PRILAX
Propeller” P8X32A Preliminary Datasheet

8-Cog Multiprocessor Microcontrollers

-

S

1.0

1.1

Introduction

PRODUCT OVERVIEW

The Propeller chip is designed to provide high-speed processing for embedded systems while maintaining low current
consumption and a small physical footprint. In addition to being fast, the Propeller chip provides flexibility and power
through its eight processors, called cogs, that can perform simultaneous tasks independently or cooperatively, all while
maintaining a relatively simple architecture that is easy to learn and utilize. Two programming languages are available: Spin
(a high-level object-based language) and Propeller Assembly. Both include custom commands to easily manage the
Propeller chip’s unique features.

Figure 1: Propeller P8X32A Block Diagram

Cog 3

Cog 4

Cog 5

Cog 6

!

b

b

Pin Directions

e

e

Pin Outputs

3

32432

(P31
(P30
(P29

=
N

= == I EIENEE I EIENEE I EIEIEE I EEIEE === =11 =1
I AR AR I R SIS || I A
<||=|| || 3|2 <||=||&8||3|[2 <||=|| &||3||2 <||a|§]|3]|8 <||a|§]13]|8 <||a|l§|13]|8 <||a||§|13]|8 <||a||§
8||8||9|5]|8 8| 8]|9|5]|8 8| 8]|9|5]| 8 8| 8]|9|5]| 8 EIEEE EEEE EEEEE 8||8||©
2|12l gl|3]|2 2\12l|gl|3] |2 2\12l|gl|3]| 2 2\|2|gl|3]| 2 2|12l gl|3]| 2 2\12|gl|3]|2 2||2|gl|3]|2 2l12lg
EEIE S E R . EESEE - E . EE S EE - P20+ 1O [+=(PE)
L = = = = = = (P23 Pins
| | = e
Processor Processor ‘ Processor ‘ Processor Processor ‘ Processor ‘ @ 0
£ - £y 'Y SN (P19
(P18
CPI7
@5
32 Pin Inputs
32 System Counter
\ 4 2 \ 4 A 4 A 4 \ 4 \ 4 \ 4 \ 4 DataBus 4
\ AR v v v A v v v W Address Bus
VDD Power Up Syst
Detector » \4 \4 ystem
(~10ms) Reset Delay RESET, al Counter
|— RESET,]
Bt Out
BOED— “peiccir CLKSEL
e S
SOFTRES 12 MHz / 20 KHz ‘? m
53| Selector [ CLOCK,
Mux)
PLLENA <@  Clock PLL
s B Ao SOFTRES
16) t b < :
Cryeta Vi vvas OSCENA ¢ Configuration
Oscillator OSCMODE ¢ § Register
oscena —pf TGl ahimE CLKSEL -
OSCMODE —2Z»| with Clock PLL) Hub and Cog Interaction
1.2. Stock Codes
Table 1: Propeller Chip Stock Codes
Device o Power SIEMEN | el RE || e Global
Stock # Package Type Pins |Requi ; Clock Oscillator Execution ROM/RAM Cog RAM
oc equirements Speed Speed
P8X32A-D40 40-pin DIP 64 K bytes;
. 32 DC to 80 12 MHz or | 0to 160 MIPS 32768 bytes 512 x 32 bits
P8X32A-Q44 44-pin LQFP 3.3 volts DC . y
CMOS MHz 20 KHz (20 MIPS/cog) | ROM /32768 per cog
P8X32A-M44 | 44-pin QFN bytes RAM

*Approximate; may range from 8 MHz — 20 MHz, or 13 kHz — 33 kHz, respectively.

Parallax, Propeller, Spin, and the Parallax and Propeller logos are trademarks of Parallax, Inc. All other trademarks are the property of their respective holders.

Copyright © Parallax Inc.

Page 1 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Table of Contents

A A aaaaap
o

~o Nourwin

NI
w N

I
5
N

23.2.

10.0
10.1.
10.2.
10.3.

11.0
11.1.
11.2.

Product Overview
Introduction............

Stock Codes.
Key Features
Programming Advantages
Applications..........ccccccevueen.
Programming Platform Support..
Corporate and Community Support..

Connection Diagrams
Pin Assignments ..............
Pin Descriptions
Typical Connection Diagrams
Propeller Clip or Propeller Plug Connection - Recommended
Alternative Serial Port CoNNECtioN.............ccciiiiiiiiiiii

Operating Procedures
Boot-Up Procedure
Run-Time Procedure
1A 101 o[ T o Tot=Y o [N TSP PR PRSP

System Organization
Shared Resources ........
System Clock......
Cogs (processors)..
Hub..............
1/0 Pins.........
System Counter
Locks
Cog Counters
CTRA / CTRB - Control register ..
FRQA / FRQB - Frequency register.
PHSA / PHSB — Phase register
Video Generator...........cccccoereenieennen.
VCFG - Video Configuration Register..
VSCL - Video Scale Register.
WAITVID Command/Instruction ...
CLK Register.

Memory Organization
Main Memory
Main RAM
Main ROM
Character Definitions
Math Function Tables
Cog RAM

Programming Languages
Reserved Word List.............
Words Reserved for Future Use
Math and Logic Operators
Spin Language Summary Table.......
Constants
Propeller Assembly INStrUCHON TabIE .......cc.uiiiiiiii et .21
Assembly Conditions
Assembly Directives
Assembly Effects
Assembly Operators

Propeller DEmMO BOArd SCHEMEALIC ....c...eiiiiiii ettt ekt e e et e e e bttt e e s bt e e sh b e e e ahb e e e eabb e e e aabe e e e beeeeanbeeesanbeeeanbeeeans 24

Electrical Characteristics
Absolute Maximum Ratings.
DC Characteristics............

AC Characteristics

CUrrent CoNSUMPLION Char@CTEIISTICS ..uuiiiuiiiiiiieeiiiie e it e ertee e st ee e st et e s teeesastee e s saeeasteeeassseeeasseeeasseeeasteeessseeeasseesanteeesnneeeensneeennsens
Typical Current Consumption of 8 Cogs vs. Operating Frequency
Typical Current of a Cog vs. Operating Frequency...............

Typical PLL Current vs. VCO Frequency .............
Typical Crystal Drive Current ...........
Cog and /O Pin Relationship...........
Current Profile at Various Startup Conditions

Package Dimensions
P8X32A-D40 (40-pin DIP)
P8X32A-Q44 (44-pin LQFP)
P8X32A-M44 (44-pin QFN)

Manufacturing Information
Reflow Peak Temperature .....
Green/RoHS Compliance

Copyright © Parallax Inc. Page 2 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

1.3. Key Features

The design of the Propeller chip frees application
developers from common complexities of embedded
systems programming. For example:

e FEight processors (cogs) perform simultaneous
processes independently or cooperatively, sharing
common resources through a central hub. The
Propeller application designer has full control over
how and when each cog is employed; there is no
compiler-driven or operating system-driven splitting
of tasks between multiple cogs. This method
empowers the developer to deliver absolutely
deterministic timing, power consumption, and
response to the embedded application.

e Asynchronous events are easier to handle than with
devices that use interrupts. The Propeller has no
need for interrupts; just assign some cogs to
individual, high-bandwidth tasks and keep other
cogs free and unencumbered. The result is a more
responsive application that is easier to maintain.

e A shared System Clock allows each cog to maintain
the same time reference, allowing true synchronous
execution.

1.4. Programming Advantages

e The object-based high-level Spin language is easy to
learn, with special commands that allow developers
to quickly exploit the Propeller chip’s unique and
powerful features.

e Propeller Assembly instructions provide conditional
execution and optional flag and result writing for
each individual instruction. This makes critical,
multi-decision blocks of code more consistently
timed; event handlers are less prone to jitter and
developers spend less time padding, or squeezing,
cycles.

1.5. Applications

The Propeller chip is particularly useful in projects that
can be vastly simplified with simultaneous processing,
including:
e Industrial control systems
e Sensor integration, signal processing, and data
acquisition
Handheld portable human-interface terminals
Motor and actuator control
User interfaces requiring NTSC, PAL, or VGA
output, with PS/2 keyboard and mouse input
e Low-cost video game systems
e Industrial, educational or personal-use robotics
e Wireless video transmission (NTSC or PAL)

1.6.

Programming Platform Support

Parallax Inc. supports the Propeller chip with a variety of
hardware tools and boards:

1.7.

Prop Clip (#32200) and Prop Plug (#3220). These
boards provide convenient programming port
connections, see the Typical Connection Diagrams
on Page 5.

The Propeller Demo Board (Stock #32100) provides
a convenient means to test-drive the Propeller chip's
varied capabilities through a host of device
interfaces on one compact board. The schematic is
provided on page 24. Main features:

o P8X32A-Q44 Propeller Chip

24L.C256-1/ST EEPROM for program storage
Replaceable 5.000 MHz crystal

3.3 Vand 5 V regulators with on/off switch
USB-to-serial interface for programming and
communication

VGA and TV output

Stereo output with 16-ohm headphone amplifier
Electret microphone input

Two PS/2 mouse and keyboard I/O connectors

8 LEDs (share VGA pins)

Pushbutton for reset

Big ground post for scope hookup

1/O pins PO-P7 are free and brought out to header
Breadboard for custom circuits

The Propeller Proto Board (#32212) features a
surface-mount Propeller chip with the necessary
components to achieve a programming interface,
with pads ready for a variety of I/O connectors and
DIP/SIP chips, and a generous through-hole
prototyping area.

The PropSTICK USB (#32210) features a Propeller
chip, EEPROM, 3.3VDC and 5VDC regulators,
reset button, crystal and USB connection on a 0.6”
wide DIP package for easy prototyping on perfboard
and breadboard.

O 0 OO

O 0OO0OO0OO0OO0OO0OO0ODOo

Corporate and Community Support

Parallax provides technical support free of charge.
In the Continental US, call toll free (888) 512-1024;
from outside please call (916) 624-8333. Or, email:
support@parallax.com.

Parallax hosts a moderated public users forum just
for the Propeller: http://forums.parallax.com/forums.
Browse through community-created Propeller
objects and share yours with others via Parallax-
hosted Propeller Object Exchange Library: look for
the link on the http://www.parallax.com/downloads

page.

Copyright © Parallax Inc. Page 3 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

d

2.0 CONNECTION DIAGRAMS 1 40
. . 2 39 (P30
2.1. Pin Assignments 3 38 P29
4 37
o) aflafl=|le|le|e |~
5 36
6 35
OIS SSI
AR 23 7 34
B2 N7 2B (P78 33 P24
» PAALAXE
4 30 (—(CVDD 9 32
@D 5 20 -0 10z 31—
= lE o Lo 11§§§30
K w
8 2 12RO = 29
9 P8X32A 25 3 > |.|__ 08 —
0 AYWWXZZ % AN
PO oroernogan” CP9 D14 X 27 P22
15 N 26
6 2
(a8 ) [a | (s | [a 9 | [a 8 (28| [a B [ | [a
e CP12)17 24 —(CP19)
18 23 P18
LQFP and QFN Packages P14 19 22 P17
DIP Package (_P15 20 21 P16
2.2.  Pin Descriptions
Table 2: Pin Descriptions
Pin Name Direction Description
General purpose I/O Port A. Can source/sink 40 mA each at 3.3 VDC. CMOS level logic with threshold
of =% VDD or 1.6 VDC @ 3.3 VDC.
The pins shown below have a special purpose upon power-up/reset but are general purpose 1/0
PO — P31 110 afterwards.
P28 - 12C SCL connection to optional, external EEPROM.
P29 -12C SDA connection to optional, external EEPROM.
P30 - Serial Tx to host.
P31 - Serial Rx from host.
VDD --- 3.3 volt power (2.7 — 3.6 VDC)
VSS - Ground
Brown Out Enable (active low). Must be connected to either VDD or VSS. If low, RESn becomes a
BOEN weak output (delivering VDD through 5 KQ) for monitoring purposes but can still be driven low to cause
reset. If high, RESn is CMOS input with Schmitt Trigger.
RESH /0 Reset (active low). When low, resets the Propeller chip: all cogs disabled and 1/O pins floating.
Propeller restarts 50 ms after RESn transitions from low to high.
Crystal Input. Can be connected to output of crystal/oscillator pack (with XO left disconnected), or to
Xl one leg of crystal (with XO connected to other leg of crystal or resonator) depending on CLK Register
settings. No external resistors or capacitors are required.
Crystal Output. Provides feedback for an external crystal, or may be left disconnected depending on
XO o . . . . f
CLK Register settings. No external resistors or capacitors are required.

Copyright © Parallax Inc.

Page 4 of 33 Rev 0.3 5/17/2007




Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

2.3. Typical Connection Diagrams

2.3.1. Propeller Clip or Propeller Plug Connection - Recommended
Note that the connections to the external oscillator and EEPROM, which are enclosed in dashed lines, are optional.
Propeller Clip: Stock #32200; Propeller Plug: Stock #32201. The Propeller Clip/Plug schematic is available for download

from www.parallax.com.

Propeller Clip or Plug

<» ToPC’s USB

2 © 0N G A WN =

3.3V

/

o]
Z\

0v¥a-veexsd
e

DIP-40

2.3.2. Alternative Serial Port Connection

Optional

3.3V 3.3V
1 KO > 4.7 kQ
——] Tx(P30)
2N3906
—{ > Rx(P31)
4.7 kQ
PC Serial Port
2N3904
V_ss
<
% 47 kQ
¢ | [ RES (RESN)
0.1 yF

Copyright © Parallax Inc. Page 5 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

3.0 OPERATING PROCEDURES

3.1. Boot-Up Procedure
Upon power-up, or reset:

1. The Propeller chip’s internal RC oscillator begins
running at 20 kHz, then after a 50 ms reset delay,
switches to 12 MHz. Then the first processor (Cog 0)
loads and runs the built-in Boot Loader program.

2. The Boot Loader performs one or more of the
following tasks, in order:

a. Detects communication from a host, such as a
PC, on pins P30 and P31. If communication
from a host is detected, the Boot Loader
converses with the host to identify the Propeller
chip and possibly download a program into
global RAM and optionally into an external 32
KB EEPROM.

b. Ifno host communication was detected, the Boot
Loader looks for an external 32 KB EEPROM on
pins P28 and P29. If an EEPROM is detected,
the entire 32 KB data image is loaded into the
Propeller chip’s global RAM.

c. If no EEPROM was detected, the boot loader
stops, Cog 0 is terminated, the Propeller chip
goes into shutdown mode, and all I/O pins are set
to inputs.

3. If either step 2a or 2b was successful in loading a
program into the global RAM, and a suspend
command was not given by the host, then Cog 0 is
reloaded with the built-in Spin Interpreter and the
user code is run from global RAM.

3.2. Run-Time Procedure

A Propeller Application is a user program compiled into
its binary form and downloaded to the Propeller chip’s
RAM/EEPROM. The application consists of code written
in the Propeller chip’s Spin language (high-level code)
with optional Propeller Assembly language components
(low-level code). Code written in the Spin language is
interpreted during run time by a cog running the Spin
Interpreter while code written in Propeller Assembly is
run in its pure form directly by a cog. Every Propeller
Application consists of at least a little Spin code and may
actually be written entirely in Spin or with various
amounts of Spin and assembly. The Propeller chip’s Spin
Interpreter is started in Step 3 of the Boot Up Procedure,
above, to get the application running.

Once the boot-up procedure is complete and an
application is running in Cog 0, all further activity is
defined by the application itself. The application has
complete control over things like the internal clock speed,

I/O pin usage, configuration registers, and when, what
and how many cogs are running at any given time. All of
this is variable at run time, as controlled by the
application.

3.3. Shutdown Procedure

When the Propeller goes into shutdown mode, the internal
clock is stopped causing all cogs to halt and all I/O pins
are set to input direction (high impedance). Shutdown
mode is triggered by one of the three following events:

1. VDD falling below the brown-out threshold (~2.7
VDC), when the brown out circuit is enabled,

the RESn pin going low, or

3. the application requests a reboot (see the REBOOT
command in the Propeller Manual).

Shutdown mode is discontinued when the voltage level
rises above the brown-out threshold and the RESn pin is
high.

40 SYSTEM ORGANIZATION

4.1. Shared Resources

There are two types of shared resources in the Propeller:
1) common, and 2) mutually-exclusive. = Common
resources can be accessed at any time by any number of
cogs. Mutually-exclusive resources can also be accessed
by any number of cogs, but only by one cog at a time.
The common resources are the 1/0O pins and the System
Counter.  All other shared resources are mutually-
exclusive by nature and access to them is controlled by
the Hub. See Section 0 on page 7.

4.2. System Clock

The System Clock (shown as “CLOCK” in Figure 1, page
1) is the central clock source for nearly every component
of the Propeller chip. The System Clock’s signal comes
from one of three possible sources:

e The internal RC oscillator (~12 MHz or ~20 kHz)

e The XI input pin (either functioning as a high-
impedance input or a crystal oscillator in
conjunction with the XO pin)

e The Clock PLL (phase-locked loop) fed by the XI
input

The source is determined by the CLK register’s settings,
which is selectable at compile time and reselectable at run
time. The Hub and internal Bus operate at half the
System Clock speed.

Copyright © Parallax Inc.

Page 6 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

4.3. Cogs (processors)

The Propeller contains eight (8) identical, independent
processors, called cogs, numbered 0 to 7. Each cog
contains a Processor block, local 2 KB RAM configured
as 512 longs (512 x 32 bits), two advanced counter
modules with PLLs, a Video Generator, /O Output
Register, I/O Direction Register, and other registers not
shown in the Block Diagram.

All eight cogs are driven from the System Clock; they
each maintain the same time reference and all active cogs
execute instructions simultaneously. They also all have
access to the same shared resources.

Cogs can be started and stopped at run time and can be
programmed to perform tasks simultaneously, either
independently or with coordination from other cogs
through Main RAM. Each cog has its own RAM, called
Cog RAM, which contains 512 registers of 32 bits each.
The Cog RAM is all general purpose RAM except for the
last 16 registers, which are special purpose registers, as
described in Table 15 on page 15.

4.4, Hub

To maintain system integrity, —mutually-exclusive
resources must not be accessed by more than one cog at a
time. The Hub controls access to mutually-exclusive
resources by giving each cog a turn in a “round robin”
fashion from Cog 0 through Cog 7 and back to Cog 0
again. The Hub and its bus run at half the System Clock
rate, giving a cog access to mutually-exclusive resources
once every 16 System Clock cycles. Hub instructions, the
Propeller Assembly instructions that access mutually-
exclusive resources, require 7 cycles to execute but they
first need to be synchronized to the start of the Hub
Access Window.

Figure 2: Cog-Hub System Clock

It takes up to 15 cycles (16 minus 1, if we just missed it)
to synchronize to the Hub Access Window plus 7 cycles
to execute the hub instruction, so hub instructions take
from 7 to 22 cycles to complete.

Figure 2 and Figure 3 show examples where Cog 0 has a
hub instruction to execute. Figure 2 shows the best-case
scenario; the hub instruction was ready right at the start of
that cog’s access window. The hub instruction executes
immediately (7 cycles) leaving an additional 9 cycles for
other instructions before the next Hub Access Window
arrives.

Figure 3 shows the worst-case scenario; the hub
instruction was ready on the cycle right after the start of
Cog 0’s access window; it just barely missed it. The cog
waits until the next Hub Access Window (15 cycles later)
then the hub instruction executes (7 cycles) for a total of
22 cycles for that hub instruction. Again, there are 9
additional cycles after the hub instruction for other
instructions to execute before the next Hub Access
Window arrives. To get the most efficiency out of
Propeller Assembly routines that have to frequently
access mutually-exclusive resources, it can be beneficial
to interleave non-hub instructions with hub instructions to
lessen the number of cycles waiting for the next Hub
Access Window.  Since most Propeller Assembly
instructions take 4 clock cycles, two such instructions can
be executed in between otherwise contiguous hub
instructions.

Keep in mind that a particular cog’s hub instructions do
not, in any way, interfere with other cogs’ instructions
because of the Hub mechanism. Cog 1, for example, may
start a hub instruction during System Clock cycle 2, in
both of these examples, possibly overlapping its execution
with that of Cog 0 without any ill effects. Meanwhile, all
other cogs can continue executing non-hub instructions,
or awaiting their individual hub access windows
regardless of what the others are doing.

Interaction — Best Case Faling Edge#— 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Scenario CogCIock—»**’* RN
Hub Clock —

4 4 4 4 4 ] 4 4 4 4 i 4 4
Cog w/Hub Access — 0 1 2 3 4 5 6 7 0 1 2 3 4

Cog 0 Hub T T T T

Instruction (HI) HI HI
(7 clocks) |<— (7 clocks) —>|<— (9 clocks) —>|

Figure 3: Cog-Hub
Interaction — Worst Case
Scenario

System Clock
Falling Edge # — 0

Cog Clock — !
Hub Clock —

4
Cog w/Hub Access — 0

Cog 0 Hub
Instruction (HI)
(22 clocks)

1

|<7 (15 clocks)

2
¥

t
1

3
t

4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24
1 LAV S N B N R AL R N N N B L B B BN N
t b
0 3 4
1
(70Iocks)—>|

—
N =

HIl missed... waiting to sync

Copyright © Parallax Inc.

Page 7 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

45, I/0 Pins

The Propeller has 32 1/O pins, 28 of which are general
purpose. 1/O Pins 28 - 31 have a special purpose at Boot
Up and are available for general purpose use afterwards;
see section 2.2, page 4. After boot up, any I/O pins can
be used by any cogs at any time. It is up to the
application developer to ensure that no two cogs try to use
the same I/O pin for different purposes during run-time.

Each cog has its own 32-bit I/O Direction Register and
32-bit I/O Output Register. The state of each cog’s
Direction Register is OR’d with that of the previous cogs’
Direction Registers, and each cog’s output states is OR’d
with that of the previous cogs’ output states. Note that
each cog’s output states are made up of the OR’d states of
its internal I/O hardware and that is all AND’d with its
Direction Register’s states. The result is that each I/O
pin’s direction and output state is the “wired-OR” of the
entire cog collective. No electrical contention between
cogs is possible, yet they can all still access the 1/O pins
simultaneously. The result of this I/O pin wiring
configuration can be described in the following rules:

A. A pin is an input only if no active cog sets it to
an output.
B. A pin outputs low only if all active cogs that set
it to output also set it to low.
C. A pin outputs high if any active cog sets it to an
output and also sets it high.
Table 3 demonstrates a few possible combinations of the
collective cogs’ influence on a particular I/O pin, P12 in
this example. For simplification, these examples assume
that bit 12 of each cog’s 1/0 hardware, other than its I/O
Output Register, is cleared to zero (0).

Any cog that is shut down has its Direction Register and
output states cleared to zero, effectively removing it from
influencing the final state of the I/O pins that the
remaining active cogs are controlling.

Each cog also has its own 32-bit Input Register. This
input register is really a pseudo-register; every time it is
read, the actual states of the I/O pins are read, regardless
of their input or output direction.

Table 3: I/O Sharing Examples

Bit 12 of Cogs’ I/O Direction Register Bit 12 of Cogs’ I/O Output Register State of Rule
Cog ID 123 4656 7 0 123 456 7 /O Pin P12 Followed
Example 1 0 6 0 0 0 0 0 O 0 6 0 6 0 @ 0 O Input A
Example 2 1 0 0 0 0 0 0 O 0 6 0 0 0 0 0 O Output Low B
Example 3 1 0 0 0 0 0 0 1 0 06 0 0 0 0 0 Output High C
Example 4 1 0 0 0 0 0 0 O 0 1 0 0 0 0 0 0 Output Low B
Example 5 110000 0 0 2 1 000 0 0 0 Output High C
Example 6 11111111 2 10100 0 0 Output High C
Example 7 11111111 2 00100 0 0 Output High C
Example 8 11101111 6 06 06 1 0 0 0 0 Output Low B

Note: For the I/O Direction Register, a 1 in a bit location sets the corresponding 1/O pin to the output direction; a 0 sets it to an input direction.

4.6. System Counter

The System Counter is a global, read-only, 32-bit counter
that increments once every System Clock cycle. Cogs can
read the System Counter (via their CNT register, see
Table 15 on page 15) on page to perform timing
calculations and can use the WAITCNT command (see
section 6.3 on page 18 and section 6.4 on page 21) to
create effective delays within their processes. The
System Counter is a common resource which every cog
can read simultaneously. The System Counter is not
cleared upon startup since its practical use is for
differential timing. If a cog needs to keep track of time
from a specific, fixed moment in time, it simply needs to
read and save the initial counter value at that moment in
time, and compare subsequent counter values against that
initial value.

4.7, Locks

There are eight lock bits (semaphores) available to
facilitate exclusive access to user-defined resources
among multiple cogs. If a block of memory is to be used
by two or more cogs at once and that block consists of
more than one long (four bytes), the cogs will each have
to perform multiple reads and writes to retrieve or update
that memory block. This leads to the likely possibility of
read/write contention on that memory block where one
cog may be writing while another is reading, resulting in
misreads and/or miswrites.

The locks are global bits accessed through the Hub via
LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR. Because
locks are accessed only through the Hub, only one cog at
a time can affect them, making this an effective control
mechanism. The Hub maintains an inventory of which
locks are in use and their current states; cogs can check
out, return, set, and clear locks as needed during run time.

Copyright © Parallax Inc.

Page 8 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

4.8. Cog Counters

Each cog has two counter modules: CTRA and CTRB. Each
counter module can control or monitor up to two 1/O pins
and perform conditional 32-bit accumulation of its FRQ
register into its PHS register on every clock cycle.

Each counter module also has its own phase-locked loop
(PLL) which can be used to synthesize frequencies up to
128 MHz.

With a little setup or oversight from the cog, a counter can
be used for:

frequency synthesis
frequency measurement
pulse counting

pulse measurement
multi-pin state measurement
pulse-width modulation
duty-cycle measurement
digital-to-analog conversion
analog-to-digital conversion

For some of these operations, the cog can be set up and
left in a free-running mode. For others, it may use
WAITCNT to time-align counter reads and writes within a
loop, creating the effect of a more complex state machine.

Note that for a cog clock frequency of 80 MHz, the
counter update period is a mere 12.5 ns. This high speed,
combined with 32-bit precision, allows for very dynamic
signal generation and measurement.

The design goal for the counter was to create a simple and
flexible subsystem which could perform some repetitive
task on every clock cycle, thereby freeing the cog to
perform some computationally richer super-task. While
the counters have only 32 basic operating modes, there is
no limit to how they might be used dynamically through
software. Integral to this concept is the use of the
WALITPEQ, WAITPNE, and WAITCNT instructions, which can
event-align or time-align a cog with its counters.

Each counter has three registers:

4.8.1. CTRA/CTRB - Control register

The CTR (CTRA and CTRB) register selects the counter's
operating mode. As soon as this register is written, the
new operating mode goes into effect. Writing a zero to
CTR will immediately disable the counter, stopping all
pin output and PHS accumulation.

CTRMODE selects one of 32 operating modes for the
counter, conveniently written (along with PLLDIV) using
the MOVI instruction. These modes of operation are listed
in Table 6 on page 10.

Table 5: PLLDIV Field

PLLDIV | %000 | %001| %010 |%011|%100|%101|%110| %111

VCO | VCO| VCO| VCO| VCO| VCO| VCO| VCO

Output| <o | "64 | 32 | 16| 8 | 4 | 2 | 1

Table 4: CTRA and CTRB Registers

31 30..26 25.23 |22.115| 14.9 | 8..6 | 5..0

- |CTRMODE | PLLDIV - BPIN - APIN

PLLDIV selects a PLL output tap and may be ignored if
not used.

The PLL modes (%00001 to %00011) cause FRQ-to-PHS
accumulation to occur every clock cycle. This creates a
numerically-controlled oscillator (NCO) in PHS[31],
which feeds the counter PLL's reference input. The PLL
will multiply this frequency by 16 using its voltage-
controlled oscillator (VCO). For stable operation, it is
recommended that the VCO frequency be kept within 64
MHz to 128 MHz. This translates to an NCO frequency of
4 MHz to 8 MHz.

The PLLDIV field of the CTR register selects which
power-of-two division of the VCO frequency will be used
as the final PLL output. This affords a PLL range of 500
KHz to 128 MHz.

BPIN selects a pin to be the secondary 1/O. It may be
ignored if not used and may be written using the MOVD
instruction.

APIN selects a pin to be the primary I/O. It may be
ignored if not used and may be written using the MOVS
instruction.

4.8.2. FRQA /FRQB - Frequency register

FRQ (FRQA and FRQB) holds the value that will be
accumulated into the PHS register. For some applications,
FRQ may be written once, and then ignored. For others, it
may be rapidly modulated.

4.8.3. PHSA /PHSB - Phase register

The PHS (PHSA and PHSB) register is the oddest of all
cog registers. Not only can it be written and read via cog
instructions, but it also functions as a free-running
accumulator, summing the FRQ register into itself on
potentially every clock cycle. Any instruction writing to
PHS will override any accumulation for that clock cycle.
PHS can only be read through the source operand (same
as PAR, CNT, INA, and INB). Beware that doing a read-
modify-write instruction on PHS, like "ADD PHSA, #1",
will cause the last-written value to be used as the
destination operand input, rather than the current
accumulation.

Copyright © Parallax Inc.

Page 9 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

Table 6: Counter Modes (CTRMODE Field Values)
L. Accumulate APIN BPIN
CTRMODE Description FRQx to PHSx Output* Output*
%00000 Counter disabled (off) 0 (never) 0 (none) 0 (none)
%00001 PLL internal (video mode) 1 (always) 0 0
%00010 PLL single-ended 1 PLLx 0
%00011 PLL differential 1 PLLx IPLLx
%00100 NCO single-ended 1 PHSxX[31] 0
%00101 NCO differential 1 PHSX[31] IPHSX[31]
%00110 DUTY single-ended 1 PHSx-Carry 0
%00111 DUTY differential 1 PHSx-Carry IPHSx-Carry
%01000 POS detector A 0 0
%01001 POS detector with feedback A 0 1A1
%01010 POSEDGE detector A' & 1A? 0 0
%01011 POSEDGE detector w/ feedback A' & 1A 0 1A1
%01100 NEG detector 1A 0 0
%01101 NEG detector with feedback 1A 0 1A1
%01110 NEGEDGE detector A" & A 0 0
%01111 NEGEDGE detector w/ feedback 1A' & A? 0 IA1
%10000 LOGIC never 0 0
%10001 LOGIC IA & IB A" & 1B’ 0 0
%10010 LOGIC A & B A'& 1B’ 0 0
%10011 LOGIC IB 1B’ 0 0
%10100 LOGIC 1A &B IA' & B' 0 0
%10101 LOGIC 1A 1A' 0 0
%10110 LOGIC A<>B A'<>B' 0 0
%10111 LOGIC IA| B A" 1B 0 0
%11000 LOGICA&B A'&B' 0 0
%11001 LOGIC A == A'==B' 0 0
%11010 LOGIC A ! 0 0
%11011 LOGICA| !B A'| 1B 0 0
%11100 LOGIC B ! 0 0
%11101 LOGIC !A|B IA'| B 0 0
%11110 LOGICA|B A'|B' 0 0
%11111 LOGIC always 1 0 0

*Must set corresponding DIR bit to affect pin. A1 = APIN input delayed by 1 clock. A2 = APIN input delayed by 2 clocks B1 = BPIN input delayed by 1 clock.

4.9, Video Generator

Each cog has a video generator module that facilitates
transmitting video image data at a constant rate. There are
two registers and one instruction which provide control
and access to the video generator. Counter A of the cog
must be running in a PLL mode and is used to generate
the timing signal for the Video Generator. The Video
Scale Register specifies the number of Counter A PLL
(PLLA) clock cycles for each pixel and number of clock
cycles before fetching another frame of data provided by
the WAITVID instruction which is executed within the cog.
The Video Configuration Register establishes the mode
the Video Generator should operate and can generate
VGA or composite video (NTSC or PAL).

The Video Generator should be initialized by first starting
Counter A, setting the Video Scale Register, setting the

Video Configuration Register, then finally providing data
via the WAITVID instruction. Failure to properly initialize
the Video Generator by first starting PLLA will cause the
cog to indefinitely hang when the NAITVID instruction is
executed.

4.9.1. VCFG - Video Configuration Register

The Video Configuration Register contains the
configuration settings of the video generator and is shown
in Table 7.

In Propeller Assembly, the VMode through AuralSub
fields can conveniently be written using the MOVI
instruction, the VGroup field can be written with the MOVD
instruction, and the VPins field can be written with the
MOVS instruction.

Table 7: VCFG Register

31 30..29 28 27 26

25..23 22..12 11..9 8 7.0

- VMode CMode Chroma1

Chroma0 AuralSub - VGroup - VPins

Copyright © Parallax Inc.

Page 10 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

The 2-bit VMode (video mode) field selects the type and
orientation of video output, if any, according to Table 8.

Table 8: The Video Mode Field
VMode|Video Mode

00 |Disabled, no video generated.

01 |VGA mode; 8-bit parallel output on VPins 7:0

Composite Mode 1; broadcast on VPins 7:4, baseband
on VPins 3:0

Composite Mode 2; baseband on VPins 7:4, broadcast
on VPins 3:0

10

11

The CMode (color mode) field selects two or four color
mode. 0 = two-color mode; pixel data is 32 bits by 1 bit
and only colors 0 or 1 are used. 1 = four-color mode;
pixel data is 16 bits by 2 bits, and colors 0 through 3 are
used.

The Chromal (broadcast chroma) bit enables or disables
chroma (color) on the broadcast signal. 0 = disabled, 1 =
enabled.

The Chroma0 (baseband chroma) bit enables or disables
chroma (color) on the baseband signal. 0 = disabled, 1 =
enabled.

The AuralSub (aural sub-carrier) field selects the source
of the FM aural (audio) sub-carrier frequency to be
modulated on. The source is the PLLA of one of the
cogs, identified by AuralSub’s value. This audio must
already be modulated onto the 4.5 MHz sub-carrier by the
source PLLA.

Table 9: The AuralSub Field
AuralSub Sub-Carrier Frequency Source
000 Cog 0’s PLLA
001 Cog 1's PLLA
010 Cog 2's PLLA
011 Cog 3's PLLA
100 Cog 4’s PLLA
101 Cog 5's PLLA
110 Cog 6's PLLA
111 Cog 7's PLLA

The VGroup (video output pin group) field selects which
group of 8 I/O pins to output video on.

Table 10: The VGroup Field

VGroup Pin Group

000 Group 0: P7..PO
001 Group 1: P15..P8
010 Group 2: P23..P16
011 Group 3: P31..P24

100-111 <reserved for future use>

The VPins (video output pins) field is a mask applied to
the pins of VGroup that indicates which pins to output
video signals on.

Table 11: The VPins Field
VPins Effect
00001111 Drive Video on lower 4 pins only; composite

11110000 Drive Video on upper 4 pins only; composite

11111111  |Drive video on all 8 pins; VGA

Any value is valid for this field; the above
values are the most common.

XXXXXXXX

4.9.2. VSCL - Video Scale Register

The Video Scale Register sets the rate at which video data
is generated, and is shown in Table 12.

Table 12: VSCL Register
VSCL Bits
31..20 19..12 11..0
- PixelClocks FrameClocks

The 8-bit PixelClocks field indicates the number of clocks
per pixel; the number of clocks that should elapse before
each pixel is shifted out by the video generator module.
These clocks are the PLLA clocks, not the System Clock.
A value of 0 for this field is interpreted as 256.

The 12-bit FrameClocks field indicates the number of
clocks per frame; the number of clocks that will elapse
before each frame is shifted out by the video generator
module. These clocks are the PLLA clocks, not the
System Clock. A frame is one long of pixel data
(delivered via the WAITVID command). Since the pixel
data is either 16 bits by 2 bits, or 32 bits by 1 bit (meaning
16 pixels wide with 4 colors, or 32 pixels wide with 2
colors, respectively), the FrameClocks is typically 16 or
32 times that of the PixelClocks value. A value of 0 for
this field is interpreted as 4096.

4.9.3. WAITVID Command/Instruction

The WAITVID instruction is the delivery mechanism for
data to the cog’s Video Generator hardware. Since the
Video Generator works independently from the cog itself,
the two must synchronize each time data is needed for the
display device. The frequency at which this occurs is
dictated by the frequency of PLLA and the Video Scale
Register. The cog must have new data available before the
moment the Video Generator needs it. The cog uses
WAITVID to wait for the right time and then “hand off”
this data to the Video Generator.

Two longs of data are passed to the Video Generator by
with the syntax WAITVID Colors, Pixels.

The Colors parameter is a 32-bit value containing either
four 8-bit color values (for 4 color mode) or two 8-bit
color values in the lower 16 bits (for 2 color mode). For

Copyright © Parallax Inc.

Page 11 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

VGA mode, each 8-bit color value is written to the pins
specified by the VGroup and VPins field. For VGA
typically the 8 bits are grouped into 2 bits per primary
color and Horizontal and Vertical Sync control lines, but
this is up to the software and application of how these bits
are used. For composite video each 8-bit color value is
composed of 3 fields. Bits 0-2 are the luminance value of
the generated signal. Bit 3 is the modulation bit which
dictates whether the chroma information will be generated
and bits 4-7 indicate the phase angle of the chroma value.
When the modulation bit is set to 0, the chroma
information is ignored and only the luminance value is
output to pins. When the modulation bit is set to 1 the
luminance value is modulated + 1 with a phase angle set
by bits 4-7. In order to achieve the full resolution of the
chroma value, PLLA should be set to 16 times the
modulation frequency (in composite video this is called
the color-burst frequency). The PLLB of the cog is used
to generate the broadcast frequency; whether this is
generated depends on if PLLB is running and the values
of VMode and VPins.

The Pixels parameter describes the pixel pattern to
display, either 16 pixels or 32 pixels depending on the
color depth configuration of the Video Generator. When
four-color mode is specified, Pixels is a 16x2 bit pattern
where each 2-bit pixel is an index into Colors on which
data pattern should be presented to the pins. When two-
color mode is specified, Pixelsis a 32x1 bit pattern where
each bit specifies which of the two color patterns in the
lower 16 bits of Colors should be output to the pins. The
Pixel data is shifted out least significant bits (LSB) first.

When the FrameClocks value is greater than 16 times the
PixelClocks value and 4-color mode is specified, the two
most significant bits are repeated until FrameClocks
PLLA cycles have occurred. When FrameClocks value is
greater than 32 times PixelClocks value and 2-color mode
is specified, the most significant bit is repeated until
FrameClocks PLLA cycles have occurred. When
FrameClocks cycles occur and the cog is not in a NAITVID
instruction, whatever data is on the source and destination
busses at the time will be fetched and used. So it is
important to be in a WAITVID instruction before this
occurs.

While the Video Generator was created to display video
signals, its potential applications are much more diverse.
The Composite Video mode can be used to generate
phase-shift keying communications of a granularity of 16
or less and the VGA mode can be used to generate any bit
pattern with a fully settable and predictable rate.

Figure 4 is a block diagram of how the VGA mode is
organized. The two inverted triangles are the load
mechanism for Pixels and Colors, n is 1 or 2 bits
depending on the value of CMode. The inverted trapezoid
is a 4-way 8-bit multiplexer that chooses which byte of
Colors to output. When in composite video mode the
Modulator transforms the byte into the luminance and
chroma signal and outputs the broadcast signal. VGroup
steers the 8 bits to a block of output pins and outputs to
those pins which are set to 1 in VPins; this combined
functionality is represented by the hexagon.

Figure 4: Video Generator

Source

Destination

PLLA/FrameClocks ‘S|7

-

y Colors

> Pixels

TShift by n

PLLA/PixelClocks

312

=)

A A A A 4

_}¥

v
8 Modulator

VGroup —» y4— VPins

4
<«

Copyright © Parallax Inc.

Page 12 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Use Spin's CLKSET command when possible (see sections

4.10. CLK Register 6.3 and 6.4) since it automatically updates all the above-
The CLK register is the System Clock configuration mentioned locations with the proper information.
control; it determines the source and charactferlstlcs of the Table 13: Valid Clock Modes
System Clock. It configures the RC Oscillator, Clock . . : :
PLL, Crystal Oscillator, and Clock Selector circuits (See Valid Expression  CLK Reg. Value |Valid Expression CLK Reg. Value
the Block Diagram, page 1). It is configured at compile RCFAST 0_0_0_00_000 |XTAL1 +PLLIX ©_1_1_01_011
time by the _CLKMODE declaration and is writable at run " PP— g::j N Et‘jﬁ g_i_i_gi_ig?
time through the CLKSET command. Whenever the CLK — = = T IXTALL+PLL8X 0 1 101 110
register is written, a global delay of ~75 us occurs as the XINPUT 0_0_1 00 010 |XTAL1+PLL16X ©0_1_1 01 111
clock source transitions. XTAL2 + PLL1X 0 1 1 10 011
. . . XTALL 0_0_1_01_010 |XTAL2 + PLL2X ©0_1_1_10_100
Whenever this register is changed, a copy of the value XTAL2 0 0 1 10,010 |XTALZ + PLL4X 0 1 1 10 101
written should be placed in the Clock Mode value XTAL3 0 0_1 11 010 |XTAL2 +PLL8X ©_1 1 10_110
location (which is BYTE[4] in Main RAM) and the XTAL2 +PLL16X 0.1 110 111
resulting master clock frequency should be written to the XINPUT+PLL1X  G_1 1 00 011 |XTAL3+PLLIX 0 1 1 11 011
Clock F I 1 ti hich is LONGIOT i XINPUT+ PLL2X ©_1_1 00_100 |XTAL3 +PLL2X ©_1_1 11 100
ock Frequency value location (which is LONG[0] in XINPUT + PLLAX 0 1100 101 |XTAL3 + PLLAX @ 1 1 11 101
Main RAM) so that objects which reference this data will XINPUT+ PLL8X ©_1_1 00_110 |XTAL3+PLL8X @_1 1 11 110
have current information for their timing calculations. XINPUT+ PLL16X ©0_11 00 111 |XTALS+PLL16X 011 11 111
Table 14: CLK Register Fields
Bit 7 6 5 4 3 2 1 0
Name RESET PLLENA OSCENA OSCM1 OSCM2 CLKSEL2 CLKSELA1 CLKSELO
RESET Effect
0 Always write ‘0’ here unless you intend to reset the chip.
1 Same as a hardware reset — reboots the chip.
PLLENA Effect
0 Disables the PLL circuit.

Enables the PLL circuit. The PLL internally multiplies the XIN pin frequency by 16. OSCENA must be ‘1’ to propagate the
XIN signal to the PLL. The PLL’s internal frequency must be kept within 64 MHz to 128 MHz — this translates to an XIN
1 frequency range of 4 MHz to 8 MHz. Allow 100 ps for the PLL to stabilize before switching to one of its outputs via the
CLKSEL bits. Once the OSC and PLL circuits are enabled and stabilized, you can switch freely among all clock sources by
changing the CLKSEL bits.

OSCENA Effect

0 Disables the OSC circuit

Enables the OSC circuit so that a clock signal can be input to XIN, or so that XIN and XOUT can function together as a
feedback oscillator. The OSCM bits select the operating mode of the OSC circuit. Note that no external resistors or
1 capacitors are required for crystals and resonators. Allow a crystal or resonator 10ms to stabilize before switching to an OSC
or PLL output via the CLKSEL bits. When enabling the OSC circuit, the PLL may be enabled at the same time so that they
can share the stabilization period.

OSCM1 OSCM2 XOUT Resistance XIN and XOUT Capacitance Frequency Range
0 0 Infinite 6 pF DC to 80 MHz Input
0 1 2000 Q 36 pF 4 MHz to 16 MHz Crystal/Resonator
1 0 1000 Q 26 pF 8 MHz to 32 MHz Crystal/Resonator
1 1 500 Q 16 pF 20 MHz to 60 MHz Crystal/Resonator
CLKSEL2 CLKSEL1 CLKSELO Master Clock Source Notes
0 0 0 ~12 MHz Internal No external parts (8 to 20 MHz)
0 0 1 ~20 kHz Internal No external parts, very low power (13-33 kHz)
0 1 0 XIN OsC OSCENA must be ‘1’
0 1 1 XIN x 1 OSC+PLL |OSCENA and PLLENA must be ‘1’
1 0 0 XIN x 2 OSC+PLL |OSCENA and PLLENA must be ‘1’
1 0 1 XIN x 4 OSC+PLL |OSCENA and PLLENA must be ‘1’
1 1 0 XIN x 8 OSC+PLL |OSCENA and PLLENA must be ‘1’
1 1 1 XIN x 16 OSC+PLL |OSCENA and PLLENA must be ‘1’

Copyright © Parallax Inc. Page 13 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

5.0 MEMORY ORGANIZATION

5.1. Main Memory

The Main Memory is a block of 64 K bytes (16 K longs)
that is accessible by all cogs as a mutually-exclusive
resource through the Hub. It consists of 32 KB of RAM
and 32 KB of ROM. Main memory is byte, word and long

addressable.

$0000 )
I
I
I
1 Propeller Application RAM
! Code and Data g
! (8192 Longs) (8192 Longs)
I
I
$7FFF )
$80|00 Character Set
\ (4096 Longs,
1 256 Characters of
$BFFF 16 x 32 pixels) | ROM
$C000 — $CFFF Log Table (2048 words) (8192 Longs)
$D000 — $DFFF | Anti-log Table (2048 words)
$E000 — $FO001 Sine Table (2049 words)
$F002 — $FFFF | Boot Loader & Interpreter | )

5.1.1.

Main RAM

The 32 KB of Main RAM is general purpose and is the
destination of a Propeller Application either downloaded
from a host or from the external 32 KB EEPROM.

-

A

4

2

5.1.2. Main ROM

The 32 KB of Main ROM contains all the code and data
resources vital to the Propeller chip’s function: character
definitions, log, anti-log and sine tables, and the Boot
Loader and Spin Interpreter.

5.1.3. Character Definitions

The first half of ROM is dedicated to a set of 256
character definitions. Each character definition is 16
pixels wide by 32 pixels tall. These character definitions
can be used for video generation, graphical LCD's,
printing, etc.

The character set is based on a North American / Western
European layout, with many specialized characters added
and inserted. There are connecting waveform and
schematic building-block characters, Greek characters
commonly used in electronics, and several arrows and
bullets. (A corresponding Parallax True-Type Font is
installed with and used by the Propeller Tool software,
and is available to other Windows applications.)

The character definitions are numbered 0 to 255 from left-
to-right, then top-to-bottom, per Figure 5 below. They are
arranged as follows: Each pair of adjacent even-odd
characters is merged together to form 32 longs. The first
character pair is located in $8000-$807F. The second pair
occupies $8080-$80FF, and so on, until the last pair fills

-1

r

$BF80-$BFFF.

..\J.f‘r..

>

A

m I}-—

AN +

\l
5
U
u

~+ |-

<
\
|

SO

=

N
n
e

6
v
i

— = |]

—4 |-

Q
3
S
S
'

t
$
D
d
;

M
m
3
|
!
1

o DR ~0 ) H 3
Qo | Do/ HE |~ [(D [T 8

> | De— —~— | O O

DI Y [ e | ] |
MM A | = [ %

(
H
h
E
e

@ G
N g
X \ illimi 1T
Ti poansl +? ° HuSwm ! oW,
AAARRAECEEEETITIIPNOOOBEXBUVOUYPR
9843542¢ce€€€1111dM060600 2udlaype

Figure 5: Propeller Font Character Set

Copyright © Parallax Inc.

Page 14 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

As shown in Figure 6, The character pairs are merged
such that each character's 16 horizontal pixels (per row)
are spaced apart and interleaved with their neighbors' such
that the even character takes bits 0, 2, 4, ...30, and the odd
character takes bits 1, 3, 5, ...31. The leftmost pixels are in
the lowest bits, while the rightmost pixels are in the
highest bits. This forms a long for each row of pixels in
the character pair. 32 such longs, building from top row
down to bottom, make up the complete merged-pair
definition. The definitions are encoded in this manner so
that a COG video peripheral can handle the merged longs
directly, using color selection to display either the even or
the odd character.

Some character codes have inescapable meanings, such as
9 for Tab, 10 for Line Feed, and 13 for Carriage Return (0
can also be touchy). These character codes invoke actions
and do not equate to static character definitions. For this
reason, their character definitions have been used for
special four-color characters. These four-color characters
are used for drawing 3-D box edges at run-time and are
implemented as 16 x 16 pixel cells, as opposed to the
normal 16 x 32 pixel cells. They occupy even-odd
character pairs 0-1, 8-9, 10-11, and 12-13.

Figure 6

Propeller Character
Interleaving

5.1.4. Math Function Tables

Base-2 Log and Anti-Log tables, each with 2048 unsigned
words, facilitate converting values to and from exponent
form to facilitate some operations, see the Propeller
Manual for access instructions. Also, a sine table
provides 2049 unsigned 16-bit sine samples spanning 0°
to 90° inclusively (0.0439° resolution).

5.2. Cog RAM

As stated in Section 4.3, the Cog RAM is used for
executable code, data, variables, and the last 16 locations
serve as interfaces to the System Counter, I/O pins, and
local cog peripherals (see Table 15).

When a cog is booted up, locations 0 ($000) through 495
($1EF) are loaded sequentially from Main RAM / ROM
and its special purpose locations, 496 ($1F0) through 511
($1FF), are cleared to zero. Each Special Purpose register
may be accessed via its physical address, its predefined
name, or indirectly in Spin via a register array variable
SPR with an index of 0 to 15, the last four bits of the
register's address.

Table 15: Cog RAM Special Purpose Registers
Cog RAM Map Address Name Type Description
/_ $1F0 PAR Read-Only' Boot Parameter
$0?0 $1F1 CNT Read-Only' System Counter
[ $1F2 INA Read-Only' Input States for P31 - PO
: $1F3 INB Read-Only' Input States for P63- P32?
: $1F4 0UTA Read/Write Output States for P31 - PO
| ceneral Purpose $1F5 0UTB Read/Write Output States for P63 — P32°
: (Ijtse)giit%?) $1F6 DIRA Read/Write Direction States for P31 - PO
[ $1F7 DIRB Read/Write Direction States for P63 - P32°
: $1F8 CTRA Read/Write Counter A Control
: $1F9 CTRB Read/Write Counter B Control
: $1FA FRQA Read/Write Counter A Frequency
SIEF $1FB FRQB Read/Write Counter B Frequency
$! 'I:O Spe}gieagllistl;rrr;ose $1FC PHSA Read/Write' Counter A Phase:
$IFF (16 x 32) $1FD PHSB Read/Write' Counter B Phase
$1FE VCFG Read/Write Video Configuration
$1FF VSCL Read/Write Video Scale

Note 1: Only readable as a Source Register (i.e. MOV DEST, SOURCE); read-modify-write not possible as a Destination Register.

Note 2: Reserved for future use.

Copyright © Parallax Inc.

Page 15 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

6.0 PROGRAMMING LANGUAGES

The Propeller chip is programmed using two languages
designed specifically for it: 1) Spin, a high-level object-
based language, and 2) Propeller Assembly, a low-level,
highly-optimized assembly language. There are many
hardware-based commands in Propeller Assembly that
have direct equivalents in the Spin language.

The Spin language is compiled by the Propeller Tool
software into tokens that are interpreted at run time by the
Propeller chip’s built-in Spin Interpreter. The Propeller

6.1. Reserved Word List

Assembly language is assembled into pure machine code
by the Propeller Tool and is executed in its pure form at
run time.

Propeller Objects can be written entirely in Spin or can
use various combinations of Spin and Propeller
Assembly. It is often advantageous to write objects
almost entirely in Propeller Assembly, but at least two
lines of Spin code are required to launch the final
application.

All words listed are always reserved, whether programming in Spin or in Propeller Assembly. Asof Propeller Tool v1.05:

Table 16: Reserved Word List

_CLKFREQ® COGINITY IF_C_AND_NZ* |LoCKNEW? NoP* REPEAT® TRUE?
_CLKMODE® COGNEW® IF C_AND Z*  |LockReT® NOT® RES? TRUNC®
_FREE® cacsTor? IF_C_EQ 7% LockSETY NR? RESULT® UNTIL®
_STARCK® CON® IF_C_NE_Z% LONG® 0BJ® RET® VAR®
_XINFREQ® CONSTANT® IF_C_OR_NzZ®  |LONGFILL® ONES™ RETURN® vergd
ABORT® cTRRY IF C OR z*  |LONGMOVE® or? REV? vscLd
ABS? cTRe¢ IF_E° LOOKDOWN® ORG? RoL? WATTCNTY
ABSNEG? DAT® IF_NC? LOOKDOWNZ® OTHER® ROR? WAITPEQY
ADD? pIRAY IF_NC_AND_NZ* |Lookup® ouTAY ROUND® WAITPNEC
ADDABS® pIRBY IF_NC_AND_Z* |LookuPZ® ouTB% SAR? WAITVID®
ADDS® DINZ® IF_NC_OR_NZ" |MAX® PARY SHL® We?
ADDSX? ELSE® IF_NC_OR_Z*  |MAXS" PHsRY SHR® WHILE®
ADDX® ELSEIF® IF_NE? MIN? PHsB! SPR® WORD®
AnD¢ ELSEIFNOT® IF_NEVER? MINS® p1¢ STEP® WORDFILL®
ANDN? ENC® IF_NZ* Mov? PLLLX® STRCOMP® WORDMOVE®
BYTE® FALSEY IF_NZ_AND_C* |MOVD® PLL2X® STRING® WR?
BYTEFILL® FILE® IF_NZ_AND_NC* |MovI® PLL4X® STRSIZE® WRBYTE®
BYTEMOVE® FIT? IF_NZ_OR_C*  |Movs® PLL8X® sug® WRLONG®
cALL? FLOAT® IF Nz OR_NC*  |muL™ PLL16X® suBABS® WRWORD?
CASE® FROM® IF 7 MuLs™ pasx! suBS® Wz*
CHIPVER® FRQA? IF_Z AND_C*  |Muxc? PRI® SUBSX? XINPUT®
CLKFREQ® FRQB? IF_Z AND_NC"  |[MUXNC" PUB® SuBx® XOR"
CLKMODE® HUBOP? IF_z EQ C* MUXNZ? QUIT® sumMc? XTALL®
CLKSETY IF° IF_Z NE_C? Muxz® RCFAST® SUMNC? XTAL2®
cMP? IFNOT® IF_Z OR_C* NEG? RCL? SUMNZ? XTAL3®
CMPS® IF_A° IF_Z OR_NC*  |NEGC? RCR? sumz®

CMPSUB® IF_AE? NR¢ NEGNC? RCSLOW® TEST?

CMPSX? IF_ALWAYS® g% NEGNZ® RDBYTE® TESTN?

cMPX? IF_B* JMP? NEGX RDLONG® TINZ®

cnTd IF _BE? JMPRET? NEGZ® RDWORD? 1J7°

cocIn IF_c* LockcLRY NEXT® REBOOT® 10°

a= Assembly element; S=Spin element; d =dual (available in both languages); # = reserved for future use

6.1.1.

Words Reserved for Future Use

e DIRB, INB, and OUTB: Reserved for future use with a possible 64 I/O pin model. When used with the P§X32A, these
labels can be used to access Cog RAM at those locations for general-purpose use.
e ENC, MUL, MULS, ONES: Use with the current P8X32A architecture yields indeterminate results.

Copyright © Parallax Inc.

Page 16 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

6.2. Math and Logic Operators

Table 17: Math and Logic Operators
Operator Constant
Level* o, Expressions® Is Unary Description
Normal Assign
Integer Float
- always v Pre-decrement (--X) or post-decrement (X--).
++ always v Pre-increment (++X) or post-increment (X++).
_ ~ always v Sign-extend bit 7 (~X) or post-clear to 0 (X~).
H|g(]8)est ~~ always v Sign-extend bit 15 (~~X) or post-set to -1 (X~~).
? always v Random number forward (?X) or reverse (X?).
e never v v Symbol address.
ee never v Object address plus symbol.
+ never v v v Positive (+X); unary form of Add.
- if solo v v v Negate (-X); unary form of Subtract.
AR if solo v v v Square root.
1 |l if solo v v v Absolute value.
|< if solo v v Bitwise: Decode 0 — 31 to long w/single-high-bit.
>| if solo v v Bitwise: Encode long to 0 — 32; high-bit priority.
! if solo v v Bitwise: NOT.
<- <-= v Bitwise: Rotate left.
-> ->= v Bitwise: Rotate right.
) << <<= v Bitwise: Shift left.
>> >>= v Bitwise: Shift right.
~> ~>= 4 Shift arithmetic right.
>< ><= v Bitwise: Reverse.
3 & &= v Bitwise: AND.
4 | |= v Bitwise: OR.
A A= v Bitwise: XOR.
* *= v v Multiply and return lower 32 bits (signed).
5 *x *x= v Multiply and return upper 32 bits (signed).
/ /= v v Divide (signed).
// //= v Modulus (signed).
+ += v v Add.
6 - -= v v Subtract.
. #> #>= 4 v Limit minimum (signed).
<t <= v v Limit maximum (signed).
< <= v v Boolean: Is less than (signed).
> >= v v Boolean: Is greater than (signed).
8 <> <>= v 4 Boolean: Is not equal.
== === v 4 Boolean: Is equal.
=< =<= v 4 Boolean: Is equal or less (signed).
=> =>= v v Boolean: Is equal or greater (signed).
9 NOT if solo v v v Boolean: NOT (promotes non-0 to -1).
10 AND AND= v v Boolean: AND (promotes non-0 to -1).
11 OR OR= v v Boolean: OR (promotes non-0 to -1).
Lowest = always n/a® n/a’ Constant assignment (CON blocks).
(12) i= always n/a® n/a’ Variable assignment (PUB/PRI blocks).

1 Precedence level: higher-level operators evaluate before lower-level operators. Operators in same level are commutable; evaluation order does not matter.
2 Assignment forms of binary (non-unary) operators are in the lowest precedence (level 12).
3 Assignment forms of operators are not allowed in constant expressions.

Copyright © Parallax Inc. Page 17 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

6.3. Spin Language Summary Table

Spin Command

Returns
Value

Description

ABORT (Value)

v

Exit from PUB/PRI method using abort status with optional return value.

BYTE Symbol ([Count])

Declare hyte-sized symbol in VAR block.

BYTE Data ([Count])

Declare hyte-aligned and/or byte-sized data in DAT block.

BYTE [BaseAddress] ([Offset]) ¥ | Read/write byte of main memory.

Symbol.BYTE ([Offset]) v" | Read/write byte-sized component of word/long-sized variable.

BYTEFILL (StartAddress, Value, Count) Fill bytes of main memory with a value.

BYTEMOVE (DestAddress, SrcAddress, Count) Copy bytes from one region to another in main memory.

CASE CaseExpression

—! MatchExpression * Compare expression against matching expression(s), execute code block

= Statement(s) if match found.

(=" MatchExpression : MatchExpression can contain a single expression or multiple comma-
-1 Statement(s)) delimited expressions. Expressions can be a single value (ex: 10) or a

(=" OTHER : range of values (ex: 10..15).
-1 Statement(s))

CHIPVER v | Version number of the Propeller chip (Byte at $FFFF)

CLKFREQ v" | Current System Clock frequency, in Hz (Long at $0000)

CLKMODE v | Current clock mode setting (Byte at $0004)

CLKSET (Mode, Frequency) Set both clock mode and System Clock frequency at run time.

CNT v | Current 32-bit System Counter value.

COGID v Current cog’s ID number; 0-7.

COGINIT (CoglD, SpinMethod ( (ParameterList) ), StackPointer) Start or restart cog by ID to run Spin code.

COGINIT (CoglD, AsmAddress, Parameter) Start or restart cog by ID to run Propeller Assembly code.

COGNEW (SpinMethod ( (ParameterList) ), StackPointer) v | Start new cog for Spin code and get cog ID; 0-7 = succeeded, -1 = failed.

COGNEW (AsmAddress, Parameter) v Start new cog_ fo'r Propeller Assembly code and get cog ID; 0-7 =

succeeded, -1 = failed.
COGSTOP (CogID) Stop cog by its ID.
CON )
symbol = Expr (((, | %)) Symbol = Expr)... Declare symbolic, global constants.

CON ! ! ! Declare global enumerations (incrementing symbolic constants)

(#Expr ((, 1 =) symbol ({((, | =) #Expr) ((, | ) Symbol)... g sy :
CONSTANT (ConstantExpression) v Erfl(celare in-line constant expression to be completely resolved at compile
CTRA v" | Counter A Control register.

CTRB v" | Counter B Control register.

DAT . . -
(Symbol) Alignment (Size) (Data) {,(Size) Data)... Declare table of data, aligned and sized as specified.

DAT . .
(Symbol) (Condition) Instruction (Effect(s)) Denote Propeller Assembly instruction.

DIRA ([Pin(s)]) v | Direction register for 32-bit port A.

FILE "FileName” Import external file as data in DAT block.

FLOAT (IntegerConstant) v Convert integer constant expression to compile-time floating-point value in

any block.
FRQA v Counter A Frequency register.
FRQB v Counter B Frequency register.

((zF 1 IFNOT)) Condition(s)
=1 |fStatement(s)

(ELSEIF Condition(s)

-1 ElselfStatement(s))...
(ELSEIFNOT Condition(s)
-1 ElselfStatement(s))...
(ELSE

-1 ElseStatement(s))

Test condition(s) and execute block of code if valid.
IF and ELSETIF each test for TRUE. IFNOT and ELSEIFNOT each test for
FALSE.

Copyright © Parallax Inc.

Page 18 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

Spin Command

Returns
Value

Description

INA {[Pin(s)])

v

Input register for 32-bit ports A.

LOCKCLR (ID) v" | Clear semaphore to false and get its previous state; TRUE or FALSE.
LOCKNENW v" | Check out new semaphore and get its ID; 0-7, or -1 if none were available.
Return semaphore back to semaphore pool, releasing it for future
LOCKRET (ID) LOCKNEW requests.
LOCKSET (ID) v' | Set semaphore to true and get its previous state; TRUE or FALSE.
LONG Symbol {[Count]) Declare long-sized symbol in VAR block.
LONG Data {([Count]) Declare long-aligned and/or long-sized data in DAT block.
LONG [BaseAddress] ([Offset]) ¥v" | Read/write long of main memory.
LONGFILL (StartAddress, Value, Count) Fill longs of main memory with a value.
LONGMOVE (DestAddress, SrcAddress, Count) Copy longs from one region to another in main memory.
LOOKDOKWN (Value: ExpressionList) v' | Getthe one-based index of a value in a list.
LOOKDOWNZ (Value: ExpressionList) v | Get the zero-based index of a value in a list.
LOOKUP (Index: ExpressionList) v" | Getvalue from a one-based index position of a list.
LOOKUPZ (Index: ExpressionList) v' | Getvalue from a zero-based index position of a list.
NEXT Skip remaining statements of REPEAT loop and continue with the next
loop iteration.
08J A e e e Declare symbol object references
Symbol ([Count]): "Object” (' Symbol ([Count]): "Object")... :
oUTR ([Pin(s)]) v’ | Output register for 32-bit port A.
PAR v Cog Boot Parameter register.
PHSA v | Counter A Phase Lock Loop (PLL) register.
PHSB v | Counter B Phase Lock Loop (PLL) register.
PRI Name {(Par {,Par)...)) (:Rval) {| Lvar {[Cnt])) {,LVar ([Cnt]))... Declare private method with optional parameters, return value and local
SourceCodeStatements variables.
PUB Name {(Par {,Par)...)) (:Rval) {| Lvar {[Cnt])) {,LVar ([Cnt]))... Declare public method with optional parameters, return value and local
SourceCodeStatements variables.
QUIT Exit from REPEAT loop immediately.
REBOOT Reset the Propeller chip.
REPEAT (Count) Execute code block repetitively, either infinitely, or for a finite number of
—1 Statement(s) iterations.
REPEAT Variable FROM Start TO Finish (STEP Delta) i, i .
—1 Statement(s) Execute code block repetitively, for finite, counted iterations.
REPEAT ((UNTIL ! WHILE)) Condition(s) i L o
—1 Statement(s) Execute code block repetitively, zero-to-many conditional iterations.
REPEAT
— Statement(s) Execute code block repetitively, one-to-many conditional iterations.
((UNTIL ! WHILE)) Condition(s)
RESULT ¥v" | Return value variable for PUB/PRT methods.
RETURN (Value) ¥v' | Exit from PUB/PRI method with optional return Value.
ROUND (FloatConstant) v Elgzﬂd floating-point constant to the nearest integer at compile-time, in any
SPR [Index] v' | Special Purpose Register array.
STRCOMP (StringAddressl, StringAddress2) v' | Compare two strings for equality.
STRING (StringExpression) v Declare in-line string constant and get its address.
STRSIZE (StringAddress) v | Getsize, in bytes, of zero-terminate string.
TRUNC (FloatConstant) v Remove fractional portion from floating-point constant at compile-time, in
any block.
VAR ! Declare symbolic global variables
Size Symbol {[Count]) {((, | ™ Size)) Symbol {[Count1))... 4 g :
VCFG v" | Video Configuration register.

Copyright © Parallax Inc.

Page 19 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

Spin Command R\%%gs Description
VSCL v" | Video Scale register.
WALTCNT (Value) Pause cog's execution temporarily.
WAITPEQ (State, Mask, Port) Pause cog's execution until /O pin(s) match designated state(s).
WALITPNE (State, Mask, Port) Pause cog’s execution until /0 pin(s) do not match designated state(s).
WAITVID (Colors, Pixels) Pause cog’s execution until its Video Generator is available for pixel data.
HORD Symbol ([Count]) Declare word-sized symbol in VAR block.
HORD Data ([Countl) Declare word-aligned and/or word-sized data in DAT block.
HORD [BaseAddress] ([Offset]) v | Read/write word of main memory.
Symbol.WORD ([Offset]) ¥ | Read/write word-sized component of long-sized variable.
WORDFILL (StartAddress, Value, Count) Fill words of main memory with a value.
WORDMOVE (DestAddress, SrcAddress, Count) Copy words from one region to another in main memory.

6.3.1. Constants

Constants (pre-defined)

Constant! Description

_CLKFREQ Settable in Top Object File to specify System Clock frequency.
_CLKMODE Settable in Top Object File to specify application’s clock mode.
_XINFREQ Settable in Top Object File to specify external crystal frequency.
_FREE Settable in Top Object File to specify application’s free space.
_STACK Settable in Top Object File to specify application’s stack space.
TRUE Logical true: -1 ($FFFFFFFF)
FALSE Logical false: 0 ($00000000)
POSX Max. positive integer: 2,147,483,647 ($7FFFFFFF)
NEGX Max. negative integer: -2,147,483,648 ($80000000)
PI Floating-point PI: = 3.141593 ($40490FDB)
RCFAST Internal fast oscillator: $00000001 (%00000000001)
RCSLOW Internal slow oscillator: $00000002 (%00000000010)
XINPUT External clock/oscillator: $00000004 (%00000000100)
XTAL1 External low-speed crystal: $00000008 (%00000001000)
XTAL2 External medium-speed crystal: $00000010 (%00000010000)
XTAL3 External high-speed crystal: $00000020 (%00000100000)
PLL1X External frequency times 1: $00000040 (%00001000000)
PLL2X External frequency times 2: $00000080 (%00010000000)
PLL&X External frequency times 4: $00000100 (%00100000000)
PLL8X External frequency times 8: $00000200 (%01000000000)
PLL16X External frequency times 16: $00000400 (%10000000000)

1 “Settable” constants are defined in Top Object File's CON block. See Valid Clock Modes for _CLKMODE. Other settable constants use whole numbers.

Copyright © Parallax Inc.

Page 20 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

6.4. Propeller Assembly Instruction Table
The Propeller Assembly Instruction Table lists the instruction’s 32-bit opcode, outputs and number of clock cycles. The

(zcri), the conditional execution bits (ccec), and the destination and source bits (ddddddddd and sssssssss). The meaning of the
Z and C flags, if any, is shown in the Z Result and C Result fields; indicating the meaning of a 1 in those flags. The Result field
(R) shows the instruction’s default behavior for writing or not writing the instruction’s result value. The Clocks field shows
the number of clocks the instruction requires for execution.

01 Zeros (0) and ones (1) mean binary 0 and 1.

i Lower case “i” denotes a bit that is affected by immediate status.

ds Lower case “d” and “s” indicate destination and source bits.

? Question marks denote bits that are dynamically set by the compiler.

- Hyphens indicate items that are not applicable or not important.
Double-periods represent a range of contiguous values.

iiiiii zeri cccc ddddddddd sssssssss | Instruction Description Z out C out R |[Clocks
000000 000i 1111 ddddddddd sssssssss |WRBYTE D,S | Write D[7..0] to main memory byte S[15..0] - - 0 |7.22*
000000 001i 1111 ddddddddd sssssssss |RDBYTE D,S E;Zﬂdngg')" memory byte S[15..0] into D (0- Result = 0 - 1 |7.22%
000001 000i 1111 ddddddddd sssssssss |[WRWORD D,S | Write D[15..0] to main memory word S[15..1] - - 0 |7.22*
000001 001i 1111 ddddddddd sssssssss |RDWORD D,S Ezzﬂdrgg')" memory word S[15. 1]into D (0- Result = 0 1 |7.22¢
000010 000i 1111 ddddddddd sssssssss [WRLONG D,S | Write D to main memory long S[15..2] - 0 |7.22*
000010 001i 1111 ddddddddd sssssssss [RDLONG D,S | Read main memory long S[15..2] into D Result=0 - 1 |7.22*
000011 0OGi 1111 ddddddddd sssssssss |HUBOP D, S | Perform hub operation according to S Result =0 0 |7.22*
000011 0001 1111 ddddddddd ------ 000 |CLKSET D Set the global CLK register to D[7..0] - 0 |7.22*
000011 0011 1111 ddddddddd ------ 001 |(COGID D Get this cog number (0..7) into D Result =0 - 1 |7.22*
000011 0001 1111 ddddddddd ------ 010 |[COGINIT D Initialize a cog according to D Result=0 No COG free 0 |7.22*
000011 0001 1111 ddddddddd ------ 011 |COGSTOP D Stop cog number D[2..0] - 0 |7.22*
000011 0011 1111 ddddddddd ------ 100 [LOCKNEW D Checkout a new LOCK number (0..7) into D Result=0 No LOCK free 1 |7.22*
000011 0001 1111 ddddddddd ------ 101 |LOCKRET D Return lock number D[2..0] - - 0 |7.22*
000011 0001 1111 ddddddddd ------ 110 |LOCKSET D Set lock number D[2..0] - Prior LOCK state | @ |7.22*
000011 0001 1111 ddddddddd ------ 111 [LOCKCLR D Clear lock number D[2..0] - Prior LOCK state | @ |7.22*
000100 001i 1111 ddddddddd sssssssss [MUL D, S | Multiply unsigned D[15..0] by S[15..0] Result=0 1 | future
000101 001i 1111 ddddddddd sssssssss |MULS D, S | Multiply signed D[15..0] by S[15..0] Result=0 1 | future
000110 001i 1111 ddddddddd sssssssss |ENC D, S | Encode magnitude of S into D, result = 0..31 Result=0 1 | future
000111 001i 1111 ddddddddd sssssssss |ONES D,S | Get number of I'sin Sinto D, result = 0..31 Result=0 1 | future
001000 001i 1111 ddddddddd sssssssss |ROR D,S | Rotate D right by S[4..0] bits Result=0 D[0] 1 4
001001 001i 1111 ddddddddd sssssssss |ROL D,S |Rotate D left by S[4..0] bits Result=0 D[31] 1 4
001010 001i 1111 ddddddddd sssssssss |SHR D,S | Shift D right by S[4..0] bits Result=0 D[0] 1 4
001011 001i 1111 ddddddddd sssssssss |SHL D,S | Shift D left by S[4..0] bits Result=0 D[31] 1 4
001100 001i 1111 ddddddddd sssssssss |RCR D, S | Rotate carry rightinto D by S[4..0] bits Result=0 D[0] 1 4
001101 0@1i 1111 ddddddddd sssssssss |RCL D, S | Rotate carry left into D by S[4..0] bits Result=0 D[31] 1 4
001110 001i 1111 ddddddddd sssssssss |SAR D,S | Shift D arithmetically right by S[4..0] bits Result=0 D[0] 1 4
001111 001i 1111 ddddddddd sssssssss |[REV  D,S E)Z‘éi:jse 82-S[4..0] bottom bits in D and 0- Result=0 D[0] 1] 4
010000 001i 1111 ddddddddd sssssssss |MINS  D,S |SetDtoSifsigned (D<S) D=$S Signed (D<S) | 1 4
010001 001i 1111 ddddddddd sssssssss |MAXS  D,S |SetDto S if signed (D =>S) D=S Signed (D<S) | 1 4
010010 001i 1111 ddddddddd sssssssss |MIN D,S |SetDtoSifunsigned (D<S) D=$S Unsigned (D<S) | 1 4
010011 @01i 1111 ddddddddd sssssssss |MAX D,S | SetDto Sif unsigned (D =>S) D=S Unsigned (D<S) | 1 4
010100 001i 1111 ddddddddd sssssssss |MOVS D, S | Insert S[8..0] into D[8..0] Result=0 - 1 4
010101 001i 1111 ddddddddd sssssssss |MOVD D,S |Insert S[8..0] into D[17..9] Result=0 - 1 4
010110 001i 1111 ddddddddd sssssssss |MOVI D, S | Insert S[8..0] into D[31..23] Result=0 - 1 4
010111 001i 1111 ddddddddd sssssssss [JMPRET D,S |Insert PC+1into D[8..0] and set PC to S[8..0] Result=0 - 1 4
010111 000i 1111 -——------ sssssssss |JMP S Set PC to S[8..0] Result=0 - 0 4

Copyright © Parallax Inc. Page 21 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

iiiiii zeri cccc ddddddddd sssssssss | Instruction Description Z out C out R |[Clocks
010111 @011 1111 ????????? sssssssss |CALL #S | Like JMPRET, but assembler handles details Result=0 - 1 4
010111 0@O1 1111 -——- RET Like JMP, but assembler handles details Result=0 - 0 4
011000 000i 1111 ddddddddd sssssssss |TEST D,S | AND S with D to affect flags only Result=0 Parity of Result 0 4
011001 00@i 1111 ddddddddd sssssssss |TESTN D,S | AND !Sinto D to affect flags only Result=0 Parity of Result | @ 4
011000 001i 1111 ddddddddd sssssssss |AND D,S |AND Sinto D Result=0 Parity of Result | 1 4
011001 001i 1111 ddddddddd sssssssss |ANDN D,S |AND !Sinto D Result=0 Parity of Result | 1 4
011010 001i 1111 ddddddddd sssssssss |[OR D,S |ORSintoD Result=0 Parity of Result | 1 4
011011 001i 1111 ddddddddd sssssssss |XOR D,S | XOR Sinto D Result=0 Parity of Result 1 4
011100 001i 1111 ddddddddd sssssssss |MUXC D, S | Copy C to bits in D using S as mask Result=0 Parity of Result | 1 4
011101 001i 1111 ddddddddd sssssssss |[MUXNC  D,S | Copy !C to bits in D using S as mask Result =0 Parity of Result | 1 4
011110 001i 1111 ddddddddd sssssssss |MUXZ D,S | Copy Zto bits in D using S as mask Result=0 Parity of Result | 1 4
011111 @@1i 1111 ddddddddd sssssssss [MUXNZ  D,S | Copy !Zto bitsin D using S as mask Result=0 Parity of Result | 1 4
100000 001i 1111 ddddddddd sssssssss |ADD D,S |Add Sinto D Result=0 Unsigned Carry | 1 4
100001 001i 1111 ddddddddd sssssssss [SUB D,S | Subtract S from D Result=0 Unsigned Borrow | 1 4
100001 000i 1111 ddddddddd sssssssss |CMP D,S |CompareDto S Result=0 Unsigned Borrow | @ 4
100010 001i 1111 ddddddddd sssssssss [ADDABS D,S | Add absolute S into D Result=0 Unsigned Carry! | 1 4
100011 001i 1111 ddddddddd sssssssss [SUBABS D,S | Subtract absolute S from D Result=0 | Unsigned Borrow 2| 1 4
100100 001i 1111 ddddddddd sssssssss |SUMC D,S | Sumeither-SifCor SifICinto D Result=0 Signed Overflow | 1 4
100101 001i 1111 ddddddddd sssssssss [SUMNC  D,S | Sum either Sif C or-Sif !Cinto D Result=0 Signed Overflow | 1 4
100110 001i 1111 ddddddddd sssssssss [SUMZ D,S | Sum either-Sif Z or Sif IZ into D Result=0 Signed Overflow | 1 4
100111 001i 1111 ddddddddd sssssssss [SUMNZ D, S | Sum either Sif Z or -Sif IZinto D Result=0 Signed Overflow | 1 4
101000 001i 1111 ddddddddd sssssssss |MOV D,S |SetDtoS Result=0 S[31] 1 4
101001 001i 1111 ddddddddd sssssssss |NEG D,S |SetDto-S Result=0 S[31] 1 4
101010 001i 1111 ddddddddd sssssssss |ABS D,S | SetD to absolute S Result=0 S[31] 1 4
101011 001i 1111 ddddddddd sssssssss [ABSNEG D,S | SetD to-absolute S Result=0 S[31] 1 4
101100 001i 1111 ddddddddd sssssssss |NEGC D,S | SetDtoeither-SifCor SifIC Result=0 S[31] 1 4
101101 001i 1111 ddddddddd sssssssss [NEGNC D,S | SetD toeither Sif Cor-Sif!C Result=0 S[31] 1 4
101110 001i 1111 ddddddddd sssssssss |NEGZ D,S | SetDtoeither-SifZor Sif1Z Result=0 S[31] 1 4
101111 @@1i 1111 ddddddddd sssssssss [NEGNZ D,S |SetDtoeither SifZ or-Sif!Z Result=0 S[31] 1 4
110000 000i 1111 ddddddddd sssssssss |CMPS D,S | Compare-signed D to S Result=0 Signed Borrow 0 4
110001 000i 1111 ddddddddd sssssssss [CMPSX D,S | Compare-signed-extended D to S+C Z & (Result=0) | Signed Borrow 0 4
110010 001i 1111 ddddddddd sssssssss |ADDX D,S | Add-extended S+C into D Z & (Result=0) | Unsigned Carry 1 4
110011 001i 1111 ddddddddd sssssssss |SUBX D, S | Subtract-extended S+C from D Z & (Result = 0) | Unsigned Borrow | 1 4
110011 000i 1111 ddddddddd sssssssss |CMPX D, S | Compare-extended D to S+C Z & (Result=0) | Unsigned Borrow | @ 4
110100 001i 1111 ddddddddd sssssssss |RDDS D,S | Add-signed S into D Result=0 Signed Overflow | 1 4
110101 001i 1111 ddddddddd sssssssss |SUBS D, S | Subtract-signed S from D Result=0 Signed Overflow | 1 4
110110 001i 1111 ddddddddd sssssssss |ADDSX D,S | Add-signed-extended S+C into D Z & (Result=0) | Signed Overflow | 1 4
110111 001i 1111 ddddddddd sssssssss [SUBSX D, S | Subtract-signed-extended S+C from D Z & (Result=0) | Signed Overflow | 1 4
111000 001i 1111 ddddddddd sssssssss [CMPSUB D,S |SubtractSfromDifD=>S D=S Unsigned (D=>9S)| 1 4
111001 001i 1111 ddddddddd sssssssss |[DINZ  D,S zggk%)“mp if not zero to S (no jump =8 Result=0 | Unsigned Borrow | 1 | 4or8
111010 000i 1111 ddddddddd sssssssss |TUNZ  D,S Ilisctkgj Jump if not zero to'S (no jump =8 Result=0 0 0 |40r8
111011 000i 1111 ddddddddd sssssssss |TJZ D,S | TestD, jumpif zero to S (no jump = 8 clocks) Result=0 0 @ |4or8
111100 000i 1111 ddddddddd sssssssss [WAITPEQ D,S | Wait for pins equal - (INA & S) =D - 0 5+
111101 000i 1111 ddddddddd sssssssss [WAITPNE D, S | Wait for pins not equal - (INA & S) I=D - 0 5+
111110 001i 1111 ddddddddd sssssssss |[WALTCNT D,S | Wait for CNT = D, then add S into D - Unsigned Carry 1 5+
111111 @@0i 1111 ddddddddd sssssssss [WAITVID D,S | Wait for video peripheral to grab D and S - 0 5+
—————————— 0000 -——= NOP No operation, just elapses 4 clocks - - 4

* See Hub, section 4.4 on page 7.
1. ADDABS C out: If Sis negative, C = the inverse of unsigned borrow (for D-S).
2. SUBABS C out: If Sis negative, C = the inverse of unsigned carry (for D+S).

Copyright © Parallax Inc.

Page 22 of 33

Rev 0.3 5/17/2007




Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

6.4.1. Assembly Conditions 6.4.4. Assembly Operators
Condition Instruction Executes Propeller Assembly code can contain constant
IF ALWAYS always expressions, which may use any operators that are
— allowed in constant expressions. The table (a subset of
IF_NEVER never . .
, Table 17) lists the operators allowed in Propeller
IF_E if equal (Z2) Assembly.
IF_NE if not equal (!12) .
- Operator |Description
IF_A if above (IC & 1Z)
+ Add
IF_B if below (C) —
- + Positive (+X); unary form of Add
IF_AE if above/equal (!C)
- - Subtract
IF_BE if below/equal (C | Z)
- Negate (-X); unary form of Subtract
IF C if C set
* Multiply and return lower 32 bits (signed)
IF_NC if C clear Multiol q ret 32 bits (signed)
*% ultiply and return upper its (signe
IF_Z if Z set — Py - PP 9
- / Divide (signed)
IF_NZ if Z clear -
- // Modulus (signed)
IF CFQ 7 if C equal to Z —— -
- #> Limit minimum (signed)
IF_C NE_Z if C not equal to Z — - -
<# Limit maximum (signed)
IF_C_AND_Z if C set and Z set
- AA Square root; unary
IF_C_AND_NZ if C set and Z clear
- | Absolute value; unary
IF_NC_AND_Z if C clear and Z set — —
IF NG AND N2 . 1Zcl ~> Shift arithmetic right
- - = 1% clearand £ clear |< Bitwise: Decode value (0-31) into single-high-bit
IF_C_OR_Z if C set or Z set long; unary
IF_C_OR NZ if C set or Z clear > Bitwise: Encode long into value (0 - 32) as high-
IF_NC_OR_Z if C clear or Z set bit priority; unary
- << Bitwise: Shift left
IF_NC_OR_NZ if C clear or Z clear
- >> Bitwise: Shift right
IF Z EQC if Z equal to C
- <- Bitwise: Rotate left
IF_Z NE_C if Z not equal to C
- -> Bitwise: Rotate right
IF_Z AND_C if Z set and C set
>< Bitwise: Reverse
IF_Z AND_NC if Z set and C clear
- & Bitwise: AND
IF_NZ_AND_C if Z clear and C set
- | Bitwise: OR
IF_NZ_AND_NC if Z clear and C clear
- A Bitwise: XOR
IF_Z OR_C if Z set or C set
- ! Bitwise: NOT; unary
IF_Z OR_NC if Z set or C clear
- AND Boolean: AND (promotes non-0 to -1)
IF_NZ OR_C if Z clear or C set
- OR Boolean: OR (promotes non-0 to -1)
IF_NZ_OR_NC if Z clear or C clear
NOT Boolean: NOT (promotes non-0 to -1); unary
6.4.2. Assembly Directives == Boolean: Is equal
Directive Description <> Boolean: Is not equal
FIT (Address) Validate previous instr/data fit below an < Boolean: Is less than (signed)
address. > Boolean: Is greater than (signed)
ORG (Address) Adjust compile-time cog address =< Boolean: Is equal or less (signed)
pointer. -
(Symbol) (Coud) R | : bol => Boolean: Is equal or greater (signed)
mbol) RES {Count eserve next long(s) for symbol.
y 96) L4 e Symbol address; unary
6.4.3. Assembly Effects
Effect | Results In
WC C Flag modified
WZ Z Flag modified
WR Destination Register modified
NR Destination Register not modified
Copyright © Parallax Inc. Page 23 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

7.0 PROPELLER DEMO BOARD SCHEMATIC

The Propeller Demo Board (Stock #32100) provides convenient connections to 32K EEPROM, replaceable 5 MHz crystal,
3.3V and 5V regulators, USB-to-serial programming/communication interface, VGA and NTSC video output, stereo output
with 16Q headphone amplifier, microphone input, two PS2 mouse and keyboard jacks, eight LEDs, eight free I/O pins
brought to a header for breadboard for prototyping, and a ground post for an oscilloscope probe. Overall PCB size: 3" x 3".

T T T Ussmms _ On-Board USB to Serial | Vddydd 6.9 5V 3.3V
| ini B .
Also available separately | F VDC On/Off LM2937IMP-5.0 | LM2937IMP-3.3
| 1 as the Propeller Clip | 32 KB 2 0ko -
| or the Propeller Plug I EEPROM < O05;—0 TIN GN%UT J_ IN GN%UT
I 5 a3 [ I A9 VDD
I s * 1 I NN J_ I0.1 uF Im uF | 10 pFI
| = %58 100 Q 4.7 pF| VSS SDA - - - - - - -
I D@> Red I I | 24L.C256-1/ST
55 X = =
| RXLED '\\ | vddvydd
I TXLED ha\ I Keyboard ], S
| 3.3vouUT Blue | PS/2 10kQS S
I f VECIO ryp i 3.3V 5V T T
I TXD - E\ Clock
| 0.1pF TEST 240 Q o -
I GND DTR Data
| = FT232RQ Green =
100 Q
I \\‘ AAA
I vvy
AAA
I vvy
_________________ 100 Q
Vddvdd
vose 1L
oo PS/i2 10k =
Jumper 5V
3.3V I—I Vdd o\ |—Clock
I T Ay
Data
1000
AAA
vy
AVAVAV
5 MHz 100 Q
Electret Vdd vdd Removable
Mic Crystal
LED
10kQ == 1nF 44 _C Indicators )
Ve
u u I I VDD P23 /
P8 P8X32A-Q44 P22 //1
11 P21 N—'\N\r—‘
0.1 F cz0g8erwa? v
- fxiiadlizas | = N—'\N\r—‘/, b
| | vdd '| 7 AN s
DI/;' AN
3.3y  Headphone );,
Amp N/,—’VW—“
Z \
PVDD PH—AMN—
SVDD INR //1
SHDNL P—wW—r
SHDNR Yellow —
INL G <>G <>Q' <>C,' <>C'n <>C: <>C: <,C'. <,C'. <>C'. =
1ur L 2384333333832 3e3 3
R our E t t
c1p L These three resistors These three sets of two
1yF PGND _—,—1 F ™\ = form a 1-volt, 75-ohm, vV_HB G IR resistors form 1-volt, 75-
SGND CiN H ] 3-bit DAC that is used ®|® @0 ohm, 2-bit DACs that
to generate baseband are used to generate
L MAX4411ETP _Stereo ang broadcast video. ®|OEe-0® red,ugreen, agnd blue.
- - ® @ @ ®
This resistor is only required for = =
aural subcarrier in broadcast mode. VGA
v

Copyright © Parallax Inc. Page 24 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

8.0 ELECTRICAL CHARACTERISTICS

8.1. Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress
ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the
remainder of Section 7.0. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 18: Absolute Maximum Ratings

Ambient temperature under bias

0°Cto+70°C

Storage temperature

-65°C to +150 °C

Voltage on Vgq with respect to Vgg -0.3Vto+4.0V
Voltage on all other pins with respect to Vgg -0.3Vto (Vy4q + 0.3V)
Total power dissipation 1w

Max. current out of Vg pins 300 mA

Max. current into Vyq pins 300 mA

Max. DC current into an input pin with internal protection diode forward biased +500 pA

Max. allowable current per I/O pin 40 mA

ESD (Human Body Model) Supply pins 3kV

ESD (Human Body Model) all non-supply pins 8 kV

T Ambient temperature under bias has not been tested; the listed range is a very conservative estimate and will be greatly expanded in the

non-Preliminary datasheet.

8.2.  DC Characteristics
(Simulated temperature range: -40° C < T, <+125° C unless otherwise noted)

Symbol Parameter Conditions Min Typ Max Units
Vyd Supply Voltage 27 ) 3.6 \Y
Vi V. Logic High 0.6 Vyq Vad \Y
ih, Vil Logic Low Ves 0.3 Vgq \%
I Input Leakage Current Vin = Vg4q Or Vss -1.0 +1.0 MA
Von Output High Voltage loh =10 mA, V4q=3.3V 2.85 \
Vol Output Low Voltage lo;= 10 MA, Vgg = 3.3V 0.4 \
lso Brownout Detector Current 3.8 A
| Quiescent Current RESn = 0V, BOEn = Vg4, Po-P31=0V 600 nA
Note: Data in the Typical (“Typ”) column is T, = 25 °C unless otherwise stated.
8.3.  AC Characteristics
(Simulated temperature range: -40°C < T, <+125°C unless otherwise noted)
Symbol Parameter Min Typ Max Units Condition
Fosc External XI Frequency DC - 80 MHz
Oscillator Frequency DC - 80 MHz Direct drive (no PLL)
13 20 33 kHz RCSLOW
8 12 20 MHz RCFAST
4 - 8 MHz Crystal using PLL
o Input Capacitance 6 - pF

Note: Data in the Typical (“Typ”) column is T, = 25 °C unless otherwise stated.

Copyright © Parallax Inc.

Page 25 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

9.0 CURRENT CONSUMPTION CHARACTERISTICS
9.1. Typical Current Consumption of 8 Cogs vs. Operating Frequency

This figure shows the typical current consumption of the Propeller under various operating conditions duplicated across all
cogs. Brown out circuitry and the Phase-Locked Loop were disabled for the duration of the test.

Current (A)

ol
ol
0

-
. . o, . .
& & A & N BN o

ol
ol
ol

0l
4

T

Aluo any

(IND/OI/IND) LIVMA --------
(dINF) SAOOT AIQUISSSY  wrressrereees

ol

(1v3d3y) sdoo udg

ol

ol

ol
/

ol
/

(zH) Aouanbal4
S
(0,62 = el ‘A¢'e) Aouanbai4 BunesadQ 'sa s609o g Jo uondwnsuo) juaiing [ealdA |

ol

Copyright © Parallax Inc. Page 26 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

9.2. Typical Current of a Cog vs. Operating Frequency

This graph shows a cog’s typical current consumption under various conditions, in isolation of other sources of current within
the Propeller chip.

Typical Current of a Cog vs. Operating Frequency (Vdd = 3.3 V, Ta = 25° C)

14
BIEEEE Spin Loop (REPEAT)
=-==-- Assembly Loop (JMP)
12
—— WAIT(CNT/PEQ/PNE) .
10
<
£ 8
P L et
c -
(0] +
=
S5 6 e
O - -="
. - e -
e RV S -~ -
1. / ________ s -
G "‘I T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Frequency (MHz)

9.3. Typical PLL Current vs. VCO Frequency

This graph shows the typical amount of current consumed by a Phase-Locked Loop as a function of the frequency of the
Voltage Controlled Oscillator which is 16 times the frequency of the input clock.

Typical PLL Current vs. VCO Frequency (Vdd = 3.3V, Ta = 25° C)

0.9

Current (mA)

0.8

0.7

0.6

0.5

0.4 T T T T T T T
20 40 60 80 100 120 140 160

Frequency (MHz)

Copyright © Parallax Inc. Page 27 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

9.4. Typical Crystal Drive Current

This graph shows the current consumption of the crystal driver over a range of crystal frequencies and crystal settings, all
data points above 25 MHz were obtained by using a resonator since the driver does not perform 3™ harmonic overtone
driving required for crystals over 25 MHz.

Typical Crystal Drive Current (Vdd = 3.3V, Ta = 25° C)

1.4
xtal1
———extal2|
1.2 sereeen e e e
1.0
< ]
£
€ o8 -
£ o
= i ’af:"
o e
06 5ot
7’
7
- ',,
0.4 //
02 T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50

Frequency (MHz)

9.5. Cog and I/O Pin Relationship

The figure below illustrates the physical relationship between the cogs and I/O pins. While there can be a 1 to 1.5 ns
propagation delay in output transitions between the shortest and longest paths, the purpose of the figure is to illustrate the
length of leads and their associated parasitic capacitance. This capacitance increases the amount of energy required to
transition a pin’s state and therefore increases the current draw for toggling a pin. So the current consumed by Cog 7 toggling
PO at 20 MHz will be greater than Cog 0 toggling P7 at 20 MHz. The amount of current consumed by transitioning a pin’s
state is dependent on many factors including: temperature, frequency of transitions, external load and internal load. As
mentioned the internal load is dependent upon which cog and pin are used. Internal load current for room temperature
toggling of a pin at 20 MHz for a Propeller in a DIP package varies on the order of 300 pA.

cog 0 cog 1 cog 2 cog 3 cog 4 cog 5 cog 6

e ]
e ]
[P9]
P15

Copyright © Parallax Inc. Page 28 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

9.6. Current Profile at Various Startup Conditions

The diagrams below show the current profile for various startup conditions of the Propeller chip dependent upon the presence
of an EEPROM and PC.

~2mA
Figure 7 125 mA ||| ~15mA
Boot Sequence Current Profile for Loading Booter from ROM into cog 0 ~0.5mA
no PC and no EEPROM (P31
held low and P29 not connected  oma /
(Same as held IOW)) ~50 ms < ~640 ps ~40 ps | ~60 ps |
Reset
Rising Edge
f ~2mA
. ~15mA
Figure 8 ~1.25mA |||
Boot Sequence Current Profile for _ ~0.5mA
. Loading Booter from ROM into cog 0 Execute Booter
PC (connected but idle) and no (PC Timeout)
EEPROM. (P31 held high and  oma /
P29 not connected). 50 ms - ~640 s > ~240ms ~60 s
Reset
Rising Edge
~2.4 mA
|||||||||||||yf||||||||||IL2mZ’
Execute
Fi gure 9 Booter ~1.25 mA Execute Booter
EEPROM no ACK Timeout
Boot Sequence Current PrOﬁle fOI' Loading Booter from ROM into cog 0 400 attempts made
no PC and no EEPROM (P31
held low and P29 held high). 0mA /
~50 ms ~640 us > <€ ~17 ms
Reset
Rising Edge
~2.4 mA
|||||||||||||/l"||||||||||| o mA
Figure 10
~1.256 mA Execute Booter
Boot Sequence Current Profile for EEPROM loaded into RAM
no PC and EEPROM (P3 1 held Loading Booter from ROM into cog 0
low and P29 connected to oA ,
m,
EEPROM SDA). 7
- ~50 ms - ~640 ps > <€ ~1.3s
Reset
Rising Edge
~2.4 mA
|||||||||||||y‘||||||||||| ~2mA
Figure 11
~1.25 mA Execute Booter
Boot Sequence Current Profile for EEPRON e RAM
PC (Connected but 1d1e) and Loading Booter from ROM into cog 0
EEPROM (P31 held high and P29 o ,
connected to EEPROM SDA). !
€«———~50 ms > ~640 ps - ~16s
Reset
Rising Edge

Copyright © Parallax Inc. Page 29 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

10.0 PACKAGE DIMENSIONS

10.1. P8X32A-D40 (40-pin DIP)

2.060” (+0.005 / -0.005")
52.32mm (+0.13 /-0.12mm) >

A

40 21
ek kel B i W MY i W sk e B e W i W ke

O O 0.540” (+/- 0.0107)
13.72mm (+/- 0.26mm)

PP PR R LA LI LI L]

1.215”
30.86mm

0.125" - 0.135”
3.18mm - 3.43mm

I {4

| 40.150” 4 0.190" max.
3.81mm "4.83mmmax.

gé

T 0.015” min.
f J 0.38mm min.
» 0.100 BSC
0.018” typ.
2.54mm BSC
0.050° tvo. 0.46mm typ.
1.27mm typ.

A

A_f_

0.600” BSC
15.24mm BSC

SEATING PLANE

Copyright © Parallax Inc. Page 30 of 33

Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

10.2. P8X32A-Q44 (44-pin LQFP)

- 13.3mm _
_ 12mm (+/- 0.2mm) N
< 11.4mm -~
< 9.5mm | ¢ 10mm (+/-0.1mm)
y i
i , HHAAARARARR i
L) - DA/ T
= = | o OPRALAXE = |
- e 95mm (i | e 10mm
- PCB P g E (+/- 0.1mm)
8.0mm = Land Pattern - - EH- - -
b— - 11.4mm o mte)
- ) § P8X3iA Q44 E 12mm
- Pad Size - fain AYWW)-(ZZ = (+/- 0.2mm)
G < 0.4mm x 1.9mm [ ] 13.3mm [min D ! wo| l
[ | J
i wll EEEEEEGGGG

0.-8mm —» |‘_ . 4" 0.35mm
(+/- 0.05mm)
[ > —> 0.8mm
8.0mm
i I
- =
%JCMMMQD\&. Coplanarity
0°-7° L 8mm ‘| 0.1mm
[~
1.4mm 0.25mm
(+/- 0.05mm)
¢ GAGE PLANE _+_
SEATING PLANE 3 | T
Omm - 0.076mm 4., 0.6mm (+/- 0.15mm) L
(Both Sides) I 0.05mm - 0.15mm
1mm

Copyright © Parallax Inc. Page 31 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet www.parallax.com

10.3. P8X32A-M44 (44-pin QFN)

. 9.2mm |
. 8.6mm s Top View
» 8.0mm R P 9.0mm >
44 34
00000000000 o _
- Center Pad - T Pin 1 P ”—lﬁq>< A 33
g 7.5mm x 7.5mm -
[ _J -
[ ] -
- PCB -
6.5 9.0
Ald  Land Pattern 8.6mm mm
[ ] -
: Pad Size : 9.2mm P8X32A-M44
£2  0.33mmx0.6mm [J l 11 AYWWXZZ 23
00000000000 v
0.65mm 4>‘ |<— 12 22
" 6.5mm o
Side View
D D =] o I e e O e R e O e O e O = O = = == | =] 0-8mm - 1-Omm
T SEATING PLANE 12 22 f
0.2mm
7.5mm
(+/- 0.10mm)
12 22
L 00000000000
D =) a| 23
D a
D a
D a
D a
) 7.5mm
D Bottom g Bottom View g (+/- 0.10mm)
D a
D a
. P a
e sznmononmﬂnonass
0.1
mm —»|le— ) ”
0.4mm (+/- 0.05mm) —» 0.65mm

Copyright © Parallax Inc. Page 32 of 33 Rev 0.3 5/17/2007



Propeller™ P8X32A Preliminary Datasheet

www.parallax.com

11.0 MANUFACTURING INFORMATION

11.1. Reflow Peak Temperature

11.2. Green/RoHS Compliance

Package Type

Reflow Peak Temp.

All Parallax Propeller chip models are certified

Green/RoHS Compliant. The Certificate of Compliance

is available upon request and be obtained by contacting
the Parallax Sales Team.

DIP 255+5/-0 °C
LQFP 255+5/-0 °C
QFN 255+5/-0 °C

Parallax Sales and Tech Support Contact Information

For the latest information on Propeller chips and programming tools, development boards, instructional materials, and
application examples, please visit www.parallax.com/propeller.

Parallax, Inc.
599 Menlo Drive, Suite 100
Rocklin, CA 95765

Sales/Tech Support: (916) 624-8333
Toll Free in the US: 1-888-512-1024
Sales: sales@parallax.com

Tech Support: support@parallax.com

Copyright © Parallax Inc.

Page 33 of 33 Rev 0.3 5/17/2007



