
Importance of Open Source Contributions within the
Educational Process

Victor Cărbune
Computer Science

ETH Zürich, Switzerland
vcarbune@student.ethz.ch

Laura Mihaela Vasilescu
Computer Science & Engineering

University POLITEHNICA of Bucharest, Romania
laura.vasilescu@cti.pub.ro

Abstract—Contributions to Open Source projects make an
important difference in the educational process. By studying the
underlying architecture of an Open Source application, students
can significantly improve their technical knowledge and, also,
contribute to the evolution of the project. Our research relies on
an extra-curricular course that aims to speed up the process of
the first upstream contribution. In this paper we highlight the
impact of the course on the professional background and career
path of admitted students.

Keywords—Open Source; education; community; course

I. CONTEXT AND MOTIVATION

The university and academic environment already have

numerous opportunities and responsibilities for students.
However, several key elements that accelerate the process of
contribution to real-life projects are missing or are simply
presented too late in the university curricula. Open Source
projects are the best way to broaden the knowledge within a
particular Computer Science domain. They offer guidance to
the internals of the project (code, architecture, design, etc.)
and they also have a community behind that is keen to help
enthusiast people.

Contributions to Open Source projects enhance the
students’ ability to easily adapt to a new project, to write
beautiful and qualitative code and to easily understand and
design an application in order to fulfill the needs of numerous
users. The most important benefits of an Open Source
contribution are the fast feedback one can receive from its
community and the real-life applicability of the patch.

The Community and Development Laboratory [1] is a 10-
week long course built by the Romanian Open Source
Education (ROSEdu) [2] community. Through it, students
gain extensive knowledge of the Open Source philosophy, of
the various Open Source tools that any engineer should be
aware of. By the end of the program they have made their first
upstream contribution within one of the projects to which we
managed to assign mentors.

We concentrated the course activities along the following
four components within the Open Source framework: the
philosophy, the community of a project, the development
model and the resulting software itself.

The created environment accelerates the regular process of
submitting a contribution, by bringing together non-
experienced students and active contributors within a wide
variety of Open Source projects as mentors.

This paper studies the impact of Open Source contributions
on the students’ career path, considering the formal
environment created through the course. It is interesting to
understand in what manner the particular changes brought to
the program have been perceived by different generations of
students.

II. HISTORY: THE FIRST EDITION

The first edition of the program took place in the spring of

2009 and it was received with enthusiasm and interest by both
graduate and undergraduate students. From the total pool of
102 applicants, 16 participants were selected to work on four
projects. The main components of the course were technical
presentations and mentorship sessions. The projects were
written from scratch, unlike the traditional path of an Open
Source contribution, by teams of four students and one or two
mentors.

Students gained multiple skills through the course. They
learned how to work in a team, how to plan a project and how
to design the architecture of an application. At the end of the
course, working with a version control system and
understanding code written by somebody else ceased to be a
mystery.

The first edition focused on sharing knowledge about the
tools one can use in software development, especially in Open
Source projects. The following topics were covered: History
and Philosophy of Open Source, Motivation of Open Source,
Editors (vim), Version Control Systems (Subversion and git),
GPG, SSH and Public Keys, Bug tracking, Project Hosting,
Architecture and Design, Project Planning and Licensing.
According to the feedback received from the participants, it
was definitely a successful edition. However, several key
aspects had to be changed in order to facilitate students with
the proper environment of submitting upstream Open Source
contributions during the course.

To start with, we realized that building a project from
scratch doesn’t give one the opportunity of interact with a

community. One of the most important aspects in making a
contribution to an Open Source project is the actual interaction
one can have with other developers and this was a missing
component. In addition, the feeling of having your code
submitted upstream and being used by others can never be
achieved by working at a completely new project, built from
scratch. During a semester course, the project hardly evolves
quickly enough in order to become the new Linux kernel or it
simply goes wrong in many unpredicted ways, due to lack of
experience.

Another important aspect is that in different Open Source
projects, communities use various tools for distributing or
reviewing the code. Some might use git, others might use
Subversion and so on. An important question appeared: how
can we design the course in order to have a general character,
but, in the same time, to be specific enough in order to satisfy
as many Open Source project requirements as possible? To
accomplish this, we realized that it is important to teach the
basic skills required in both a theoretical and a practical
manner. If there are several tools fulfilling the same function,
then the best option is to teach one of them and to teach it
well.

Following the principle less is more, we decided to change
the course experience significantly (as can be seen in the next
chapter).

III. CHOPS AND CHANGES

The second and third editions of the course have brought

major changes, aiming to shape the experience of the
participants to be as close as possible to the normal path of
submitting an Open Source contribution. This involved
seeking mentors, that are actively involved in public Open
Source projects, to coordinate students and, together, enhance
pre-existing software, such as KDE SC or Gnome, with a new
feature, rather than create a completely new project.

There are extensive benefits and challenges of such an
approach, closer to the real Open Source world, such as the
needs to:
 familiarize with a new codebase
 understand the general guidelines and plans for

building new features
 integrate within an existing world-wide community
Starting from the second edition, the overall structure of the

course was changed to emphasize the development of soft
skills and to create focused development sessions. From the
feedback received, it seemed that some courses didn’t have an
important impact for their learning curve and therefore we
adapted the curriculum of the courses to better prepare
students for their first contributions, by adding or dropping
some of them.

Transmitting technical knowledge to students is not enough
for their personal development and for their future careers. We
believe that students can learn a lot from successful
professional experiences recounted by recognized people and
therefore we have invited leaders from different companies

and communities to give talks at several courses. Personal
examples can be very motivating and encouraging in the
educational process.

We thought more carefully on how students were spending
their 4 hours during a session: we added a two-hour weekly
hands-on activity that brought students together with their
mentors to work on the projects. At the end of the course, this
changes lead to a positive outcome. Students improve far more
in the sessions spent together with their mentors, than by
participating in a presentation of another tool that they might
not even use during their project.

IV. ANALYSIS OF THE COURSE IMPACT

This paper is the result of the analysis of periodic feedback

received in the last five editions and the personal evolution of
the participants. In order to demonstrate the achieved results,
we also designed two additional surveys:
 one completed by 65 people that didn’t attend the

course
 one completed by 53 people that attended the course
The surveys share some of the questions that are not

directly related to the course. Their purpose is to determine, in
general terms, the impact of Open Source contributions on the
career path of recently graduated students.

A. Participant Profile
In order to give more sense to statistical data, we have

gathered general information about the participants, their
activities and prior interactions with the Open Source world
before enrolling to the course.

From the second edition of the course, the target students
are in their first or second year at the university and the
average age of the participants is between 19 and 20 years old.
Most of them are enrolled at University POLITEHNICA of
Bucharest, Faculty of Automatic Controls and Computer
Science.

According to the surveys, the interest for the course was
triggered by the reasons presented in Table 1.

Reason Percentage

To work in a team and to meet new people 81%
Interest in Open Source Philosophy 70%

Interest in the community behind the course 66%

Desire of pursuing extra-curricular activities 55%

Adding extra-curricular information in the CV 32%

Course reputation 30%

Desire of participating to an interview 30%

Interest in a specific project from the course 9%

TABLE I. REASONS FOR SUBMITTING AN APPLICATION TO THE COURSE

Fig. 1. Benefits of Open Source Contributions According to the Participants

Among the participants of the course, more than 94% of

them have never made an Open Source contribution before
attending the course. Therefore, most of them have done their
first contributions during the course workshops.

B. Mingling with the Formal Education
The course curriculum and activities are closely developed

in correlation with the academic calendar and deadlines of
homework happening in the same time span. The reason
behind this is that the skills developed during the course are
complementary with the ones achieved in the academic
environment.

It is important to maximize the gain from both
environments and to find a balance between them.
Respondents classified the time management during the course
as follows:
 45% completed both academic and course

requirements successfully
 40% had minor difficulties in completing both

activities
 13% were not able to finish to successfully finish some

of assignments
 2% had to completely withdraw from the course
An important result we found is that more than 90% of the

participants think that the course curriculum has successfully
accompanied the elements taught in the regular academic
lectures and laboratories.

Teamwork is a highly encouraged component of the course
and an essential element in the undergraduate level education.

One of the elements that we believe to be extremely hard to
guarantee is the fairness and equal distributions of tasks
among the different members of the team. Another challenge
is to ensure similar technical background among the students.
We have achieved this through a competitive admission
process, rated by more than 58% of participants as highly
competitive.

The collaboration experience within project teams is
considered a successful component. More than 73% of the
participants rated their team mates’ technical expertise similar
to theirs and more than 83% appreciated that the tasks were
uniformly distributed among each member of the team they
were part of.

According to the participants enrolled in the course, the
most important benefit of Open Source contributions can be
seen in Fig. 1.

C. Longterm Impact of Open Source Contributions
We have questioned the respondents about the impact of

Open Source contributions done during the course on their
overall academic performance. More than 90% of the
respondents thought there was a positive effect on their
knowledge skills.

There is a common subset of skills that are easily gained
through the process of making Open Source contributions. We
have used the two different surveys in order to understand to
what degree the course has successfully developed these skills.

In Fig. 2, the two types of bars represent relevancy
percentages for the two categories of respondents. The
demanded skills represent the percentage of questioned
persons that consider the respective skill as something that
should be extensively developed throughout the university.

Fig. 2. Comparation between Demanded Skills and Achieved Skills

The achieved skills represent the percentage of students that
attended the course and consider that the respective skill was
greatly enhanced throughout various components of activity.

In the final section of the survey, we asked the participants
whether the course accelerated the process of becoming a
contributor within an Open Source project and whether the
Open Source contributions done by the participant had any
influence on receiving a job or internship offer from a
company in the software engineering industry.

We were interested in understanding how many of the
course participants became contributors to an Open Source
project and when exactly. The survey results can be analyzed
in Fig. 3.

When asked whether the participation to this course had
any impact on the process of becoming a contributor to an
Open Source project, 70% of the participants responded
affirmatively, which coincides with the number of actual
contributors. The participants agreed unanimously that such a
course has a direct impact on becoming a contributor.

Obtaining a job or an internship position is one of the
success criteria for an educational program. The employment
rate among the participants of the course is over 90% and
therefore we questioned the survey respondents whether the
course or the Open Source contributions they made (even after
the course ended) had an impact on obtaining the offer.

Fig. 3. Timeline of devoting to Open Source

Fig. 4. Overall Appreciation

According to more than 71% of participants that obtained a
job or internship offer, the course has had a positive impact.
The stated reasons are related either to the visibility of the
Open Source contributions or to the technical and non-
technical skills that they have gained during the course.

Asked whether they would enroll again to such a course or
not, 96% have responded with yes. The overall utility of the
course is depicted in Fig. 4.

V. RELATED WORK

In an empirical study [3], multiple hypotheses about Open

Source software have been analyzed through an empirical
study. We consider most of the conclusions important from an
educational perspective.

Creativity is a key element in the formation of an individual
and, according to the study, evidence has been found to
support the fact that Open Source software fosters creativity.
In the same time, no evidence has been found to support the
success because of simplicity or a higher level of modularity
than closed software. These results are important for the
educational process, since a new graduate should be equally
prepared to work with both types of software ideologies.
Simply put, this means that an extended experience with Open
Source software allows the contributor to deal with issues that
are also commonly encountered in proprietary software.

Teamwork has proven to have a positive effect in terms of
achieving the stated course objectives, when compared to the
same performance of students working individually. The result
is extensively treated in [4].

In [5] many of the challenges of incorporating the regular
Open Source software developing model in the educational
process are extensively presented, extending beyond the

elements we considered in this paper. The course we created is
the first step towards a successful integration of the two.
However, scaling it properly to a university wide course
remains an open issue that we will further investigate.

VI. CONCLUSION

The impact of the course has been studied among five

different generations. After each course a post-performance
analysis was made. The analysis and the feedback received
from the students were then used to improve the course
structure and it is presented in detail in the final paper.

The immediate impact of the course was on the students’
decisions and opportunities: many of them have continued
their Open Source contributions, participated at conferences
and development camps, others obtained internship and job
offers within important companies or even started their own
companies. More importantly, their work often followed the
Open Source philosophy.

ACKNOWLEDGMENT

 We would like to thank to Alex Eftimie and Lucian
Grijincu (the first edition coordinators), Mihnea Dobrescu-
Balaur and Andrei Petre (the fourth and fifth edition
coordinators), Răzvan Deaconescu (that came with the original
idea) and, last but not least, to the community of the Romanian
Open Source Education Association[2] (ROSEdu), who made
everything possible.

REFERENCES
[1] http://cdl.rosedu.org/english
[2] http://rosedu.org
[3] Paulson, James W., Giancarlo Succi, and Armin Eberlein. "An empirical

study of open-source and closed-source software products." Software
Engineering, IEEE Transactions on 30.4 (2004): 246-256.

[4] Oakley, Barbara A., et al. "Best practices involving teamwork in the
classroom: Results from a survey of 6435 engineering student
respondents." Education, IEEE Transactions on 50.3 (2007): 266-272.

[5] Meneely, Andrew, Laurie Williams, and Edward F. Gehringer. "ROSE:
a repository of education-friendly open-source projects." ACM SIGCSE
Bulletin. Vol. 40. No. 3. ACM, 2008.

