
University POLITEHNICA of Bucharest
Computer Science & Engineering Department

NSDI 2016, Santa Clara, California, USA

Performance Optimization in the Age
of Shifting Bottlenecks

Laura Mihaela Vasilescu, Costin Raiciu
University POLITEHNICA of Bucharest, Romania

laura.vasilescu@cs.pub.ro, costin.raiciu@cs.pub.ro

1. Web Proxy

We implemented a customizable web proxy app that allows us to serve
HTML files from disk or memory; it also supports compression, if the
client supports it (as indicated in the HTTP request). The proxy is multi-
threaded. To increase performance, our app stores recently loaded web
pages in memory in a fixed size cache and uses the LRU algorithm to evict
old entries. When there is a LRU miss, our app can be configured to:

load the file from disk, whether in plain text or compressed format.
decompress, if the compressed version is already in memory; cache
the results.
compress the file and serve it if the raw file is already in memory;
cache the result.

2. Experimental Setup

Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz,
62GB RAM
one magnetic disk and one solid-state disk
server and clients communicate through the loop-
back interface
server and clients run on different NUMA nodes
server threads are equally distributed among the
available cores
clients are equally distributed among the available
cores
dataset contains Wikipedia pages with size above
500 KB

3. Initial Results

We used ten clients that maintain long running connections and repeatedly request a random file, randomly selecting between plain
text or compressed format.
The table below shows the total server throughput (req. per sec) in different scenarios.

HDD (.html) HDD (.gz) SSD (.html) SSD (.gz) LRU=∞ Compress Decompress
45 241 634 3665 26785 672 3405

4. HDD vs. SSD

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 68 69 70 71 72 73 74

T
h

ro
u

g
h

p
u

t
(r

e
q

.
p

e
r

s
e
c
)

LRU Hit Ratio (%)

Disk HDD
Compress HDD

Decompress HDD
Disk SSD

Compress SSD
Decompress SSD

requests are randomly generated
with the ZIPF distribution:

P (pageid) =
[numfiles]

ρid , ρ = 1.5

Decompress > Disk > Compress
magnetic disk highly degrades perfor-
mance even when LRU hit ratio is big

5. Idle vs. Load

 0

 5000

 10000

 15000

 20000

 25000

 67 72 77 82 87 92 97

T
h

ro
u

g
h

p
u

t
(r

e
q

.
p

e
r

s
e
c
)

LRU Hit Ratio (%)

Disk idle
Compress idle

Decompress idle
Disk load

Compress load
Decompress load

exclusive access (idle):

Decompress > Disk > Compress

non-exclusive access (load), with
LRU hit ratio > 82%:

Disk > Decompress > Compress

non-exclusive access (load), with
LRU hit ratio < 82%:

Disk ≈ Decompress > Compress

6. Hybrid

 0

 5000

 10000

 15000

 20000

 25000

 67 72 77 82 87 92 97

T
h

ro
u

g
h

p
u

t
(r

e
q

.
p

e
r

s
e
c
)

LRU Hit Ratio (%)

Decompress idle
Hybrid idle

Decompress load
Hybrid idle

double number of clients
hybrid - if another thread running
on the same core is doing decompres-
sion (CPU intensive), change the pol-
icy to read the .gz file from disk
Hybrid > Decompress
performance of the hybrid algorithm
is with 68% better if the LRU hit ra-
tio is smaller than 82%

I/O devices have historically lagged behind the CPU
rigid assumptions about bottlenecks (caching, compression, etc.)
CPU cores struggles to keep up with I/O rates

Hypothesis: software performance optimizations should explicitly
account for shifting bottlenecks during application deployment.

