

Parallax, Propeller, Spin, and the Parallax and Propeller logos are trademarks of Parallax, Inc. All other trademarks are the property of their respective holders.
Copyright © Parallax Inc. Page 1 of 33 Rev 0.3 5/17/2007

Propeller™ P8X32A Preliminary Datasheet
8-Cog Multiprocessor Microcontrollers

1.0 PRODUCT OVERVIEW

1.1. Introduction
The Propeller chip is designed to provide high-speed processing for embedded systems while maintaining low current
consumption and a small physical footprint. In addition to being fast, the Propeller chip provides flexibility and power
through its eight processors, called cogs, that can perform simultaneous tasks independently or cooperatively, all while
maintaining a relatively simple architecture that is easy to learn and utilize. Two programming languages are available: Spin
(a high-level object-based language) and Propeller Assembly. Both include custom commands to easily manage the
Propeller chip’s unique features.

Figure 1: Propeller P8X32A Block Diagram

1.2. Stock Codes
Table 1: Propeller Chip Stock Codes

Device
Stock #

Package Type I/O
Pins

Power
Requirements

External
Clock
Speed

Internal RC
Oscillator

Internal
Execution

Speed
Global

ROM/RAM Cog RAM

P8X32A-D40 40-pin DIP

P8X32A-Q44 44-pin LQFP

P8X32A-M44 44-pin QFN

32
CMOS 3.3 volts DC DC to 80

MHz
12 MHz or
20 KHz*

0 to 160 MIPS
(20 MIPS/cog)

64 K bytes;
32768 bytes
ROM / 32768
bytes RAM

512 x 32 bits
per cog

*Approximate; may range from 8 MHz – 20 MHz, or 13 kHz – 33 kHz, respectively.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 2 of 33 Rev 0.3 5/17/2007

Table of Contents
1.0 Product Overview...1
1.1. Introduction .. 1
1.2. Stock Codes... 1
1.3. Key Features.. 3
1.4. Programming Advantages.. 3
1.5. Applications.. 3
1.6. Programming Platform Support.. 3
1.7. Corporate and Community Support.. 3
2.0 Connection Diagrams ..4
2.1. Pin Assignments .. 4
2.2. Pin Descriptions ... 4
2.3. Typical Connection Diagrams .. 5

2.3.1. Propeller Clip or Propeller Plug Connection - Recommended... 5
2.3.2. Alternative Serial Port Connection... 5

3.0 Operating Procedures ...6
3.1. Boot-Up Procedure .. 6
3.2. Run-Time Procedure.. 6
3.3. Shutdown Procedure.. 6
4.0 System Organization ...6
4.1. Shared Resources ... 6
4.2. System Clock ... 6
4.3. Cogs (processors).. 7
4.4. Hub .. 7
4.5. I/O Pins .. 8
4.6. System Counter ... 8
4.7. Locks ... 8
4.8. Cog Counters... 9

4.8.1. CTRA / CTRB – Control register ... 9
4.8.2. FRQA / FRQB – Frequency register.. 9
4.8.3. PHSA / PHSB – Phase register... 9

4.9. Video Generator... 10
4.9.1. VCFG – Video Configuration Register... 10
4.9.2. VSCL – Video Scale Register.. 11
4.9.3. WAITVID Command/Instruction .. 11

4.10. CLK Register.. 13
5.0 Memory Organization ..14
5.1. Main Memory ... 14

5.1.1. Main RAM.. 14
5.1.2. Main ROM ... 14
5.1.3. Character Definitions... 14
5.1.4. Math Function Tables.. 15

5.2. Cog RAM ... 15
6.0 Programming Languages..16
6.1. Reserved Word List.. 16

6.1.1. Words Reserved for Future Use.. 16
6.2. Math and Logic Operators.. 17
6.3. Spin Language Summary Table... 18

6.3.1. Constants .. 20
6.4. Propeller Assembly Instruction Table ... 21

6.4.1. Assembly Conditions... 23
6.4.2. Assembly Directives .. 23
6.4.3. Assembly Effects... 23
6.4.4. Assembly Operators.. 23

7.0 Propeller Demo Board Schematic ..24
8.0 Electrical Characteristics ..25
8.1. Absolute Maximum Ratings.. 25
8.2. DC Characteristics ... 25
8.3. AC Characteristics ... 25
9.0 Current Consumption Characteristics ...26
9.1. Typical Current Consumption of 8 Cogs vs. Operating Frequency ... 26
9.2. Typical Current of a Cog vs. Operating Frequency... 27
9.3. Typical PLL Current vs. VCO Frequency ... 27
9.4. Typical Crystal Drive Current ... 28
9.5. Cog and I/O Pin Relationship ... 28
9.6. Current Profile at Various Startup Conditions... 29
10.0 Package Dimensions ...30
10.1. P8X32A-D40 (40-pin DIP).. 30
10.2. P8X32A-Q44 (44-pin LQFP) .. 31
10.3. P8X32A-M44 (44-pin QFN).. 32
11.0 Manufacturing Information..33
11.1. Reflow Peak Temperature ... 33
11.2. Green/RoHS Compliance... 33

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 3 of 33 Rev 0.3 5/17/2007

1.3. Key Features
The design of the Propeller chip frees application
developers from common complexities of embedded
systems programming. For example:

• Eight processors (cogs) perform simultaneous
processes independently or cooperatively, sharing
common resources through a central hub. The
Propeller application designer has full control over
how and when each cog is employed; there is no
compiler-driven or operating system-driven splitting
of tasks between multiple cogs. This method
empowers the developer to deliver absolutely
deterministic timing, power consumption, and
response to the embedded application.

• Asynchronous events are easier to handle than with
devices that use interrupts. The Propeller has no
need for interrupts; just assign some cogs to
individual, high-bandwidth tasks and keep other
cogs free and unencumbered. The result is a more
responsive application that is easier to maintain.

• A shared System Clock allows each cog to maintain
the same time reference, allowing true synchronous
execution.

1.4. Programming Advantages
• The object-based high-level Spin language is easy to

learn, with special commands that allow developers
to quickly exploit the Propeller chip’s unique and
powerful features.

• Propeller Assembly instructions provide conditional
execution and optional flag and result writing for
each individual instruction. This makes critical,
multi-decision blocks of code more consistently
timed; event handlers are less prone to jitter and
developers spend less time padding, or squeezing,
cycles.

1.5. Applications
The Propeller chip is particularly useful in projects that
can be vastly simplified with simultaneous processing,
including:

• Industrial control systems
• Sensor integration, signal processing, and data

acquisition
• Handheld portable human-interface terminals
• Motor and actuator control
• User interfaces requiring NTSC, PAL, or VGA

output, with PS/2 keyboard and mouse input
• Low-cost video game systems
• Industrial, educational or personal-use robotics
• Wireless video transmission (NTSC or PAL)

1.6. Programming Platform Support
Parallax Inc. supports the Propeller chip with a variety of
hardware tools and boards:

• Prop Clip (#32200) and Prop Plug (#3220). These
boards provide convenient programming port
connections, see the Typical Connection Diagrams
on Page 5.

• The Propeller Demo Board (Stock #32100) provides
a convenient means to test-drive the Propeller chip's
varied capabilities through a host of device
interfaces on one compact board. The schematic is
provided on page 24. Main features:
o P8X32A-Q44 Propeller Chip
o 24LC256-I/ST EEPROM for program storage
o Replaceable 5.000 MHz crystal
o 3.3 V and 5 V regulators with on/off switch
o USB-to-serial interface for programming and

communication
o VGA and TV output
o Stereo output with 16-ohm headphone amplifier
o Electret microphone input
o Two PS/2 mouse and keyboard I/O connectors
o 8 LEDs (share VGA pins)
o Pushbutton for reset
o Big ground post for scope hookup
o I/O pins P0-P7 are free and brought out to header
o Breadboard for custom circuits

• The Propeller Proto Board (#32212) features a
surface-mount Propeller chip with the necessary
components to achieve a programming interface,
with pads ready for a variety of I/O connectors and
DIP/SIP chips, and a generous through-hole
prototyping area.

• The PropSTICK USB (#32210) features a Propeller
chip, EEPROM, 3.3VDC and 5VDC regulators,
reset button, crystal and USB connection on a 0.6”
wide DIP package for easy prototyping on perfboard
and breadboard.

1.7. Corporate and Community Support
• Parallax provides technical support free of charge.

In the Continental US, call toll free (888) 512-1024;
from outside please call (916) 624-8333. Or, email:
support@parallax.com.

• Parallax hosts a moderated public users forum just
for the Propeller: http://forums.parallax.com/forums.

• Browse through community-created Propeller
objects and share yours with others via Parallax-
hosted Propeller Object Exchange Library: look for
the link on the http://www.parallax.com/downloads
page.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 4 of 33 Rev 0.3 5/17/2007

2.0 CONNECTION DIAGRAMS

2.1. Pin Assignments

 LQFP and QFN Packages

 DIP Package

2.2. Pin Descriptions
Table 2: Pin Descriptions

Pin Name Direction Description

P0 – P31 I/O

General purpose I/O Port A. Can source/sink 40 mA each at 3.3 VDC. CMOS level logic with threshold
of ≈ ½ VDD or 1.6 VDC @ 3.3 VDC.

The pins shown below have a special purpose upon power-up/reset but are general purpose I/O
afterwards.

P28 - I2C SCL connection to optional, external EEPROM.
P29 - I2C SDA connection to optional, external EEPROM.
P30 - Serial Tx to host.
P31 - Serial Rx from host.

VDD --- 3.3 volt power (2.7 – 3.6 VDC)

VSS --- Ground

BOEn I
Brown Out Enable (active low). Must be connected to either VDD or VSS. If low, RESn becomes a
weak output (delivering VDD through 5 KΩ) for monitoring purposes but can still be driven low to cause
reset. If high, RESn is CMOS input with Schmitt Trigger.

RESn I/O Reset (active low). When low, resets the Propeller chip: all cogs disabled and I/O pins floating.
Propeller restarts 50 ms after RESn transitions from low to high.

XI I
Crystal Input. Can be connected to output of crystal/oscillator pack (with XO left disconnected), or to
one leg of crystal (with XO connected to other leg of crystal or resonator) depending on CLK Register
settings. No external resistors or capacitors are required.

XO O Crystal Output. Provides feedback for an external crystal, or may be left disconnected depending on
CLK Register settings. No external resistors or capacitors are required.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 5 of 33 Rev 0.3 5/17/2007

2.3. Typical Connection Diagrams

2.3.1. Propeller Clip or Propeller Plug Connection - Recommended
Note that the connections to the external oscillator and EEPROM, which are enclosed in dashed lines, are optional.
Propeller Clip: Stock #32200; Propeller Plug: Stock #32201. The Propeller Clip/Plug schematic is available for download
from www.parallax.com.

2.3.2. Alternative Serial Port Connection

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 6 of 33 Rev 0.3 5/17/2007

3.0 OPERATING PROCEDURES

3.1. Boot-Up Procedure
Upon power-up, or reset:
1. The Propeller chip’s internal RC oscillator begins

running at 20 kHz, then after a 50 ms reset delay,
switches to 12 MHz. Then the first processor (Cog 0)
loads and runs the built-in Boot Loader program.

2. The Boot Loader performs one or more of the
following tasks, in order:
a. Detects communication from a host, such as a

PC, on pins P30 and P31. If communication
from a host is detected, the Boot Loader
converses with the host to identify the Propeller
chip and possibly download a program into
global RAM and optionally into an external 32
KB EEPROM.

b. If no host communication was detected, the Boot
Loader looks for an external 32 KB EEPROM on
pins P28 and P29. If an EEPROM is detected,
the entire 32 KB data image is loaded into the
Propeller chip’s global RAM.

c. If no EEPROM was detected, the boot loader
stops, Cog 0 is terminated, the Propeller chip
goes into shutdown mode, and all I/O pins are set
to inputs.

3. If either step 2a or 2b was successful in loading a
program into the global RAM, and a suspend
command was not given by the host, then Cog 0 is
reloaded with the built-in Spin Interpreter and the
user code is run from global RAM.

3.2. Run-Time Procedure
A Propeller Application is a user program compiled into
its binary form and downloaded to the Propeller chip’s
RAM/EEPROM. The application consists of code written
in the Propeller chip’s Spin language (high-level code)
with optional Propeller Assembly language components
(low-level code). Code written in the Spin language is
interpreted during run time by a cog running the Spin
Interpreter while code written in Propeller Assembly is
run in its pure form directly by a cog. Every Propeller
Application consists of at least a little Spin code and may
actually be written entirely in Spin or with various
amounts of Spin and assembly. The Propeller chip’s Spin
Interpreter is started in Step 3 of the Boot Up Procedure,
above, to get the application running.
Once the boot-up procedure is complete and an
application is running in Cog 0, all further activity is
defined by the application itself. The application has
complete control over things like the internal clock speed,

I/O pin usage, configuration registers, and when, what
and how many cogs are running at any given time. All of
this is variable at run time, as controlled by the
application.

3.3. Shutdown Procedure
When the Propeller goes into shutdown mode, the internal
clock is stopped causing all cogs to halt and all I/O pins
are set to input direction (high impedance). Shutdown
mode is triggered by one of the three following events:
1. VDD falling below the brown-out threshold (~2.7

VDC), when the brown out circuit is enabled,
2. the RESn pin going low, or
3. the application requests a reboot (see the REBOOT

command in the Propeller Manual).
Shutdown mode is discontinued when the voltage level
rises above the brown-out threshold and the RESn pin is
high.

4.0 SYSTEM ORGANIZATION

4.1. Shared Resources
There are two types of shared resources in the Propeller:
1) common, and 2) mutually-exclusive. Common
resources can be accessed at any time by any number of
cogs. Mutually-exclusive resources can also be accessed
by any number of cogs, but only by one cog at a time.
The common resources are the I/O pins and the System
Counter. All other shared resources are mutually-
exclusive by nature and access to them is controlled by
the Hub. See Section 0 on page 7.

4.2. System Clock
The System Clock (shown as “CLOCK” in Figure 1, page
1) is the central clock source for nearly every component
of the Propeller chip. The System Clock’s signal comes
from one of three possible sources:

• The internal RC oscillator (~12 MHz or ~20 kHz)
• The XI input pin (either functioning as a high-

impedance input or a crystal oscillator in
conjunction with the XO pin)

• The Clock PLL (phase-locked loop) fed by the XI
input

The source is determined by the CLK register’s settings,
which is selectable at compile time and reselectable at run
time. The Hub and internal Bus operate at half the
System Clock speed.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 7 of 33 Rev 0.3 5/17/2007

4.3. Cogs (processors)
The Propeller contains eight (8) identical, independent
processors, called cogs, numbered 0 to 7. Each cog
contains a Processor block, local 2 KB RAM configured
as 512 longs (512 x 32 bits), two advanced counter
modules with PLLs, a Video Generator, I/O Output
Register, I/O Direction Register, and other registers not
shown in the Block Diagram.
All eight cogs are driven from the System Clock; they
each maintain the same time reference and all active cogs
execute instructions simultaneously. They also all have
access to the same shared resources.
Cogs can be started and stopped at run time and can be
programmed to perform tasks simultaneously, either
independently or with coordination from other cogs
through Main RAM. Each cog has its own RAM, called
Cog RAM, which contains 512 registers of 32 bits each.
The Cog RAM is all general purpose RAM except for the
last 16 registers, which are special purpose registers, as
described in Table 15 on page 15.

4.4. Hub
To maintain system integrity, mutually-exclusive
resources must not be accessed by more than one cog at a
time. The Hub controls access to mutually-exclusive
resources by giving each cog a turn in a “round robin”
fashion from Cog 0 through Cog 7 and back to Cog 0
again. The Hub and its bus run at half the System Clock
rate, giving a cog access to mutually-exclusive resources
once every 16 System Clock cycles. Hub instructions, the
Propeller Assembly instructions that access mutually-
exclusive resources, require 7 cycles to execute but they
first need to be synchronized to the start of the Hub
Access Window.

It takes up to 15 cycles (16 minus 1, if we just missed it)
to synchronize to the Hub Access Window plus 7 cycles
to execute the hub instruction, so hub instructions take
from 7 to 22 cycles to complete.
Figure 2 and Figure 3 show examples where Cog 0 has a
hub instruction to execute. Figure 2 shows the best-case
scenario; the hub instruction was ready right at the start of
that cog’s access window. The hub instruction executes
immediately (7 cycles) leaving an additional 9 cycles for
other instructions before the next Hub Access Window
arrives.
Figure 3 shows the worst-case scenario; the hub
instruction was ready on the cycle right after the start of
Cog 0’s access window; it just barely missed it. The cog
waits until the next Hub Access Window (15 cycles later)
then the hub instruction executes (7 cycles) for a total of
22 cycles for that hub instruction. Again, there are 9
additional cycles after the hub instruction for other
instructions to execute before the next Hub Access
Window arrives. To get the most efficiency out of
Propeller Assembly routines that have to frequently
access mutually-exclusive resources, it can be beneficial
to interleave non-hub instructions with hub instructions to
lessen the number of cycles waiting for the next Hub
Access Window. Since most Propeller Assembly
instructions take 4 clock cycles, two such instructions can
be executed in between otherwise contiguous hub
instructions.
Keep in mind that a particular cog’s hub instructions do
not, in any way, interfere with other cogs’ instructions
because of the Hub mechanism. Cog 1, for example, may
start a hub instruction during System Clock cycle 2, in
both of these examples, possibly overlapping its execution
with that of Cog 0 without any ill effects. Meanwhile, all
other cogs can continue executing non-hub instructions,
or awaiting their individual hub access windows
regardless of what the others are doing.

Figure 2: Cog-Hub
Interaction – Best Case
Scenario

Figure 3: Cog-Hub
Interaction – Worst Case
Scenario

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 8 of 33 Rev 0.3 5/17/2007

4.5. I/O Pins
The Propeller has 32 I/O pins, 28 of which are general
purpose. I/O Pins 28 - 31 have a special purpose at Boot
Up and are available for general purpose use afterwards;
see section 2.2, page 4. After boot up, any I/O pins can
be used by any cogs at any time. It is up to the
application developer to ensure that no two cogs try to use
the same I/O pin for different purposes during run-time.
Each cog has its own 32-bit I/O Direction Register and
32-bit I/O Output Register. The state of each cog’s
Direction Register is OR’d with that of the previous cogs’
Direction Registers, and each cog’s output states is OR’d
with that of the previous cogs’ output states. Note that
each cog’s output states are made up of the OR’d states of
its internal I/O hardware and that is all AND’d with its
Direction Register’s states. The result is that each I/O
pin’s direction and output state is the “wired-OR” of the
entire cog collective. No electrical contention between
cogs is possible, yet they can all still access the I/O pins
simultaneously. The result of this I/O pin wiring
configuration can be described in the following rules:

A. A pin is an input only if no active cog sets it to
an output.

B. A pin outputs low only if all active cogs that set
it to output also set it to low.

C. A pin outputs high if any active cog sets it to an
output and also sets it high.

Table 3 demonstrates a few possible combinations of the
collective cogs’ influence on a particular I/O pin, P12 in
this example. For simplification, these examples assume
that bit 12 of each cog’s I/O hardware, other than its I/O
Output Register, is cleared to zero (0).
Any cog that is shut down has its Direction Register and
output states cleared to zero, effectively removing it from
influencing the final state of the I/O pins that the
remaining active cogs are controlling.
Each cog also has its own 32-bit Input Register. This
input register is really a pseudo-register; every time it is
read, the actual states of the I/O pins are read, regardless
of their input or output direction.

Table 3: I/O Sharing Examples
 Bit 12 of Cogs’ I/O Direction Register Bit 12 of Cogs’ I/O Output Register

Cog ID 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

State of
I/O Pin P12

Rule
Followed

Example 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Input A

Example 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Output Low B

Example 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Output High C

Example 4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output Low B

Example 5 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output High C

Example 6 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 Output High C

Example 7 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 Output High C

Example 8 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 Output Low B
Note: For the I/O Direction Register, a 1 in a bit location sets the corresponding I/O pin to the output direction; a 0 sets it to an input direction.

4.6. System Counter
The System Counter is a global, read-only, 32-bit counter
that increments once every System Clock cycle. Cogs can
read the System Counter (via their CNT register, see
Table 15 on page 15) on page to perform timing
calculations and can use the WAITCNT command (see
section 6.3 on page 18 and section 6.4 on page 21) to
create effective delays within their processes. The
System Counter is a common resource which every cog
can read simultaneously. The System Counter is not
cleared upon startup since its practical use is for
differential timing. If a cog needs to keep track of time
from a specific, fixed moment in time, it simply needs to
read and save the initial counter value at that moment in
time, and compare subsequent counter values against that
initial value.

4.7. Locks
There are eight lock bits (semaphores) available to
facilitate exclusive access to user-defined resources
among multiple cogs. If a block of memory is to be used
by two or more cogs at once and that block consists of
more than one long (four bytes), the cogs will each have
to perform multiple reads and writes to retrieve or update
that memory block. This leads to the likely possibility of
read/write contention on that memory block where one
cog may be writing while another is reading, resulting in
misreads and/or miswrites.
The locks are global bits accessed through the Hub via
LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR. Because
locks are accessed only through the Hub, only one cog at
a time can affect them, making this an effective control
mechanism. The Hub maintains an inventory of which
locks are in use and their current states; cogs can check
out, return, set, and clear locks as needed during run time.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 9 of 33 Rev 0.3 5/17/2007

4.8. Cog Counters
Each cog has two counter modules: CTRA and CTRB. Each
counter module can control or monitor up to two I/O pins
and perform conditional 32-bit accumulation of its FRQ
register into its PHS register on every clock cycle.
Each counter module also has its own phase-locked loop
(PLL) which can be used to synthesize frequencies up to
128 MHz.
With a little setup or oversight from the cog, a counter can
be used for:

• frequency synthesis
• frequency measurement
• pulse counting
• pulse measurement
• multi-pin state measurement
• pulse-width modulation
• duty-cycle measurement
• digital-to-analog conversion
• analog-to-digital conversion

For some of these operations, the cog can be set up and
left in a free-running mode. For others, it may use
WAITCNT to time-align counter reads and writes within a
loop, creating the effect of a more complex state machine.
Note that for a cog clock frequency of 80 MHz, the
counter update period is a mere 12.5 ns. This high speed,
combined with 32-bit precision, allows for very dynamic
signal generation and measurement.
The design goal for the counter was to create a simple and
flexible subsystem which could perform some repetitive
task on every clock cycle, thereby freeing the cog to
perform some computationally richer super-task. While
the counters have only 32 basic operating modes, there is
no limit to how they might be used dynamically through
software. Integral to this concept is the use of the
WAITPEQ, WAITPNE, and WAITCNT instructions, which can
event-align or time-align a cog with its counters.
Each counter has three registers:

4.8.1. CTRA / CTRB – Control register
The CTR (CTRA and CTRB) register selects the counter's
operating mode. As soon as this register is written, the
new operating mode goes into effect. Writing a zero to
CTR will immediately disable the counter, stopping all
pin output and PHS accumulation.

Table 4: CTRA and CTRB Registers
31 30..26 25..23 22..15 14..9 8..6 5..0
- CTRMODE PLLDIV - BPIN - APIN

CTRMODE selects one of 32 operating modes for the
counter, conveniently written (along with PLLDIV) using
the MOVI instruction. These modes of operation are listed
in Table 6 on page 10.

Table 5: PLLDIV Field
PLLDIV %000 %001 %010 %011 %100 %101 %110 %111

Output VCO
128

VCO
64

VCO
32

VCO
16

VCO
8

VCO
4

VCO
2

VCO
1

PLLDIV selects a PLL output tap and may be ignored if
not used.
The PLL modes (%00001 to %00011) cause FRQ-to-PHS
accumulation to occur every clock cycle. This creates a
numerically-controlled oscillator (NCO) in PHS[31],
which feeds the counter PLL's reference input. The PLL
will multiply this frequency by 16 using its voltage-
controlled oscillator (VCO). For stable operation, it is
recommended that the VCO frequency be kept within 64
MHz to 128 MHz. This translates to an NCO frequency of
4 MHz to 8 MHz.
The PLLDIV field of the CTR register selects which
power-of-two division of the VCO frequency will be used
as the final PLL output. This affords a PLL range of 500
KHz to 128 MHz.
BPIN selects a pin to be the secondary I/O. It may be
ignored if not used and may be written using the MOVD
instruction.
APIN selects a pin to be the primary I/O. It may be
ignored if not used and may be written using the MOVS
instruction.

4.8.2. FRQA / FRQB – Frequency register
FRQ (FRQA and FRQB) holds the value that will be
accumulated into the PHS register. For some applications,
FRQ may be written once, and then ignored. For others, it
may be rapidly modulated.

4.8.3. PHSA / PHSB – Phase register
The PHS (PHSA and PHSB) register is the oddest of all
cog registers. Not only can it be written and read via cog
instructions, but it also functions as a free-running
accumulator, summing the FRQ register into itself on
potentially every clock cycle. Any instruction writing to
PHS will override any accumulation for that clock cycle.
PHS can only be read through the source operand (same
as PAR, CNT, INA, and INB). Beware that doing a read-
modify-write instruction on PHS, like "ADD PHSA, #1",
will cause the last-written value to be used as the
destination operand input, rather than the current
accumulation.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 10 of 33 Rev 0.3 5/17/2007

Table 6: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%00000 Counter disabled (off) 0 (never) 0 (none) 0 (none)
%00001
%00010
%00011

PLL internal (video mode)
PLL single-ended
PLL differential

1 (always)
1
1

0
PLLx
PLLx

0
0
!PLLx

%00100
%00101

NCO single-ended
NCO differential

1
1

PHSx[31]
PHSx[31]

0
!PHSx[31]

%00110
%00111

DUTY single-ended
DUTY differential

1
1

PHSx-Carry
PHSx-Carry

0
!PHSx-Carry

%01000
%01001
%01010
%01011

POS detector
POS detector with feedback
POSEDGE detector
POSEDGE detector w/ feedback

A1
A1
A1 & !A2
A1 & !A2

0
0
0
0

0
!A1
0
!A1

%01100
%01101
%01110
%01111

NEG detector
NEG detector with feedback
NEGEDGE detector
NEGEDGE detector w/ feedback

!A1
!A1
!A1 & A2
!A1 & A2

0
0
0
0

0
!A1
0
!A1

%10000
%10001
%10010
%10011
%10100
%10101
%10110
%10111
%11000
%11001
%11010
%11011
%11100
%11101
%11110
%11111

LOGIC never
LOGIC !A & !B
LOGIC A & !B
LOGIC !B
LOGIC !A & B
LOGIC !A
LOGIC A <> B
LOGIC !A | !B
LOGIC A & B
LOGIC A == B
LOGIC A
LOGIC A | !B
LOGIC B
LOGIC !A | B
LOGIC A | B
LOGIC always

0
!A1 & !B1
A1 & !B1
!B1
!A1 & B1
!A1
A1 <> B1
!A1 | !B1
A1 & B1
A1 == B1
A1
A1 | !B1
B1
!A1 | B1
A1 | B1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

*Must set corresponding DIR bit to affect pin. A1 = APIN input delayed by 1 clock. A2 = APIN input delayed by 2 clocks B1 = BPIN input delayed by 1 clock.

4.9. Video Generator
Each cog has a video generator module that facilitates
transmitting video image data at a constant rate. There are
two registers and one instruction which provide control
and access to the video generator. Counter A of the cog
must be running in a PLL mode and is used to generate
the timing signal for the Video Generator. The Video
Scale Register specifies the number of Counter A PLL
(PLLA) clock cycles for each pixel and number of clock
cycles before fetching another frame of data provided by
the WAITVID instruction which is executed within the cog.
The Video Configuration Register establishes the mode
the Video Generator should operate and can generate
VGA or composite video (NTSC or PAL).
The Video Generator should be initialized by first starting
Counter A, setting the Video Scale Register, setting the

Video Configuration Register, then finally providing data
via the WAITVID instruction. Failure to properly initialize
the Video Generator by first starting PLLA will cause the
cog to indefinitely hang when the WAITVID instruction is
executed.

4.9.1. VCFG – Video Configuration Register
The Video Configuration Register contains the
configuration settings of the video generator and is shown
in Table 7.
In Propeller Assembly, the VMode through AuralSub
fields can conveniently be written using the MOVI
instruction, the VGroup field can be written with the MOVD
instruction, and the VPins field can be written with the
MOVS instruction.

Table 7: VCFG Register

31 30..29 28 27 26 25..23 22..12 11..9 8 7..0

- VMode CMode Chroma1 Chroma0 AuralSub - VGroup - VPins

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 11 of 33 Rev 0.3 5/17/2007

The 2-bit VMode (video mode) field selects the type and
orientation of video output, if any, according to Table 8.

Table 8: The Video Mode Field
VMode Video Mode

00 Disabled, no video generated.

01 VGA mode; 8-bit parallel output on VPins 7:0

10
Composite Mode 1; broadcast on VPins 7:4, baseband
on VPins 3:0

11
Composite Mode 2; baseband on VPins 7:4, broadcast
on VPins 3:0

The CMode (color mode) field selects two or four color
mode. 0 = two-color mode; pixel data is 32 bits by 1 bit
and only colors 0 or 1 are used. 1 = four-color mode;
pixel data is 16 bits by 2 bits, and colors 0 through 3 are
used.
The Chroma1 (broadcast chroma) bit enables or disables
chroma (color) on the broadcast signal. 0 = disabled, 1 =
enabled.
The Chroma0 (baseband chroma) bit enables or disables
chroma (color) on the baseband signal. 0 = disabled, 1 =
enabled.
The AuralSub (aural sub-carrier) field selects the source
of the FM aural (audio) sub-carrier frequency to be
modulated on. The source is the PLLA of one of the
cogs, identified by AuralSub’s value. This audio must
already be modulated onto the 4.5 MHz sub-carrier by the
source PLLA.

Table 9: The AuralSub Field
AuralSub Sub-Carrier Frequency Source

000 Cog 0’s PLLA

001 Cog 1’s PLLA

010 Cog 2’s PLLA

011 Cog 3’s PLLA

100 Cog 4’s PLLA

101 Cog 5’s PLLA

110 Cog 6’s PLLA

111 Cog 7’s PLLA

The VGroup (video output pin group) field selects which
group of 8 I/O pins to output video on.

 Table 10: The VGroup Field
VGroup Pin Group

000 Group 0: P7..P0

001 Group 1: P15..P8

010 Group 2: P23..P16

011 Group 3: P31..P24

100-111 <reserved for future use>

The VPins (video output pins) field is a mask applied to
the pins of VGroup that indicates which pins to output
video signals on.

 Table 11: The VPins Field
VPins Effect
00001111 Drive Video on lower 4 pins only; composite

11110000 Drive Video on upper 4 pins only; composite

11111111 Drive video on all 8 pins; VGA

XXXXXXXX
Any value is valid for this field; the above
values are the most common.

4.9.2. VSCL – Video Scale Register
The Video Scale Register sets the rate at which video data
is generated, and is shown in Table 12.

 Table 12: VSCL Register
VSCL Bits

31..20 19..12 11..0

− PixelClocks FrameClocks

The 8-bit PixelClocks field indicates the number of clocks
per pixel; the number of clocks that should elapse before
each pixel is shifted out by the video generator module.
These clocks are the PLLA clocks, not the System Clock.
A value of 0 for this field is interpreted as 256.
The 12-bit FrameClocks field indicates the number of
clocks per frame; the number of clocks that will elapse
before each frame is shifted out by the video generator
module. These clocks are the PLLA clocks, not the
System Clock. A frame is one long of pixel data
(delivered via the WAITVID command). Since the pixel
data is either 16 bits by 2 bits, or 32 bits by 1 bit (meaning
16 pixels wide with 4 colors, or 32 pixels wide with 2
colors, respectively), the FrameClocks is typically 16 or
32 times that of the PixelClocks value. A value of 0 for
this field is interpreted as 4096.

4.9.3. WAITVID Command/Instruction
The WAITVID instruction is the delivery mechanism for
data to the cog’s Video Generator hardware. Since the
Video Generator works independently from the cog itself,
the two must synchronize each time data is needed for the
display device. The frequency at which this occurs is
dictated by the frequency of PLLA and the Video Scale
Register. The cog must have new data available before the
moment the Video Generator needs it. The cog uses
WAITVID to wait for the right time and then “hand off”
this data to the Video Generator.
Two longs of data are passed to the Video Generator by
with the syntax WAITVID Colors, Pixels.
The Colors parameter is a 32-bit value containing either
four 8-bit color values (for 4 color mode) or two 8-bit
color values in the lower 16 bits (for 2 color mode). For

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 12 of 33 Rev 0.3 5/17/2007

VGA mode, each 8-bit color value is written to the pins
specified by the VGroup and VPins field. For VGA
typically the 8 bits are grouped into 2 bits per primary
color and Horizontal and Vertical Sync control lines, but
this is up to the software and application of how these bits
are used. For composite video each 8-bit color value is
composed of 3 fields. Bits 0-2 are the luminance value of
the generated signal. Bit 3 is the modulation bit which
dictates whether the chroma information will be generated
and bits 4-7 indicate the phase angle of the chroma value.
When the modulation bit is set to 0, the chroma
information is ignored and only the luminance value is
output to pins. When the modulation bit is set to 1 the
luminance value is modulated ± 1 with a phase angle set
by bits 4-7. In order to achieve the full resolution of the
chroma value, PLLA should be set to 16 times the
modulation frequency (in composite video this is called
the color-burst frequency). The PLLB of the cog is used
to generate the broadcast frequency; whether this is
generated depends on if PLLB is running and the values
of VMode and VPins.
The Pixels parameter describes the pixel pattern to
display, either 16 pixels or 32 pixels depending on the
color depth configuration of the Video Generator. When
four-color mode is specified, Pixels is a 16x2 bit pattern
where each 2-bit pixel is an index into Colors on which
data pattern should be presented to the pins. When two-
color mode is specified, Pixels is a 32x1 bit pattern where
each bit specifies which of the two color patterns in the
lower 16 bits of Colors should be output to the pins. The
Pixel data is shifted out least significant bits (LSB) first.

When the FrameClocks value is greater than 16 times the
PixelClocks value and 4-color mode is specified, the two
most significant bits are repeated until FrameClocks
PLLA cycles have occurred. When FrameClocks value is
greater than 32 times PixelClocks value and 2-color mode
is specified, the most significant bit is repeated until
FrameClocks PLLA cycles have occurred. When
FrameClocks cycles occur and the cog is not in a WAITVID
instruction, whatever data is on the source and destination
busses at the time will be fetched and used. So it is
important to be in a WAITVID instruction before this
occurs.
While the Video Generator was created to display video
signals, its potential applications are much more diverse.
The Composite Video mode can be used to generate
phase-shift keying communications of a granularity of 16
or less and the VGA mode can be used to generate any bit
pattern with a fully settable and predictable rate.
Figure 4 is a block diagram of how the VGA mode is
organized. The two inverted triangles are the load
mechanism for Pixels and Colors; n is 1 or 2 bits
depending on the value of CMode. The inverted trapezoid
is a 4-way 8-bit multiplexer that chooses which byte of
Colors to output. When in composite video mode the
Modulator transforms the byte into the luminance and
chroma signal and outputs the broadcast signal. VGroup
steers the 8 bits to a block of output pins and outputs to
those pins which are set to 1 in VPins; this combined
functionality is represented by the hexagon.

Figure 4: Video Generator

VGroup

Shift by n

Colors

x

8

VPins

n

n
Pixels

Source

PLLA/PixelClocks

PLLA/FrameClocks

3 2 1 0

Destination

Modulator

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 13 of 33 Rev 0.3 5/17/2007

4.10. CLK Register
The CLK register is the System Clock configuration
control; it determines the source and characteristics of the
System Clock. It configures the RC Oscillator, Clock
PLL, Crystal Oscillator, and Clock Selector circuits (See
the Block Diagram, page 1). It is configured at compile
time by the _CLKMODE declaration and is writable at run
time through the CLKSET command. Whenever the CLK
register is written, a global delay of ~75 µs occurs as the
clock source transitions.
Whenever this register is changed, a copy of the value
written should be placed in the Clock Mode value
location (which is BYTE[4] in Main RAM) and the
resulting master clock frequency should be written to the
Clock Frequency value location (which is LONG[0] in
Main RAM) so that objects which reference this data will
have current information for their timing calculations.

Use Spin's CLKSET command when possible (see sections
6.3 and 6.4) since it automatically updates all the above-
mentioned locations with the proper information.

Table 13: Valid Clock Modes

 Valid Expression CLK Reg. Value Valid Expression CLK Reg. Value

RCFAST 0_0_0_00_000

RCSLOW 0_0_0_00_001

XINPUT 0_0_1_00_010

XTAL1 + PLL1X 0_1_1_01_011
XTAL1 + PLL2X 0_1_1_01_100
XTAL1 + PLL4X 0_1_1_01_101
XTAL1 + PLL8X 0_1_1_01_110
XTAL1 + PLL16X 0_1_1_01_111

XTAL1 0_0_1_01_010
XTAL2 0_0_1_10_010
XTAL3 0_0_1_11_010

XTAL2 + PLL1X 0_1_1_10_011
XTAL2 + PLL2X 0_1_1_10_100
XTAL2 + PLL4X 0_1_1_10_101
XTAL2 + PLL8X 0_1_1_10_110
XTAL2 + PLL16X 0_1_1_10_111

XINPUT + PLL1X 0_1_1_00_011
XINPUT + PLL2X 0_1_1_00_100
XINPUT + PLL4X 0_1_1_00_101
XINPUT + PLL8X 0_1_1_00_110
XINPUT + PLL16X 0_1_1_00_111

XTAL3 + PLL1X 0_1_1_11_011
XTAL3 + PLL2X 0_1_1_11_100
XTAL3 + PLL4X 0_1_1_11_101
XTAL3 + PLL8X 0_1_1_11_110
XTAL3 + PLL16X 0_1_1_11_111

Table 14: CLK Register Fields
Bit 7 6 5 4 3 2 1 0

Name RESET PLLENA OSCENA OSCM1 OSCM2 CLKSEL2 CLKSEL1 CLKSEL0

RESET Effect

0 Always write ‘0’ here unless you intend to reset the chip.

1 Same as a hardware reset – reboots the chip.

PLLENA Effect

0 Disables the PLL circuit.

1

Enables the PLL circuit. The PLL internally multiplies the XIN pin frequency by 16. OSCENA must be ‘1’ to propagate the
XIN signal to the PLL. The PLL’s internal frequency must be kept within 64 MHz to 128 MHz – this translates to an XIN
frequency range of 4 MHz to 8 MHz. Allow 100 µs for the PLL to stabilize before switching to one of its outputs via the
CLKSEL bits. Once the OSC and PLL circuits are enabled and stabilized, you can switch freely among all clock sources by
changing the CLKSEL bits.

OSCENA Effect

0 Disables the OSC circuit

1

Enables the OSC circuit so that a clock signal can be input to XIN, or so that XIN and XOUT can function together as a
feedback oscillator. The OSCM bits select the operating mode of the OSC circuit. Note that no external resistors or
capacitors are required for crystals and resonators. Allow a crystal or resonator 10ms to stabilize before switching to an OSC
or PLL output via the CLKSEL bits. When enabling the OSC circuit, the PLL may be enabled at the same time so that they
can share the stabilization period.

OSCM1 OSCM2 XOUT Resistance XIN and XOUT Capacitance Frequency Range

0 0 Infinite 6 pF DC to 80 MHz Input

0 1 2000 Ω 36 pF 4 MHz to 16 MHz Crystal/Resonator

1 0 1000 Ω 26 pF 8 MHz to 32 MHz Crystal/Resonator

1 1 500 Ω 16 pF 20 MHz to 60 MHz Crystal/Resonator

CLKSEL2 CLKSEL1 CLKSEL0 Master Clock Source Notes

0 0 0 ~12 MHz Internal No external parts (8 to 20 MHz)

0 0 1 ~20 kHz Internal No external parts, very low power (13-33 kHz)

0 1 0 XIN OSC OSCENA must be ‘1’

0 1 1 XIN × 1 OSC+PLL OSCENA and PLLENA must be ‘1’

1 0 0 XIN × 2 OSC+PLL OSCENA and PLLENA must be ‘1’
1 0 1 XIN × 4 OSC+PLL OSCENA and PLLENA must be ‘1’
1 1 0 XIN × 8 OSC+PLL OSCENA and PLLENA must be ‘1’
1 1 1 XIN × 16 OSC+PLL OSCENA and PLLENA must be ‘1’

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 14 of 33 Rev 0.3 5/17/2007

5.0 MEMORY ORGANIZATION

5.1. Main Memory
The Main Memory is a block of 64 K bytes (16 K longs)
that is accessible by all cogs as a mutually-exclusive
resource through the Hub. It consists of 32 KB of RAM
and 32 KB of ROM. Main memory is byte, word and long
addressable.

5.1.1. Main RAM
The 32 KB of Main RAM is general purpose and is the
destination of a Propeller Application either downloaded
from a host or from the external 32 KB EEPROM.

5.1.2. Main ROM
The 32 KB of Main ROM contains all the code and data
resources vital to the Propeller chip’s function: character
definitions, log, anti-log and sine tables, and the Boot
Loader and Spin Interpreter.

5.1.3. Character Definitions
The first half of ROM is dedicated to a set of 256
character definitions. Each character definition is 16
pixels wide by 32 pixels tall. These character definitions
can be used for video generation, graphical LCD's,
printing, etc.
The character set is based on a North American / Western
European layout, with many specialized characters added
and inserted. There are connecting waveform and
schematic building-block characters, Greek characters
commonly used in electronics, and several arrows and
bullets. (A corresponding Parallax True-Type Font is
installed with and used by the Propeller Tool software,
and is available to other Windows applications.)
The character definitions are numbered 0 to 255 from left-
to-right, then top-to-bottom, per Figure 5 below. They are
arranged as follows: Each pair of adjacent even-odd
characters is merged together to form 32 longs. The first
character pair is located in $8000-$807F. The second pair
occupies $8080-$80FF, and so on, until the last pair fills
$BF80-$BFFF.

Figure 5: Propeller Font Character Set

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 15 of 33 Rev 0.3 5/17/2007

Figure 6

Propeller Character
Interleaving

As shown in Figure 6, The character pairs are merged
such that each character's 16 horizontal pixels (per row)
are spaced apart and interleaved with their neighbors' such
that the even character takes bits 0, 2, 4, ...30, and the odd
character takes bits 1, 3, 5, ...31. The leftmost pixels are in
the lowest bits, while the rightmost pixels are in the
highest bits. This forms a long for each row of pixels in
the character pair. 32 such longs, building from top row
down to bottom, make up the complete merged-pair
definition. The definitions are encoded in this manner so
that a COG video peripheral can handle the merged longs
directly, using color selection to display either the even or
the odd character.
Some character codes have inescapable meanings, such as
9 for Tab, 10 for Line Feed, and 13 for Carriage Return (0
can also be touchy). These character codes invoke actions
and do not equate to static character definitions. For this
reason, their character definitions have been used for
special four-color characters. These four-color characters
are used for drawing 3-D box edges at run-time and are
implemented as 16 x 16 pixel cells, as opposed to the
normal 16 x 32 pixel cells. They occupy even-odd
character pairs 0-1, 8-9, 10-11, and 12-13.

5.1.4. Math Function Tables
Base-2 Log and Anti-Log tables, each with 2048 unsigned
words, facilitate converting values to and from exponent
form to facilitate some operations; see the Propeller
Manual for access instructions. Also, a sine table
provides 2049 unsigned 16-bit sine samples spanning 0°
to 90° inclusively (0.0439° resolution).

5.2. Cog RAM
As stated in Section 4.3, the Cog RAM is used for
executable code, data, variables, and the last 16 locations
serve as interfaces to the System Counter, I/O pins, and
local cog peripherals (see Table 15).
When a cog is booted up, locations 0 ($000) through 495
($1EF) are loaded sequentially from Main RAM / ROM
and its special purpose locations, 496 ($1F0) through 511
($1FF), are cleared to zero. Each Special Purpose register
may be accessed via its physical address, its predefined
name, or indirectly in Spin via a register array variable
SPR with an index of 0 to 15, the last four bits of the
register's address.

Table 15: Cog RAM Special Purpose Registers
Cog RAM Map Address Name Type Description

$1F0 PAR Read-Only1 Boot Parameter

$1F1 CNT Read-Only1 System Counter

$1F2 INA Read-Only1 Input States for P31 - P0

$1F3 INB Read-Only1 Input States for P63- P322

$1F4 OUTA Read/Write Output States for P31 - P0

$1F5 OUTB Read/Write Output States for P63 – P322

$1F6 DIRA Read/Write Direction States for P31 - P0

$1F7 DIRB Read/Write Direction States for P63 - P322

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency

$1FB FRQB Read/Write Counter B Frequency

$1FC PHSA Read/Write1 Counter A Phase:

$1FD PHSB Read/Write1 Counter B Phase

$1FE VCFG Read/Write Video Configuration

$1FF VSCL Read/Write Video Scale

Note 1: Only readable as a Source Register (i.e. MOV DEST, SOURCE); read-modify-write not possible as a Destination Register.
Note 2: Reserved for future use.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 16 of 33 Rev 0.3 5/17/2007

6.0 PROGRAMMING LANGUAGES
The Propeller chip is programmed using two languages
designed specifically for it: 1) Spin, a high-level object-
based language, and 2) Propeller Assembly, a low-level,
highly-optimized assembly language. There are many
hardware-based commands in Propeller Assembly that
have direct equivalents in the Spin language.
The Spin language is compiled by the Propeller Tool
software into tokens that are interpreted at run time by the
Propeller chip’s built-in Spin Interpreter. The Propeller

Assembly language is assembled into pure machine code
by the Propeller Tool and is executed in its pure form at
run time.
Propeller Objects can be written entirely in Spin or can
use various combinations of Spin and Propeller
Assembly. It is often advantageous to write objects
almost entirely in Propeller Assembly, but at least two
lines of Spin code are required to launch the final
application.

6.1. Reserved Word List
All words listed are always reserved, whether programming in Spin or in Propeller Assembly. As of Propeller Tool v1.05:

Table 16: Reserved Word List
_CLKFREQ

s
_CLKMODE

s

_FREE
s

_STACK
s

_XINFREQ
s

ABORT
s

ABS
a

ABSNEG
a

ADD
a

ADDABS
a

ADDS
a

ADDSX
a

ADDX
a

AND
d

ANDN
a

BYTE
s

BYTEFILL
s

BYTEMOVE
s

CALL
a

CASE
s

CHIPVER
s

CLKFREQ
s

CLKMODE
s

CLKSET
d

CMP
a

CMPS
a

CMPSUB
a

CMPSX
a

CMPX
a

CNT
d

COGID
d

COGINIT
d

COGNEW
s

COGSTOP
d

CON
s

CONSTANT
s

CTRA
d

CTRB
d

DAT
s

DIRA
d

DIRB
d#

DJNZ
a

ELSE
s

ELSEIF
s

ELSEIFNOT
s

ENC
a#

FALSE
d

FILE
s

FIT
a

FLOAT
s

FROM
s

FRQA
d

FRQB
d

HUBOP
a

IF
s

IFNOT
s

IF_A
a

IF_AE
a

IF_ALWAYS
a

IF_B
a

IF_BE
a

IF_C
a

IF_C_AND_NZ
a

IF_C_AND_Z
a

IF_C_EQ_Z
a

IF_C_NE_Z
a

IF_C_OR_NZ
a

IF_C_OR_Z
a

IF_E
a

IF_NC
a

IF_NC_AND_NZ
a

IF_NC_AND_Z
a

IF_NC_OR_NZ
a

IF_NC_OR_Z
a

IF_NE
a

IF_NEVER
a

IF_NZ
a

IF_NZ_AND_C
a

IF_NZ_AND_NC
a

IF_NZ_OR_C
a

IF_NZ_OR_NC
a

IF_Z
a

IF_Z_AND_C
a

IF_Z_AND_NC
a

IF_Z_EQ_C
a

IF_Z_NE_C
a

IF_Z_OR_C
a

IF_Z_OR_NC
a

INA
d

INB
d#

JMP
a

JMPRET
a

LOCKCLR
d

LOCKNEW
d

LOCKRET
d

LOCKSET
d

LONG
s

LONGFILL
s

LONGMOVE
s

LOOKDOWN
s

LOOKDOWNZ
s

LOOKUP
s

LOOKUPZ
s

MAX
a

MAXS
a

MIN
a

MINS
a

MOV
a

MOVD
a

MOVI
a

MOVS
a

MUL
a#

MULS
a#

MUXC
a

MUXNC
a

MUXNZ
a

MUXZ
a

NEG
a

NEGC
a

NEGNC
a

NEGNZ
a

NEGX
d

NEGZ
a

NEXT
s

NOP
a

NOT
s

NR
a

OBJ
s

ONES
a#

OR
d

ORG
a

OTHER
s

OUTA
d

OUTB
d#

PAR
d

PHSA
d

PHSB
d

PI
d

PLL1X
s

PLL2X
s

PLL4X
s

PLL8X
s

PLL16X
s

POSX
d

PRI
s

PUB
s

QUIT
s

RCFAST
s

RCL
a

RCR
a

RCSLOW
s

RDBYTE
a

RDLONG
a

RDWORD
a

REBOOT
s

REPEAT
s

RES
a

RESULT
s

RET
a

RETURN
s

REV
a

ROL
a

ROR
a

ROUND
s

SAR
a

SHL
a

SHR
a

SPR
s

STEP
s

STRCOMP
s

STRING
s

STRSIZE
s

SUB
a

SUBABS
a

SUBS
a

SUBSX
a

SUBX
a

SUMC
a

SUMNC
a

SUMNZ
a

SUMZ
a

TEST
a

TESTN
a

TJNZ
a

TJZ
a

TO
s

TRUE
d

TRUNC
s

UNTIL
s

VAR
s

VCFG
d

VSCL
d

WAITCNT
d

WAITPEQ
d

WAITPNE
d

WAITVID
d

WC
a

WHILE
s

WORD
s

WORDFILL
s

WORDMOVE
s

WR
a

WRBYTE
a

WRLONG
a

WRWORD
a

WZ
a

XINPUT
s

XOR
a

XTAL1
s

XTAL2
s

XTAL3
s

a = Assembly element; s = Spin element; d = dual (available in both languages); # = reserved for future use

6.1.1. Words Reserved for Future Use
• DIRB, INB, and OUTB: Reserved for future use with a possible 64 I/O pin model. When used with the P8X32A, these

labels can be used to access Cog RAM at those locations for general-purpose use.
• ENC, MUL, MULS, ONES: Use with the current P8X32A architecture yields indeterminate results.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 17 of 33 Rev 0.3 5/17/2007

6.2. Math and Logic Operators
Table 17: Math and Logic Operators

Operator Constant
Expressions3 Level1

Normal Assign2
Integer Float

Is Unary Description

-- always Pre-decrement (--X) or post-decrement (X--).

++ always Pre-increment (++X) or post-increment (X++).

~ always Sign-extend bit 7 (~X) or post-clear to 0 (X~).

~~ always Sign-extend bit 15 (~~X) or post-set to -1 (X~~).

? always Random number forward (?X) or reverse (X?).

@ never Symbol address.

Highest
(0)

@@ never Object address plus symbol.

+ never Positive (+X); unary form of Add.

- if solo Negate (-X); unary form of Subtract.

^^ if solo Square root.

|| if solo Absolute value.

|< if solo Bitwise: Decode 0 – 31 to long w/single-high-bit.

>| if solo Bitwise: Encode long to 0 – 32; high-bit priority.

1

! if solo Bitwise: NOT.

<- <-= Bitwise: Rotate left.

-> ->= Bitwise: Rotate right.

<< <<= Bitwise: Shift left.

>> >>= Bitwise: Shift right.

~> ~>= Shift arithmetic right.

2

>< ><= Bitwise: Reverse.

3 & &= Bitwise: AND.

| |= Bitwise: OR.
4

^ ^= Bitwise: XOR.

* *= Multiply and return lower 32 bits (signed).

** **= Multiply and return upper 32 bits (signed).

/ /= Divide (signed).
5

// //= Modulus (signed).

+ += Add.
6

- -= Subtract.

#> #>= Limit minimum (signed).
7

<# <#= Limit maximum (signed).

< <= Boolean: Is less than (signed).

> >= Boolean: Is greater than (signed).

<> <>= Boolean: Is not equal.

== === Boolean: Is equal.

=< =<= Boolean: Is equal or less (signed).

8

=> =>= Boolean: Is equal or greater (signed).

9 NOT if solo Boolean: NOT (promotes non-0 to -1).

10 AND AND= Boolean: AND (promotes non-0 to -1).

11 OR OR= Boolean: OR (promotes non-0 to -1).

= always n/a3 n/a3 Constant assignment (CON blocks). Lowest
(12) := always n/a3 n/a3 Variable assignment (PUB/PRI blocks).

1 Precedence level: higher-level operators evaluate before lower-level operators. Operators in same level are commutable; evaluation order does not matter.
2 Assignment forms of binary (non-unary) operators are in the lowest precedence (level 12).
3 Assignment forms of operators are not allowed in constant expressions.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 18 of 33 Rev 0.3 5/17/2007

6.3. Spin Language Summary Table
Spin Command Returns

Value Description

ABORT 〈Value〉 Exit from PUB/PRI method using abort status with optional return value.

BYTE Symbol 〈[Count]〉 Declare byte-sized symbol in VAR block.

BYTE Data 〈[Count]〉 Declare byte-aligned and/or byte-sized data in DAT block.

BYTE [BaseAddress] 〈[Offset]〉 Read/write byte of main memory.

Symbol.BYTE 〈[Offset]〉 Read/write byte-sized component of word/long-sized variable.

BYTEFILL (StartAddress, Value, Count) Fill bytes of main memory with a value.

BYTEMOVE (DestAddress, SrcAddress, Count) Copy bytes from one region to another in main memory.
CASE CaseExpression
 MatchExpression :
 Statement(s)
〈 MatchExpression :
 Statement(s)〉
〈 OTHER :
 Statement(s)〉

Compare expression against matching expression(s), execute code block
if match found.
MatchExpression can contain a single expression or multiple comma-
delimited expressions. Expressions can be a single value (ex: 10) or a
range of values (ex: 10..15).

CHIPVER Version number of the Propeller chip (Byte at $FFFF)

CLKFREQ Current System Clock frequency, in Hz (Long at $0000)

CLKMODE Current clock mode setting (Byte at $0004)

CLKSET (Mode, Frequency) Set both clock mode and System Clock frequency at run time.

CNT Current 32-bit System Counter value.

COGID Current cog’s ID number; 0-7.

COGINIT (CogID, SpinMethod 〈(ParameterList)〉, StackPointer) Start or restart cog by ID to run Spin code.

COGINIT (CogID, AsmAddress, Parameter) Start or restart cog by ID to run Propeller Assembly code.

COGNEW (SpinMethod 〈(ParameterList)〉, StackPointer) Start new cog for Spin code and get cog ID; 0-7 = succeeded, -1 = failed.

COGNEW (AsmAddress, Parameter)
Start new cog for Propeller Assembly code and get cog ID; 0-7 =
succeeded, -1 = failed.

COGSTOP (CogID) Stop cog by its ID.
CON
 Symbol = Expr 〈((,┆)) Symbol = Expr〉…

 Declare symbolic, global constants.

CON
 〈#Expr ((,┆))〉 Symbol 〈〈((,┆)) #Expr〉 ((,┆)) Symbol〉…

 Declare global enumerations (incrementing symbolic constants).

CONSTANT (ConstantExpression)
Declare in-line constant expression to be completely resolved at compile
time.

CTRA Counter A Control register.

CTRB Counter B Control register.
DAT
 〈Symbol〉 Alignment 〈Size〉 〈Data〉 〈,〈Size〉 Data〉…

 Declare table of data, aligned and sized as specified.

DAT
 〈Symbol〉 〈Condition〉 Instruction 〈Effect(s)〉 Denote Propeller Assembly instruction.

DIRA 〈[Pin(s)]〉 Direction register for 32-bit port A.

FILE "FileName" Import external file as data in DAT block.

FLOAT (IntegerConstant)
Convert integer constant expression to compile-time floating-point value in
any block.

FRQA Counter A Frequency register.

FRQB Counter B Frequency register.
((IF ┆ IFNOT)) Condition(s)

 IfStatement(s)
〈ELSEIF Condition(s)

 ElseIfStatement(s)〉…
〈ELSEIFNOT Condition(s)

 ElseIfStatement(s)〉…
〈ELSE

 ElseStatement(s)〉

Test condition(s) and execute block of code if valid.
IF and ELSEIF each test for TRUE. IFNOT and ELSEIFNOT each test for
FALSE.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 19 of 33 Rev 0.3 5/17/2007

Spin Command Returns
Value Description

INA 〈[Pin(s)]〉 Input register for 32-bit ports A.

LOCKCLR (ID) Clear semaphore to false and get its previous state; TRUE or FALSE.

LOCKNEW Check out new semaphore and get its ID; 0-7, or -1 if none were available.

LOCKRET (ID)
Return semaphore back to semaphore pool, releasing it for future
LOCKNEW requests.

LOCKSET (ID) Set semaphore to true and get its previous state; TRUE or FALSE.

LONG Symbol 〈[Count]〉 Declare long-sized symbol in VAR block.

LONG Data 〈[Count]〉 Declare long-aligned and/or long-sized data in DAT block.

LONG [BaseAddress] 〈[Offset]〉 Read/write long of main memory.

LONGFILL (StartAddress, Value, Count) Fill longs of main memory with a value.

LONGMOVE (DestAddress, SrcAddress, Count) Copy longs from one region to another in main memory.

LOOKDOWN (Value:ExpressionList) Get the one-based index of a value in a list.

LOOKDOWNZ (Value:ExpressionList) Get the zero-based index of a value in a list.

LOOKUP (Index:ExpressionList) Get value from a one-based index position of a list.

LOOKUPZ (Index:ExpressionList) Get value from a zero-based index position of a list.

NEXT
Skip remaining statements of REPEAT loop and continue with the next
loop iteration.

OBJ
 Symbol 〈[Count]〉:"Object" 〈 Symbol 〈[Count]〉: "Object"〉…

 Declare symbol object references.

OUTA 〈[Pin(s)]〉 Output register for 32-bit port A.

PAR Cog Boot Parameter register.

PHSA Counter A Phase Lock Loop (PLL) register.

PHSB Counter B Phase Lock Loop (PLL) register.
PRI Name 〈(Par 〈,Par〉…)〉 〈:RVal〉 〈| LVar 〈[Cnt]〉〉 〈,LVar 〈[Cnt]〉〉…
 SourceCodeStatements

Declare private method with optional parameters, return value and local
variables.

PUB Name 〈(Par 〈,Par〉…)〉 〈:RVal〉 〈| LVar 〈[Cnt]〉〉 〈,LVar 〈[Cnt]〉〉…
 SourceCodeStatements

Declare public method with optional parameters, return value and local
variables.

QUIT Exit from REPEAT loop immediately.

REBOOT Reset the Propeller chip.
REPEAT 〈Count〉

 Statement(s)
Execute code block repetitively, either infinitely, or for a finite number of
iterations.

REPEAT Variable FROM Start TO Finish 〈STEP Delta〉
 Statement(s) Execute code block repetitively, for finite, counted iterations.

REPEAT ((UNTIL┆ WHILE)) Condition(s)
 Statement(s) Execute code block repetitively, zero-to-many conditional iterations.

REPEAT
 Statement(s)

((UNTIL┆ WHILE)) Condition(s)
 Execute code block repetitively, one-to-many conditional iterations.

RESULT Return value variable for PUB/PRI methods.

RETURN 〈Value〉 Exit from PUB/PRI method with optional return Value.

ROUND (FloatConstant)
Round floating-point constant to the nearest integer at compile-time, in any
block.

SPR [Index] Special Purpose Register array.

STRCOMP (StringAddress1, StringAddress2) Compare two strings for equality.

STRING (StringExpression) Declare in-line string constant and get its address.

STRSIZE (StringAddress) Get size, in bytes, of zero-terminate string.

TRUNC (FloatConstant)
Remove fractional portion from floating-point constant at compile-time, in
any block.

VAR
 Size Symbol 〈[Count]〉 〈((,┆ Size)) Symbol 〈[Count]〉〉…

 Declare symbolic global variables.

VCFG Video Configuration register.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 20 of 33 Rev 0.3 5/17/2007

Spin Command Returns
Value Description

VSCL Video Scale register.

WAITCNT (Value) Pause cog’s execution temporarily.

WAITPEQ (State, Mask, Port) Pause cog’s execution until I/O pin(s) match designated state(s).

WAITPNE (State, Mask, Port) Pause cog’s execution until I/O pin(s) do not match designated state(s).

WAITVID (Colors, Pixels) Pause cog’s execution until its Video Generator is available for pixel data.

WORD Symbol 〈[Count]〉 Declare word-sized symbol in VAR block.

WORD Data 〈[Count]〉 Declare word-aligned and/or word-sized data in DAT block.

WORD [BaseAddress] 〈[Offset]〉 Read/write word of main memory.

Symbol.WORD 〈[Offset]〉 Read/write word-sized component of long-sized variable.

WORDFILL (StartAddress, Value, Count) Fill words of main memory with a value.

WORDMOVE (DestAddress, SrcAddress, Count) Copy words from one region to another in main memory.

6.3.1. Constants

Constants (pre-defined)

Constant1 Description
_CLKFREQ Settable in Top Object File to specify System Clock frequency.

_CLKMODE Settable in Top Object File to specify application’s clock mode.

_XINFREQ Settable in Top Object File to specify external crystal frequency.

_FREE Settable in Top Object File to specify application’s free space.

_STACK Settable in Top Object File to specify application’s stack space.

TRUE Logical true: -1 ($FFFFFFFF)

FALSE Logical false: 0 ($00000000)

POSX Max. positive integer: 2,147,483,647 ($7FFFFFFF)

NEGX Max. negative integer: -2,147,483,648 ($80000000)

PI Floating-point PI: ≈ 3.141593 ($40490FDB)

RCFAST Internal fast oscillator: $00000001 (%00000000001)

RCSLOW Internal slow oscillator: $00000002 (%00000000010)

XINPUT External clock/oscillator: $00000004 (%00000000100)

XTAL1 External low-speed crystal: $00000008 (%00000001000)

XTAL2 External medium-speed crystal: $00000010 (%00000010000)

XTAL3 External high-speed crystal: $00000020 (%00000100000)

PLL1X External frequency times 1: $00000040 (%00001000000)

PLL2X External frequency times 2: $00000080 (%00010000000)

PLL4X External frequency times 4: $00000100 (%00100000000)

PLL8X External frequency times 8: $00000200 (%01000000000)

PLL16X External frequency times 16: $00000400 (%10000000000)

1 “Settable” constants are defined in Top Object File’s CON block. See Valid Clock Modes for _CLKMODE. Other settable constants use whole numbers.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 21 of 33 Rev 0.3 5/17/2007

6.4. Propeller Assembly Instruction Table
The Propeller Assembly Instruction Table lists the instruction’s 32-bit opcode, outputs and number of clock cycles. The
opcode consists of the instruction bits (iiiiii), the “effect” status for the Z flag, C flag, result and indirect/immediate status
(zcri), the conditional execution bits (cccc), and the destination and source bits (ddddddddd and sssssssss). The meaning of the
Z and C flags, if any, is shown in the Z Result and C Result fields; indicating the meaning of a 1 in those flags. The Result field
(R) shows the instruction’s default behavior for writing or not writing the instruction’s result value. The Clocks field shows
the number of clocks the instruction requires for execution.

0 1 Zeros (0) and ones (1) mean binary 0 and 1.
i Lower case “i” denotes a bit that is affected by immediate status.
d s Lower case “d” and “s” indicate destination and source bits.
? Question marks denote bits that are dynamically set by the compiler.
--- Hyphens indicate items that are not applicable or not important.
.. Double-periods represent a range of contiguous values.

iiiiii zcri cccc ddddddddd sssssssss Instruction Description Z out C out R Clocks
000000 000i 1111 ddddddddd sssssssss WRBYTE D,S Write D[7..0] to main memory byte S[15..0] - - 0 7..22 *

000000 001i 1111 ddddddddd sssssssss RDBYTE D,S
Read main memory byte S[15..0] into D (0-
extended) Result = 0 - 1 7..22 *

000001 000i 1111 ddddddddd sssssssss WRWORD D,S Write D[15..0] to main memory word S[15..1] - - 0 7..22 *

000001 001i 1111 ddddddddd sssssssss RDWORD D,S
Read main memory word S[15..1] into D (0-
extended) Result = 0 - 1 7..22 *

000010 000i 1111 ddddddddd sssssssss WRLONG D,S Write D to main memory long S[15..2] - - 0 7..22 *
000010 001i 1111 ddddddddd sssssssss RDLONG D,S Read main memory long S[15..2] into D Result = 0 - 1 7..22 *
000011 000i 1111 ddddddddd sssssssss HUBOP D,S Perform hub operation according to S Result = 0 - 0 7..22 *
000011 0001 1111 ddddddddd ------000 CLKSET D Set the global CLK register to D[7..0] - - 0 7..22 *
000011 0011 1111 ddddddddd ------001 COGID D Get this cog number (0..7) into D Result = 0 - 1 7..22 *
000011 0001 1111 ddddddddd ------010 COGINIT D Initialize a cog according to D Result = 0 No COG free 0 7..22 *
000011 0001 1111 ddddddddd ------011 COGSTOP D Stop cog number D[2..0] - - 0 7..22 *
000011 0011 1111 ddddddddd ------100 LOCKNEW D Checkout a new LOCK number (0..7) into D Result = 0 No LOCK free 1 7..22 *
000011 0001 1111 ddddddddd ------101 LOCKRET D Return lock number D[2..0] - - 0 7..22 *
000011 0001 1111 ddddddddd ------110 LOCKSET D Set lock number D[2..0] - Prior LOCK state 0 7..22 *
000011 0001 1111 ddddddddd ------111 LOCKCLR D Clear lock number D[2..0] - Prior LOCK state 0 7..22 *
000100 001i 1111 ddddddddd sssssssss MUL D,S Multiply unsigned D[15..0] by S[15..0] Result = 0 - 1 future
000101 001i 1111 ddddddddd sssssssss MULS D,S Multiply signed D[15..0] by S[15..0] Result = 0 - 1 future
000110 001i 1111 ddddddddd sssssssss ENC D,S Encode magnitude of S into D, result = 0..31 Result = 0 - 1 future
000111 001i 1111 ddddddddd sssssssss ONES D,S Get number of 1's in S into D, result = 0..31 Result = 0 - 1 future
001000 001i 1111 ddddddddd sssssssss ROR D,S Rotate D right by S[4..0] bits Result = 0 D[0] 1 4
001001 001i 1111 ddddddddd sssssssss ROL D,S Rotate D left by S[4..0] bits Result = 0 D[31] 1 4
001010 001i 1111 ddddddddd sssssssss SHR D,S Shift D right by S[4..0] bits Result = 0 D[0] 1 4
001011 001i 1111 ddddddddd sssssssss SHL D,S Shift D left by S[4..0] bits Result = 0 D[31] 1 4
001100 001i 1111 ddddddddd sssssssss RCR D,S Rotate carry right into D by S[4..0] bits Result = 0 D[0] 1 4
001101 001i 1111 ddddddddd sssssssss RCL D,S Rotate carry left into D by S[4..0] bits Result = 0 D[31] 1 4
001110 001i 1111 ddddddddd sssssssss SAR D,S Shift D arithmetically right by S[4..0] bits Result = 0 D[0] 1 4

001111 001i 1111 ddddddddd sssssssss REV D,S
Reverse 32–S[4..0] bottom bits in D and 0-
extend Result = 0 D[0] 1 4

010000 001i 1111 ddddddddd sssssssss MINS D,S Set D to S if signed (D < S) D = S Signed (D < S) 1 4
010001 001i 1111 ddddddddd sssssssss MAXS D,S Set D to S if signed (D => S) D = S Signed (D < S) 1 4
010010 001i 1111 ddddddddd sssssssss MIN D,S Set D to S if unsigned (D < S) D = S Unsigned (D < S) 1 4
010011 001i 1111 ddddddddd sssssssss MAX D,S Set D to S if unsigned (D => S) D = S Unsigned (D < S) 1 4
010100 001i 1111 ddddddddd sssssssss MOVS D,S Insert S[8..0] into D[8..0] Result = 0 - 1 4
010101 001i 1111 ddddddddd sssssssss MOVD D,S Insert S[8..0] into D[17..9] Result = 0 - 1 4
010110 001i 1111 ddddddddd sssssssss MOVI D,S Insert S[8..0] into D[31..23] Result = 0 - 1 4
010111 001i 1111 ddddddddd sssssssss JMPRET D,S Insert PC+1 into D[8..0] and set PC to S[8..0] Result = 0 - 1 4
010111 000i 1111 --------- sssssssss JMP S Set PC to S[8..0] Result = 0 - 0 4

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 22 of 33 Rev 0.3 5/17/2007

iiiiii zcri cccc ddddddddd sssssssss Instruction Description Z out C out R Clocks
010111 0011 1111 ????????? sssssssss CALL #S Like JMPRET, but assembler handles details Result = 0 - 1 4
010111 0001 1111 --------- --------- RET Like JMP, but assembler handles details Result = 0 - 0 4
011000 000i 1111 ddddddddd sssssssss TEST D,S AND S with D to affect flags only Result = 0 Parity of Result 0 4
011001 000i 1111 ddddddddd sssssssss TESTN D,S AND !S into D to affect flags only Result = 0 Parity of Result 0 4
011000 001i 1111 ddddddddd sssssssss AND D,S AND S into D Result = 0 Parity of Result 1 4
011001 001i 1111 ddddddddd sssssssss ANDN D,S AND !S into D Result = 0 Parity of Result 1 4
011010 001i 1111 ddddddddd sssssssss OR D,S OR S into D Result = 0 Parity of Result 1 4
011011 001i 1111 ddddddddd sssssssss XOR D,S XOR S into D Result = 0 Parity of Result 1 4
011100 001i 1111 ddddddddd sssssssss MUXC D,S Copy C to bits in D using S as mask Result = 0 Parity of Result 1 4
011101 001i 1111 ddddddddd sssssssss MUXNC D,S Copy !C to bits in D using S as mask Result = 0 Parity of Result 1 4
011110 001i 1111 ddddddddd sssssssss MUXZ D,S Copy Z to bits in D using S as mask Result = 0 Parity of Result 1 4
011111 001i 1111 ddddddddd sssssssss MUXNZ D,S Copy !Z to bits in D using S as mask Result = 0 Parity of Result 1 4
100000 001i 1111 ddddddddd sssssssss ADD D,S Add S into D Result = 0 Unsigned Carry 1 4
100001 001i 1111 ddddddddd sssssssss SUB D,S Subtract S from D Result = 0 Unsigned Borrow 1 4
100001 000i 1111 ddddddddd sssssssss CMP D,S Compare D to S Result = 0 Unsigned Borrow 0 4
100010 001i 1111 ddddddddd sssssssss ADDABS D,S Add absolute S into D Result = 0 Unsigned Carry1 1 4
100011 001i 1111 ddddddddd sssssssss SUBABS D,S Subtract absolute S from D Result = 0 Unsigned Borrow 2 1 4
100100 001i 1111 ddddddddd sssssssss SUMC D,S Sum either –S if C or S if !C into D Result = 0 Signed Overflow 1 4
100101 001i 1111 ddddddddd sssssssss SUMNC D,S Sum either S if C or –S if !C into D Result = 0 Signed Overflow 1 4
100110 001i 1111 ddddddddd sssssssss SUMZ D,S Sum either –S if Z or S if !Z into D Result = 0 Signed Overflow 1 4
100111 001i 1111 ddddddddd sssssssss SUMNZ D,S Sum either S if Z or –S if !Z into D Result = 0 Signed Overflow 1 4
101000 001i 1111 ddddddddd sssssssss MOV D,S Set D to S Result = 0 S[31] 1 4
101001 001i 1111 ddddddddd sssssssss NEG D,S Set D to –S Result = 0 S[31] 1 4
101010 001i 1111 ddddddddd sssssssss ABS D,S Set D to absolute S Result = 0 S[31] 1 4
101011 001i 1111 ddddddddd sssssssss ABSNEG D,S Set D to –absolute S Result = 0 S[31] 1 4
101100 001i 1111 ddddddddd sssssssss NEGC D,S Set D to either –S if C or S if !C Result = 0 S[31] 1 4
101101 001i 1111 ddddddddd sssssssss NEGNC D,S Set D to either S if C or –S if !C Result = 0 S[31] 1 4
101110 001i 1111 ddddddddd sssssssss NEGZ D,S Set D to either –S if Z or S if !Z Result = 0 S[31] 1 4
101111 001i 1111 ddddddddd sssssssss NEGNZ D,S Set D to either S if Z or –S if !Z Result = 0 S[31] 1 4
110000 000i 1111 ddddddddd sssssssss CMPS D,S Compare-signed D to S Result = 0 Signed Borrow 0 4
110001 000i 1111 ddddddddd sssssssss CMPSX D,S Compare-signed-extended D to S+C Z & (Result = 0) Signed Borrow 0 4
110010 001i 1111 ddddddddd sssssssss ADDX D,S Add-extended S+C into D Z & (Result = 0) Unsigned Carry 1 4
110011 001i 1111 ddddddddd sssssssss SUBX D,S Subtract-extended S+C from D Z & (Result = 0) Unsigned Borrow 1 4
110011 000i 1111 ddddddddd sssssssss CMPX D,S Compare-extended D to S+C Z & (Result = 0) Unsigned Borrow 0 4
110100 001i 1111 ddddddddd sssssssss ADDS D,S Add-signed S into D Result = 0 Signed Overflow 1 4
110101 001i 1111 ddddddddd sssssssss SUBS D,S Subtract-signed S from D Result = 0 Signed Overflow 1 4
110110 001i 1111 ddddddddd sssssssss ADDSX D,S Add-signed-extended S+C into D Z & (Result = 0) Signed Overflow 1 4
110111 001i 1111 ddddddddd sssssssss SUBSX D,S Subtract-signed-extended S+C from D Z & (Result = 0) Signed Overflow 1 4
111000 001i 1111 ddddddddd sssssssss CMPSUB D,S Subtract S from D if D => S D = S Unsigned (D => S) 1 4

111001 001i 1111 ddddddddd sssssssss DJNZ D,S
Dec D, jump if not zero to S (no jump = 8
clocks) Result = 0 Unsigned Borrow 1 4 or 8

111010 000i 1111 ddddddddd sssssssss TJNZ D,S
Test D, jump if not zero to S (no jump = 8
clocks) Result = 0 0 0 4 or 8

111011 000i 1111 ddddddddd sssssssss TJZ D,S Test D, jump if zero to S (no jump = 8 clocks) Result = 0 0 0 4 or 8
111100 000i 1111 ddddddddd sssssssss WAITPEQ D,S Wait for pins equal - (INA & S) = D - - 0 5+
111101 000i 1111 ddddddddd sssssssss WAITPNE D,S Wait for pins not equal - (INA & S) != D - - 0 5+
111110 001i 1111 ddddddddd sssssssss WAITCNT D,S Wait for CNT = D, then add S into D - Unsigned Carry 1 5+
111111 000i 1111 ddddddddd sssssssss WAITVID D,S Wait for video peripheral to grab D and S - - 0 5+
------ ---- 0000 --------- --------- NOP No operation, just elapses 4 clocks - - - 4

* See Hub, section 4.4 on page 7.
1. ADDABS C out: If S is negative, C = the inverse of unsigned borrow (for D-S).
2. SUBABS C out: If S is negative, C = the inverse of unsigned carry (for D+S).

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 23 of 33 Rev 0.3 5/17/2007

6.4.1. Assembly Conditions
Condition Instruction Executes
IF_ALWAYS always
IF_NEVER never
IF_E if equal (Z)
IF_NE if not equal (!Z)
IF_A if above (!C & !Z)
IF_B if below (C)
IF_AE if above/equal (!C)
IF_BE if below/equal (C | Z)
IF_C if C set
IF_NC if C clear
IF_Z if Z set
IF_NZ if Z clear
IF_C_EQ_Z if C equal to Z
IF_C_NE_Z if C not equal to Z
IF_C_AND_Z if C set and Z set
IF_C_AND_NZ if C set and Z clear
IF_NC_AND_Z if C clear and Z set

IF_NC_AND_NZ if C clear and Z clear

IF_C_OR_Z if C set or Z set

IF_C_OR_NZ if C set or Z clear

IF_NC_OR_Z if C clear or Z set

IF_NC_OR_NZ if C clear or Z clear

IF_Z_EQ_C if Z equal to C

IF_Z_NE_C if Z not equal to C

IF_Z_AND_C if Z set and C set

IF_Z_AND_NC if Z set and C clear

IF_NZ_AND_C if Z clear and C set

IF_NZ_AND_NC if Z clear and C clear

IF_Z_OR_C if Z set or C set

IF_Z_OR_NC if Z set or C clear

IF_NZ_OR_C if Z clear or C set

IF_NZ_OR_NC if Z clear or C clear

6.4.2. Assembly Directives
Directive Description

FIT 〈Address〉 Validate previous instr/data fit below an
address.

ORG 〈Address〉 Adjust compile-time cog address
pointer.

〈Symbol〉 RES 〈Count〉 Reserve next long(s) for symbol.

6.4.3. Assembly Effects
Effect Results In
WC C Flag modified

WZ Z Flag modified

WR Destination Register modified

NR Destination Register not modified

6.4.4. Assembly Operators
Propeller Assembly code can contain constant
expressions, which may use any operators that are
allowed in constant expressions. The table (a subset of
Table 17) lists the operators allowed in Propeller
Assembly.

Operator Description
+ Add

+ Positive (+X); unary form of Add

- Subtract

- Negate (-X); unary form of Subtract

* Multiply and return lower 32 bits (signed)

** Multiply and return upper 32 bits (signed)

/ Divide (signed)

// Modulus (signed)

#> Limit minimum (signed)

<# Limit maximum (signed)

^^ Square root; unary

|| Absolute value; unary

~> Shift arithmetic right

|<
Bitwise: Decode value (0-31) into single-high-bit
long; unary

>|
Bitwise: Encode long into value (0 - 32) as high-
bit priority; unary

<< Bitwise: Shift left

>> Bitwise: Shift right

<- Bitwise: Rotate left

-> Bitwise: Rotate right

>< Bitwise: Reverse

& Bitwise: AND

| Bitwise: OR

^ Bitwise: XOR

! Bitwise: NOT; unary

AND Boolean: AND (promotes non-0 to -1)

OR Boolean: OR (promotes non-0 to -1)

NOT Boolean: NOT (promotes non-0 to -1); unary

== Boolean: Is equal

<> Boolean: Is not equal

< Boolean: Is less than (signed)

> Boolean: Is greater than (signed)

=< Boolean: Is equal or less (signed)

=> Boolean: Is equal or greater (signed)

@ Symbol address; unary

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 24 of 33 Rev 0.3 5/17/2007

7.0 PROPELLER DEMO BOARD SCHEMATIC
The Propeller Demo Board (Stock #32100) provides convenient connections to 32K EEPROM, replaceable 5 MHz crystal,
3.3V and 5V regulators, USB-to-serial programming/communication interface, VGA and NTSC video output, stereo output
with 16Ω headphone amplifier, microphone input, two PS2 mouse and keyboard jacks, eight LEDs, eight free I/O pins
brought to a header for breadboard for prototyping, and a ground post for an oscilloscope probe. Overall PCB size: 3" x 3".

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 25 of 33 Rev 0.3 5/17/2007

8.0 ELECTRICAL CHARACTERISTICS

8.1. Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress
ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the
remainder of Section 7.0. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 18: Absolute Maximum Ratings
Ambient temperature under bias 1 0 °C to +70 °C

Storage temperature -65 °C to +150 °C

Voltage on Vdd with respect to Vss -0.3 V to +4.0 V

Voltage on all other pins with respect to Vss -0.3 V to (Vdd + 0.3V)

Total power dissipation 1 W

Max. current out of Vss pins 300 mA

Max. current into Vdd pins 300 mA

Max. DC current into an input pin with internal protection diode forward biased ±500 µA

Max. allowable current per I/O pin 40 mA

ESD (Human Body Model) Supply pins 3 kV

ESD (Human Body Model) all non-supply pins 8 kV
1 Ambient temperature under bias has not been tested; the listed range is a very conservative estimate and will be greatly expanded in the
non-Preliminary datasheet.

8.2. DC Characteristics
 (Simulated temperature range: -40° C < Ta < +125° C unless otherwise noted)

Symbol Parameter Conditions Min Typ Max Units

Vdd Supply Voltage 2.7 -
 3.6 V

Vih, Vil
 Logic High
 Logic Low 0.6 Vdd

Vss
 Vdd

0.3 Vdd
V
V

Iil Input Leakage Current Vin = Vdd or Vss -1.0 +1.0 µA

Voh Output High Voltage Ioh = 10 mA, Vdd = 3.3 V 2.85
 V

Vol Output Low Voltage Iol = 10 mA, Vdd = 3.3 V 0.4 V

IBO Brownout Detector Current 3.8 µA

I Quiescent Current RESn = 0V, BOEn = Vdd, P0-P31=0V 600 nA
Note: Data in the Typical (“Typ”) column is Ta = 25 °C unless otherwise stated.

8.3. AC Characteristics
(Simulated temperature range: -40°C < Ta < +125°C unless otherwise noted)

Symbol Parameter Min Typ Max Units Condition
Fosc External XI Frequency DC - 80 MHz

Oscillator Frequency DC
13
8
4

-
20
12
-

80
33
20
8

MHz
kHz
MHz
MHz

Direct drive (no PLL)
RCSLOW
RCFAST

Crystal using PLL
Cin

Input Capacitance 6 - pF
Note: Data in the Typical (“Typ”) column is Ta = 25 °C unless otherwise stated.

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 26 of 33 Rev 0.3 5/17/2007

9.0 CURRENT CONSUMPTION CHARACTERISTICS

9.1. Typical Current Consumption of 8 Cogs vs. Operating Frequency
This figure shows the typical current consumption of the Propeller under various operating conditions duplicated across all
cogs. Brown out circuitry and the Phase-Locked Loop were disabled for the duration of the test.

2
10

3
10

4
10

5
10

6
10

7
10

8
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

Typical C
urrent C

onsum
ption of 8 cogs vs. O

perating Frequency (3.3V, Ta = 25°C
)

Frequency (H
z)

Current (A)
S

pin Loops (R
E

P
E

AT)

Assem
bly Loops (JM

P
)

W
AIT(C

N
T

/P
E

Q
/P

N
E

)

H
ub O

nly

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 27 of 33 Rev 0.3 5/17/2007

9.2. Typical Current of a Cog vs. Operating Frequency
This graph shows a cog’s typical current consumption under various conditions, in isolation of other sources of current within
the Propeller chip.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Typical Current of a Cog vs. Operating Frequency (Vdd = 3.3 V, Ta = 25° C)

C
ur

re
nt

 (m
A)

Spin Loop (REPEAT)
Assembly Loop (JMP)

WAIT(CNT/PEQ/PNE)

Frequency (MHz)

9.3. Typical PLL Current vs. VCO Frequency
This graph shows the typical amount of current consumed by a Phase-Locked Loop as a function of the frequency of the
Voltage Controlled Oscillator which is 16 times the frequency of the input clock.

20 40 60 80 100 120 140 160
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Typical PLL Current vs. VCO Frequency (Vdd = 3.3 V, Ta = 25° C)

Frequency (MHz)

C
ur

re
nt

 (m
A

)

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 28 of 33 Rev 0.3 5/17/2007

9.4. Typical Crystal Drive Current
This graph shows the current consumption of the crystal driver over a range of crystal frequencies and crystal settings, all
data points above 25 MHz were obtained by using a resonator since the driver does not perform 3rd harmonic overtone
driving required for crystals over 25 MHz.

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Typical Crystal Drive Current (Vdd = 3.3 V, Ta = 25° C)
C

ur
re

nt
 (m

A
)

xtal1
xtal2

xtal3

Frequency (MHz)

9.5. Cog and I/O Pin Relationship
The figure below illustrates the physical relationship between the cogs and I/O pins. While there can be a 1 to 1.5 ns
propagation delay in output transitions between the shortest and longest paths, the purpose of the figure is to illustrate the
length of leads and their associated parasitic capacitance. This capacitance increases the amount of energy required to
transition a pin’s state and therefore increases the current draw for toggling a pin. So the current consumed by Cog 7 toggling
P0 at 20 MHz will be greater than Cog 0 toggling P7 at 20 MHz. The amount of current consumed by transitioning a pin’s
state is dependent on many factors including: temperature, frequency of transitions, external load and internal load. As
mentioned the internal load is dependent upon which cog and pin are used. Internal load current for room temperature
toggling of a pin at 20 MHz for a Propeller in a DIP package varies on the order of 300 µA.

cog 0 cog 1 cog 2 cog 3 cog 4 cog 5 cog 6 cog 7
P7

P8

P6

P5

P10

P9

P24

P23

P25

P26

P21

P22

P15

P0

P16

P31

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 29 of 33 Rev 0.3 5/17/2007

9.6. Current Profile at Various Startup Conditions
The diagrams below show the current profile for various startup conditions of the Propeller chip dependent upon the presence
of an EEPROM and PC.

Figure 7

Boot Sequence Current Profile for
no PC and no EEPROM (P31
held low and P29 not connected
(same as held low)).

Figure 8

Boot Sequence Current Profile for
PC (connected but idle) and no
EEPROM. (P31 held high and
P29 not connected).

Figure 9

Boot Sequence Current Profile for
no PC and no EEPROM (P31
held low and P29 held high).

Figure 10

Boot Sequence Current Profile for
no PC and EEPROM (P31 held
low and P29 connected to
EEPROM SDA).

Figure 11

Boot Sequence Current Profile for
PC (connected but idle) and
EEPROM (P31 held high and P29
connected to EEPROM SDA).

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 30 of 33 Rev 0.3 5/17/2007

10.0 PACKAGE DIMENSIONS

10.1. P8X32A-D40 (40-pin DIP)

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 31 of 33 Rev 0.3 5/17/2007

10.2. P8X32A-Q44 (44-pin LQFP)

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 32 of 33 Rev 0.3 5/17/2007

10.3. P8X32A-M44 (44-pin QFN)

Propeller™ P8X32A Preliminary Datasheet www.parallax.com

Copyright © Parallax Inc. Page 33 of 33 Rev 0.3 5/17/2007

11.0 MANUFACTURING INFORMATION

11.1. Reflow Peak Temperature
Package Type Reflow Peak Temp.

DIP 255+5/-0 °C

LQFP 255+5/-0 °C

QFN 255+5/-0 °C

11.2. Green/RoHS Compliance
All Parallax Propeller chip models are certified
Green/RoHS Compliant. The Certificate of Compliance
is available upon request and be obtained by contacting
the Parallax Sales Team.

Parallax Sales and Tech Support Contact Information
For the latest information on Propeller chips and programming tools, development boards, instructional materials, and
application examples, please visit www.parallax.com/propeller.

Parallax, Inc.
599 Menlo Drive, Suite 100
Rocklin, CA 95765

Sales/Tech Support: (916) 624-8333
Toll Free in the US: 1-888-512-1024
Sales: sales@parallax.com
Tech Support: support@parallax.com

