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Row, row, row your boat,

Gently down the stream.

Merrily, merrily, merrily, merrily,

Life is but a dream.



Abstract

Computer vision is a prominent research topic of AI (Artificial Intelligence) that
aims to build agents capable of recognizing objects, movements, patterns and extract
information in the same way as human vision or even better.

Software performance is often limited by the hardware underneath. To increase the
overall performance, the current research trend is to offload some of the computation
to a dedicated processor. This thesis focuses on designing and implementing a modu-
lar and without language constrains compiler for the ConnexArray architecture and
introducing awareness of the frequency scaling at instruction level of the VASILE ar-
chitecture.
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Chapter 1

Introduction

Computer vision is a prominent research topic of AI (Artificial Intelligence) that
aims to build agents capable of recognizing objects, movements, patterns and extract
information in the same way as human vision or even better. This project aims to
simplify the development process of computer vision applications for ConnexArray and
VASILE (Vector Architecture for frequency Scaling at Instruction LEvel) architectures.

ConnexArray is a SIMD processor implemented in FPGA that has 128 execution units.
VASILE is an enhancement of the ConnexArray architecture that enables the adjust-
ment of the frequency at instruction level. Both architectures are suitable for computer
vision applications.

1.1 Motivation: Computer Vision Applications

Mankind was always preoccupied with creating tools and machineries in order to reduce
the physical work and improve their life quality. One good example of such a machinery
is the clock. People have always been concerned about measuring time. They were
not doing this as a hobby, instead, they were forced to find a good way to predict
seasons to improve the harvest and hunting. Ancient people used different methods
and machineries to keep track of the time. They used obelisks1 to track the movement
of the Sun, water clocks2 and, later, sand glasses3. Those systems were pretty big as
size and, at that moment, no one thought about the possibility of having a small clock
inside your pocket or, even more, the possibility to make the clock alert you in a few
hours.

This is what we call AI (Artificial Intelligence). This research field began
in 1956 as a research conference4 where the attendees wrote programs that were solv-
ing mathematical problems. Nowadays, those kind of problems are considered basic
problems and are not necessarily part of the AI field. The evolution of technology

1http://en.wikipedia.org/wiki/Obelisk
2http://en.wikipedia.org/wiki/Water_clock
3http://en.wikipedia.org/wiki/Hourglass
4http://en.wikipedia.org/wiki/Dartmouth_Conferences

1
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CHAPTER 1. INTRODUCTION 2

was impressive during the past decades and machineries are integral part of our lives.
We can barely imagine how our lives would look like without modern cars, computers,
search engines, mobile applications. Our lives are greatly simplified by intelligent agents
that correlate billions of data (big data).

At the beginning, every AI researcher’s goal was to build a machine as intelligent as
a human, but soon they realised the difficulty of the project. Today, AI agents are
built to resolve specific problems and, in in most of the cases (like chess), they solve
problems better than humans. Some of the specific problems resolved by AI agents
simulate different humans abilities, like perception.

Perception is a human ability to receive and interpret information from the envi-
ronment. They have many senses: ophthalmoception (vision), audioception (hearing),
gustaoception (taste), olfacception (smell), tactioception (touch), thermoception (tem-
perature), proprioception (kinesthetic), nociception (pain), etc.

Ophthalmoception (visual perception) is the ability to interpret information from
the visible spectrum. In AI this type of problems are part of the computer vision
field: navigation (autonomous cars or robots - drones), controlling processes (industrial
robots), detecting events (surveillance), information labeling (databases of images), to-
pographical modeling, medical image analysis, etc.

Computer
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Machine
Vision

Image
Processing

OpticsPhysics

Non-linear SP

Signal Processing
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Robotic Vision

Control
Robotics

Computer
Intelligence

Artificial
Intelligence
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Figure 1.1: Relation between computer vision and various other fields 1

Computer vision is not only about understanding visual images (both video and
photography), but it is also about acquiring methods, data representation, mathematical

1image from http://en.wikipedia.org/wiki/Computer_vision (23.03.2014, 18:37)

http://en.wikipedia.org/wiki/Computer_vision
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models and representations and algorithms. It is a very complex field that interconnects
several other scientific fields.

In Figure 1.1, one can see the relation between computer vision and various other
fields. It combines mathematics, algorithms design, hardware design and biology. There
are three sub-areas of study of computer vision: computer vision itself that combines
sciences like artificial intelligence and machine learning, machine vision that combines
sciences like robotics, signal processing and physics and image processing that focus
more on mathematical models for neurobiology concepts. The three sub-areas cannot
be studied without minimum knowledge of the other sub-areas. Researchers that study
this field need to have an interdisciplinary background or at least interest in order to
combine different techniques and specific results from one domain to another.

1.2 Resource Requirements for Computer Vision Applica-
tions

Computer vision is a highly computationally intensive field. For example, a small image
of 800 pixels wide and 600 pixels high, contains 480,000 individual values (pixels). Each
pixel is typically characterized by 3 different values (one for red, one for green and one
for blue) that form the pixel color. In total, that means almost 1.5 million values. But
computer vision greater goal is to emulate human vision functions, so if we multiply
the prior value with 30 (the typical frame rate for videos) we will get 50 million values
per second to compute. Computer vision algorithms imply complex calculus and for
each value the processor must be able to compute even thousands of instructions per
seconds.

There are different techniques to reduce the problem size: some of them narrow the
frame size, while others focus on reducing the number of colors. Those techniques will
gain a significant speedup because what they do is basically decreasing the data size.
There is often a trade off that has to be established between the accuracy of the results
and the time it takes to extract the results.

Table 1.1 shows the number of IPS (Instructions Per Second) for three different types
of CPUs.

Year Processor Millions of IPS
1994 Intel Pentium 188
2011 Intel Core i7 875K 92,100
2011 ARM Cortex A7 2,850

Table 1.1: Instructions Per Second (IPS) for different types of processors.

The first CPU from the table (Intel Pentium) was produced 20 years ago and it was very
common for personal use. The number of IPS was too little to compute even a very
basic computer vision algorithm. Even if people had ideas and wanted to explore in the
area of image recognition, hardware resources weren’t enough to do this in real time.

The second CPU from the table (Intel Core i7) is a CPU from the latest generation
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and it’s also commonly used for personal use, and even for servers. It works 500 times
better than the old Intel Pentium processor and it can be suitable for simple and common
computer vision applications. Such a processor can be used for algorithms with no more
than 1,800 instructions for each pixel (for the small image that we took as an example
before). Complex applications need more resources, but today CPUs can perform well
for common tasks.

But, as technology evolves, people want to include computer vision applications in small
devices like smartphones (that run Android1, iOS2, etc.) or wearables (Google Glass3,
Oculus Rift4, OrCam5, etc.). Such devices use CPUs processors specially designed for
embedded systems. The reason is that those devices need to have a balance between
performance and energy consumption, since most of the time they are not plugged in a
power socket. The last CPU from the table is such a processor. The number of IPS is
quite small and shows that such a processor can be used for algorithms with no more
than 50 instructions for each pixel. That means that real-time processing for computer
vision applications can’t be done by using such a device.

In order to satisfy user demands, researchers are still studying different methods on how
to provide real-time computing for computer vision applications in small devices. This
is also what the current research project aims for.

1.3 Software vs. Hardware Optimizations

There are different techniques addressed by computer vision researchers.

On one hand, computer scientists focus more on the algorithms and find new ways
of acquiring, representing and processing data. Algorithm optimization research goes
thoroughly intertwined with the evolution of mathematical models. These optimizations
techniques are software optimizations.

On the other hand, electrical engineers focus more on providing hardware capable of real-
time executions with minimum power consumption. These optimizations techniques are
hardware optimizations.

1.3.1 Software Optimizations

Computer vision algorithms arise from numerical models. In order to improve an algo-
rithm complexity and execution time, one has to combine different models and resolve
complex calculus. One book that presents such techniques is Optimization for Com-
puter Vision [20], which presenting various mathematical techniques and tips of how
one can combine them to improve algorithms. It starts with basic continuous optimiza-
tions like coordinate ascent, descent directions, Newton’s method, trust regions, dogleg
methods, subspace methods, DFP, BFGS and limited memory methods. After that,

1http://www.android.com
2https://www.apple.com/ios
3http://www.google.com/glass/start
4http://www.oculusvr.com
5http://www.orcam.com

http://www.android.com
https://www.apple.com/ios
http://www.google.com/glass/start
http://www.oculusvr.com
http://www.orcam.com


CHAPTER 1. INTRODUCTION 5

the book is presenting more advanced methods of constrained optimization methods:
lagrangians, quadric penalty methods, logistic regression methods, stochastic gradient
descent, homotopy paths, pursuit methods, quadratic programming.

It is somehow interesting how those advanced techniques are combined with classic
techniques from algorithms and data structures. Any combinatorial optimization involve
flows and cuts, similar with alpha-beta pruning. The pruning is required because, in
the end, the hardware has limited capabilities. In an ideal scenario, the cuts wouldn’t
be necessary and the algorithm would always give a 100% accuracy without any time
penalty.

This is the reason why any software optimization is limited by the underlying hardware
and the reason why it is difficult to build a computer vision application that will run
as fast on any hardware. Complex applications are, in general, designed for specific
hardware and they are jointly delivered.

However, writing applications for a specific hardware makes them difficult to be ported
if a new hardware is released. The general solution is to use a library as a front-end
for the computer vision algorithms that support several different hardwares. Such a
library, that is commonly used, is OpenCV 1. The library is open source and had its
first stable release in 2006.

1.3.2 Hardware Optimizations

Hardware optimizations are mechanisms of providing hardware capabilities of real-time
execution with minimum consumption power.

There are several institutes and universities that conduct research in this area. The
oldest research systems are:

• BiTEC2 - a solution for education/research and low volume image processing and
machine vision applications

• 3D Laser Scanner 3 - a solution that offers information on the mechanical hardware

• VLSI Vision Chips 4 - a solutions that offers summaries of VLSI sensors

Since then, almost every university has developed a research group that is preoccu-
pied with computer vision topics. Google Scholar reports almost 3 million research
papers published in conferences that are related with the computer vision topic (date:
15.08.2014).

Fung et al. explains in [4] the advantages of offloading the computational part to GPUs.
The analogy is quite simple: they say that usually a GPU is used to transform "numbers
into pictures" and their proposal is to use the GPU in reverse, to assist in "converting
pictures into numbers". Their paper appeared soon after the release of NVIDIA CUDA5

1http://opencv.org
2http://www.bitec.ltd.uk
3http://www.muellerr.ch/engineering/laserscanner/default.htm
4http://www.visionchips.com
5http://www.nvidia.com/object/cuda_home_new.html

http://opencv.org
http://www.bitec.ltd.uk
http://www.muellerr.ch/engineering/laserscanner/default.htm
http://www.visionchips.com
http://www.nvidia.com/object/cuda_home_new.html
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programming model, a model of expressing program parallelism without the need for
graphics expertise, but, instead by taking advantage of the existing hardware and of-
floading computational parts from CPU to other units. They do not build specially
design hardware.

Ratha et al. describes [15] why Von Neumann1 architecture doesn’t meet the require-
ments of computer vision algorithms. They define this algorithm’s category as a in-
tensive calculus problem, with very little data dependency, and explains why SIMD
architectures are preferred rather than MIMD architectures. Based on their observa-
tions, they created a list of architectural requirements:

• computational characteristic:

– low-level vision algorithms are suitable for SIMD architectures

– high-level vision algorithms are suitable for MIMD architectures

• high bandwidth I/O

• resource allocation: no wasting

• load balancing and task scheduling

• fault tolerance

Optimizations can be done at each point from the above list, but in order to avoid having
a very powerful system with only one slow component that is acting like a bottleneck
for the entire system, one has to take in consideration all of the requirements when
choosing between different hardware.

The current trend is to build custom processing units in FPGA or ASIC. This approach
has the advantage of creating the hardware in such a way that will fit the software
requirements of the application.

Because there are so many groups and the research topic is quite new, there is no
standard hardware labeled as the best. Each hardware has its own benefits and works
best in the scenario it was designed for.

Both hardware and software optimizations are useful and can help gaining significant
speedup and accuracy in computer vision applications, but the weak link is the hard-
ware. Improving hardware will automatically gain even more speedup in terms of soft-
ware, because the constrains imposed on the software component can be relaxed.

Our work also focuses on improving hardware for computer vision applications. The
current thesis describes the compilation techniques and it is structured as follows: chap-
ter 2 describes the project overview: hardware architecture and useful tools, chapter 3
describes the compiler architecture. The following three chapters describe each of the
compiler components: the runtime library (chapter 4), the code generator (chapter 5)
and the algorithm for frequency scaling at instruction level optimization (chapter 6).

1http://en.wikipedia.org/wiki/Von_Neumann_architecture

http://en.wikipedia.org/wiki/Von_Neumann_architecture


Chapter 2

Project Overview

In our goal to create hardware optimizations for computer vision applications, we’ve
employed the use of ConnexArray[13] (see section 2.1). ConnexArray is a SIMD proces-
sor implemented in FPGA that is able to scale to thousands of SIMD execution units.
This processor has a very simple ISA suitable for mathematical computations and it
was designed in this manner to avoid including too much logic inside the execution
units. Being focused on mathematical computations, it makes it suitable for computer
vision applications.

We wanted to run typical computer vision application on this hardware, but without
a compiler, writing computer vision applications for ConnexArray meant writing ev-
erything from scratch in binary code. This approach was limitative and involved a
tremendous effort and deep understanding of how the architecture works. Furthermore,
typical open source applications couldn’t be run on this architecture without manually
translating the code to ConnexArray assembly.

As we aim to simplify the process of writing computer vision applications for ConnexArrat,
one of the goal of this project is to provide a compiler for this architecture. Furthermore,
another objective of the project is to design a method that will enhance the compiler to
be aware of the capabilities of frequency scaling at instruction level. VASILE[14] (see
section 2.2) is a derived architecture that has the ability to configure different frequen-
cies (within some ranges) for each instruction. In chapter 6 we present the algorithm
behind the instructions reordering that was designed in order to take full advantage of
the hardware capabilities.

2.1 ConnexArray Architecture

The ConnexArray architecture is a SIMD architecture implemented in FPGA that is able
to scale to thousands of SIMD execution units. Figure 2.1 shows the general schema of
a vector processor: processing elements, local memory (data input-output), instruction
fetch and dispatch unit, host processor and main memory. How are those components
interconnected is up to the processor specification.

The current implementation of ConnexArray has 128 SIMD execution units and 2

7
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Figure 2.1: Vector Processor Components

kilobytes of local memory for each execution unit, but the ConnexArray has been previ-
ously used in commercial multimedia applications with 1024 execution units and various
sizes of local memory [17][18]. Since the architecture is implemented in FPGA, it is very
easy to reconfigure the entire architecture and to add various new extensions.

The ConnexArray consists of the following elements:

• Controller

– handles instruction fetches and distributes them to the EUs

– manages I/O, reduction and distribution operations

• Execution Units (EU)

– mini-processors without memory subsystem that would normally fetch in-
structions and data from the main memory

– contain a 16-word register file; each word is 16 bits wide

– provide an interface to the local store (the only memory directly accessible
by the EUs

– support two addressing models: immediate and register-index

– receive the same instruction simultaneously

• Local Store

– private for each EU

– 2KB size (1024 words)

– has a single read-write port multiplexed between the EU and I/O Plane; the
first one has priority

• I/O Plane

– fetches data from main memory to the Local Store
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– transfers are done by the controller and use DMA transfer

• Distribution Network

– used to distribute the same value to all EUs at the same time

– implemented as a logarithmic tree which fans out a single 16-bit operand
from the controller and writes it into the EUs register files

• Reduction Network

– can be used to perform summation, bitwise OR, minimum and maximum
calculations

– implemented as a logarithmic tree of simple ALUs

• Scan Network

– loops back over the array of EUs

– helps with indexing operations

• EU Interconnect

– gives the ability to have inter-communication between EUs

– used in shift operations

The I/O system is coordinate by the central unit. The Local Store can be written and
read through the I/O interface, which is of FIFO type (pipes). There are two FIFOs
that forms the I/O interface:

• an inbound FIFO to transfer data from the host to the accelerator

• an outbound FIFO to transfer data from the accelerator to the host

Read and writes operations are from the perspective of the host. Each data transfer is
initiated by a transfer descripto that occurs as follows: the host pushses the descriptor
into the inbound FIFO, then, if the transfer is a write operations, the host pushes the
write-data into the inbound FIFO and checks for transfer completion; if the transfer is
a read operation, the hosts pops the read-data from the outbound FIFO. The sequences
between the accelerator and the memory are transferred through DMA in parallel with
the computational process.

Register addresses are 5 bits wide, therefore the architecture allows a maximum of 32
registers. The immediate value is 16 bits and requires the removal of the right operand
address and the use of a reduced opcode. Therefore, there are 2 types of instructions
formats as shown is listing 2.1 and listing 2.2.

--------------------------------------------------------------------
| opcode | immediate value | left | dest |
--------------------------------------------------------------------
|31(6 bits)26|25 (16 bits) 10|9 (5 bits) 5|4 (5 bits) 0|
--------------------------------------------------------------------

Listing 2.1: Instruction Format with Immediate Value
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The opcode consists of a fixed section and a variable section which is formatted differ-
ently depending on the contents of the fixed section. Each opcode identifies uniquely a
instruction. The switch between the instruction format is done by setting or unsetting
the bit present at offset 7 of the opcode field (offset 30 of the instruction). If the bit is
set (IMM=1), than the instruction format is the one with the immediate value.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| opcode | −−−−−−−− | right | l e f t | dest |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
|31 (9 bits ) 23|22(8 bits )15|14(5 bits )10|9 (5 bits ) 5|4 (5 bits ) 0|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2.2: Instruction Format without Immediate Value

The entire instruction set of ConnexArray can be found in Appendix A.1.

2.2 VASILE Architecture

VASILE (Vector Architecture for Scaling at Instruction LEvel) [14] is a vector proces-
sor architecture implemented in FPGA technology that enables the adjustment of the
frequency at instructions per second to enhance performance. It is a derived architecture
from ConnexArray.

FPGA components vary in the mix of columns and their placement relative to each
other. For VASILE we used a mid-range Zynq 70201 , who’s silicon die layout can be
seen in figure 2.2. The figure was extracted from the Xilinx PlanAhead2 software and
it was published in [14]. The maximum distance between embedded multiplier columns
is half of the length of the die, which means the signal may travel up to a quarter of
the die length to reach a multiplier. Memory columns are placed closer, so the signal
travels to about 15% of the die length.

Figure 2.2: Layout of the Zynq FPGA silicon die (image from [14])

1http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices/index.htm
2http://www.xilinx.com/tools/planahead.htm

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices/index.htm
http://www.xilinx.com/tools/planahead.htm
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The FPGA synthesis tool can place the logic close to the required memories and multi-
pliers, but when a design occupies almost the FPGA’s maximum capacity, some of the
logic may not be placed close to the resources. VASILE overcomes this and enables an
architectural solution to this problem.

VASILE segregates instructions based of their category in order to control data-path
delays. The processing element organization is presented in figure 2.3. Its core consists
of the register file, the associated flags, several operand registers, the forwarding logic
and the write-back multiplexer (MUX). Each Instruction Unit (IU) receives input from
the operand registers and connect its results to the MUX.

Figure 2.3: VASILE Processing Element Structure

Each class of instruction has a corresponding IU which utilize the same FPGA embedded
resource. For example, algebra instructions are performed in FPGA logic (LUTs [22]).
Multiplication are implemented using embedded multipliers. Memory access operations,
like load and store, require access to embedded memory, while inter-communication
instructions need a routing network to pass signals between PEs.

The decoding logic is performed in a central instruction fetch (IFDDU). This way, the
PEs are simplified because they don’t have integrated any decoding logic. The control
signals are distributed through a pipelined logarithmic tree [16] to all PEs. The drawback
is that the flip-flop utilisation is increased in the distribution tree, but the compromise
is acceptable because the PEs don’t use many FPGA flip-flops. For example, Xilinx
FPGAs provide two flip-flops for each look-up table.

VASILE includes a frequency selection unit (FSU) to ensure different delays through
the IUs. The FSU is formed by several clock sources, a clock MUX and the associated
logic. Each clock source corresponds to one or more instruction classes. The instruction
are inspected during the decode phase and than, the FSU selects the required clock
source. The Instruction Fetch Decode and Dispatch Unit (IFDDU) ensures that the
decoded instructions do not reach the PEs before the clock MUX switches to the re-
quired clock source for the instruction. This is done by adding a configurable delay
line. The switch time is device-dependent and may require a relatively lengthly time
to complete. However, the switching time is at most three slow clock periods:

Tswitch <= 3 ∗max(T1, T2, ..., Tn)
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In order to gain maximum performance for the VASILE architecture, a specialised
compiler is required. To minimize the number of clock switches required, the compiler
should tile loop and cluster instruction in blocks which belong to the same instruction
class. This approach is discussed in chapter 6.

2.3 Compiler: Tools of the Trade

The biggest drawback for VASILE, in terms of performance, is the number of clock
switches. The PEs are executing instructions sequential and make a switch every time
the instruction class is changed. For example, every time a PE is executing a multi-
plication after an algebra instruction, a delay is introduced by the clock switching. In
order to minimize the delays, the compiler should cluster instruction in blocks which
belong to the same instruction class. [11]

Creating a compiler from scratch involves a lot of work and it can be a very limitative
approach. A monolithic approach involves creating a compiler for a specific architecture
and for only a specific programming language. If we were to choose such an approach,
all the application developed for VASILE should been written in a specific programming
language. But computer vision applications are written in many different programming
languages, so, after summing up all the advantages and disadvantages, we choose to
create a compiler using the LLVM1 framework.

OpenCL2[19] is a new industry standard for heterogeneous computing on a variety of
modern CPUs, GPUs, DSPs and other microprocessor design [1]. This framework it is
also widely used by the open source library for computer vision application (OpenCV3).
Because of that, we decided to choose OpenCL as a front-end for our compiler.

This section is presenting the tools we choose to use in order to simplify our work.

2.3.1 LLVM Compiler Infrastructure

Low Level Virtual Machine (LLVM) [9] is an open source compiler infrastructure used
for compile-time, link-time, run-time optimization of programs written in different pro-
gramming languages. The initial purpose of the project was to create virtual machines
for code execution, similar with Java Virtual Machine (JVM), but the project grew and
now includes a variety of other compiler and low-level tools.

Not only that LLVM has the capability to transform the source code to a intermediate
representation (LLVM IR), but can also accept the IR from other compilers, like GCC
toolchain, and emit optimised IR. This way, LLVM can be used in cohesion with a wide
variety of existing compilers.

The LLVM target-independent code generator is a framework under the umbrella of
LLVM that has several components capable of translating LLVM IR to machine code

1http://llvm.org
2https://www.khronos.org/opencl
3http://opencv.org

http://llvm.org
https://www.khronos.org/opencl
http://opencv.org
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for a specific target in binary or in assembly form. LLVM represents the instruction in
their most abstract form to fulfill the target agnostic criteria.

LLVM code generator can represent sequence of instructions as machine instruction
bundles.[12] Such a bundle can contain a variable number of parallel instructions or a
sequential list of instructions that can not be separated (e.g. have data dependencies,
etc.). A machine instruction bundle can also contain other machines instruction nested
within.

By using LLVM, the VASILE compiler will need to implement a back-end compiler
that will generate code from the LLVM IR. The advantage is that the top application
can be written in any programming language supported by LLVM. Furthermore, this
allows modifying and applying different kind of optimizations that can be architecture
dependent or agnostic, like loop-unrolling, constant-propagation, etc.

2.3.2 POCL: Open Source Runtime Library for OpenCL

OpenCL is the first open standard for cross-platform, parallel programming of modern
processors found in personal computers, servers and embedded devices. The standard
only provides1 an API definition, data representation format and the behavior of each
of its function. Each hardware manufacture implements the standard through an SDK
that is usually closed source (at least for the moment). For example, Intel’s 2 SDK
can be run only on their hardware and can’t be used in conjunction with other vendors
architectures. AMD3 and NVIDIA4 SDK’s include other vendors SDKs to allow the
developers to use their software and architecture in conjunction with other architectures
as well. This approach gives less constrains and more flexibility for the developers.

The standard is open and architecture independent. It uses a C API on the host
machine and a separate high-level kernel language for code definition. The kernel is
the code that will run on the heterogeneous computers. The language used in the
kernels has explicit support for vectorization so it is highly recommended for SIMD
architectures. By using OpenCL, the programmer must write separate code for the host
and accelerator, which can be handled by different compilers.

POrtable Computing Language5 (POCL) is an open source implementation of the
OpenCL standard that can easily be adopted for new targets and devices, both for ho-
mogeneous CPUs and heterogeneous GPUs/accelerators. It’s not the only open source
implementation, but it is the most advanced and also receives support from other com-
panies, like Nokia6.

We choose to use POCL not only of its advanced developing stage, but also because it
uses clang7, which is the compiler provided by LLVM for C applications.

1http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
2https://software.intel.com/en-us/vcsource/tools/opencl-sdk
3http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
4https://developer.nvidia.com/opencl
5http://portablecl.org
6https://research.nokia.com/cognitive_radio
7http://clang.llvm.org

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
https://developer.nvidia.com/opencl
http://portablecl.org
https://research.nokia.com/cognitive_radio
http://clang.llvm.org
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2.3.3 OPINCAA

OPcode INjector and Control for Accelerator Architectures (OPINCAA)
[2] is a just-in-time source-to-source translator that allows the user to define kernels in
a human readable assembly syntax for ConnexArray. What it basically does is to
deassemble the instructions from a text version into machine binary format.

Listing 2.3 shows an example of how the kernels look like when are written using
OPINCAA library. The kernel does a shift to right operation for the first location of
the Local Store and compare the value received from the left cell with the second value
of the Local Store. The result is a sum of the indexes in which the two values where
equal. The kernel lines of code are almost assembly language, but the representation
if human friendly and the programmers can avoid writting directly binary code (see
Appendix A.1).

1 _BEGIN_KERNEL("shift_right");
2 EXECUTE_IN_ALL(
3 R1 = INDEX;
4 R2 = LS[0];
5 CELL_SHR(R1,R2);
6 R3 = 0;
7 R5 = LS[1];
8 NOP;
9 R4 = SHIFT_REG;

10 R6 = (R5 == R4);
11 NOP;
12 )
13 EXECUTE_WHERE_EQ(R3 = INDEX;)
14 EXECUTE_IN_ALL( REDUCE(R3);)
15 _END_KERNEL("shift_right");

Listing 2.3: OPINCAA Kernel Example

The OPINCAA library was designed in order to simplify the work of the programmers,
but they still need to have deep knowledge and understanding og the ConnexArray
architecture.

OPINCAA - ConnexArray Simulator

Besides of the human friendly assembly language provided by OPINCAA library, it also
provides a ConnexArray simulator that can be used for development and debugging
software in the absence of the accelerator. What it does is to create a set of pipe files
that usually exposed by the ConnexArray accelerator. The programmers can use the
simulator interchangeable with the real devices, without any modification.

In our project, we used the OPINCAA simulator in the development and validating
phases.



Chapter 3

Compiler Infrastructure

Writing computer vision applications for ConnexArray meant writing everything from
scratch in binary code. This approach was limitative and involved a tremendous effort
and deep understanding of how the architecture works. Furthermore, typical open
source applications couldn’t be run on this architecture without manually translating
the code to ConnexArray assembly.

When we designed the system, we had in mind the following characteristics:

• modularity

• easy to extend

• no hard-constrains for a programming language

Figure 3.1: Host-Accelerator System

OpenCL uses a C API on the host machine and a separate high-level kernel language for
code definition. The kernel is the code that will run on the heterogeneous computers,
accelerators (figure 3.1). The language used in the kernels has explicit support for
vectorization so it is highly recommended for SIMD architectures. By using OpenCL,
the programmer must write separate code for the host and accelerator, which can be
handled by different compilers.

Figure 3.2 shows the compilation process and the execution flow. Because the host and
the accelerator have different architectures, the compilers used may be different.

The ISA provided by ConnexArray doesn’t have control instructions and most off
the values are directly hard-coded inside the instructions. Arguments, like size of the
vector, can be passed only through the Local Store memory and can produce a memory

15
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waste, since the data must be duplicated among each cell’s Local Store memory. In
order to avoid such a waste, we choose to create a runtime compilation process for the
accelerator. The avoiding mechanism is extensively described in chapter 4.

Our project aims to create a compiler for the ConnexArray architecture.

Figure 3.2: Compilation Process and Execution Flow

3.1 Host Compiler

OpenCL provides a standard mechanism in which applications can be run. The host
in responsible for offloading computation and instrumenting communication with the
accelerator. The compilation can be done with any compiler as far as the system has
access to an OpenCL library. The OpenCL library provides the standard API accessible
from the host and has implemented accelerator particularities, so called runtime library
(details in chapter 4).

processor : Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz
gcc-version : 4.8.1
clang-version : 3.4

Listing 3.1: Host Machine Processor and Compilers Available
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In our testing scenarios we used a x86_64 processor, as shown in listing 3.1. The
host compiler doesn’t need to be aware of the accelerator existence, even less of its
architecture particularities.

3.2 Accelerator Compiler

In order to provide support for ConnexArray, the compiler must handle two manda-
tory components:

• the runtime library - enhanced OpenCL library with ConnexArray support; this
provides capabilities of orchestrating the communication between host and acceler-
ator: memory mapping, data transfers, instruction fetching, etc.; this component
is exhaustively described in chapter 4

• code generator - the actual compiler that generates machine dependent code; this
component is exhaustively described in chapter 5

Another component that we will include in the project is taking advantage of the fre-
quency scaling at instruction level of the VASILE architecture. The approach and
details information are presented in chapter 6.



Chapter 4

Runtime Library

The compiler infrastructure runtime library presented in figure 3.2 implements OpenCL
standard API and makes the connection between the host and the accelerator. Each
hardware manufacturer implements the standard through an SDK that is usually closed
source (at least for the moment). The standard is open and architecture independent.
It uses a C API on the host machine and a separate high-level kernel language for code
definition. The kernel is the code that will run on the heterogeneous computers.

We have chosen to use POCL[8], an open source implementation of the OpenCL standard
which can easily be adapted for new devices by implementing or using already existing
backend from the LLVM infrastructure.

4.1 Implementation

We extended the POCL library with support for a new device, called "connex". In order
to do so, the device had to define some generic hooks in the struct pocl_device_-
ops structure, as shown in listing 4.1.

void pocl_connex_init_device_ops (struct pocl_device_ops *ops) {
ops->device_name = "connex";

ops->init_device_infos = pocl_connex_init_device_infos;
ops->uninit = pocl_connex_uninit;
ops->init = pocl_connex_init;
ops->malloc = pocl_connex_malloc;
ops->free = pocl_connex_free;
ops->read = pocl_connex_read;
ops->write = pocl_connex_write;
ops->run = pocl_connex_run;

}

Listing 4.1: struct pocl_device_ops Initialization

18
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Each hook is a architecture specific implementation of different operations of the OpenCL
API and has the following meaning:

• init_device_infos - configures OpenCL library with different parameters that are
architecture specific like: the existence of a compiler, the number of processing
units, memory types, memory sizes, etc.

• init - initialize the accelerator; for ConnexArray, this hook is responsible of
opening the 4 communication pipes of the accelerator

• uninit - uninitialize the accelerator: close pipes, free any additional memory allo-
cated on the host machine

• malloc - create buffers on the accelerator; this hook is representative for the mem-
ory mapping model and will be discussed in section 4.2

• free - frees buffers; will also be discussed in section 4.2

• read - initiate data transfer from the accelerator to the host; this hook will be
discussed in section 4.3

• write - initiate data transfer from the host machine to the accelerator; this hook
will be discussed in section 4.3

• run - this hook is responsible of the runtime compilation that will be discuss in
chapter 5 and also for fetching instructions to the accelerator, like we will see in
section 4.4

The accelerator architecture is chosen by using the POCL_DEVICES environment vari-
able. The programmer doesn’t have to be aware of these hooks when writing code.
Appendix B.1 is presenting a simple OpenCL program that increments the values of
a given array, puts the result to another memory location and, at the end, performs a
sanity check verification on the host machine. As you can see, the application is using
the OpenCL API. In table 4.1 you can see the correspondence between the OpenCL
API and the POCL hooks.

OpenCL API call POCL hook

clCreateCommandQueue pocl_connex_init
clReleaseCommandQueue pocl_connex_uninit
clCreateBuffer pocl_connex_malloc
clReleaseMemObject pocl_connex_free
clEnqueueReadBuffer pocl_connex_read
clEnqueueWriteBuffer pocl_connex_write
clEnqueueNDRangeKernel pocl_connex_run

Table 4.1: Correspondence between OpenCL API and POCL hooks
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4.2 Memory Mapping Model

Figure 5.1 shows the generic memory model of the OpenCL memory mapping. The ac-
celerator can make use of 4 types of memory: the global memory, the constant memory
which is often incorporated in the global memory, the local memory which is avail-
able through the execution units of the same workgroup and private memory which is
available only to the execution unit itself.

Figure 4.1: OpenCL Generic Memory Model 1

ConnexArray accelerator has a different memory model, so the mapping between the
OpenCL generic model and the one implemented in our work in not straight through.
Each processing unit has a Local Store of 1024 cells. The memory is designed as
a matrix: the columns are represented by the processing units, while the lines are
represented by the available cells. A processing unit doesn’t have access to the entire
Local Store; it can access only the elements placed on its column.

If the application is sending a vector with 128 elements, each processing unit will receive
1image from https://developer.apple.com/library/mac/documentation/Performance/Conceptual/

OpenCL_MacProgGuide (15.08.2014, 23:42)

https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide
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in its accessible Local Store one value. If the vector is larger, the wrapping is done
transparently to the user by allocating more lines in the Local Store. The compiler is
aware of the wrapping and will know to generate more code in order to process other
elements as well.

Global and Constant Memory

Since ConnexArray doesn’t have a shared memory among the execution units, we
didn’t do a 1-to-1 mapping of the memory. To simulate the global memory behavior,
we copied the data allocated in the global-constant memory area among each Local
Store so that each processing unit can have access to those values. If the data is not
constant, writing and syncing data among the processing units can be a very expensive
operation so we decided to not have support for global memory if the values aren’t
constant.

Local Memory

The ConnexArray architecture is not suitable for pairing execution units in work-
groups and sharing data between them. In our model, each workgroup consist of a
single execution unit. We mapped this zone with the Local Store.

Private Memory

The private memory is a memory zone accessible only by a processing unit. We mapped
this zone with the register files, so that the library can expose direct access to the
registers for experimented users.

4.3 Data Transfers

The ConnexArray Local Store can be written and read through the I/O interface.
There are two pipes in the I/O interface: an inbound FIFO used to transfer data from
the host to the accelerator and an outbound FIFO used to transfer data from the
accelerator to the host.

Any transfer is initiated by pushing the I/O descriptor into the inbound FIFO. The
I/O descriptor contains 3 fields: a writing bit, an address field and a count field. If the
writing bit is set, then the operation will be a write one, otherwise it will be a reading
operation. The address field specifies the Local Store address from where the transfer
must start and the count field specifies the number of vector to transfer minus 1.

The sequences between the accelerator and the host memory are transferred through
DMA in parallel with the computational process.

Because the operations are async I/O, if the transfer is write the host must check the
transfer completion by reading a single word from the outbound FIFO.
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The I/O operations are initiated by calling clEnqueueReadBuffer or clEnqueueWrite-
Buffer. These functions receive accelerator memory addresses which are abstracted by
the cl_mem data type.

4.4 Instruction Fetching

ConnexArray has a separate pipe for receiving instructions from the host machine.
Although the instructions are executed immediately when they are received by the accel-
erator, the ConnexArray also has a buffer where it memories the last 1024 instructions
received. This is done because the architecture has one control instruction (ijmpnzdec
- see Appendix A.1) that allows the accelerator to jump back in the instruction stream.

Because the instructions have a fix size (as shown in listings 2.1 and 2.2), it is not
necessary to include a header or anything else additional when the instructions are
fetch through the pipe.

4.5 Validation Results

The validation of the entire runtime library was done using the simulator provided by
the OPINCAA library. We wanted to prove the accuracy of the results of two features:
the data transfer and the instruction fetching process.

4.5.1 Accuracy of Data Transfers

To prove the correctness of data transfers, we used a slightly modified version of the
code listed in Appendix B.1. Since the compiler was not finished at this moment, we
weren’t able to actually execute code. So we create a program that writes the data to
the accelerator and reads back the data to another memory location. The results were
identical.

We also wanted to validate the data transfer with more complex tests that also execute
instructions on the accelerator. So, we modifies some of the testing scenarios of the
OPINCAA library as follows:

Testing Write Operation

We made our program to deal with the write operations and removed those opera-
tions from the OPINCAA library. After running our program, we run the test through
OPINCAA simulator. The results were always positive.

Testing Read Operation

We made our program to deal with the read operations and removed those operations
from the OPINCAA library. After running the test through the OPINCAA simulator, we
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run our program to get back the values after the computation. The results were always
positive.

4.5.2 Accuracy of Instruction Fetching

To prove the correctness of instruction fetching, we created several tests. Each test
consisted of a collection of instructions written directly in ConnexArray’s machine
code. Since at this moment the code generator was not finished, we by-passed that
functionality and made to framework to read our manually created tests and fetch the
instructions through the pipe to the OPINCAA simulator.

We also changed the OPINCAA simulator and make it to dump the instructions received
in the human readable format provided by OPINCAA library.

The output dumped by the OPINCAA simulator was identical with the expected one
and so we validated the instruction fetching process.



Chapter 5

Backend: Code Generator

One of the reason we chose to use POCL is that it relies on a suite of tools provided by
LLVM framework.

The runtime library has support for generating LLVM IR from the kernel’s source code.
The LLVM IR is a high-level language, very similar with assembly languages, but agnos-
tic in respect of any architecture flavour. It is a strongly typed language and abstracts
the calling convention through call and ret instructions and explicit arguments. An-
other significant difference is that LLVM IR uses an infinite set of registers that have
to be mapped to real registers in the code generation phase.

Figure 5.1: Code Generation Diagram Flow

The code generation is formed by two mandatory stages and one optional stage, as
presented in figure 5.1. The first stage is to generate LLVM IR from the kernel’s source
code. The last stage is to generate ConnexArray machine code from LLVM IR. These
two stages are mandatory. In between, there can be several number of other stages that
perform optimizations. The optimizations are done exclusively on the LLVM IR and
can be architecture dependent.

5.1 Generation of LLVM IR

The first stage of code generation is to generate LLVM IR from the kernel’s source code.
This stage is architecture independent and it’s implemented directly in POCL’s library
core.

Listing 5.1 shows a simple OpenCL kernel example that receives two memory addresses

24
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and stores at the second address the first value incremented.

1 __kernel void kernel(short *in, short *out) {
2 short i = get_global_id(0);
3 out[i] = in[i] + 1;
4 }

Listing 5.1: OpenCL Kernel: Increment Values

Listing 5.2 shows the LLVM IR representation of the same kernel, as it was generate by
clang compiler through POCL library. This representation will be taken as input for
other stages.

1 define void @kernel(i16 addrspace(3)* %in, i16 addrspace(1)* %out) {
2 entry:
3 %idx = tail call i16 @_Z13get_global_idj(i16 0)
4 %arrayidx = getelementptr i16 addrspace(3)* %in, i16 %idx
5 %0 = load i16 addrspace(3)* %arrayidx
6 %add = add i16 %0, 1
7 %arrayidx4 = getelementptr i16 addrspace(1)* %out, i16 %idx
8 store i16 %add, i16 addrspace(1)* %arrayidx4
9 ret void

10 }

Listing 5.2: LLVM IR Kernel: Increment Values

5.2 Generation of ConnexArray Machine Code

The last stage of code generation is to generate ConnexArray machine code from
LLVM IR. This stage is the backend-core of the compiler (cpocl) and it’s done only
after every optimization was applied.

First step, before starting to generate target-dependent code, was to transform the
LLVM IR code into Static Single Assignment (SSA) [10] form. This format simplifies
and improves the results of different compiler techniques by simplifying the properties
of variables. The SSA form ensures that each variable is assigned only once, and every
variable is defined before it is used. If a variable is used among different basic blocks,
the variable is split into different versions. The different versions among basic blocks
can be gathered together into new variables by using the so called PHI nodes.

5.2.1 Code Generation Design

LLVM framework provides a special tool for generating target-independent code. The
tool can be extended with architectural particularities in order to create a compiler
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backend. However, we were not able to use this tool since we need to pass through
different values at run-time to our compiler backend.

What we used was the LLVM Pass Framework, designed to perform optimizations, anal-
ysis and transformations. There are several types of passes that one can implement,
depending on the purpose in which the tool will be used: ModulePass, FunctionPass,
LoopPass, BasicBlockPass, etc. We used the FunctionPass since the kernel representa-
tion in LLVM IR had only a function. The pass has to extend the FunctionPass class
and implement the virtual function runOnFunction. The pass must be register and will
be available inside the opt tool as any other pass implementation.

Figure 5.2 shows the class diagram of out LLVM pass. ConnexCodeGen is the main class
of the pass and it’s responsible of instrumenting the interaction between other classes.

Figure 5.2: Backend Classes Diagram

KernelArgs class is responsible of receiving data from the runtime library and match the
kernel arguments with Local Store addresses or store their fixed values into registers,
as applicable.

The LocalStore class is responsible of instrumenting getelementptr instructions from
LLVM IR. This class has to catch different semantics of computing addresses. Table 5.1
shows the different semantics of this instruction. As we can see in the last line of the
table, this instruction might require to perform additional shift instructions in order to
read data from a neighbor cell.

getelementptr Local Store

getelementptr %addr, 0 LS[0]
getelementptr %addr, 128 LS[1]
getelementptr %addr, 1 LS[0] from the right cell

Table 5.1: getelementptr Semantics

IRParser is the class responsible of translating LLVM IR code into ConnexArray ma-
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chine code. The ConnexArray instructions are modeled inside the ConnexInstruction
class. By default, the machine code will be dumped in a binary file named "kernel.cnx".
The filename can be change at compile time by using the option -output="filename".

Since the ConnexArray has a limited number of registers and LLVM IR models an
infinite register machine, an implementation of register allocation was mandatory. The
algorithm is further discussed in section 5.2.2.

5.2.2 Register Allocator

Because the ConnexArray machine has only 32 registers for each processing element,
we needed to implement a register allocator algorithm that will assign a large number of
LLVM IR registers to the registers available in ConnexArray. To do the assignment,
the compiler must determine which variables are live at the same time. The common
approach is to construct a graph such that every vertex represents a unique variable
in the program and reduce the problem to a K-coloring algorithm[3], where K is the
number of registers available. Variables can live at the same moment only if they receive
different colors.

The graph coloring algorithm is a NP-complete [7] problem and so is the register
allocation. Even if those algorithms can produce efficient code, their execution time is
high. The compilation process in our case is done at runtime so the fast register allo-
cation is a significant aspect. In recent years, a new allocation technique was proposed
by Wimmer et al. [21]. They proposed a single pass over the list of variable live ranges
and assigning to registers only the variables with a short lifetime. The other variables
are spilled into memory. However, each execution unit of the ConnexArray has access
to only 1024 memory locations and this approach may not have the best results.

Hack et al. [5] published a paper in which they make a formal demonstration of the fact
that the register allocation problem can be resolved in polynomial time for programs in
SSA format. They showed that interference graphs of SSA programs are chordal and
such they can pe colored in polynomial time. We choose to implement Hack’s algorithm
version presented in his thesis [6].

5.3 Evaluation and Results

The scenario we used is a custom bubble-sort algorithm optimized to take advantage
of the ConnexArray architecture. We choose this algorithm because even if it may
look like a classical algorithm, it’s not one suitable for the architecture. The processing
elements of ConnexArray have access only to their Local Store and it’s a costing
operation to reach out elements stored in other processing elements Local Stores. The
algorithm will make use of a significant number of register in order to measure the
penalty introduce by the compiler.
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5.3.1 Validation

We verified the correctness of the compilation process by running different sized vectors
with random elements through the bubble-sort algorithm.

The algorithm use a sequence of two kernels: kernel_odd compares elements stored
on odd positions, while kernel_even compares elements stored on even positions (list-
ing 5.3. The reduce call will gather information about how many interchanges were
done during the kernels execution. The kernels are applied until no exchange are done,
namely until the reduce value is zero.

1 __kernel void kernel_odd(short *in) {
2 short i = get_global_id(0);
3 short exchange = 0;
4
5 if (i % 2) {
6 short a = in[i - 1];
7 short b = in[i];
8 if (b < a) {
9 exchange = 1;

10 in[i] = a;
11 }
12 if (exchange)
13 in[i - 1] = b;
14 }
15 reduce(exchange);
16 }
17
18 __kernel void kernel_even(short *in) {
19 short i = get_global_id(0);
20 short exchange = 0;
21
22 if (i % 2 == 0 & i != 0) {
23 short a = in[i - 1];
24 short b = in[i];
25 if (b < a) {
26 exchange = 1;
27 in[i] = a;
28 }
29 if (exchange)
30 in[i - 1] = b;
31 }
32 reduce(exchange);
33 }

Listing 5.3: OpenCL Kernel: Modified Bubble Sort Algorithm
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5.3.2 Evaluation

We measured different times in order to compute the compiler performance. To extract
relevant information, we ran a test through the OPINCAA simulator with 128,000 ele-
ments that occupies almost the entire Local Store memory. We also put the elements in
reverse order so that the computational time would be as worst as possible. The times
obtained are listed in table 5.2 and are the averages obtained from 5 different runs.

Time

Test 0 0.021 s
Test A 0.973 s
Test B 1.224 s
Test C 1.311 s

Table 5.2: Bubble-Sort Execution Time on a Vector with 128,000 Elements

Test 0 represents the execution time of a serial implementation on the host machine.

Test A represents the execution time measured inside the OPINCAA simulator. The
difference between this test and Test 0 is huge, but we should keep in mind that the
scenario is not appropriate for the ConnexArray architecture since it needs to access
and modify addresses from others execution units Local Stores.

Test B represents the execution time of the algorithm implemented inside the OPINCAA
library. We can see that there is a overhead introduced by the library. This overhead
exists because the library must translate the assembly language into ConnexArray
machine code. The overhead introduced by OPINCAA library is of 25.79%.

Test C represents the execution time of the OpenCL implementation. The overhead
introduced by our compiler is of 34.73%, with only 7.10% worse than Test B. The
penalty is small, but the programmer work has been significantly reduced.



Chapter 6

Frequency Scaling at Instruction
Level

VASILE (Vector Architecture for Scaling at Instruction LEvel) [14] is a derived archi-
tecture from ConnexArray implemented in FPGA technology that enables the adjust-
ment of the frequency at instructions per second in order to enhance performance.

VASILE includes a frequency selection unit (FSU) to ensure different delays through
the IUs. The FSU is formed by several clock sources, a clock MUX and the associated
logic. Each clock source corresponds to one or more instruction classes. The instruction
are inspected during the decode phase and then, the FSU selects the required clock
source. The Instruction Fetch Decode and Dispatch Unit (IFDDU) ensures that the
decoded instructions do not reach the PEs before the clock MUX switches to the re-
quired clock source for the instruction. This is done by adding a configurable delay
line. The switch time is device-dependent and may require a relatively lengthly time
to complete.

In order to gain maximum performance for the VASILE architecture, a specialised
compiler is required. The application must be profiled in advance to identify the most
common instructions. The accelerator is than calibrated with different frequencies in
order to gain the maximum performance. In our approach, the compiler reads the
calibration from an input file in order to perform instruction rearrangement.

6.1 Testing scenario

For the performance evaluation of the compiler that takes into consideration the fre-
quency scaling at instruction level capabilities, we chose the Sum of Squared Differences
(SSD) algorithm because it is a widely used algorithm in computer vision applications.

Listing 6.1 shows the OpenCL’s kernel source code. Each processing element has access
to 1024 memory locations, so we arranged the data transfers in such way that each pro-
cessing element will compute the SSD algorithm for two vectors of 500 elements length.
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1 __kernel void kernel(short *a, int n, short *b, int m) {
2 short i, j;
3
4 short id = get_global_id(0);
5 for (i = 0; i < n; i++)
6 for (j = 0; j < m; j++) {
7 short x = a[id + i * 128];
8 short y = b[id + j * 128];
9

10 short z = x - y;
11 z = z * z;
12
13 reduce(z);
14 }
15 }

Listing 6.1: OpenCL Kernel: SSD Algorithm

6.2 Hardware Calibration Phase

At this stage, we were able to run the implementation from listing 6.1 and profile the
application. For testing we used a mid-range Zynq 70201. As mentioned in section
2.2, the distances between multiplier columns on the target device are higher so the
expected performance for this type of instructions is lower. The baseline frequency is
125 Mhz. Table 6.1 shows the maximum frequencies obtained when running the SSD
algorithm onVASILE and the percentage of the instruction grouped by their type. In
this case, the switching penalty will be at most:

Tswitch <= 3 ∗max(T1, T2)

where T1 corresponds to F1 (117 Mhz) and T2 corresponds to F2 (160 Mhz).

Instructions Max. Frequency (Mhz) How many (%)

Addition/Subtraction 160 54%
Multiplication/Division 117 34%
Memory Access 160 12%

Table 6.1: SSD Profiling Results

1http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices/index.htm

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices/index.htm
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6.3 Loop Tiling Optimization

In order to increase the performance and take advantage of the hardware capabilities
exposed by VASILE, the instructions need to be clustered in order to minimize the
number of switches between instruction classes.

As we can see, the SSD algorithm doesn’t have data dependencies among different
loop iterations. In our implementation, the compiler performs an Instruction Level
Parallelism (ILP) analysis in order to identify the loops that respect this property.

Each loop forms a different basic block in LLVM IR representation so the unused regis-
ters can be used in order to perform loop tiling. The compiler will try to use all of the
free registers in order to create bigger clusters of instructions at the same type. Listing
6.2 shows the pseudo-code of how the compiler is applying this optimization.

1 for i = 1, n do
2 for j = 1, m/30 do
3 R[0] = a[i]
4 for k = 0, 29 do
5 R[1 + k] = b[30 * j + k]
6 end for
7 for k = 0, 29 do
8 R[1 + k] = R[1 + k] - R[0]
9 end for

10 for k = 0, 29 do
11 R[1 + k] = R[1 + k] * R[1 + k]
12 end for
13 for k = 0, 29 do
14 reduce R[1 + k]
15 end for
16 end for

Listing 6.2: Tiled SSD Algorithm

Before applying the optimization, the compiler must determine if the optimization will
gain any speedup or not. The optimization is done only if the speedup is significant.
However, even if the speedup is not significant, the computation of the profitability of
the algorithm is still done and will add additional time to the execution.

6.4 Evaluation

We measured different times in order to compute the compiler performance. The times
obtained are listed in table 6.2 and are the averages obtained from 5 different runs. We
obtain a speedup of 1.178.
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Time

Test 0 0.141 s
Test A 1.397 s
Test B 1.186 s

Table 6.2: SSD Execution Time

Test 0 represents the execution time of a serial implementation on the host machine.

Test A represents the execution time of the algorithm on ConnexArray architecture.

Test B represents the execution time of the algorithm on VASILE architecture.
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Conclusion and Future
Development

In this thesis, we presented the techniques behind the process of creating a compiler
for ConnexArray architecture that is modular, easy to extend and without hard-
constrains for a programming language. It also presents the importance of the fact that
the compiler must be aware of the hardware capabilities of the architecture and explore
them, as we saw happening in the case of VASILE architecture.

We were able to build the compiler from scratch for ConnexArray architecture, prove
its functionality and measure the penalty time introduced by the compiler.

We were also able to create awareness of the VASILE architecture capabilities and
obtain a speedup of 1.178.

The compilers research fields are manifold and many possible avenues for research re-
main. We identified a list of subjects that can be further investigated:

• changing the front-end of the compiler and measuring the performance

• minimize the execution time of the code generation

• improving the Frequency Scaling algorithm

• improving the Register Allocation algorithm

• exploring other techniques of gaining performance for computer vision applications
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Appendix A

Instruction Set Architecture (ISA)
for ConnexArray

Mnemonic Description Opcode

nop No operation 000000000

red Launch reduction with R[left] 100000000

iwrite LS[Immediate Value] = R[left] 110010

iread R[dest] = LS[Immediate Value] 110100

write LS[R[right]] = R[left] 100010100

read R[dest] = LS[R[right]] 100100100

vload R[dest] = Immediate Value 110101

ldix R[dest] = INDEX 100100000

endwhere Enables all cells 100011111

wherecry Load Carry Flag into Cell Enable 100011100

whereeq Load Equal Flag into Cell Enable 100011101

wherelt Load Less Flag into Cell Enable 100011110

mult Initiate R[left] * R[right] 100001000

multlo R[dest] = low half of multiplication results 100101000

multhi R[dest] = high half of multiplication results 100111000
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Mnemonic Description Opcode

cellshr Shift Register = R[left] then shift right by R[right] positions 100010001

cellshl Shift Register = R[left] then shift left by R[right] positions 100010010

ldsh R[dest] = Shift Register 100110000
add R[dest] = R[left] + R[right] 101000100

sub R[dest] = R[left] - R[right] 101010100

addc R[dest] = R[left] + R[right] + Carry 101100100

consdub R[dest] = (R[left] - R[right) ? 0 : R[left] - R[right] 101110100

eq R[dest] = (R[left] == R[right]) ? 1 : 0 101001000

ult R[dest] = (R[left] < R[right]) ? 1 : 0 (unsigned) 101101000

lt R[dest] = (R[left] - R[right]) ? 1 : 0 101011000

shl R[dest] = R[left] « R[right] 101000000

ishl R[dest] = R[left] « right 101000001

shr R[dest] = R[left] » R[right] 101010000

ishr R[dest] = R[left] » right 101010001

shra R[dest] = R[left] »> R[right] 101100000

ishra R[dest] = R[left] »> right 101100001

not R[dest] = R[left] 101001100

or R[dest] = R[left] | R[right] 101011100

and R[dest] = R[left] & R[right] 101101100

xor R[dest] = R[left] R̂[right] 101111100

setlc LC = Immediate Value 010101

Require:
Immediate Value < 1023

if (LC != 0):
ijmpnzdec PC = PC - Immmediate Value 010011

LC = LC - 1
if (LC == 0):
PC = PC + 1

LC reverts to initial value

Table A.1: Instruction Set Architecture for ConnexArray
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Simple Example of OpenCL
Program

1 #define DATA_SIZE (2048)
2
3 const char *KernelSource = " \n" \
4 "__kernel void square( \n" \
5 " __constant short* input, \n" \
6 " __global short* output) \n" \
7 "{ \n" \
8 " short i = get_global_id(0); \n" \
9 " output[i] = input[i] + 1; \n" \

10 "} \n";
11
12 int main(int argc, char **argv)
13 {
14 cl_int err;
15
16 short data[DATA_SIZE];
17 short results[DATA_SIZE];
18 unsigned int correct;
19
20 size_t global;
21 size_t local;
22
23 cl_uint num_platforms;
24 cl_platform_id platform;
25 cl_device_id device_id;
26 cl_context context;
27 cl_command_queue commands;
28 cl_program program;
29 cl_kernel kernel;
30

37
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31 cl_mem input;
32 cl_mem output;
33
34 int i = 0;
35
36 /* Initialize data. */
37 for (i = 0; i < DATA_SIZE; i++) {
38 data[i] = rand() % 100;
39 if (data[i] < 0)
40 data[i] = -data[i];
41 }
42
43
44 /* Get number of supported platforms. */
45 err = clGetPlatformIDs(0, NULL, &num_platforms);
46
47 /* Get platforms. */
48 cl_platform_id *platforms;
49 platforms = (cl_platform_id *)calloc(num_platforms, sizeof(

cl_platform_id));
50 err = clGetPlatformIDs(num_platforms, platforms, NULL);
51 if (err != CL_SUCCESS) {
52 printf("Error: Failed to get platform IDs!\n");
53 return EXIT_FAILURE;
54 }
55 platform = platforms[0];
56
57 /* Connect to CPU. Use CL_DEVICE_TYPE_GPU for GPU. */
58 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 1, &

device_id, NULL);
59 if (err != CL_SUCCESS) {
60 printf("Error: Failed to create a device group!\n");
61 return EXIT_FAILURE;
62 }
63
64 /* Create context. */
65 context = clCreateContext(0, 1, &device_id, NULL, NULL, &err)

;
66 if (!context) {
67 printf("Error: Failed to create a compute context!\n"

);
68 return EXIT_FAILURE;
69 }
70
71 /* Create a command queue. */
72 commands = clCreateCommandQueue(context, device_id, 0, &err);
73 if (!commands) {
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74 printf("Error: Failed to create a command queue!\n");
75 return EXIT_FAILURE;
76 }
77
78 /* Create the compute program from the source buffer. */
79 program = clCreateProgramWithSource(context, 1, (const char

**)&KernelSource, NULL, &err);
80 if (!program) {
81 printf("Error: Failed to create compute program!\n");
82 return EXIT_FAILURE;
83 }
84
85 /* Build the program executable. */
86 err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
87 if (err != CL_SUCCESS) {
88 size_t len;
89 short buffer[2048];
90
91 clGetProgramBuildInfo(program, device_id,

CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &
len);

92 return EXIT_FAILURE;
93 }
94
95 /* Create the compute kernel in the program we wish to run.

*/
96 kernel = clCreateKernel(program, "square", &err);
97 if (!kernel || err != CL_SUCCESS) {
98 printf("Error: Failed to create compute kernel!\n");
99 return EXIT_FAILURE;

100 }
101
102 /* Create the input and output arrays in device memory for

our calculation. */
103 input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(

short) * DATA_SIZE, NULL, NULL);
104 output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(

short) * DATA_SIZE, NULL, NULL);
105 if (!input || !output) {
106 printf("Error: Failed to allocate device memory!\n");
107 return EXIT_FAILURE;
108 }
109
110 /* Write our data set into the input array in device memory.

*/
111 err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0,

sizeof(short) * DATA_SIZE, data, 0, NULL, NULL);
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112 if (err != CL_SUCCESS) {
113 printf("Error: Failed to write to source array!\n");
114 return EXIT_FAILURE;
115 }
116
117 /* Set the arguments to our compute kernel. */
118 unsigned short count = DATA_SIZE;
119 err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
120 err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
121 if (err != CL_SUCCESS) {
122 printf("Error: Failed to set kernel arguments! %d\n",

err);
123 return EXIT_FAILURE;
124 }
125
126 /* Get the maximum work group size for executing the kernel

on the device. */
127 err = clGetKernelWorkGroupInfo(kernel, device_id,

CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
128 if (err != CL_SUCCESS) {
129 printf("Error: Failed to retrieve kernel work group

info! %d\n", err);
130 return EXIT_FAILURE;
131 }
132
133 /* Execute the kernel over the entire range of our 1d input

data set
134 using the maximum number of work group items for this

device. */
135 global = count;
136 err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &

global, &local, 0, NULL, NULL);
137 if (err) {
138 printf("Error: Failed to execute kernel!\n");
139 return EXIT_FAILURE;
140 }
141
142 /* Wait for the command commands to get serviced before

reading back results. */
143 clFinish(commands);
144
145 /* Read back the results from the device to verify the output

. */
146 memset(results, 0, count * sizeof(short));
147 err = clEnqueueReadBuffer(commands, output, CL_TRUE, 0,

sizeof(short) * count, results, 0, NULL, NULL );
148 if (err != CL_SUCCESS) {
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149 printf("Error: Failed to read output array! %d\n",
err);

150 return EXIT_FAILURE;
151 }
152
153 /* Validate our results.*/
154 correct = 0;
155 for(i = 0; i < count; i++) {
156 if(results[i] == data[i] + 1)
157 correct++;
158 }
159
160 /* Print a brief summary detailing the results. */
161 printf("Computed ’%d/%d’ correct values!\n", correct, count);
162
163 /* Shutdown and cleanup. */
164 clReleaseMemObject(input);
165 clReleaseMemObject(output);
166 clReleaseProgram(program);
167 clReleaseKernel(kernel);
168 clReleaseCommandQueue(commands);
169 clReleaseContext(context);
170
171 return 0;
172 }

Listing B.1: Simple Example of OpenCL Program
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