Adapter (CGA)
card. Also introduced with the first IBM PC, this card could support resolutions of
320%200 pixels and could place any 4 of 16 colors on the screen at once. A higher resolu-
tion (640x200) with 2 colors was also possible but wasn’t as effective or cost conscious as
the Hercules card. (Color monitors = $$$.) CGA was puny by today’s standards; it was
even outmatched by the graphics capabilities of a $200 Commodore 64 or Atari home
computer at the time. Lacking adequate resolution for business graphics or even modest
modeling, CGA was used primarily for simple PC games or business applications that
could benefit from colored text. Generally, it was hard to make a good business justifica-
tion for this more expensive hardware.

The next big breakthrough for PC graphics came in 1984 when IBM introduced the
Enhanced Graphics Adapter (EGA) card. This one could do more than 25 lines of colored
text in new text modes, and for graphics, it could support 640x350-pixel bitmapped
graphics in 16 colors! Other technical improvements eliminated some flickering problems
of the CGA ancestor and provided for better and smoother animation. Now arcade-style
games, real business graphics, and even simple 3D graphics became not only possible but
even reasonable on the PC. This advance was a giant move beyond CGA, but still PC
graphics were in their infancy.

The last mainstream PC graphics standard set by IBM was the VGA card (which stood for
Video Graphics Array rather than the commonly held Video Graphics Adapter), intro-
duced in 1987. This card was significantly faster than the EGA; it could support 16 colors
at a higher resolution (640x480) and 256 colors at a lower resolution of 320x200. These
256 colors were selected from a palette of more than 16 million possible colors. That’s
when the floodgates opened for PC graphics. Near photo-realistic graphics became possible
on PCs. Ray tracers, 3D games, and photo-editing software began to pop up in the PC
market.

IBM, as well, had a high-end graphics card—the 8514—, introduced in 1987 for its “work-
stations.” This card could do 1,024x768 graphics at 256 colors, and came with a whopping
one megabyte of memory! IBM thought this card would be used only by CAD and scien-
tific applications! But one thing is certain about consumers: They always want more. It
was this short-sightedness that cost IBM its role as standard setter in the PC graphics
market. Other vendors began to ship “Super-VGA” cards that could display higher and
higher resolutions, with more and more colors. First, we saw 800x600, then 1,024x768
and even higher, with first 256 colors, and then 32,000, and 65,000. Today, 32-bit color
cards can display 16 million colors at resolutions far greater than 1,024x768. Even entry-
level Windows PCs sold today can support at least 16 million colors at resolutions of
1,024x768 or more.

All this power makes for some really cool possibilities—photo-realistic 3D graphics, to
name just one. When Microsoft ported OpenGL to the Windows platform, that move
enabled creation of high-end graphics applications for PCs. Combine today’s fast
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processors with 3D-graphics accelerated graphics cards, and you can get the kind of perfor-
mance possible only a few years ago on $100,000 graphics workstations—for the cost of a
Wal-Mart Christmas special! Today’s typical home machines are capable of sophisticated
simulations, games, and more. Already the term virtual reality has become as antiquated as
those old Buck Rogers rocket ships as we begin to take advanced 3D graphics for granted.

PC Display Modes

Microsoft Windows and the Apple Macintosh revolutionized the world of PC graphics in
two respects. First, they created mainstream graphical operating environments that were
adopted by the business world at large and, soon thereafter, the consumer market. Second,
they made PC graphics significantly easier for programmers to do. The graphics hardware
was “virtualized” by display device drivers. Instead of having to write instructions directly
to the video hardware, programmers today can write to a single API (such as OpenGL),
and the operating system handles the specifics of talking to the hardware.

Screen Resolution

Screen resolution for today’s computers can vary from 640x480 pixels up to 1,600x1,200
or more. The lower resolutions of, say, 640x480 are considered adequate for some graphics
display tasks; people with eye problems often run at the lower resolutions, but on a large
monitor or display. You must always take into account the size of the window with the
clipping volume and viewport settings (see Chapter 2). By scaling the size of the drawing
to the size of the window, you can easily account for the various resolutions and window
size combinations that can occur. Well-written graphics applications display the same
approximate image regardless of screen resolution. The user should automatically be able
to see more and sharper details as the resolution increases.

Color Depth

If an increase in screen resolution or in the number of available drawing pixels in turn
increases the detail and sharpness of the image, so too should an increase in available
colors improve the clarity of the resulting image. An image displayed on a computer that
can displa