"Politehnica” University of Bucharest

Faculty of Automatic Control and Computer Science,
Computer Science Department

Computer Science
& Engineering
Department

Cryptography Scientific Report
Sanity Check of Public RSA Keys

from Internet

Coordinator Authors:

Prof. Emil Simion Adrian Stratulat, SCPD
Mihai Barbulescu AAC
Raluca Oncioiu SCPD
Vlad Traista-Popescu SRIC

Bucharest, 2015



Contents

|1 Project Description|

|2 Theoretical Background|
.1 RSA Key Generation PI| . . . . . ... ... ... ... . ...
2.2 RSA encryption and decryptionf. . . . . . . ... ... ...
2.3 Extended Kuclidean algorithm| . . . .. ... ... ... ... .
2.4 Square and multiply algorithm for modular exponentiation|
2.5 RSA integer factorization| . . . . ... ... .. .. ... .....
[2.6  Tests to check if a number is prime B . . . . . . .. ... ...

[2.7 Random Numbers and Pseudorandom Numbers [4] . . . . . . ..

13 Software application|
8.1  Big number C library] . . ... ... .. ... .. ...
13.2  Factorization procedure| . . . . . . . ... ... L.
8.3 Getting the private key|] . . . . . . ... oL

4 Results|
5_Conclusions|

|IA° Python Code for Extended Euclidean Algorithml|

IB C code for finding common RSA factor|

N

N O O Ut Ot

10
10
10
11

13

14

15

16



Abstract

In this paper we present a small application that makes use of an online
public key crawler with the main purpose of making a sanity check session
on approximately 42 million public keys discovered when scanning TCP
port 443 for raw X.509 certificates, between June 6, 2012 and August 4,
2013.



1 Project Description

We report the results of a basic sanity check session using a large-scale mea-
surement study of the HTTPS certificate ecosystem[I] performed by a research
group from Department of Electrical Engineering and Computer Science, Uni-
versity of Michigan, which peformed by web crawling 110 Internet-wide scans
over 14 months, by collecting and validating X.509 certificates, using the fol-
lowing methodology:

e discover hosts with HTTPS (443) port activated. One can easily achieve
this by using nmap command, similar to the following execution:

mihai@blackhole: ~ $ nmap --script=ssl-cert.nse -p 443 www.google.
com

Starting Nmap 6.40 ( http://nmap.org ) at 2015-06-05 20:43 EEST

Nmap scan report for www.google.com (173.194.112.18)

Host is up (0.039s latency).

Other addresses for www.google.com (not scanned): 173.194.112.19
173.194.112.20 173.194.112.16 173.194.112.17

rDNS record for 173.194.112.18: fra07s27-in-£18.1e100.net

PORT  STATE SERVICE

443/tcp open https

| ssl-cert: Subject: commonName=www.google.com/organizationName=
Google Inc/stateOrProvinceName=California/countryName=US

| Issuer: commonName=Google Internet Authority G2/organizationName=

Google Inc/countryName=US

Public Key type: rsa

Public Key bits: 2048

Not valid before: 2015-05-06T09:29:25+00:00

Not valid after: 2015-08-03T23:00:00+00:00

MD5: 3e35 9be7 db85 d15b 9806 b52e €236 0e68

SHA-1: 4b9d 33e6 4ef6 104e 2043 bfle 0928 924f 6d41 337a

Nmap done: 1 IP address (1 host up) scanned in 0.27 seconds

e completing a TLS handshake with responsive addresses and collecting the
presented certificate chains. This can be achieved in Linux command line
by using the openssl suite:

mihai@blackhole: ~ $ openssl s_client -crlf -connect www.example.
net:443

e parse and validate certificate. A full C example of how this can be done
using OpenSSL library is described here E]

Thttps://zakird.com/2013/10/13/certificate-parsing-with-openssl/
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There are similar efforts that dump certificates in databases. One example
is the investigation performed by the EFF SSL Observatory project, done by
Electric Frontier Foundation (EFF) E| , supported by NLnet Foundation and
SingleHop LLC. The scanning is done with a similar procedure as the one de-
scribed above, but it focused on Certificate Authorities trusted by Mozilla and
Microsoft.

In the next sections we will focus on background theory on RSA, key fac-
torization and number theory required and how we used all this information to
achieve the factorization of the keys found.

2 Theoretical Background

RSA is an asymmetric cryptographic scheme developed by Rivest, Shamir and
Adleman. It currently is one of the most used cryptographic systems worldwide
alongside AES. This cryptosystem is mostly used in applications that involve:

e small data transfer such as key exchanges (e.g. it secures the Diffie Hell-
man Key Exchange)

e digital signatures and digital certificates

2.1 RSA Key Generation [2]

Since RSA is an asymmetric algorithm it uses two different keys: a public
key and a private key. The public key is for general use and can be used for
encrypting data whereas the private key is secret, it is not shared and it is
generally used for decryption. An exception to this general rule is represented
by the authentication process in SSH where the private key is used to encrypt
a challenge string and the public key is used to decrypt the cyphertext.

The key generation process for an RSA entity is as follows:
e two large numbers p and ¢ are generated randomly.
e the following value is computed n = p * q.

e the value ¢(n) = (p — 1)(¢ — 1) is computed where ¢(n) is Euler’s totient
function. This value is kept secret.

e The public exponent e is selected from the set {1,2,...,¢(n) — 1} with
the condition that ged(e, ¢(n)) = 1.

e The private key d is computed such that d - e =1 mod ¢(n).

e The public key is represented by the pair (n,e) and the private key is
represented by d.

%https://www.eff.org/observatory
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2.2 RSA encryption and decryption

The encryption and decryption computation is done in the integer ring Zn and
it heavily features modular exponentiation.

In order to encrypt a message m the public key (n,e) is used as follows:
c=m°® mod n

In order to decrypt a cyphertext ¢ the private key is used:

4 mod n

m=c

A very important property that this algorithm must have is that since it
uses two different keys it must be computationally hard to deduce the private
key d just by knowing the public key (n,e).

Since most of the operations for computing the public/private keypair and
for encrypting/decrypting involve computation with very large numbers, certain
time optimizations can be done such as the extended Euclidean algorithm for
the modular multiplicative inverse and the square and multiply algorithm for
modular exponentiation.

2.3 Extended Euclidean algorithm

In the RSA key generation step the private key d was calculated as the inverse of
the public exponent e modulus ¢(n). This modular inverse is usually calculated
using the extended Euclidean algorithm.

This algorithm computes the greatest common divisor of two numbers and
it also computes the coefficients of Bezout’s identity. The principle behind this
algorithm is that being given two numbers a and b, these numbers are coprime
only if two numbers z and y can be found that satisfy the following relationship:

a-x+b-y=ged(a,b)

In the RSA case, the equation can be written as:
e-x+¢(n)-y=1 (e and ¢(n) are coprime)
Solving this equation modulo ¢(n) will lead us to:
ez =1mod ¢(n)

In our case, z is represented by d the private key.

The algorithm is an extension of the standard Euclidean algorithm. The
standard one was using a series of divisions where only the remainders were
used repeatedly. The extended one uses both the quotients and the remainders.
A small implementation of the algorithm can be found in appendix
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2.4 Square and multiply algorithm for modular exponen-
tiation

RSA has an asymmetric behaviour not only when it comes to the pair of keys it
uses, but also because of the duration it takes to encrypt and decrypt a message.
The encryption process lasts a shorter amount of time because since e is the
public exponent, it can have a small value without compromising its security.
On the other hand the decryption process lasts a considerable amount of time
because the private key d has a very large value for security reasons.

The decryption process consists in a modular exponentiation operation. In
a naive implementation an exponentiation 2™ would have a complexity of O(n)
since the exponentiation is done by multiplying the same number n times. Us-
ing the square and multiply algorithm the complexity of the exponentiation is
reduced to O(log(n)).

def squareAndMultiply(base, power, modulus):
tmp = 1
while power:
if power % 2 == 0O:

power /= 2

base = (base ** 2) ¥ modulus
else:

power -= 1

tmp = (tmp * base) % modulus
return tmp

2.5 RSA integer factorization

The strong security power of RSA comes from the fact that it is computationally
hard to factorize a large number (in our case n). In the early days of RSA
(1994) it was estimated that factoring the RSA moduli of a 426 bit key would
take trillion of years (it must be taken into account also that the computational
power at that time does not match the current one).

However, over the course of time the factoring algorithms have been drasti-
cally improved and the computational power has increased which resulted in an
increase of the RSA keys length. An evolution of the RSA keys length is show
in the table below:



Decimal digits Bit length Date

100 330 April 1991
110 364 April 1992
120 397 June 1993
129 426 April 1994
140 463 February 1999
155 512 August 1999
200 664 May 2005

Table 1: RSA keys length evolution

In the present the RSA keys length are usually either 1024 bit or 2048 bit. In
2011, NIST has flagged the RSA 1024 as deprecated with the recommendation
to transition to 2048 bit keys.

2.6 Tests to check if a number is prime [3]

Euler Theorem. If (b,m) = 1 then b*(™ =1 mod m.

Fermat Theorem. If p is prime number which doesn’t divide to b then
P~ =1 mod p.

Wilson Theorem. The number p is prime if and only it’s not divisible to
any natural number less than [,/p].

For big values of p, the Wilson test and Erastotene test are not computa-
tionally efficient.

Miller-Rabin test. It consists in the following steps:

e We randomly choose different values in base b instead of a single value

e While we compute each modular exponentiation (power of two followed
by modulo p operation), we establish if we have found a square root of 1
mod p. If we have found it, the test will say if the number p is composite.
The error ratio of Miller-Rabin test for every odd number is 2%, where s
is the total number of random values chosen for base b.

Fermat Test. It uses the reciprocal of Fermat Theorem. We present the
algorithm below:

FERMAT(n, t)

Input: an odd number n > 3 and a security parameter t > 1.
Output: the decision.

Step 1. For i =1,...,t do:

e choose a random number a with 2 <a <n — 2.

1

e compute r = a™~ " mod n.



e if r #£ 1 then we decide that n is composite.

Step 2. We decide: n is prime.

Observation. A composite number n which is considered prime by Fermat
test is called pseudoprime Fermat number and numbers of type a are called false
Fermat numbers.

Soloway-Strassen. It uses Euler’s criteria, that is: if n is a prime number
then:

' = ( %) for every integer a that satisfies (a,n) = 1, where ( & ) is the
symbol of Legendre.

We present the algorithm below:

Solovay-Strassen(n, t)

Input: an odd number n > 3 and a parameter for security ¢ > 1.

Output: the decision.

Step 1. Fori = 1,....,t do:

e we randomly choose a with 2 < a <n — 2.

n—1
e compute r =a 2z mod n.

r # 1 and r # n — 1 then we decide n is composite.

e we compute the symbol of Legendre s = (%)

if r # s then we decide n is composite.

Step 2. We decide: n is prime.

2.7 Random Numbers and Pseudorandom Numbers [4]

The correct way of speaking about random numbers is taking a sequence of
random numbers. The computers generate random numbers using specific rules
for the number of 0 and 1 values. For example, we know that a good random
number must have an approximately equal number of 0 values with the number
of 1 values. There are also statistical tests that show how much randomness
is in a sequence of numbers. A perfect random number is the one that can be
guessed only with brute force.

The factorization can be made harder for a cracker depending on the quality
of RNG (Random Number Generators) and the system’s entropy pool. Because
some systems don’t implement or use them correctly, sometimes the same p or
q values are generated across machines.

Usually, we generate random numbers based on mouse’s moves and /or clock
ticks in the computer. The property of randomness has been introduced with
the help of pseudorandom numbers.



Definition. Let be m, k& (m —1 > k > 0) integer numbers. A (k,m)
pseudorandom generator is a recursive function:

[z — 73
In applications, we obtain m from k& with a polynomial algorithm. A pseu-
dorandom generator must satisfy the following rules:

e It must be simple and fast.

e It must produce sequences of numbers with arbitrary lengths that don’t
contain repetitions.

e It must produce independent numbers, or with an ambiguous correlation.

e It must generate numbers with an uniform distribution.
Some examples of pseudo-random number generators are:

e Linear congruential generators: x,11 = az, + b( mod m)
e Ranrot generators: TyepA : xp, = ((Tn—j + Tn—k)( mod 2°)) >>r

e Shift registers, such as linear feedback shift register (LFSR), Geffe gener-
ator, Stop-and-Go

e Mother-of-all generator:

MOTHER OF ALL GENERATORS

1 n=4

2 whilen < MAX

3 S = 2111111111 - &y 4 + 1492 - 2, _3 + 1776 - o + 5115 - 2,1 + ¢
4 Z, = S mod 232

5 c= 2%

6 n=n+1

e Blum - Micali generator: For g prime and p odd prime number, x( initial
value. We generate x;11 = ¢g** mod p. The output is 1 if x; < pgl and 0
otherwise.

e RSA generator: The RSA cryptosystem can be used to generate random
numbers. Having n = pg and public exponent e such that ged(e, (p—1)(g—
1)) =1 and =z initial value, z¢g < n. We define: ;41 = 25( mod n). The
output is z; = x; mod 2. We need to choose a very high value for n in
order to be secure.



3 Software application

3.1 Big number C library

For running the sanity check session we used the C language with the OpenMP
support for easy multithreading enablement in order to use at maximum an
AMD multi-core architecture. Because C does not have built-in support for big
numbers and for our application using integers, the native CPU register size was
not enough and that we also needed high-precision calculations that exceed the
precision of the underlying CPU, we used arbitrary precision (bignum) library.

We decided to use GMP (GNU Multiple Precision Arithmetic Library) [5], as
it has support for integer and rational numbers, can do computations in finite
fields, aiming at speed and supporting numerical algorithms such as greatest
common divisor, extented euclidean algorithm for inverse modulo n and other
useful cryptographic computations.

3.2 Factorization procedure

The brute-force approach to find the prime factors of a number n is to check
against all the prime numbers in the interval [2, y/n]. Because this is not feasible
for big numbers (larger than 2!%Y), another approach has to be chosen.

The approach we used was to compute the GC]jﬂ using Euclid’s algorithm
on all the possible pairs in a set of numbers. This way, instead of storing a large
database of prime numbers, we only store the set of numbers to be checked.

fort: =0to M —1
for j =ito M
t = ged(Ali], A[j])
if t £1At# Al
print i : Afi] : ¢
print j : A[j] : ¢

ST W N

Because sometimes we encounter identical keys, their GCD is equal with
themselves but we have to discard this result because it does not give information
about the private key.

As an optimisation, the outer loop can be run in independently, in parallel
but because the print procedures are not atomic, the lines 5 and 6 should be
protected by an mutex.

To demonstrate the weakness, we have to analyse the KeyGen procedure.

3QGreatest Common Denominator
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RSA KEY GENERATION

Choose randomly two large primes p and ¢

Compute n =p - q.

Compute ¢(n) = (p— 1)(¢ — 1).

Select the public exponent e € {1,2,...,¢(n) — 1} such that ged(e, d(n)) =1
Compute the private key d such that d-e =1 mod ¢(n)

return public key: kpyp = (n,e), private key: kpr = d

ST W N

The only decision step of the algorithm is the first, which depends on the
quality of the RNG E] and the system’s entropy pool. Because some systems
don’t implement or use them correctly, sometimes the same p or ¢ values are
generated across machines.

If we know the public key and the p value, all the other information can be
computed easily.

The full C snippet used in our research is described in appendix

3.3 Getting the private key

In the above subsections we described how we manage to find a common factor
for a given public key. Once this is achieved, we only have to apply the RSA
algorithm so that we are able to obtain the private key from the public key and
factor found.

The following output shows an excerpt from what the key-factoring parallel
code generates. The line format is ID:RSAPublicKey:Factor

48:e8d8454ed5b58c09fbfb186880fac61dd6e7ed
79459caa85d6cd9754ce41£1£6c42841151£886277e4b1£f8
2££28cc04e57e9e5e551339fbb62a15a05b65e69f1 : f4ee2329d4e7b
93c822be343eb5b29a1756c£39424bce3e443£95b97d7dfafdd
49:c15da3d3511cf0fd0bc2feac741d51d056394209c0b224
0d3ca62ca06d0673c87aab5666b46c3d86d679e7e1e0713
€4893e00159e9833e26684ab4e2fdd182261: c5ea75702937
£53ad151e8c16£c34b8caad05c0073d2cbe87e79d78953d24d77
85:af2b7afa0d08276b394£6£973546€94244e1£715
3dc183£620bb1b7ab90e5a43671fc4bdb841c£0580£56a6
a14£3b232b978d327d34443ca2731037a299c8869:cfc5674
b72e96£856755a70110ce9865003ebc5d413c7e7a305
£a852480e24a9

The schema provided by the certificates scaned by University of Michigan is
that we have a public_keys.csv file with public keys description and unique
identifier and a certificates.csv file with raw X.509 certificates with unique
ID and the corresponding ID of the public key.

Thus, for a given factored public key, we need to find it first in public_-
keys.csv

4Random Number Generator

11
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mihai@blackhole: 2993ADOA1C27EESD $ grep
e8d8454ed5b58c09fbfb186880fac61dd6

e7e479459caa85d6cd9754ced1f1£6c42841151£886277e4b1£82ff28cc04e57e9ebe

551339fbb62a15a05b65e69f1 public_keys.csv

25509759, rsaEncryption, ,65537, \xe8d8454ed5b58c09

fbfb186880fac61dd6e7e479459caa85d6cd9754ced1£1£6c42841151£8

86277e4b1£82f£28cc04e57e9e5e551339fbb62a15a05b65e69f1, ,,,,512

We observe that the above key has 512 bits length, so obviously it might
be vulnerable. For the public key with ID 25509759 we find the following
corresponding certificate:

35158611, \x80d982577d2f07e6944d1260d084b7£5ecb009£5,0,,1,"C=US, ST=
California, L=Irvine, 0=Cisco-Linksys,

LLC, OU=Division, CN=Linksys/emailAddress=support@linksys.com","C=US, ST=
California, L=Irvine, 0=Cisco-

Linksys, LLC, OU=Division, CN=Linksys/emailAddress=support@linksys.com
",3,%,2010-12-08 03:45:55,2020-12-05

03:45:55,t,,f,f,f£,f,,,,,,,555555,,,mdBWithRSAEncryption
,0,25509759,2013-04-23 01:23:24.614823,

rsaEncryption,,,,,,,

Now we know that a key from Linksys has a vulnerability. Moreover, this
certificate is still available and last seen in 2013, but expiring in 2020! This is a
serious issue.

To determine the other factor from equation n = pq, as we already have the
public key n and a factor p we used Python, which has built-in support for big
numbers and can be easily used as scripting language for automating all these
steps and also the PyCrypto library [0]

n = int(hex_pub_key_from_csv, 16)
q int (hex_factor_from_dump, 16)
p =1n/q

Also, the public_keys.csv gave us information about the public exponent
used, which is e = 65537.

Now we can generate a public-private key, in Python, using PyCrypto, which
can be used either as OpenSSH authentication or digital signature:

from Crypto.PublicKey import RSA
from Crypto.Util import number
def genRSAkey(p,q):

n = pxq

e 65537L

phi = (p-1)*(g-1)

d = number.inverse(e,phi)

return RSA.construct((n,e,d,p,q))

12




10
11
12
13
14
15
16
17
18
19
20
21

if __name__ == "__main__":
a = genRSAkey(1107850873446357366417162212914
94697477270872142202066316578327864502007082973L.,
11007864317016659601338120647504991277877248

3494405040928115986630220885101349L)

priv_key = a
pub_key = a.publickey()

print priv_key.exportKey()
print pub_key.exportKey(format=’0penSSH’)

4 Results

The following results should respect the principles that should lead to relevant
statistical tests [7]

The total number of public keys provided by the web crawler and potential
input for factorization: 44474713

e 512-bit keys, searching the entire database for matches

— Number of found keys: 323338 (0.7% of the raw dataset)
— Number of tested pairs: 323337 - 323336/2
— Number of common divisors: 4717
— Number of broken keys: 12209
— Percent of broken keys: 3.7%
e 1024-bit keys, phase I (exhaustive search for matches on a set of 100k
keys)
— Number of keys provided as input: 100000
— Number of tested pairs: 99999 - 99998 /2
— Number of common divisors: 2
— Number of broken keys: 6
Percent of broken keys 0.006%

e 1024-bit keys, phase II (trying to match the 2 divisors from the previous
set against the full dataset)

— Number of keys in the database: 26869026 (60% of the raw dataset)
— Number of tested pairs: 26869024 * 2

13



— Number of broken keys: 13617
— Percent of broken keys 0.05%

The search speed obtained (on a computer with AMD quad-core x86_64
CPU, running at 3.9GHz, with 6 GB RAM):

— 512-bit: 720k GCD/s
— 1024-bit: 355k GCD/s

5 Conclusions

In this report we presented the results of a sanity check session of X.509 certifi-
cates crawled between 2012 and 2013 and some relevant statistical results.

By using this results we encourage the generation of keys of at least 2048 bits
length and also encourage the use of certificates that expire in an year or two. It
is important to note from these results that once generated your public/private
key pair you should do a minimal check against a database of public keys if a
common factor exists. Thus you might be safe for at least two up to ten years
(the maximal value of certificate expiration date that we found in our study).

14



A Python Code for Extended Euclidean Algo-
rithm

import math
def extend_euclid_algorithm(rO, rl):

print "Failure: unable to process this request"

1

2

3

4

5 if(r0 < r1):
6

7 return "ERROR"
8

9 s = [1, 0]

10 t = [0, 1]

11 i=1

12 r = [r0, ri]

13 q = [0]

14

15 while True:

16 i=1i+1

17

18 s.append (0)

19 t.append (0)

20 r.append(0)

21 q.append (0)

22

23 r(i] = r[i - 2] % rli - 1]

24 qli - 1] = (r[i - 2] - r[iD)/r[i - 1]
25 s[i] = s[i - 2] - qli - 1] * s[i - 1]
26 t[i]l = t[i - 2] - qli - 11 * t[i - 1]
27

28 if r[i] == 0:

29 break

30

31 gcd_string = "gcd(%s, %s) = %s" % (str(xr0), str(rl), r[i-11)

32 s_string = "Ys" % str(s[i-1])

33 t_string = "Ys" % str(t[i-1])

34 print gcd_string + " = " + s_string + " * Ys " % str(z0) + " +
" + t_string + " x Ys" % str(rl)

35 print "s=Ys, t=ls" % ( str(s[i-1]), str(long(t[i-1])) )

36

37

38 if __name__ == "__main__":

39

40 extend_euclid_algorithm(67, 12)

41 extend_euclid_algorithm(121950720983858964\

15
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26
27
28
29
30
31
32
33
34
35

21307279123243774582372328290469176220515\
78738788423890327596202279187404726945545290\
122578069128419633718865731073695091\
0431684065046256L , 65537L)

The above code is runnable with both Python 2.7.x and Python 3.

B C code for finding common RSA factor

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>

#define SPACE_SIZE 20000

int main()

{

FILE* f;

mpz_t* p_b;

char* line = NULL;
size_t len 0;

p_b = malloc(SPACE_SIZE * sizeof (mpz_t));
f = fopen("public_key_n2", "r");

for(int i = 0; i < SPACE_SIZE; ++i){
getline(&line, &len, f);
mpz_init_set_str(p_b[i], line, 16);

}

fclose(f);

free(line);

#pragma omp parallel for schedule(static, 300)
for(int i = 0; i < SPACE_SIZE -1; ++i){

mpz_t gcd;

mpz_init(gecd) ;

for(int j = i+1; j < SPACE_SIZE; ++j){
mpz_gcd(ged, p_bl[il, p_bl[jl);
if (mpz_cmp_si(ged, 1)){
#pragma omp critical
{
gmp_printf ("%d:%Zx:%Zx\n\n", i, p_b[i], gcd);
gmp_printf ("%d:%Zx:%Zx\n\n", j, p_b[jl, gcd);

16
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}

}

}
}
}
mpz_clear(gcd);

To compile the above code you need libgmp-dev and openmp libraries.

17
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