
University POLITEHNICA of Bucharest

Automatic Control and Computers Faculty,

Computer Science and Engineering Department

BACHELOR THESIS

Portability and Interoperability Features
in Robocheck

Scienti�c Adviser: Author:

Adrian-R zvan Deaconescu Laura-Mihaela Vasilescu

Bucharest, 2012

When the wind of change blows, some people build walls, others build windmills.

Abstract

Code quality, layout and structuring are of paramount importance in developer communities.
Most of the time, a project can be labeled as successful or not depending on how easy can
someone delve into the project. Good quality code should be well commented, well designed
and easy to browse and understand. A programmer needs time to improve their coding skills.
It is an entire process that needs guidance and feedback in order to enhance development
techniques.

Robocheck is a framework designed to automatically generate feedback about the quality of a
project implementation. It was created for a didactic purpose, but it can also be used to elicit
the quality of the code of the application.

This project emerged from the need to automatically generate feedback for the assignments
proposed in the Operating Systems class. Robocheck didn't have the maturity of a stable
tool and could only run on the Linux platform. The initial functionalities of the Robocheck
were improved in order to provide portability and interoperability for the framework. Today,
Robocheck can run on the Windows platform and it is easy to integrate with other frameworks.

Keywords: Robocheck, Windows, con�guration, interoperability

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Context and Motivation . 1
1.2 History of Robocheck . 2
1.3 Limitations in the Initial Version of Robocheck 2

1.3.1 Platform Dependency Issues . 2
1.3.2 Non-intuitive Con�guration of Penalty Facility 3
1.3.3 Non-Standard Output Format . 3
1.3.4 Running Robocheck as an Application . 4
1.3.5 Unexpected Parsing Errors . 4

1.4 Project Proposal . 4

2 Tools of the Trade 5

2.1 Valgrind . 5
2.2 Helgrind . 6
2.3 Simian . 6
2.4 Splint . 7
2.5 Sparse . 7
2.6 Dr. Memory . 7
2.7 vmchecker . 8

3 Overview of The Robocheck Framework 10

3.1 Description of the Initial Robocheck Architecture 10
3.2 Description of the Current Robocheck Architecture 11
3.3 Penalty Library in Robocheck . 12

3.3.1 Initializing . 13
3.3.2 Freeing Resources . 13
3.3.3 Applying Penalties . 13

3.4 Adding New Modules in Robocheck . 14
3.4.1 Implementing a New Module . 14

4 Updating Tools in the Linux Implementation 16

4.1 Integration of Dr. Memory . 16

5 Porting Robocheck on Windows 18

5.1 Missing Libraries . 18
5.2 Making the Code Compatible with C89 Standard 19
5.3 Loading and Unloading Dynamic Libraries . 20

5.3.1 Passing Objects Across DLL Boundaries 20

iii

CONTENTS iv

5.3.2 Life of a Dynamic Memory Block Allocated Inside a DLL 22

6 Providing Interoperability in Robocheck 23

6.1 JSON Format for Output of Robocheck . 23
6.2 vmchecker Integration . 24

7 The Robocheck Con�guration Tool 26

8 Results 28

8.1 New Robocheck Release in Numbers . 28
8.2 Assignments Tests . 29

8.2.1 Assignment no. 0 - Operating Systems . 29
8.3 grade.vmr. Before and after Robocheck . 30

9 Future Development 31

9.1 TUI for Generating XML-Con�guration File . 31
9.2 Multiple Language Support . 31

A Compiling, Installing and Running Robocheck 32

A.1 On the Linux Platform . 32
A.2 On the Windows Platform . 32

List of Figures

1.1 Robocheck Logo . 2

2.1 The Performance of Dr.Memory compared to Valgrind Memcheck [5] 8

3.1 Initial Robocheck Architecture . 10
3.2 Current Robocheck Architecture . 12

8.1 gitstats Results on Robocheck Repository . 28

v

List of Tables

8.1 Penalties Con�guration . 29
8.2 Assignment no. 0 - Overview . 29

vi

Chapter 1

Introduction

1.1 Context and Motivation

Code quality, layout and structuring are of paramount importance in developer communities.
Most of the time, a project can be labeled as successful or not depending on how easy can
someone delve into the project. Good quality code should be well commented, well designed
and easy to browse and understand. [1]

One of the best periods for acquiring and improving code writing skills is while studying. During
high-school or during their time in universities, students gradually learn how to improve their
code quality. They need to be able to understand how poorly written code can a�ect their
projects. Such things are learned in time and by gaining experience; reading an article or book
on coding style is not enough for actually using the knowledge in practice.

Students need guidance in order to fully understand the importance of code quality. They
need feedback and code review to be able to improve their skills. Their assignments must be
assessed and reviewed while considering two criteria: code functionality and code quality. It
is not enough for an assignment to match the requested functionality if it has an unintelligible
structure and doesn't cover all possible corner cases and errors.

In order to achieve balance between functionality and quality, teaching assistants should give
complex and punctual review for each student according to the issues encountered.

Reviewing assignments can take quite some time for a teaching assistant. Consider this example:
at University POLITEHNICA of Bucharest1, in the Computer Science and Engineering �eld,
there are approximately 350 students enrolled in a year of study. Reviewing just one of their
assignments by only one assistant (with an average of 20 minutes / assignment) would take 116
hours and 40 minutes. That means 5 full days (with no sleeping). One could consider increasing
the number of assistants, such that every assistant would have to review 30 assignments (for
2 half-groups); in this case the assignment review process would require 11 assistants and 10
hours for every assistant; however reviews and penalties would not be uniform for all students.

Consequently a need arises to create tools that are able to automatically review student assign-
ments. There already exist tools that can assess code quality. Some of them are focused on code
modularity, some of them verify memory inconsistencies, but there is no tool that aggregates
all of the above capabilities. Although the idea of developing a tool to aggregate code quality
reviewing utilities was considered many years ago, it was only in the recent years that actual
e�ort has been made.

1http://www.upb.ro

1

http://www.upb.ro

CHAPTER 1. INTRODUCTION 2

Robocheck1 has emerged to address the need for an automatic tool for code quality validation
in the Operating Systems class2 in University POLITEHNICA of Bucharest.

In the Operating Systems class, assignments should be able to run on both Linux and Windows,
or only on a single one of them. In the initial version, Robocheck was designed to run only on
Linux. To solve the problem of automatic validation code quality for all Operating Systems
assignments, Robocheck is required to also run on Windows too.

1.2 History of Robocheck

Robocheck was started in 2003 by Octavian Purdil (Tavi) to address the need for an automatic
tool that could test code quality of student assignments. At that time, Robocheck was tracing
memory leaks and used a hand-written module. The goal was to implement this solution in the
Operating Systems course. However, due to lack of time and community support, the project
was put on hold.

Figure 1.1: Robocheck Logo

The project was revived in 2009 by Andrei Buhaiu when he proposed Robocheck as a summer
project in ROSEdu Summer of Code (RSoC)3. Five students were selected and they started
to redesign the project. During RSoC, they focused on designing a modular architecture for
Robocheck in order to aggregate tools used for code quality validation. RSoC lasted only one
month and they didn't have too much time to actually implement the new features; as such
they insisted on having a complete and extensible design at the end of the program.

The need for a tool with Robocheck capabilities persisted. In 2011, Cezar Socoteanu [2] and
Iulia Bolcu [3] made their diploma project for actually implement Robocheck consistently with
the design proposed and speci�ed in 2009. Cezar possessed initial experience from the RSoC
project. At the end of their project, Robocheck was able to run on Linux platforms.

1.3 Limitations in the Initial Version of Robocheck

Although Robocheck is a useful tool, it has some shortcomings. This work aims to alleviate
these shortcomings and push Robocheck as a ready-to�use solution for a variety of classes. This
section presents some of the caveats of the initial version of Robocheck.

1.3.1 Platform Dependency Issues

Robocheck aggregates several tools and extracts reported errors. Some tools are cross-platform,
while others are not. Because of that, the framework was limited to running only on the
Linux platform. In theory, running Robocheck only with cross-platform tools would have been
su�cient to run on a Windows platform. Nevertheless, excluding non-cross-platform tools from

1http://ixlabs.cs.pub.ro/redmine/projects/robocheck/wiki
2http://elf.cs.pub.ro/so
3http://soc.rosedu.org

http://ixlabs.cs.pub.ro/redmine/projects/robocheck/wiki
http://elf.cs.pub.ro/so
http://soc.rosedu.org

CHAPTER 1. INTRODUCTION 3

Robocheck limits it capabilities. Some types of errors can not be intercepted because there
isn't a tool available to extract them. In order to minimize the impact of using only non-
cross-platform tools, other tools should be integrated to provide a similar functionality and
capabilities for the framework running on the Windows platform.

On the other hand, on Windows platforms, default compilers (for example cl) don't support for
C991 standard and the initial code wasn't compatible with C892 standard; it wouldn't compile
on a Windows environment. In order to facilitate platform independence, the code needed to
be compatible with C89. A good part of the code needed rewriting to confer compatibility and
integration to C89 standard.

Another thing that stood in the way of running Robocheck on Windows was the use of system
calls. In Linux, system calls are mostly POSIX compatible, so the code can be easily compiled
and run on a Unix platform (like MAC OS X). Unfortunately, on Windows, system calls are not
POSIX compatible. Calling such a function (a system call on Linux) in Windows would cause
a linker failure: � unde�ned reference to . . . �. Creating and using a set of wrappers around
those functions was a good solution to confer and support portability.

1.3.2 Non-intuitive Con�guration of Penalty Facility

Robocheck o�ers a penalty facility (decrementing the �nal grade) for errors discovered. This
facility was design to be modular and con�gurable through the use of an XML3 �le. Through the
use of the XML �le, teaching assistants can de�ne which tools to use, what errors to trace and
values for the corresponding penalties. Con�guration through the XML �le made Robocheck
very extensible. Each teaching assistant could make his own decisions about what type of errors
should be downgraded in his class and how much value should be penalized from the �nal grade
of the assignment.

However, changing the XML con�guration �le is not an easy step. There is no documentation
about the structure of the XML �le and browsing through an existing XML �le o�ers little
information to an non-developer. Adding new errors for tracing was mostly guessed based on
the examples for already traced errors.

The usability of an application is a very important aspect. Changing running parameters of a
framework should be very intuitive for the user. To easily change the the con�guration �le, a
new tool, capable of automatically generate XML �les, was requested.

1.3.3 Non-Standard Output Format

At the end of running Robocheck, the framework provides an output with all errors and corre-
sponding penalties discovered. The assistant gets the output and provides it as feedback to the
student. One disadvantage was that each integrated tool in the framework was using its own
format for writing errors to standard output. The only consistent format was the corresponding
penalty for each error.

Having a non-standard format for error output made Robocheck di�cult to integrate with
other tools already used in classes to check functionality and correctness of the application.
The assistant was limited to viewing and interpreting the output manually.

The uniformity gap in errors reported was also re�ected as a bug in the framework. Due to the
use of multiple tools for errors detecting, one error could be reported by multiple tools. The
problem wasn't only the duplicate output, but also the duplicate penalty applied to the same

1http://www.iso-9899.info/wiki/The_Standard#C99
2http://www.iso-9899.info/wiki/The_Standard#C89_.2F_C90_.2F_C95
3http://www.w3.org/XML/

http://www.iso-9899.info/wiki/The_Standard#C99
http://www.iso-9899.info/wiki/The_Standard#C89_.2F_C90_.2F_C95
http://www.w3.org/XML/

CHAPTER 1. INTRODUCTION 4

error. To solve this issue, Robocheck required a mechanism to di�erentiate between such errors
and report them only once.

1.3.4 Running Robocheck as an Application

In the previous release, running Robocheck was possible only from the building directory. The
compiler script used relative paths to describe all object �les and libraries dependencies.

Even if the code compiled successfully, the application couldn't be run from a di�erent directory.
Putting Robocheck compilation folder into the system PATH (an environment variable specifying
a set of directories where executable programs are located) variable wouldn't be su�cient. The
code also relied on hard-coded values with relative paths that made Robocheck unable to run
from a di�erent directory.

1.3.5 Unexpected Parsing Errors

A parsers is used to extract and interpret tool reported errors. One shortcoming was the fact
that the parser had little information on how to interpret unexpected input. Most of the time,
the program crashes.

The parser needed to be rewritten to cover all use-cases scenarios and to properly treat all
corner-cases and possible errors.

1.4 Project Proposal

This project started from the need of testing code quality for the assignments for the Windows
platform in Operating Systems class, but will be, hopefully, used in other classes in the faculty.

At the beginning, porting the framework to run on the Windows platform was the prime
objective of the project. After identifying di�erent types of issues in the initial Robocheck
implementation, the main goal for the project became transforming Robocheck into a usable
tool for the next year Operating Systems class. Solving usability issues in Robocheck (even
on Linux) became a track in the project. This project aims to ensure portability for Windows
platform and interoperability and integration with tools for correctness checking.

Some parts of the code must be rewritten in order to have stability, portability and interoper-
ability of the Robocheck framework. Another important step in goal achieving is integrating
Dr. Memory1 in Robocheck to provide similar functionality on Windows platform and in-
tegrate the framework in vmchecker2 for making a complete solution of assignments testing,
usable in next year classes.

1http://www.drmemory.org
2https://github.com/vmchecker

http://www.drmemory.org
https://github.com/vmchecker

Chapter 2

Tools of the Trade

This chapter elaborates on the tools that interact some way or another with the current
Robocheck implementation. The framework provides a context for each integrated tool to
run into.

Each integrated tool has its own purpose and can identify di�erent types of errors.

• valgrind: used for memory corruption detection

• helgrind: used to identify race conditions

• simian: used to identify code duplication

• splint: does a static analysis of the source code in order to �nd code vulnerabilities and
mistakes

• sparse: responsible for semantic parsing

• Dr. Memory: used for memory corruption detection; can run both on Linux and Windows

Integrating these tools in Robocheck increases the capabilities of the framework and makes it
a powerful tool that can perform a complex analysis of the submitted assignments.

2.1 Valgrind

Valgrind1 is an Open Source framework used for dynamic analysis that can be run on di�er-
ent architectures, powered by Linux kernel based operating systems (such us di�erent Linux
distributions or Android). The framework is used mostly for pro�ling and debugging Linux
applications. [4]

The source code2 of Valgrind is freely available to download from its Subversion3 repository,
because the tool is an open source project.

The Valgrind framework o�ers di�erent tools with diverse purposes and capabilities according
to one's needs:

• Memcheck: used to detect memory-management problems

• Cachegrind: used as a cache pro�ler

1http://valgrind.org
2svn://svn.valgrind.org/valgrind/trunk
3http://subversion.tigris.org/

5

http://valgrind.org
svn://svn.valgrind.org/valgrind/trunk
http://subversion.tigris.org/

CHAPTER 2. TOOLS OF THE TRADE 6

• Callgrind: adds information about callgraphs to Cachegrind

• Massif : used as a heap pro�ler

• Helgrind: used as a thread debugger to �nd races

• DRD: used to detect errors in multi-threaded programs

Running Valgrind with no parameters does in fact call the Memcheck1 tool. To be able to
run other tools, one must specify the wanted tools as command line parameters.

Memcheck can detect invalid memory accesses (and can distinguish between access to unal-
located memory and recently freed areas), memory leaks, double free corruptions and invalid
freed addresses, overlapping bu�ers (when memory copying functions are used) and uninitial-
ized variables usage. This tool is a very powerful instrument and can show the line number that
produced the error. To be able to give additional information, the program must be compiled
with debugging symbols.

The main disadvantage of this tool is the overhead induced by the dynamic analysis. Statis-
tically, an application runs 30% slower than usually when is coupled with this tool. Because
Robocheck runs each tool individually, valgrind overhead will be added to Robocheck. If
the errors tracked by valgrind could be also tracked by another tool, then the time spent by
Robocheck will decrease.

This tool is the one responsible in Robocheck with errors related with invalid memory accesses
or non-release resources.

2.2 Helgrind

Helgrind2 is one of the instruments o�ered by the Valgrind tool suite. The tool is capable of
identifying and reporting race conditions in multithreaded programs.

Helgrind portability is limited by the architectures and operating systems supported by Val-
grind.

The concepts applied by Helgrind are simple: it traces all memory locations used by more
than one thread and checks if the locks had been acquired everywhere in the same order to
prevent race conditions. It also runs a topological sorting on the locks used by the application
to determine if threads would run into race conditions at some point.

This tool is used by Robocheck in multithreaded assignments to be able to identify deadlocks
and race conditions.

2.3 Simian

Simian3 is a similarity analyser tool. It is able to identify code duplication (in a variety of
languages) and even duplication for plain text �les.

The main purpose of the tool is to help development teams involved in large projects trace code
duplication in a re-factoring stage of the project. Furthermore, it can also be used in searching
for plagiarism. By using this tool, one can improve the code quality and modularization of the
application one is working on.

1http://valgrind.org/info/tools.html#memcheck
2http://valgrind.org/info/tools.html#helgrind
3http://www.harukizaemon.com/simian

http://valgrind.org/info/tools.html#memcheck
http://valgrind.org/info/tools.html#helgrind
http://www.harukizaemon.com/simian

CHAPTER 2. TOOLS OF THE TRADE 7

Although Simian is not an Open Source application, the developers o�er, free of charge, a
JAR library for non-commercial and Open Source use.Java1 is a cross-platform programming
language with many build-in libraries, o�ering operating system independence. As Simian is
written in Java, it also bene�ts from the programming language's portability and it can be run
in any environment.

By integrating this tool, Robocheck can provide feedback about the code modularity of the
assignment and can indicate which parts of the code can be restructured as functions.

2.4 Splint

Splint2 is an application used to trace errors in C programs. The analysis is statically performed
in order to inspect the source code for vulnerabilities and coding mistakes.

Splint was developed by the Secure Programming Group at the University of Virginia, De-
partment of Computer Science3. The development is done in-house and doesn't have a public
repository, but the source code is published periodically with each stable release. To install
the application, one can either compile it from the source code or install it directly from the
binaries available on the web site. Binaries for Linux x86, FreeBSD, OS/2, Solaris and Win32
are provided.

Splint doesn't run the application under test in order to trace errors. The analysis is based only
on the source �les of the application and can detect mistakes like null dereferences, uninitialized
variables usage, invalid memory access, bu�er over�ows, usage of non-static context in a static
context etc.

2.5 Sparse

Sparse4 is a semantic parser and was written by Linus Torvalds. Initially, his goal was to write
a tool that was capable to identify mixed usage of pointers from user space with pointers from
kernel space.

Sparse is an Open Source project maintained by the Linux Kernel community. The source
code5 is stored using Git6 and can be cloned by anyone, since the project is open source.

Nowadays, Sparse does a complex analysis of code quality: it identi�es the mixing tabs and
spaces in indentation, trailing whitespace and much more.

Unfortunately, Sparse is only available on the Linux Platform.

2.6 Dr. Memory

Dr. Memory7 is a memory checking and debugging tool, similar to Valgrind. It was devel-
oped by Google in collaboration with Massachusetts Institute of Technology.

1http://java.oracle.com
2http://www.splint.org
3http://www.cs.virginia.edu
4https://sparse.wiki.kernel.org
5git://git.kernel.org/pub/scm/devel/sparse/sparse.git
6http://git-scm.com
7http://www.drmemory.org

http://java.oracle.com
http://www.splint.org
http://www.cs.virginia.edu
https://sparse.wiki.kernel.org
git://git.kernel.org/pub/scm/devel/sparse/sparse.git
http://git-scm.com
http://www.drmemory.org

CHAPTER 2. TOOLS OF THE TRADE 8

Figure 2.1: The Performance of Dr.Memory compared to Valgrind Memcheck [5]

Dr. Memory is an Open Source application that can be run on both Linux and Windows
platforms and comes as an alternative to old solutions, which introduced large overhead. Aldo
it can be run on IA-32 and x86-64 architectures, currently the main focus is to develop a
powerful tool for 32-bits architectures;

According to Derek Bruening and Qin Zhao [5], Dr. Memory is much faster than Valgrind
and the resulting overhead is very small. The main reason of integrating this tool into Robocheck
is that Dr. Memory is designed to be architecture independent. Even though Valgrind is
a popular tool and there are a lot of requests for porting it on the Windows platform, it is
not at all a trivial task due to its in�exible architecture. Windows has a di�erent management
of the memory as against Linux. Valgrind was designed to run on Unix platform, and makes
assumptions about how the memory is managed.

Because feedback about invalid memory accesses is very important for students, a tool similar
with Valgrind, but that can also run on Windows platform, was almost mandatory. Dr. Memory
performances and capabilities are a perfect match for the Robocheck requests.

2.7 vmchecker

vmchecker1 is a framework for automated home assignment grading and it was developed by
a group of students from University POLITEHNICA of Bucharest, Department of Computer
Science2. It is an Open Source project that runs on Linux. vmchecker provides an isolated
environment for the assignments to run into. (the guest environment can be speci�ed by a
Vmware3 machine, LXC4 or KVM5 that runs any operating system). [6]

The source code6 is version in a Git repository and it is an open source project.

vmchecker runs on two di�erent machines:

• the storer

• the tester

1https://github.com/vmchecker/vmchecker
2https://csite.cs.pub.ro
3http://www.vmware.com
4http://lxc.sourceforge.net
5http://www.linux-kvm.org
6git://github.com/vmchecker/vmchecker.git

https://github.com/vmchecker/vmchecker
https://csite.cs.pub.ro
http://www.vmware.com
http://lxc.sourceforge.net
http://www.linux-kvm.org
git://github.com/vmchecker/vmchecker.git

CHAPTER 2. TOOLS OF THE TRADE 9

The storer is responsible for assignment storage and evaluation for the students. The Teaching
Assistants interact only with this module. Furthermore, the environment con�guration is also
handled by this module, specifying the testing suite and the guest operating system.

The tester is responsible for starting the isolated environment and running the test suite in
order to evaluate the assignment. The output is stored in a �le named grade.vmr that is
copied on the storer machine where the Teaching Assistants can review it.

Chapter 3

Overview of The Robocheck

Framework

In order to ensure portability and interoperability for the new version of Robocheck, the frame-
work architecture has been updated. The basic core remained intact, but new modules were
added and existing modules required modi�cations.

3.1 Description of the Initial Robocheck Architecture

Robocheck is designed as a modular framework used for running other quality checking tools.
It has a powerful mechanism for con�guring these tools and a mechanism for de�ning and
computiing penalties for the errors traced. A description of the initial architecture can be
viewed in Figure 3.1.

The framework is con�gured through a specialized XML con�guration �le, that is read each time
the framework is run. This �le describes the behavior of the application. Teaching assistants
may de�ne what and how tools should be run, which errors to be reported and what penalties
should be applied.

Figure 3.1: Initial Robocheck Architecture

10

CHAPTER 3. OVERVIEW OF THE ROBOCHECK FRAMEWORK 11

A distinct module of the framework is the penalty module. The penalty module is designed as
a standalone library, in order for other applications to easily interrogate it. The library is aware
of errors identi�able by Robocheck. Like the framework itself, the penalty library parses the
con�guration XML �le and sets penalties for di�erent types of errors. It is able to di�erentiate
among errors that need to be penalized at each appearance and errors that need to be penalized
only once (no matter the number of appearances).

In order to provide modularity Robocheck can run only some of the tools integrated into the
framework; some tools may not be available (or may not be installed) on a possible target
environment. To separate between the core of the Robocheck framework and code used auxiliary
to run a speci�c tool, each tool is de�ned in its own shared library.

With this approach the size of the �nal library of the framework is independent of the number of
running and con�gured tools in the system. It also provides �exibility by allowing the removal
or addition of one tool from or into the framework without recompiling the code.

Integration of a new tool is easily achievable by writing a new module as described in Section 3.4.
When running a tool, Robocheck is in fact loading the library of the corresponding tool, runs
it and gets its output. The library tool is responsible for parsing the output and registering
errors into the penalty library.

In the previous version, Robocheck was capable of running �ve tools:

• valgrind (described in Section 2.1)

• helgrind (described in Section 2.2)

• simian (described in Section 2.3)

• splint (described in Section 2.4)

• sparse (described in Section 2.5)

After running all con�gured tools, Robocheck would talk to the penalty library and output all
identi�ed errors to standard output. The teching assistant would then be able to interpret the
output and formulate feedback to the student.

3.2 Description of the Current Robocheck Architecture

This current project aims to ensure portability and interoperability in the Robocheck frame-
work. Although the main core architecture remained intact, small changes in the modules were
required in order to implement the proposed solution. An overview of the new architecture is
depicted in Figure 3.2.

A big improvement in the Robocheck architecture was adding a con�guration tool, described
in Chapter 7). This tool is used for updating the changing the XML �le; one can easily list
di�erent parts of the XML in a user-friendly format and modify it according to needs. Changes
are incremental, so the user needn't provide an extensive list of parameters when running the
tool.

An important feature in the previous version of Robocheck is the ability to identify memory
leaks in assignments. It was provided by valgrind (Section 2.1). Valgrind is not a portable
tool and can only run on Linux. The lack of this tool on Windows is a minus for the Robocheck
framework. To replace the gap, a new tool (Dr. Memory) has been integrated to run on both
platforms (Linux and Windows). Even if this means to have two tools doing the same thing
on the Linux platform, the performance it is not a�ected as memory checking tools are already
quite slow when compared to the simple run of a program.

CHAPTER 3. OVERVIEW OF THE ROBOCHECK FRAMEWORK 12

Dr. Memory (described in Section 2.6) is a memory monitoring tool that can run on Linux,
Windows and Cygwin 1; it has similar capabilities to valgrind. This tool was introduced to
provide memory leak detection on the Windows platform, and was also included in the build
for the Linux platform. The only constrains are that, for the moment, even if Dr. Memory

is designed to run on IA-32 and X86-64 hardware, it is recommended to be installed only on
32-bits systems.

Figure 3.2: Current Robocheck Architecture

The penalty module was updated to o�er support for developing a common method of error
reporting. This feature was requested in order to determine duplicate errors and make the
necessary changes to report them only once.

The output format is generated by the penalty module. The penalty module aggregates reported
errors from tools and groups them by type. The grouping simpli�es duplicate error checking
and to easies penalty computation for identi�ed errors.

The generated output was changed to provide uniformity and easy integration with other tools.
In the new version, the output is exported in a JSON (JavaScript Object Notation) format as
described in Section 6.1.

As Robocheck core provides output in a standard format (JSON), it is easy to integrate it with
other tools. The �rst step in this direction was integrating the framework with vmchecker

(Section 2.7). vmchecker throws the output in a special �le named grade.vmr with a speci�c
format, easy to understand and view by students. More on this topic is described in Section 6.2.

From now on, everything is described from the point of view of how things are done and how
things work in the new version of the Robocheck framework.

3.3 Penalty Library in Robocheck

The Robocheck framework uses a shared library to manage and provide penalties for detected
errors.

1http://www.cygwin.com

http://www.cygwin.com

CHAPTER 3. OVERVIEW OF THE ROBOCHECK FRAMEWORK 13

This library exports three functions, each with its own functionality:

• initializing;

• freeing resources;

• applying penalties.

We will discuss each each of the above functionalities in the sections below.

3.3.1 Initializing

int init_penalties(rbc_xml_doc);

The initialization of the penalty module from the user con�guration �le is performed by call-
ing init_penalties. This is provided by the library and ensures that all the necessary
information is available to Robocheck after startup.

The user can select between two ways of penalising errors of certain type: one that considers
the number of reported errors in scoring and one that doesn't. In more detail, the �rst one
amends the score for each n occurrences of that error type. Commonly, n is set to one, but one
can also choose to decrease the score for once in n occurrences.

The other way of applying penalties is to penalize only once, no matter how many errors of
that type are reported. For example, if someone used trailing whitespace, it doesn't make sense
to penalize for each additional space.

3.3.2 Freeing Resources

void free_penalties();

The purpose of this function is to release all resources used by the library. This function is
usually called after the library has been used (just before closing); it may also be used if one
would like to clean the setup and create another one, with a di�erent con�guration.

3.3.3 Applying Penalties

struct rbc_out_info * apply_penalty(enum EN_err_type, int);

This function is responsible for transforming errors into a speci�c format, depending on the
error type. It iss useful in avoiding duplicate errors and in having an uniform and scalable
output format.

The �rst parameter represents the error type and the second one represents the number of the
errors in the pool to aggregate. Output messages are parsed while taking into account the error
type to eliminate duplicate errors from the pool. Each type of error has its own format and is
independent of the tool that generated it.

This call returns the polished errors in a speci�c format that will be transformed in order to
obtain the JSON structure. The transformation is not the responsibility of the penalty module;
however, the output provided by this call is similar and very easy to transform into JSON.

CHAPTER 3. OVERVIEW OF THE ROBOCHECK FRAMEWORK 14

3.4 Adding New Modules in Robocheck

Robocheck is designed for modularity and extensibility. Each module is de�ned as a shared
library that is dynamically loaded upon request. In order to load a tool module, the library
name must be speci�ed in the XML con�guration �le.

3.4.1 Implementing a New Module

Every module integrated in Robocheck has its own implementation of how to run the tool. To
provide uniformity, modules must export a run_tool function that runs the tool, parses its
output and provides results in a speci�c format to the caller.

On Linux, exporting a function in a shared library [7] is done automatically, but it's not the
case on Windows [8]. To ensure code portability for a module that should be able to run on
both platform, the action of exporting functions needs to use a set of macros (see Listing 3.1).
There is a special caution to be taken when compiling on the Windows platform: a symbol such
as DLL_EXPORTS must be de�ned. This macro should be de�ned in the lib/tool.h header
and the function header must be preceded by DLL_DECLSPEC keyword. This modi�cation was
already done and the only thing a new module developer should take in consideration is de�ning
the symbol DLL_EXPORTS.

1 #ifdef _WIN32
2 #ifdef DLL_EXPORTS
3 #define DLL_DECLSPEC __declspec(dllexport)
4 #else
5 #define DLL_DECLSPEC __declspec(dllimport)
6 #endif
7 #else
8 #define DLL_DECLSPEC
9 #endif

Listing 3.1: How to Export Functions in Shared Libraries

There are two types of modules that may be integrated into Robocheck:

• static analysis modules: run tools in order to analyze source �les;

• dynamic analysis modules: run tools in order to analyze executable �les.

Listing 3.2 is an overview of a module's run_tool function.

1 #include <lib/tool.h>
2

3 struct rbc_output *
4 run_tool (struct rbc_input *input,
5 rbc_errset_t flags,
6 int *err_count)
7 {
8 /* Actually implementation of this function */
9 }

Listing 3.2: Tool Module Implementation Structure

The �rst parameter stores input information. The module uses it to �nd paths to source �les
for static modules and paths to binary executable �les for dynamic modules.

CHAPTER 3. OVERVIEW OF THE ROBOCHECK FRAMEWORK 15

The second parameter is a set of �ags that enable di�erent �elds from the input structure. In
combination with the �rst one it will be able to tell what errors should be traced and what
parameters should be passed to the tool.

The third parameter returns the number of identi�ed errors. This is used in combination with
the function return value in order to specify the size of an array. The function return value is
an array of identi�ed errors and it is dynamically reallocated each time a new error is identi�ed.

Some tools may only be available on Linux. In that case, Robocheck framework will search for
a �le named Makefile to pass to make. Other tools may be only be available on Windows,
in which case Robocheck will search for a �le named NMakefile to pass to nmake.

Availability of a tool on Linux and Windows is de�ned by the existence of the �les Makefile
and NMakefile respectively. If one doesn't exist it means the module isn't available on that
platform.

Chapter 4

Updating Tools in the Linux

Implementation

The previous version of the Robocheck framework had some bugs and missing features in the
implementation of Splint and Simian modules.

The Splint module implementation only provided support for memory leaks error detection.
The problem that arose was that this code was not being called in any scenario. As in all unit
tests Splint was run along with Valgrind, this bug was not obvious. The �rst step in solving
this problem was to make the parser actually running; the second step was to extend the parser
to report other errors such as assignment of signed values to an unsigned variables and unused
exported variables (the lack of the static keyword) de�nition.

Simian needed to be changed in order to provide an uniform error reporting format, as it was
reporting error in a variety of styles. It was modi�ed to provide uniformity and easy integration
with the JSON format. Another problem was that if more than one set of duplicate code was
detected, the parser would crash with Segmentation Fault. Consequently, the parser has been
improved to correctly �lter the output.

Another important step was to integrate a new tool to be responsible for detection of memory
related errors. The tool is Dr. Memory and the integration process is presented in the section
4.1.

4.1 Integration of Dr. Memory

As mentioned in section 2.6, Dr. Memory is a memory checking and debugging tool.

One of the important improvements for the Linux implementation in the Robocheck framework
was the integration of Dr. Memory. This tool was requested in order to provide portability
of the framework and replace the absence of Valgrind on the Windows platform.

Dr. Memory source code was added to Robocheck repository and the Makefile was updated
in order to also provide compilation of this tool. A new module was added following the steps
described in section 3.4.1.

After running Dr. Memory, a new process displays to standard error a summary of the errors
traced by the tool. The output also contains the path to the �le where the detailed output is
stored. The parser needed to open the speci�ed �le in order to continue to extract details, but
a race condition could be possible. Dr. Memory displays the output and only after that it

16

CHAPTER 4. UPDATING TOOLS IN THE LINUX IMPLEMENTATION 17

starts to write informations to the �le. To avoid opening the �le and not getting all the wanted
output, the parser polls for the number of processes that have the speci�ed �le opened. When
the number become zero, it means nobody is writing to the �le and it can be safely open.

An example of the generated output can be found in listing 4.1.

1 ~~Dr.M~~ ERRORS FOUND:
2 ~~Dr.M~~ 0 unique, 0 total unaddressable access(es)
3 ~~Dr.M~~ 3 unique, 3 total uninitialized access(es)
4 ~~Dr.M~~ 0 unique, 0 total invalid heap argument(s)
5 ~~Dr.M~~ 0 unique, 0 total warning(s)
6 ~~Dr.M~~ 1 unique, 1 total, 10 byte(s) of leak(s)
7 ~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible

leak(s)
8 ~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of still-

reachable
9 allocation(s)
10 ~~Dr.M~~ ERRORS IGNORED:
11 ~~Dr.M~~ 0 still-reachable allocation(s)
12 ~~Dr.M~~ (re-run with "-show_reachable" for details)
13 ~~Dr.M~~ Details:
14 /data/work/projects/robocheck/drmemory-read-only/build/logs/DrMemory

-simple.11940.000/results.txt

Listing 4.1: Dr. Memory Generated Output

After determining that no process has the output �le opened, the parser can proceed to opening
in order to collect more information. An example of how the output looks like can be found
in listing 4.2. For each error that is detected and listed, Dr. Memory prints a stack trace,
containing details about what triggered that error. It also provides the possibility to extract
the function name, the source �le and the line number. Each type of error has its own format
of printing and can be easily di�erentiated by a speci�c string (eg:UNINITIALIZED READ or
LEAK). The parsing produces a temporary output directory that is removed when the process
is complete.

1 Error #3: UNINITIALIZED READ: reading register ecx
2 # 0 libc.so.6<nosyms>!?
3 # 1 libc.so.6<nosyms>!?
4 # 2 libc.so.6<nosyms>!?
5 # 3 simple!main [/data/work/projects/robocheck/tests/simple.c:13]
6 # 4 simple!_start
7 Note: elapsed time = 0:00:00.072 in thread 11940
8 Note: instruction: movzx (%edi,%ecx,1) -> %eax
9

10 Error #4: LEAK 10 direct bytes 0x08949018-0x08949022 + 0 indirect
bytes

11 # 0 simple!main [/data/work/projects/robocheck/tests/simple.c:8]
12 # 1 simple!_start
13 Note: elapsed time = 0:00:00.072 in thread 11940

Listing 4.2: Snippets from Dr. Memory Results File

Even if Dr. Memory is much faster then valgrind, it does not have its maturity. The tool
is a new one and doesn't have so many users as valgrind to be able to collect a signi�cant
number of bug reports. Because of that, it is highly recommended to con�gure Robocheck to
also run valgrind on Linux systems.

Chapter 5

Porting Robocheck on Windows

An application is designed to ful�ll a certain set of requirements. In the implementation phase,
it is very common to change the architecture of the application to ful�ll new needs.

Robocheck was not designed to be a platform independent application. It was designed to be
compiled and used under the Linux platform. Lacking the intention of running the application
under di�erent environments makes the written code di�cult to port and rather in�exible.

The software developers write code in a high-level programming language that needs to be
translated into machine language, in order to be understand by computers. A compiler is a
software that coverts programs from high-level programming language into machine language.
Compilers are architecture dependent and can di�er upon the operating system used. Be-
cause anyone can develop their own compiler, American National Standards Institute (ANSI)
published a family of successive standards for the C programming languages. Developers are
encouraged to conform to the standards to ful�l portability requests for their programs.

The compiler used under Linux is GNU Compiler Collection (gcc) 1. Since version 3.0,
gcc provided initial support for C99 features. The latest gcc version, released on the 14th of
June 2012, is 4.7.1.

As the most popular and most used compiler under Linux, gcc allows programmers to take
for granted some of the features available, not taking into consideration that other compilers
provide little or no C99 support.

The standard compiler on Windows is cl 2, part of the Visual Studio development suite. It
provides little C99 support.

5.1 Missing Libraries

Because Robocheck takes the con�guration from an XML �le, some libraries were used to parse
the �le and extract relevant data. Those libraries can be easily installed under Linux through
the default package manager provided by the distribution. To make the code work under the
Windows environment, those libraries need to be replaced with corresponding versions specially
built for Windows.

Fortunately, libraries in use were pretty common and one can easily �nd binaries compiled for
the Win323 environment. Not all version are compatible with the Robocheck code, so it was

1http://gcc.gnu.org/wiki
2http://msdn.microsoft.com/en-us/library/9s7c9wdw.aspx
3http://en.wikipedia.org/wiki/Windows_API

18

http://gcc.gnu.org/wiki
http://msdn.microsoft.com/en-us/library/9s7c9wdw.aspx
http://en.wikipedia.org/wiki/Windows_API

CHAPTER 5. PORTING ROBOCHECK ON WINDOWS 19

mandatory to search for the compatible ones. The compatible libraries versions was included in
the repository (under the lib-win/ directory) to avoid subsequent time spent for searching.

Robocheck uses dymanic libraries as part of its design. The loader is the part of an operating
system that is responsible for loading libraries and programs from executables into memory. The
programming interface for dynamic linking and loading is di�erent on the Windows environment
than on the Linux environment. In order to provide code compatibility, the solution we thought
suitable was to write a wrapper similar to Linux interface that woul be used on Windows. The
wrapper used was written by Ramiro Polla in 2007 and it can be used under the GNU Lesser
GPL 1.

Robocheck analyze the output generated by the integrated tools and extract tokens and di�erent
information. String manipulation can be done by using di�erent functions speci�ed in the
string.h header. The string.h header available for cl compiler doesn't have support for
functions like strcasecmp, strncasecmp, strcasestr and strdup (mostly because these
function are not standard). Those functions requested to be manually implemented to provide
interoperability with the Windows environment.

5.2 Making the Code Compatible with C89 Standard

The �rst step required to have Robocheck run on Windows is to be able to compile it. As GCC
is using C99 features, while cl is not, the code has to be updated.

In the C99 standard the compiler supports initialization of selected �elds of structures and
unions. Initializations can be done similar to the example in Listing 5.1.

1 typedef struct {
2 char b;
3 union example_union_value {
4 char *p;
5 char c;
6 } union_value;
7 int a;
8 } example_t;
9

10 example_t var = {.a = 2, .union_value.c = ’b’};

Listing 5.1: Initialization of Fields for Structures and Unions in C99

C89 doesn't have support for naming the structure �eld to be initialized. In order to initialize
a structure, one must initialize all �elds, preserving the order under which they were declared.
There is no support for skipping some of the �elds. A workaround would be to initialize them
with random values.

The standard mentions that union initialization is possible only for the �rst �eld from the
de�nition. To initialize another �eld, one must initialize it with a random value, and after that
explicitly modify the value. Even if an union uses the maximum size of the �elds it contains,
an automatic cast is made at initialization and some data could be lost. The best solution for
initialization is to put some junk value and explicit modify it after the initialization. (as shown
in Listing 5.2)

1 typedef struct {
2 char b;
3 union example_union_value {

1http://code.google.com/p/dlfcn-win32

http://code.google.com/p/dlfcn-win32

CHAPTER 5. PORTING ROBOCHECK ON WINDOWS 20

4 char *p;
5 char c;
6 } union_value;
7 int a;
8 } example_t;
9

10 example_t var = {’#’, NULL, 2};
11 var.union_value.c = ’b’;

Listing 5.2: Initialization of Fields for Structures and Unions in C89

As Robocheck made use of initializing structures and unions when they were declared, an
important part of the code needed to be rewritten. The initializations currently follow the C89
standard, supported by virtually all modern compilers.

5.3 Loading and Unloading Dynamic Libraries

Using dynamic libraries makes executable �les much smaller because the library code isn't
included into the application. Dynamic libraries are linked when the application is running.
There can be only one instance of the library loaded into memory; the instance is shared among
all the application that use it. The advantage is not only the smaller executables; if one runs
100 application that require the same library, the library will be mapped only once into the
memory.

The code in a dynamic library is loaded only once (just the �rst time) and is shared among
all processes that use it. The occupied physical memory it is much smaller than if static
library would be used. A static library is actually included in the generated object �le of the
compiled application and makes the executable larger. The data section of a DLL (Microsoft
implementation of the shared library) is private for each process that uses the library; as such
processes have little idea about each other and can't alter the other one's behaviour.

The loader is responsible for mapping the library address space into the running process space
by using relocation techniques. When creating a shared library, the linker performs relocation to
assign runtime addresses to each section and symbol generated in the object �le (code segment,
data segment, etc.). Each element in the relocation table is an address in the object code that
must be changed when the loader relocates the program.

5.3.1 Passing Objects Across DLL Boundaries

The concept of dynamic libraries is common to all modern operating systems. No matter what
operating systems is used, the concept is the same: a dynamic library is a mechanism for sharing
the code of a library among multiple processes without integrating the code into application
and through the use of relocation techniques.

Even if the concept is the same, the implementation might slightly di�er and the behaviour
may not be the same for di�erent platforms. This section will present an issue that appeared
while porting Robocheck on Windows, by assuming the shared libraries behaviour is the same.

Scenario

Let's assume there is a shared library named dll_example that was generated from the
source �le de�ned in Listing 5.3. The library exports the function print that uses, as its �rst
parameter, a pointer to an output stream and, as the second parameter, a string to be written.

CHAPTER 5. PORTING ROBOCHECK ON WINDOWS 21

1 #include <stdio.h>
2

3 __declspec(dllexport) void print(FILE *out, char *string)
4 {
5 fprintf(out, "%s", string);
6 }

Listing 5.3: dll_example Dynamic Library

In this scenario, an application makes use of the library in order to print data to a speci�c
stream. To simplify the scenario, let's assume that the application is only printing Robocheck
is awesome to standard error (stderr).

1 #include <stdio.h>
2

3 __declspec(dllimport) print(FILE *out, char *string);
4

5 int main(void)
6 {
7 print(stderr, "Robocheck is awesome!");
8

9 return EXIT_SUCCESS;
10 }

Listing 5.4: dll_example Library Usage

Robocheck Behaviour

Robocheck was using a con�gurable logger system to track important messages for debugging
and future analysis reports. The application was using the standard error (stderr) for logging
purposes, but it did provide the mechanism to update the output stream.

The logging module in Robocheck was working similarly to the one described in the scenario
above. The main application could provide, as a parameter, an output stream to the initializa-
tion function of the Robocheck library.

Even if this looks pretty simple, the Robocheck framework was crashing at the �rst call of the
logging system. The �rst approach was to think of uninitialized strings or improperly formatted
strings; this wasn't, however, the case.

The application was crashing because the address used as an output stream was invalid.
Robocheck was trying to write output to an address that was not attached any output de-
vice. The address of stderr in the application and the address received in the library were
identical.

Using a �le instead of stderr allowed Robocheck to work properly. So what was the problem?

The rather suprising discovery was that, within a DLL, stderr is pointing to a di�erent address
than the one received from the application. This behaviour is not part of a Linux Environment.

Explanation

The C standard says that stdin, stdout and stderr are de�ned as macros that are expanded
in the preprocessing stage. The standard doesn't says how these macros should be expanded

CHAPTER 5. PORTING ROBOCHECK ON WINDOWS 22

because every operating systems has its own abstraction for representing �le descriptors and
opened devices. These macros are de�ned in the C standard library.

An output stream is in reality an abstraction for the �le descriptors (in Linux) and handles (in
Windows). Each process has three default �les opened: standard input, standard output and
standard error. Each process has its own standard devices opened.

In the scenario presented above, the shared library maps the standard C library at a di�erent
address. When expanding the macro stderr, the address obtained is di�erent from the one
obtained in the application. By using the address returned in the application, the framework
crashes because inside the library, the address is not valid.

According to this 1, the dynamic library is loading a di�erent C runtime library (because of
the dynamic path search) than the application. If the C runtime library loaded by the library,
would be the same as the one loaded by the application, the application wouldn't fail because
the runtime library is a shared one.

Solution

In order to solve this problem, two possible solutions were identi�ed. One was to make the
application load the same runtime library each time; the other was to make things work even
if the loader used di�erent libraries.

The �rst approach didn't scale. In order to make the application load the same runtime library,
some changes needed to be done in the environment system of the Windows platform. Those
changes needed to be done manually for each Windows platform where Robocheck would be
installed. Di�erent platforms mean di�erent con�gurations and di�erent numbers of possible
runtime libraries installed. The workaround would be speci�c to each platform.

As such, our solution relied on removing the con�guration of the output stream. Currently the
logger writes messages to standard error. If one needs the output generated by the logger, it
can use redirection from the command line interface. This approach doesn't need any changes
in the environment system and provides consistent behaviour on all platforms.

5.3.2 Life of a Dynamic Memory Block Allocated Inside a DLL

In Windows, a dynamic memory block allocated inside a DLL will be kept until the memory is
freed or the library is unloaded.

In Linux, if one allocates memory in a library call and then returns it to the application, even
if the library is unloaded, the memory is still available for the user. This is done because the
library is mapped in the process address space and doesn't use a di�erent data segment.

In Windows, if the library is unloaded, accessing the memory at an address allocated by a
library call results in memory corruption and usually terminates the program.

Robocheck is running tools as modules, loading corresponding shared libraries at runtime.
After running a tool and collecting results, Robocheck unloads the used library. Because the
output was collected by allocating space in the heap of the application (in the run_robocheck
function), all collected data would become invalid at unload time. To solve this issue, Robocheck
is keeping now a trace of the loaded libraries and doesn't unload them until the end of the
application.

1http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.80%29.aspx

http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.80%29.aspx

Chapter 6

Providing Interoperability in

Robocheck

When it comes to automatically generating feedback on the code quality of an application,
Robocheck is a very useful tool. However, the generated output could be easily interpreted
only by humans, as a standard way of reporting errors was not provided. In order to enhance
its interoperability with other tools, the output format has been changed. A standard format
has been designed based on JSON format.

The uni�ed output was required to be able to integrate Robocheck with other tools, such as
vmchecker (section 6.2). The output generated by Robocheck needs to be easily parseable by
other tools.

6.1 JSON Format for Output of Robocheck

JSON is a text-based open standard designed for data exchange between processes or applica-
tions. It was derived from JavaScript to represent data structures, but it is widely used by
many applications because of its simple format. Many languages support parsing JSON �les.

JSON was choose to represent Robocheck output because it is very simple, human-readable and
can be parsed easily by many programming languages.

In listing 6.1, one can see an example of the JSON output generated by Robocheck.

The output generated by Robocheck is easy to understand. There are also many JSON parsers,
written for di�erent programming languages, that can be used to extract information from the
output.

Errors are grouped by their type. Each error type has:

• a name (which brie�y describes the error type)

• a key (which gives a more detailed description of the error)

• a value (which represents the total sum of the penalties for that type of error)

• a �eld named where (a vector of line describing the occurrences of this error type, giving
information about where and how it has triggered)

1 {
2 "result":

23

CHAPTER 6. PROVIDING INTEROPERABILITY IN ROBOCHECK 24

3 [
4 {
5 "name" : "Error type no.1.",
6 "key" : "Error description.",
7 "value" : "0.66",
8 "where" :
9 [
10 { "line" : "Details about where and how." },
11 { "line" : "Details about where and how." }
12]
13 },
14 {
15 "name" : "Error type no.5.",
16 "key" : "Error description.",
17 "value" : "0.33",
18 "where" :
19 [
20 { "line" : "Details about where and how." }
21]
22 }
23]
24 }

Listing 6.1: Robocheck - JSON output

The output is generated at the end of Robocheck run, because errors must be summed and
interpreted in order to remove duplicate errors and correctly format them. Some tools may
report the source �le where the error occur as a full path, whilst other may report the source
�le relative path. This kind of inconsistencies should be �xed so that the parser can correctly
interpret if two di�erent errors are duplicates or not.

6.2 vmchecker Integration

One of the main purposes of the new version of the Robocheck is to be used in the Operating
Systems class starting as soon as the next academic year.

vmchecker is used in many classes at University POLITEHNICA of Bucharest. It is a frame-
work that provides storage and automatically checking of the functionality for the submitted
assignments. It is used to simplify the process of grading assignments because the students can
verify the correctness of their assignments before the deadline and assistants doesn't have to
manually run tests to verify the submissions.

Robocheck needed an infrastructure to automatically check code quality for the assignments.
Because vmchecker already exists and it is already widely used in the faculty, a need for
integrating these tools arises.

The �rst approach was to change the vmchecker architecture in order to support integration
of various modules. This could have been done by creating new con�guration options and
designing support for integrating modules. vmchecker would run the basic test (as before)
and, after that, would start running the enabled modules one by one.

Even though this approach looks clean and simple at �rst sight, the actual redesign, along with
adding modules into it, would be quite di�cult given the existing architecture. vmchecker
is designed to create a virtual environment and run a set of tests on the application. This

CHAPTER 6. PROVIDING INTEROPERABILITY IN ROBOCHECK 25

mechanism is simple and straightforward as the framework doesn't need to be aware of what it
is testing, it only depends on the tests and assignment implementation.

The solution that was implemented approaches the problem in a di�erent manner, to minimize
the awareness of vmchecker about the existence of other tools. To achieve this, one can simply
modify the testing script in order to extend the testing scenario and add quality checking by
running Robocheck.

After running the tests, vmchecker collects the output �les from the testing environment and
stores them in the storer machine (section 2.7). The output of the Robocheck framework is
stored in a �le named robocheck.vmr. The Graphical User Interface (GUI) grabs the output
of Robocheck (the robocheck.vmr �le) and parses it and appends to the grade.vmr �le. In
the end, the grade.vmr �le will contain the feedback on the assignment seemingly given by a
Teaching Assistant.

Section 8.3 contains an example of how a grade.vmr �le looked without the addition of
Robocheck and how it looks after.

Chapter 7

The Robocheck Con�guration Tool

As mentioned before, Robocheck is an extensible framework and provides mechanisms to con�g-
ure what tools to be run, with what parameters, what �les to test and how the penalty module
should work.

The con�guration tool starts from a basic template (presented in listing 7.2, with no con�gu-
rations made) of the XML �le. This tool is built simultaneously with the Robocheck framework
and it is exported as a command line program with the name robo_config. robo_config
provides incrementally changes for the con�guration �le.

The con�guration �le must be named rbc_config.xml. The tool reads the XML �le and
interprets its parameters in order to add new settings. Listing 7.1 shows the tool's options.

1 --list-all-tools
2 --list-startup-tools
3 --list-tool-info [tool name]
4 --list-err-info [error ID]
5 --list-all-errors
6 --create-tool [Tool Name] [Tool Path] [Tool type]
7 --register-tool [Tool Name]
8 --register-error [error ID] [tool name]
9 --register-parameter [tool running parameter] [tool name]
10 --add-static-parameter [source name]
11 --set-executable [executable]
12 --add-dynamic-parameter [executable parameter]
13 --add-error-details [error ID] [penalty additional info] [error

count] [penalty value] [penalty value type]
14 --set-penalty-info [true/false] [libpenalty path].

Listing 7.1: robo_config Options

The command robo_config --list-all-tools is printing all the tools supported by
Robocheck.

To view all the errors that Robocheck can identify, one can simply use the command
robo_config --list-all-errors to print all the errors and will associate a number for
each error (an error ID).

For example, to con�gure Robocheck to also run Dr. Memory and be able to identify memory
leaks, invalid access exceptions, usage of uninitialized variables and invalid frees, the following
commands must be run:

26

CHAPTER 7. THE ROBOCHECK CONFIGURATION TOOL 27

robo_config --create-tool drmemory libdrmemory.so dynamic
robo_config --register-tool drmemory
robo_config --register-error 1 drmemory
robo_config --register-error 2 drmemory
robo_config --register-error 3 drmemory
robo_config --register-error 19 drmemory

Incrementally adding settings to Robocheck provides �exibility and sturdiness. It is very simple
to change small things, but in order to achieve a complete setup, there are many commands
that must be run.

In the previous version of the Robocheck framework, errors could be added manually, from the
con�guration tool. The addition was made by changing the header �le where the error types are
de�ned and Robocheck needed to be rebuilt. There is little �exibility in such option, because
one can not add an error that does not exist in the implementation of the Robocheck. Adding
random errors would only bewilder the framework, because it wouldn't have the capabilities to
treat them and would also introduce a big overhead by rebuilding the framework each time a
new error was added.

The con�guration tool was changed, and the --create-error option was removed. Robocheck
is now capable of identifying 19 types of errors. By removing this option, the unnecessary 19
builds became history. In the current implementation, all errors are added by default. robo_-
config must start from a simple XML where all possible errors are already added. The header
�le where the corresponding macros are de�ned is now static, it does not change in time.

1 <?xml version="1.0" encoding="utf-8"?>
2 <appSettings>
3 <init output="NULL">
4 <tools count="0">
5 </tools>
6 <input/>
7 <penalty load="false" lib_path="libpenalty.so"/>
8 <err_count value="19"/>
9 </init>
10 <installed_tools count="0">
11 </installed_tools>
12 <errors>
13 <err_1 id="1" name="Memory leak"/>
14 [... 18 more errors ...]
15 </errors
16 >
17 </appSettings>

Listing 7.2: Robocheck - Simple XML Con�guration File

Incrementally changing the XML �le might be a time consuming action. In order to minimize
the time spent to create a full con�guration, some additional scripts were created. These scripts
must be included in the tests archive when running Robocheck as part of the vmchecker tool.

The scripts contain a maximum con�guration of the Robocheck, with all tools available for that
platform con�gured and with all possible errors to be traced. They also contain an example
of how the penalties can be con�gured. The script for the Linux platform is called gen_-
config.sh and the script for Windows is called gen_config.bat. Both of them are located
in the root of the Robocheck repository.

Chapter 8

Results

At the moment, all of the objectives for the new release of the Robocheck framework are accom-
plished. The framework is now capable of running on Windows and can be easily integrated
with other tools, vmchecker included.

It was a great and rewarding experience to work with this tool and the biggest achievement is
that the tool can now be �nally used, at least, in the Operating Systems class.

8.1 New Robocheck Release in Numbers

gitstat is a useful tool that can be used to generate di�erent statistical informations about
git repositories. In order to generate clean reports, a new clone of the repository was required
in order to eliminate (using git filter-branch) binary �les from the commit history.

As one can see in �gure 8.1, the new version of the Robocheck framework meant:

• adding 2600 lines of code

• removing 975 lines of code

An important part of the previous version was rewritten in order to provide compatibility with
C89 standard.

Figure 8.1: gitstats Results on Robocheck Repository

28

CHAPTER 8. RESULTS 29

8.2 Assignments Tests

This section reviews statistics about the penalties applied by the Robocheck framework. The
tests were run by using vmchecker tool. Table 8.1 describes the con�gured penalties for the
test suite.

Table 8.1: Penalties Con�guration

Error Name Penalty Value For How Many
Memory leak 0.2 1
Invalid access exception 0.3 INF
Uninitialized 0.2 INF
File descriptors error 0.1 INF
Data race 0.1 INF
Dead lock 0.1 INF
Unlock 0.1 INF
Destroy 0.1 INF
Condition variable 0.1 INF
Hold lock 0.1 INF
Duplicate code 0.2 INF
Static variable 0.1 INF
Signed unsigned 0.1 INF
Unveri�ed function return cal 0.3 INF
Function line count exceeds maximum admit 0.2 INF
Function indentation exceeds maximum admit 0.2 INF
Trailing whitespace 0.2 INF
Mixed tabs with spaces 0.2 INF
Invalid free 0.1 INF

8.2.1 Assignment no. 0 - Operating Systems

There were 175 assignments uploaded in vmchecker. 4 of them didn't compile, so basically
there were only 171 valid assignments submitted.

The smallest penalty was 0. There were actually 7 assignments with no penalty.

The biggest penalty was 2.7. There was only one assignment with that much penalty.

The average penalty was 0.71.

Table 8.2 describes a more precisely overview on the penalties applied by Robocheck.

Table 8.2: Assignment no. 0 - Overview

Error Name No. of assignments No. of appearances
Memory leak 120 354
Invalid access exception 24 24
Uninitialized 71 212
Duplicate code 72 143
Static variable 141 1158
Signed unsigned 7 9

CHAPTER 8. RESULTS 30

8.3 grade.vmr. Before and after Robocheck

This section contains examples of the feedback provided by an assistant (without using Robocheck)
and the feedback provided by Robocheck framework.

Case 1 - student Alexandru B.

One can see the feedback provided, manually, by an assistant for the assignment in the grade.vmr
�le, in vmchecker:
-0.4: memory leaks
+0.0: good coding style
-- Traian

Further down, one can see the feedback provided automatically by the Robocheck framework,
when running in combination with vmchecker:
-1.20: New memory leak modification (In function ht_find, in file
hash_table.c, at line 80; In function ht_print_bucket, in file
hash_table.c, at line 125; In function get_input_files, in file
tema0.c, at line 64; In function exec_commands, in file tema0.c, at
line 99; In function exec_commands, in file tema0.c, at line 88;
In function parse_command, in file tema0.c, at line 129;)
-0.20: Use of unitialized variable (In function list_remove, in file
linked_list.c, at line 83; In function open_file, in file util.c, at
line 57;)
-0.10: Use of non-static variables or functions in a single module
(In file hash_table.h, at line 49; In file tema0.c, at line 22; In
file tema0.c, at line 23; In file tema0.c, at line 24; In file
tema0.c, at line 26; In file tema0.c, at line 27;)
-0.10: Assignment from signed to unsigned (In function trim, in file
util.c, at line 113;)

Case 2 - student Valentin I.

One can see the feedback provided, manually, by an assistant for the assignment in the grade.vmr
�le, in vmchecker:
+0.0: nice coding style :)
-- Irina

Further down, one can see the feedback provided automatically by the Robocheck framework,
when running in combination with vmchecker:
-0.20: New memory leak modification (In function execCommand,
in file tema0.c, at line 189;)
-0.20: Use of unitialized variable (In function add, in file
tema0.c, at line 61;)
-0.10: Use of non-static variables or functions in a single
module (In file tema0.c, at line 21; In file tema0.c, at line 32; In
file tema0.c, at line 46; In file tema0.c, at line 55; In file
tema0.c at line 79; In file tema0.c, at line 103; In file tema0.c, at
line 113; In file tema0.c, at line 124; In file tema0.c, at line 134;
In file tema0.c, at line 143; In file tema0.c, at line 162;)

Chapter 9

Future Development

At the time of this writing, Robocheck works and is able to provide useful functionality, its
stability needs to be further improved. There are a lot of features that need to be added for it
to become a mature project.

9.1 TUI for Generating XML-Con�guration File

One useful tool would be a TUI (Text-based User Interface) for the con�guration tool. At
the moment, a sample script is present in the repository to help one to understand the capa-
bilities provided by the Robocheck framework. The script can be easily modi�ed to produce
con�guration changes.

Nevertheless, it would be more convenient if the tool had a TUI to guide the assistants through
the entire con�guration process. The interface could be developed using the ncurses library.

9.2 Multiple Language Support

At the moment, the Robocheck framework can only verify assignments written in C. It would
be very useful to support other programming languages tools.

Extending the framework with other language support would be useful because this will permit
for other classes to integrate automatically checking of the code quality.

Java is the next big target for the framework, because there are many assignments written in
this language for the Algorithms Design and Object-Oriented Programming classes. The �rst
step would be identifying tools that can be run for checking coding style in Java. Simian for
example could be also used here, to check for modularity of the written code.

31

Appendix A

Compiling, Installing and Running

Robocheck

The source code of the Robocheck framework is available in Git repository at git://ixlabs.cs.
pub.ro/robocheck.git. The repository also contains additional source �les for integrated tools,
but some of them must be manually installed following the provided instructions.

A.1 On the Linux Platform

It is recommended to clone the repository in /robocheck/repo directory. One may also clone
the repository somewhere else, but the modi�cation of some of the paths listed below must take
into consideration.

Some packages are needed to be installed before trying to compile the project. The needed
packages are listed in the install �le script. Run the script.

Copy the .jar �les from modules/simian/ to /lib/.

Append the following lines to ~/.bashrc:
export PATH=/robocheck/repo:$PATH
export LD_LIBRARY_PATH=/robocheck/repo

Run source ~/.bashrc to update the environment variables accordingly.

The con�guration binary can be accessed by using the command robo_config. After gen-
erating the complete con�guration into a �le named rbc_config.xml, use the robocheck
command to run the framework.

Run robocheck 2> /dev/null to �lter the output and only display the JSON output �le.

A.2 On the Windows Platform

It is recommended to clone the repository in C:\\robocheck\repo directory. One may also
clone the repository somewhere else, but the modi�cation of some of the paths listed below
must take into consideration.

Go to win-install directory.

Install DrMemory-Windows-1.4.6-2.exe.

32

git://ixlabs.cs.pub.ro/robocheck.git
git://ixlabs.cs.pub.ro/robocheck.git

APPENDIX A. COMPILING, INSTALLING AND RUNNING ROBOCHECK33

Extract splint-3.1.1.win32.zip archive to C:\\splint-3.1.1\ .

Install jxpiinstall.exe.

Change the Path environment variable. From Desktop, right-click My Computer and click
Properties. In the Advanced section, click Environment Variables button. Edit Path
variable in the Systems Variable by appending the following:
;C:\\robocheck\repo;C:\\robocheck\repo\lib-win

The con�guration binary can be accessed by using the command robo_config.exe. After
generating the complete con�guration into a �le named rbc_config.xml, use the command
robocheck.exe to run the framework.

Run robocheck.exe 2>NUL to �lter the output and only display the JSON output �le.

Bibliography

[1] S. Oualline, �C Elements of Style.� M & T books, November 1992.

[2] C. Socoteanu, �Robocheck - Integrated Code Validation Tool.� Diploma Project, University
POLITEHNICA of Bucharest, July 2011.

[3] I. Bolcu, �Robocheck - Integrated Code Validation Tool.� Diploma Project, University PO-
LITEHNICA of Bucharest, July 2011.

[4] J. Seward, M. Nethercote, and J. Weidendorfer, �Valgrind - Advanced Debugging and Pro-
�ling for GNU/Linux applications.� Network Theory Ltd., March 2008.

[5] D. Bruening and Q. Zhao, �Practical Memory Checking with Dr. Memory.� International
Syposium on Code Generation and Optimization, April 2011.

[6] L. A. Grijincu, A. Mos
,
oi, C. Gheorghe, and I. M. St nescu, �vmchecker.� Scienti�c Student

Projects Session, University POLITEHNICA of Bucharest, May 2009.

[7] J. R. Levine, �Linkers and Loaders.� Morgan Kaufmann Publisher, October 1999.

[8] M. Klein, �Windows Programmer's Guide to DLLs and Memory Management.� Sams Pub-
lishing, September 1992.

34

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 History of Robocheck
	1.3 Limitations in the Initial Version of Robocheck
	1.3.1 Platform Dependency Issues
	1.3.2 Non-intuitive Configuration of Penalty Facility
	1.3.3 Non-Standard Output Format
	1.3.4 Running Robocheck as an Application
	1.3.5 Unexpected Parsing Errors

	1.4 Project Proposal

	2 Tools of the Trade
	2.1 Valgrind
	2.2 Helgrind
	2.3 Simian
	2.4 Splint
	2.5 Sparse
	2.6 Dr. Memory
	2.7 vmchecker

	3 Overview of The Robocheck Framework
	3.1 Description of the Initial Robocheck Architecture
	3.2 Description of the Current Robocheck Architecture
	3.3 Penalty Library in Robocheck
	3.3.1 Initializing
	3.3.2 Freeing Resources
	3.3.3 Applying Penalties

	3.4 Adding New Modules in Robocheck
	3.4.1 Implementing a New Module

	4 Updating Tools in the Linux Implementation
	4.1 Integration of Dr. Memory

	5 Porting Robocheck on Windows
	5.1 Missing Libraries
	5.2 Making the Code Compatible with C89 Standard
	5.3 Loading and Unloading Dynamic Libraries
	5.3.1 Passing Objects Across DLL Boundaries
	5.3.2 Life of a Dynamic Memory Block Allocated Inside a DLL

	6 Providing Interoperability in Robocheck
	6.1 JSON Format for Output of Robocheck
	6.2 vmchecker Integration

	7 The Robocheck Configuration Tool
	8 Results
	8.1 New Robocheck Release in Numbers
	8.2 Assignments Tests
	8.2.1 Assignment no. 0 - Operating Systems

	8.3 grade.vmr. Before and after Robocheck

	9 Future Development
	9.1 TUI for Generating XML-Configuration File
	9.2 Multiple Language Support

	A Compiling, Installing and Running Robocheck
	A.1 On the Linux Platform
	A.2 On the Windows Platform

