
Imperial College London

Department of Computing

Machine Learning of Rules for Part of
Speech Tagging

Submitted in partial fulfilment of the requirements for the MSc Degree in Computing Science

/ Machine Learning of Imperial College London

September 2014

Abstract

In this thesis we approach the problem of Part-of-Speech tagging which is one of the
most important problems in the field of Machine Translation. Some research has been
invested lately in machine learning of rules for PoS taggers, mainly using Inductive
Logic Programming systems such as Progol. A newer ILP framework, Meta Interpretive
Learning arose from the need to tackle some underexplored areas of logic learning,
namely predicate invention and learning of recursion. Throughout the thesis we detail
the implementation of two PoS disambiguators that use different approaches to machine
learning of rules using the Metagol system, one of which achieves state of the art level
accuracy. With MIL being introduced in 2013, the project has a highly exploratory
nature: our end goals were to provide a Proof of Concept, suggest solutions for some
of the issues we encountered and discuss tradeoffs between producing good rules and
execution time. Even though we did not primarily aim for high accuracy, our final
system is able to compete with other recent implementations of rule-based PoS taggers.

Contents

1 Introduction 1
1.1 Problem description / Motivation . 1
1.2 State of the Art . 2
1.3 Thesis structure . 2

2 Rule based translation systems 4
2.1 Statistical vs Rule based . 4
2.2 Apertium project . 5
2.3 Rules in Machine Translation . 9
2.4 Constraint Grammar . 10

3 ILP. Meta Interpretive Learning 13
3.1 MIL as an ILP framework . 14
3.2 Metagol D - Dyadic Metagol . 15

3.2.1 Concept learning . 17
3.2.2 Action learning . 18
3.2.3 Breadth First Search example . 18
3.2.4 Episodic learning . 20

4 Learning Prolog disambiguation rules 21
4.1 General description . 21
4.2 Machine learning framework setting . 24
4.3 Baseline disambiguator implementation 26
4.4 Using concept learning . 27
4.5 Using action learning . 33

5 Selecting a good set of rules 44

6 Results 48

7 Conclusion and future work 52

Appendices 53

A Auto-generated examples 54

i

Chapter 1

Introduction

1.1 Problem description / Motivation

Part of speech tagging is an important problem in the field of NLP (Natural Language
Processing) and a key part in most of the machine translation systems. Part of speech
tagging deals with the problem of identifying the part of speech of each word in a corpus.
Most of the time the tagging process includes deduction of other detailed attributes
such as gender (nouns), tense (verbs), number (pronouns). The result of this process is
often fed into machine translation systems that use algorithms which make translation
decisions based on the tags of the words (part of speech plus attributes).

A part of speech tagger can be broken down into two different pipelined compo-
nents, namely lexical analysis and disambiguation. Lexical analysis is the first stage of
the PoS tagging in which words are looked up in dictionaries and assigned all possible
interpretations (readings) disregarding the context around them. This leads to a prob-
lem that needs to be solved by the second component in the pipeline: some of the words
are ambiguous with respect to their part of speech (one example in English is the word
fall which could be either a noun or a verb) or with respect to their attributes (read
can be either present or past tense of the verb to read). The percentage of ambiguous
tokens in the English language is around 33% (obtained by applying the Apertium 1

lexical analysis on a corpus of almost ten thousand words from different sources). The
goal of the disambiguation process is to assign the correct reading to each one of the
ambiguously tagged words. While the first part may seem trivial, the disambiguation
is much more complex. Modern PoS taggers use machine learning algorithms (such as
Hidden Markov Models or Maximum Entropy models) in order to score readings and
decide which is the most probable one. These statistical approaches have high accu-
racy, over 90% of the words have correct readings after the PoS tagging. Almost perfect
(> 99%) disambiguation has been demonstrated using disambiguation rules written by
linguists. The major problem here is that rules require human knowledge and are hard
to maintain as their number increases.

There is an area where statistical and rule based approaches overlap and it usually

1http://www.apertium.org/

1

CHAPTER 1. INTRODUCTION 2

involves automatically generating and selecting rules, although currently no system
can match rules produced by linguists. Throughout the thesis we will deal with the
problem of learning such rules making use of a framework inside ILP (Inductive Logic
Programming), namely Meta Interpretive Learning. Our goal is to demonstrate the
possibility of learning disambiguation rules as Prolog programs.

The importance of PoS tagging is immediate from the MT (machine translation)
point of view: better tagging means more information for the rest of the translation
pipeline and usually leads to higher quality translations. Improving translation tech-
niques results in better access to information across different languages and cultures.
The Apertium project (which we will use as a reference throughout this thesis) is, for
instance, focused on language pairs for which major machine translation systems have
limited or no coverage so its performance directly affects speakers of the respective
languages, lowering the language barrier between them and information available in
foreign languages.

The part of speech tagger problem has been tackled multiple times in the literature
[1, 2, 3, 4, 5], most the applications being in the field of Machine Translation.

1.2 State of the Art

There are two fundamentally different approaches to the Part-of-Speech tagging prob-
lem.

On one side we have statistical approaches. The main idea behind them is to design
probabilistic models (Hidden Markov Models, Artificial Neural Networks), train and
use them to classify ambiguously tagged words. State of the art PoS tagging systems
use 3-gram or, sometimes, even 4-gram models (the features are extracted from 3 and
4 tokens around a certain word) [6].

On the other side we have rule-based approaches, where the idea is to gather a set of
good rules that can be used for Part-of-Speech disambiguation. While the Brill tagger
[7] is a good example of a rule based system where rules are machine learned, there
are also frameworks such as Constraint Grammar (introduced in [8] and later refined
in [9]) which allows humans to manually write rules for disambiguation.

While human produced rules usually achieve ∼ 99% accuracy under CG-3, machine
learned statistical models perform better in practice (∼ 96%) than state of the art
rule-based methods (∼ 94%).

Researchers have expressed interest in logic learning approaches to learning rules,
most notably using the Progol ILP system [10, 11].

1.3 Thesis structure

In Chapter 2 we will discuss the key differences between statistical and rule-based
machine translation systems. We will focus on the latter while studying implementation
details of the Apertium system. The reader will be presented with examples of how
rules can be used in machine translation at some of the different stages of the Apertium

CHAPTER 1. INTRODUCTION 3

pipeline. Towards the end of the chapter we will discuss the concept of Constraint
Grammar and how hand written rules can lead to good part of speech disambiguation.

Chapter 3 is an overview of the Inductive Logic Programming field. We will focus
on the Meta Interpretive Learning framework and, more specifically, on the Metagol D
system, discussing key concepts such as concept learning, action learning and episodic
learning. Each of the sections contain brief examples of what is achievable and how the
learning works in general.

The relation between MIL and learning of disambiguation rules will be presented
in chapter 4. We will discuss the use of concept / action learning in the context
of PoS disambiguation together with implementation details of the learners in each
case. This chapter also includes implementation of a trivial statistical approach to PoS
disambiguation which will be used as a baseline.

In chapter 5 we will deal with the problem of selecting a good set of rules for the
disambiguation: we employ a genetic algorithm that takes all the rules learned by the
Metagol D system and try to find the best combination. This step is necessary because
at previous stages we generate rules from random examples with different generalization
and usefulness degrees.

Detailed results of all experiments are presented and discussed in Chapter 6, while
Chapter 7 is reserved for conclusion and future work.

Chapter 2

Rule based translation systems

2.1 Statistical vs Rule based

The main two trends in Part of Speech tagging and, more broadly, Machine Translation
systems are statistical and rule based approaches. The fundamental difference between
the two types of systems is the that decision making relies either on statistical measures
or rules.

A notable SMT (Statistical Machine Translation) system example is Google Trans-
late 1, while RBMT (Rule Based Machine Translation) has been implemented by
projects like Apertium 2.

The choice of the used approach is usually dependent on the available resources.
In the case of SMT, the system uses aligned corpuses of translated texts (also called
parallel translations) in order to be able to build a good statistical model. Depending
on data availability, simpler or more complex models can be used. In any case, this
type of system usually requires large amounts of data, but less human intervention. On
the other hand, RBMT are employed whenever the data is scarce. This scarcity of data
needs to be replaced by human knowledge in the form of rules written by linguists.
The main issue with this approach is that it needs linguists trained in each one of
the source and target language pairs. The rules are usually hard to maintain as their
number increases, but they can achieve much higher accuracies in specific situations
where only a few examples would be available for the SMT systems.

On most occasions the two approaches overlap and we face hybrid translation sys-
tems which use a different approach for different stages in the pipeline. For instance, the
Apertium project is traditionally a RBMT system, but it also uses statistical modeling
for parts of its pipeline (it can make use of statistical models for PoS disambiguation,
while using rules for grammar transfer). The translation system could also use different
combinations of algorithms in the pipeline for each language pair in particular; again,
the choice is made based on availability of data and / or human knowledge). A survey
on statistical machine translation systems can be found in [12].

1http://translate.google.com
2http://www.apertium.org

4

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 5

Figure 2.1: Apertium translation pipeline.

2.2 Apertium project

The information in this section is mainly based on the introductory paper of the Aper-
tium project. The paper [13] presents the main idea behind the Apertium translation
system along with details of the translation pipeline design choices.

The translation platform was initially aimed at translating related languages (the
two systems that formed the basis of the project being a Spanish-Catalan MT system
[14] and a Spanish-Portuguese MT system [15]), but has been extended later to cover
more distant language pairs, such as Spanish-English [13]. Apertium is the engine
behind the web based translation interface at http://www.apertium.org, as one of the
goals of the project is to provide tools and a sufficiently modular design for building
MT related projects on top of it; more details can be found in its introductory paper
[16].

Before advancing to the details of the Apertium pipeline we need to discuss the
Apertium stream format. The stream format is a standard way of encoding needed
linguistic information from one stage to the other. Examples of input / output will
be provided for each of the modules in the Apertium engine, while trying to translate
the HTML formatted sentence “<p> Yesterday I read a book </p>.” using
the English - Spanish language pair. Figure 2.1 illustrates the interaction between the
main components of the Apertium translation engine.

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 6

Deformatter

Since the translation is supposed to only transform the contents of a document and not
its format, the deformatter module marks the format of the input document with []
so that later stages will be able to distinguish the content that is to be analyzed. After
deformatting has been applied, our sentence looks like this:

.[][<p>]Yesterday I read a book.[][<\/p>
]

We can see in the previous example that the HTML tags have been isolated by the
deformatter. It also marks the sentence boundaries with .[] and uses
as an escape character (we will see that the slash character (/) has a special meaning
in the Apertium stream format, so it needs to be escaped). Note that the newline at
the end will also be ignored at later stages, being thought as part of the formatting of
the document.

Morphological analyzer

The morphological analyzer segments the input in tokens (surface forms or, where de-
tected, multi-word lexical units) and performs a lexical analysis on each one of them
[13]. In order to do so it uses a compiled dictionary of the source language (English,
in our case). This stage can be seen as the first step of the PoS tagging: each token
is augmented with one or more readings which contain information regarding a mor-
phological part (noun, verb, pronoun, etc.) together with possible attributes (such as
number, gender, tense, etc.). Take the following example (our initial sentence after this
stage):

ˆ./.<sent>$
[][<p>]
ˆYesterday/Yesterday<adv>$
ˆI/I<num><mf><sg>/prpers<prn><subj><p1><mf><sg>$
ˆread/read<vblex><inf>/read<vblex><pres>/

read<vblex><past>/read<vblex><pp>$
ˆa/a<det><ind><sg>$
ˆbook/book<n><sg>/book<vblex><inf>/book<vblex><pres>$
ˆ./.<sent>$
[][<\/p>
]

Regarding the stream format, we can see that format related input has been ignored;
the analysis did transform words into tokens and all of them have some associated
readings, separated by slashes (/). A token with more than one reading is said to be
ambiguous (examples include read and book). The ambiguity comes in two different
forms. In some cases the part of speech is unambiguous, but its attributes are: take,

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 7

for instance read/read<vblex><inf>/read<vblex><pres>/... – the analysis
tells us that this is a verb for sure, but its tense is still ambiguous (a choice of infinitive,
present, past and present perfect). On the other hand in the case of book the analysis
reveals that it could be both a noun and a verb (so the morphological class could not
be identified from the dictionary alone). The ambiguity will be solved by the next
stage of the translation engine. Some of the words do not experience any kind of
ambiguity: the word a is, for sure, a determiner and has only one reading associated
(a<det><ind><sg>).

If the dictionary lookup fails, the tokens are marked using an * sign.

Part of Speech tagger

The name of this stage in the Apertium translation engine as described in [13] is some-
what misleading. The part of speech tagger deals, in the context of the Apertium
system, with disambiguation - its goal is to select one reading per token. The im-
plementation used for this example is based on Hidden Markov Models trained using
information from a hand tagged corpus. An alternative to this approach is to have man-
ually produced rules for a Constraint Grammar style disambiguator (this technique is
also implemented by the Apertium project, CG-3). The morphologically analyzed and
disambiguated sentence becomes:

ˆ.<sent>$
[][<p>]
ˆYesterday<adv>$
ˆprpers<prn><subj><p1><mf><sg>$
ˆread<vblex><past>$
ˆa<det><ind><sg>$
ˆbook<n><sg>$
ˆ.<sent>$
[][<\/p>
]

Notice that after this stage each token has only one reading associated.

Lexical transfer

At the lexical transfer stage, tokens are looked up in a bilingual dictionary and aug-
mented with their corresponding translation in the target language. The following
example is self explanatory:

ˆ.<sent>/.<sent>$
[][<p>]
ˆYesterday<adv>/Ayer<adv>$
ˆprpers<prn><subj><p1><mf><sg>/prpers<prn><tn><p1><mf><sg>$
ˆread<vblex><past>/leer<vblex><past>$

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 8

ˆa<det><ind><sg>/uno<det><ind><GD><sg>$
ˆbook<n><sg>/libro<n><m><sg>$
ˆ.<sent>/.<sent>$
[][<\/p>
]

Note that all words have been successfully translated into their Spanish counter-
part; in the event of a lookup fail, the token is not translated and will be marked by
prepending an @ sign.

Structural transfer

The structural transfer stage applies grammar transfer rules from the source language
into the target language. Notice, in the following example, the removal of the pronoun
“I” because in Spanish it can be inferred from the verb form. The grammar trans-
fer rules are encoded in multiple manually produced XML files (the process actually
consists of three different stages: transfer, interchunk and postchunk, each one of them
with focus on different types of grammar transformations).

ˆ.<sent>$
[][<p>]
ˆAyer<adv>$
ˆleer<vblex><ifi><p1><sg>$
ˆuno<det><ind><m><sg>$
ˆlibro<n><m><sg>$
ˆ.<sent>$
[][<\/p>
]

Also, note the disappearance of the source language forms - from this stage on, we
only deal with the target language.

Morphological generator

The morphological generation stage transforms each token according to its associated
tags into the correct form of the word in the target language. Consider the output of
this stage for our example:

.[][<p>]Ayer leı́ un libro.[][<\/p>
]

The infinitive form of “leer” (to read) has been transformed into its past tense,
first person, singular form “leı́” (inferred from the tags “<ifi><p1><sg>”), in ac-
cordance to the Spanish morphology.

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 9

Post generator

The post generator performs different language specific orthographic operations on the
translated text based on rules from a manually produced XML file. The operations
include contractions, apostrophations (French j’adore) / hyphenation (Romanian s-au)
or epenthesis (English a apple → an apple) [13]. There are no such operations to be
performed on our example, so the output of this stage is the same as the previous one:

.[][<p>]Ayer leı́ un libro.[][<\/p>
]

Reformatter

The reformatter reverts the changes made to the document at the deformatting stage.
Using the HTML reformatter, we get the following final result (correctly translated
from English to Spanish, with HTML format preservation):

<p> Ayer leı́ un libro </p>

2.3 Rules in Machine Translation

In this section we are going to detail the use of rules in a RBMT system, with examples
from the Apertium translation engine. Although many stages of the pipeline make
use of rules, we will briefly discuss lexical / structural transfer and then focus on PoS
disambiguation. By studying the transfer we can get an idea of the expressiveness of
the rules, while the constraint grammar style PoS disambiguation rules will serve as a
starting point for our own disambiguator design.

The lexical transfer rules analyze each token in the stream and provide translations
for each word / expression (usually looking them up in a bilingual dictionary). Because
they are applied on a single token at a time they cannot do word reordering, but are able
to add, remove or change tags (although the decisions will not have any information
from the the surrounding tokens or their properties). This restriction is in place in order
to create a clear separation between lexical transfer and structural transfer, leading to
higher modularity.

Structural transfer rules are able to process multiple tokens at once and have access
to the full stream of tokens when performing transformations (the previously mentioned
restriction is not in place anymore). Because the rules can also do word reordering,
they are used for grammar transfer and rarely provide word to word translations (this
is nevertheless possible, but all such rules should be pushed into the lexical transfer
stage). A simple example where word reordering is needed is the following English
to German translation: “Today I (subj) went (pred) home” → “Heute ging (pred) ich
(subj) nach Hause.”; this is because in German, for stylistic reasons, the relative order
or the subject and predicate in a sentence differs from the English one (PS compared
to SP). Thus, a simple structural transfer rule could be ”Identify the subject and
predicate and swap them”.

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 10

There are different algorithms that can be used to apply rules for part of speech
disambiguation. All of the algorithms make decisions of tag addition / removal based
on the context of a token, namely its surrounding tokens and their respective tags (if
the tags could have been unambiguously determined only by looking at isolated tokens,
it would have been done in the morphological analysis step).

The Brill tagger has been introduced in Eric Brill’s PhD thesis [7] in 1992 and is
one notable example for rule based PoS disambiguation. It is able to achieve good
disambiguation accuracies by following an interesting rule application policy: it tries
to identify and change incorrect tags according to their context and some predefined
rules until convergence. In the context of the Brill tagger, rules are also called patches,
as they “patch” (make corrections) on tokens.

Some of the following rules have been included in the original paper introducing
the Brill tagger [7] (rules 4-9 were skipped, but the original numbering has been kept):

(1) TO IN NEXT-TAG AT
(2) VBN VBD PREV-WORD-IS-CAP YES
(3) VBD VBN PREV-1-OR-2-OR-3-TAG HVD
(10) NP NN CURRENT-WORD-IS-CAP NO

A natural language rewriting of the first rule would be “replace TO with IN if
next token has the tag AT”. The general form of the patches in natural language is
“replace TAG with OTHER TAG if SOME TEST”. While the first patch tests for a tag,
in the second rule we see that the test is PREV-WORD-IS-CAP YES, which translates
to “the previous word starts with a capital letter”. As opposed to (2), rule (10)
will be applied whenever the test is false (note the NO at the end which implies that
CURRENT-WORD-IS-CAP is false). Lastly, rule (3) looks for the HVD tag in any of
the previous three tokens. [7]

This selection of rules shows us some of the key aspects of Brill style rules: tag
replacing, tests based on the context and negation. The Brill tagger needs in practice
a few hundreds of rules either written by linguists or mined from a tagged corpus using
machine learning (for comparison, the original paper states an error rate of less than
5% for the English language with only 71 rules).

Another example is Constraint Grammar, which will be discussed in more detail in
the next section.

2.4 Constraint Grammar

The concept of Constraint Grammar was first introduced by Fred Karlsson in 1990 [8].
Pasi Tapanainen designed an improved version of CG-1 for his book in 1996 (CG-2)
[9]. Apertium uses a newer version of constraint grammar, namely CG-3, provided by
an open source implementation of CG-2 with further improvements. The use of CG-3
has been demonstrated in [17], where the author performed grammatical analysis on

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 11

Portuguese text. This paper [18] shows great improvements over a statistical disam-
biguation approach by including CG-3 rules (the article states that rules were written
in about 20 hours by linguists).

We will briefly discuss the following rules that are implemented in Apertium for the
language pair hbs-slv (Serbo-Croatian → Slovenian):

Rule 1: Proper noun / Adjective is Proper noun.
SELECT:NP NProp

IF (0C NProp OR A) ;

Rule 2: Noun after noun is genitive.
SELECT:Noun_Noun<gen> N + Gen

IF (-1 N) ;

Rule 3: Modified word gender/number/case cleaning.
REMOVE:ModifiedCase Nomen + $$CASE

IF (-1 Modifier) (NOT -1 Modifier + $$CASE) ;

First rule instructs the parser to always select a NProp tag (proper noun) over an A
(adjective) tag. The condition following the IF requires that the current token (relative
position 0) is ambiguously tagged with NProp and A. The second rule selects a reading
that contain both N and Gen tags whenever the previous token (the one in position -1
relative to the current token) is a noun. The third rule is more complex and has the
effect of removing the $$CASE value if the previous token is a modifier which does not
have the respective $$CASE. This heuristic is based on the fact that the Nomen and
its modifier should be in accordance with respect to gender, number and case.

These three rules contain examples of the two basic actions in CG (reading selection
and removal), multiple tests, references to tokens from the context (relative positions
to the current token), logical negation and the use of tag variables.

In order to produce more compact and readable rules the CG framework allows the
definition of lists and sets of tags. Note that these definitions are not necessary, they
only provide a more structured way of writing rules:

Words that have gender, number and case:
LIST Nomen = top al ant cog n np prn adj;

Words that agree in case, number, gender with
the following word.
SET Modifier = A | Num | DemPron | PosPron | IndPron;

Hand written rules used in combination with the Constraint Grammar framework
can achieve high accuracies, but there are still a few issues to deal with. One problem is
the need of linguists who have a good understanding of natural language grammars and
are trained in both the source and target languages. Another issue is the maintainability

CHAPTER 2. RULE BASED TRANSLATION SYSTEMS 12

of the rules; as the set incorporates more and more rules, overlaps and clashes between
them becomes a real problem (this is partly solved by prioritizing rules with respect
to the time when they were added). In order to maintain the high accuracy and make
the process fully automatic, research has been invested lately in machine learning of
Constraint Grammar style rules.

The research done in this thesis shows that there is potential for automatically learn-
ing rules using Meta Interpretive Learning, an Inductive Logic Programming frame-
work. Our disambiguators will use two fundamentally different rule designs which are
less expressive versions of CG style rules (our rules can be translated into CG rules,
but the other way around is not possible).

Chapter 3

ILP. Meta Interpretive Learning

Inductive Logic Programming (ILP) has been introduced in a research paper by S. Mug-
gleton in 1991 [19]. The field of ILP finds itself at the intersection between machine
learning and logic programming [20], by providing us with methods to learn theories in
the form of logic programs. In the following definition of Machine Learning “A com-
puter program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E” [21] it is not clearly specified what T and E might be.
The most important thing that logic learning achieves is the unification (in terms of
representation) of algorithm, data and hypothesis: all of them can be described as logic
programs. Inductive Logic Programming builds up on this and explores ways to com-
pute a suitable hypothesis from examples. This paper [22] brings to the surface further
details and provides the reader with applications where the unified representation is
important.

A typical ILP setting uses the following three concepts: background knowledge (B),
examples (E) and hypothesis (H). Background knowledge can be seen as a collection
of facts (logic statements) known in advance. With the use of B, the hypothesis needs
to unify with all positive examples (E+) and fail for all negative examples (E−). The
formal way of expressing this is described by the following equation (we say that B and
H entail E) [23]:

B ∧H |= E (3.1)

One way to approach the problem would be to formulate and test all possible
hypotheses H. We can avoid doing so by performing a directed search from the (B,E)
tuple, since the previous equation is equivalent (as we also learn from [23]) to

B ∧ E |= H (3.2)

One notable example of ILP system that implements this search is the Progol sys-
tem, also being described in [23]. These systems can be used to learn almost any logic
program that a human engineer could write. By using suitable background knowledge
and no more than 10 examples, the following hypothesis has been derived [20]:

13

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 14

qsort([], []).
qsort([X|T], S) :- part(X, T, L1, L2),

qsort(L1, S1),
qsort(L2, S2),
append(S1, [X|S2], S).

In this example the background knowledge implemented the definitions of the two
predicates used in the body of qsort, namely part (which partitions the elements of
T in lists L1 and L2 with respect to the chosen pivot X) and append (which produces
the result S as the concatenation of S1, the pivot X and S2).

Inductive Logic Programming could prove a great tool for Machine Translation
from many perspectives and there have been multiple attempts at learning rules for
a Part-of-Speech tagger. In [10], for instance, the author provides a simple language
grammar for the disambiguator and uses ILP to identify patterns in the data and build
a logic program that will decide which tags to remove from each word. Note that in
this case the task of a human operator is not completely eliminated. The major is-
sue with this approach is that it is not language agnostic: the grammar encoded as
background knowledge is language specific and needs to be produced by a human oper-
ator. Nevertheless, this approach yielded good results in terms of accuracy, performing
almost as good as other state of the art Part-of-Speech taggers. Another interesting
example and more relevant for our case is [11]. Here, the target was to demonstrate the
possibility of learning Constraint Grammar style disambiguation rules using Inductive
Logic Programming. In contrast with [10], the authors did not introduce any grammar
rules in the background knowledge. The reported accuracy on a large training set was
97% which, by their definition, does not mean complete disambiguation, but careful
removal of wrong readings (i.e. some of the words were still ambiguously tagged, but
they were counted as accurate whenever they still retained the correct reading). The
final logic program was also not very compact, consisting of about 7000 rules.

As it also results from the previously cited experiments, rule-based PoS tagging can
be easily represented in terms of logic programs, mainly because rules can be encoded
as logic statements (in the Prolog programming language, for instance, each rule could
be represented by a different predicate).

3.1 MIL as an ILP framework

Meta Interpretive Learning is a framework for ILP that emerged in the recent years.
It arose from research in the field of ILP focused on two key concepts: learning of
recursion and predicate invention, both being previously underexplored despite initial
interest [24].

While ILP systems such as Progol use inverse entailment to produce a single clause
from a single example, Meta Interpretive Learning uses logical abduction to build H
as a solution to the set of positive examples E+ (while checking the integrity of the
theory against the set of negative examples) [24].

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 15

A subtle refinement is that B (the background knowledge) can be written, in the
case of MIL, as the tuple B = (BM , BA), where BA is represented by the building
blocks of the hypothesis (regular predicates, same as before), while BM defines the
metarules (rules for building the hypothesis). This further refinement gives us control
over how the hypothesis might look like, while also providing more structure to the
learner in general by making a clear distinction between the “building blocks” (BA)
and the “binding material” (BM).

In [24] we find an interesting example of learning a FSM (Finite State Machine) only
from positive examples. It is possible to only supply positive examples to any machine
learning algorithm at the expense of over-generalization. Although it depends on the
background knowledge, this is less likely in the case of MIL because of its inductive bias.
The inductive bias of a machine learning algorithm is represented by the constraints
used to build the hypothesis (which, in turn, is used to output prediction for previously
unseen examples) [25]. One of the simplest examples of inductive bias is known as
“Occam’s Razor” which is equivalent to the popular “entities should not be multiplied
beyond necessity” phrase (John Punch, 1639). In our case, the reduction of the hy-
pothesis is achieved through iterative deepening (the size of the theory is increased by
one each time the learner fails to find a hypothesis of the current size 1). Metarules
and background knowledge also introduce inductive bias and keep the hypothesis from
being over-general. It is nevertheless still possible to produce overgeneralization: for
instance we could define one predicate that states “Everything is true.”; then indeed,
with a suitable metarule and no negative examples, this predicate could be used by the
MIL learner to build a theory with one clause that is always true.

3.2 Metagol D - Dyadic Metagol

While the hypothesis space searched by MIL has many interesting properties, a more
recent paper [26] introduces the MetagolD system (Dyadic Metagol) and demonstrates
two of its key properties. First, recursive logic programs learned using the MetagolD
will always terminate (this is achieved by ensuring certain ordering constraints of the
predicates in the body of a clause). Secondly, a logarithmic bound in the number of
examples of the hypothesis size is enough to PAC-learn 2 the H2

2 space (H i
j is defined

in the paper as the space of all hypotheses that consist of predicates of arity at most i,
while having at most j atoms in their bodies).

The name of the system, Dyadic Metagol, comes from the fact that it explores the
H2

2 space mentioned above: its metarules are based solely on predicates of arity one
(we call them monadic predicates) and two (dyadic predicates). In [26] the authors
designed a simulated experiment to prove that a robot would be able to learn how to
build a stable wall using MetagolD. The final hypothesis is presented below (has been
taken from the cited paper):

1By size we refer to the number of clauses in the theory.
2PAC - Probably Approximately Correct

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 16

buildWall(X, Y) :- a2(X, Y), f1(Y).
buildWall(X, Y) :- a2(X, Z), buildWall(Z, Y).
a2(X, Y) :- a1(X, Y), f1(Y).
a1(X, Y) :- fetch(X, Z), putOnTopOf(Z, Y).
f1(X) :- offset(X), continuous(X).

Notice predicate invention (a2, a1 and f1) and the use of recursion in the second
clause (buildWall). Predicates fetch, putOnTop, offset and continuous form
the background knowledge and act as fluents (sensors) and actions that can be carried
out by the robot. This logic program enables a robot to make a plan for building a
stable wall from a heap of bricks.

We are now going to discuss metarules in more detail with respect to MetagolD’s
implementation in Prolog. A metarule is a Prolog fact (clause with no body) of the
following form:

metarule(MetaruleName, MetaSubst, Rule, PreCond, Prog).

The following is a code example of an actual metarule that implements a post
checked action (this metarule fits, for instance, the definition of a2 predicate in the
stable wall building example):

Listing 3.1: Metarule example

metarule(
post_checked_action, % Metarule name.
[P/2, Q/2, R/1], % Metasubstitutions
([P,X,Y] :- [[Q,X,Y]-true, [R,Y]-true]), % Rule.
(
pred_above(P/2, Q/2, Prog), % Preconditions.
pred_above(P/2, R/1, Prog)

),
Prog). % Program.

The MetaruleName is only used to specify to a meta-interpreter which are the
metarules that it can use to build the hypothesis. MetaSubst contains a list of vari-
ables that are going to be bound by the meta-interpreter to actual predicates from
the background knowledge; each of the variables has an arity associated and it will
be bound only to those predicates from BA that match the respective arity. The
Rule part contains the structure of the clause that will be abduced by MetagolD. In
the example above, it states that the rule should be of the form P(X, Y) :- Q(X,
Y), R(Y). with postconditions true for Q and R. The postconditions can perform
complex tests to ensure some needed external consistencies (i.e. not derived from exam-
ples); note that these postconditions can make use of everything present in the clause.
Preconditions are implemented here as a quick test on the current metasubstitu-
tions. They are used in the example above for a precedence test that ensures that P will
be always above Q and R, thus not producing recursion (demonstration is presented in
[26]). Finally, Prog serves as an internal state of the meta-interpreter and will not be
given by the programmer.

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 17

MetagolD can be used for robot planning, as we saw before, if we think of monadic
predicates as fluents and dyadic predicates as actions. All these predicates will receive
a state of the world and will either test or change it. The concept of background
knowledge becomes more clear in this context: the robot has to implement all the
actions it can carry on and all sensors. All we need is an encoding of the state of
the world, same for all predicates and some metarules. The rule structures we present
below are adapted from an older version of MetagolD written by Stephen Muggleton in
Prolog and also referenced in the paper [26].

SimpleAction(S1, S2) <-
CheckedAction(S1,S2) <- Action(S1,S2), PostCondition(S2)
GuardedAction(S1,S2) <- PreCondition(S1), Action(S1,S2)
ComplexAction(S1,S2) <- SubAction1(S1,S3), SubAction2(S3,S2)

SimpleCondition(S1) <-
ComplexCondition(S1) <- SubCondition1(S1), SubCondition2(S1)
PostCondition(S1) <- Action(S1, S2), Condition(S2)

This example has a good expressive value because it shows us how actions and
fluents can be put together in meaningful ways. Also, this set of metarules is enough to
learn all the H2

2 space since it contains all the possible useful combinations of predicates
of arity at most two with at most two clauses in the body. By useful we mean that
some combinations are missing: predicates with one clause in the body are not present.
This was intended, take for instance Cond(X) :- Cond1(X).: Cond is never useful
since we could just directly use Cond1 instead every time we needed, and the same
goes with others.

3.2.1 Concept learning

We will call the task of learning monadic predicates Concept learning. This is because
the only argument of the monadic predicate can be a concept on which it will decide,
returning true or false depending on whether the unification has succeeded or failed,
respectively.

The hypothesis, however, does not need to consist only of monadic predicates (sim-
ple and complex conditions): we can imagine a scenario in which we want to learn
whether a car looks good in the color red or not. A simple way of doing so is to encode
the state of the car, have a dyadic predicate that paints it and then a monadic one that
checks whether it looks good or not:

looks_good_red(Car) :-
paint_red(Car, RedCar), looks_good(RedCar).

The metarule we need to use is listed in the previous subsection as PostCondition
and proved to be particularly useful for the first part of our project. We will implement
our first part of speech disambiguator around this idea of concept learning: given a

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 18

context (a list of words) the action will extract one word and the condition will check
the existence of a certain tag.

The same approach has been used in the two previously mentioned research papers
that dealt with PoS tagging [10, 11]: the learned rules were, in fact, predicates for
identification of concepts (such as nouns, adjectives) or for making the decision of
reading removal.

3.2.2 Action learning

When we say action learning we mean learning of dyadic predicates. Again, this does
not mean that the theory should consist solely of dyadic predicates, but merely that
the specific predicate that we want to learn has an arity of 2, as in the case of the wall
building robot example.

While monadic predicates can model concept identification as we illustrated before,
dyadics can be thought as actions that change the state of an object. While there are
no research papers (to the best of our knowledge) that target directly at learning dyadic
predicates for part of speech tagging disambiguation, we found a way to make use of
them: instead of learning rules for identifying concepts based on their properties and
the context around them and pairing these rules with only one, well defined action (such
as the reading removal in [11]), we let the MIL learner to also learn the transformation
that should be applied on the words (selection / removal of readings). This way, part of
the disambiguator is in the rules themselves – they are the ones that directly transform
the stream of words, while the rest of the algorithm only selects and applies rules until
no further change is possible. We think this is a better approach and the ultimate goal
for MIL would be to learn the whole disambiguator implementation from examples,
not just rules. This is not possible at the moment due to extremely poor performance
when dealing with large hypotheses.

3.2.3 Breadth First Search example

While experimenting with MetagolD we decided to test it on a simple example: learning
of the BFS algorithm.

First of all, we need to define the state of the BFS algorithm. We encoded this state
as a list of three elements, [Q,V,G]. Q will act as a queue, V is the list of nodes visited
up to a point and G contains the graph as a list of [U, [V1, V2, ...]] (U is a node in the
graph, while V1, V2, ... its neighbors). One example is the following list which encodes
the graph from figure 3.1 with Q = {3, 4}, V = {1, 2, 3, 4}:

[[3, 4], % Queue.
[1, 2, 3, 4], % Visited nodes.
[[1, [2, 3]], % Graph adjacency lists.
[2, [3, 4]],
[3, [4]],
[4, []],
[5, []]]]

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 19

1

2 3

4
5

Figure 3.1: Example graph.

Now for the predicates that operate on this encoding of the BFS state, making up
the background knowledge:

� queue empty – extracts Q from the state and succeeds if it is an empty list.

� queue not empty – extracts Q from the state and succeeds if it is not an empty
list.

� add neighbor nodes to queue – extracts the first node in Q and pushes all
its neighbors at the end of Q.

� remove queue duplicates – removes any duplicate nodes from the queue
(keeping only the first occurrence).

� pop queue – removes the first element from Q.

� mark queue visited – adds all elements in Q to V and removes the duplicates
from V (set reunion of Q and V in V).

The only monadic predicates are queue empty and queue not empty, with the
rest of them being dyadic.

MetagolD was able to learn the following hypothesis from only three positive exam-
ples (pairs of initial and final states of the BFS algorithm) and no negative examples:

Listing 3.2: Breadth First Search – Generalised Metagol

% Episode 1
bfs_step(A,B) :- bfs_step_1(A,C), bfs_step_2(C,B).
bfs_step_1(A,B) :-

add_neighbor_nodes_to_queue(A,C), remove_queue_duplicates(C,B).
bfs_step_2(A,B) :-

mark_queue_visited(A,C), pop_queue(C,B).

CHAPTER 3. ILP. META INTERPRETIVE LEARNING 20

% Episode 2.
bfs(A,A) :- qempty(A).
bfs(A,B) :- not_qempty(A), bfs_step(A,C), bfs(C,B).

Please note the Episode x comments in listing 3.2. This matter will be treated
in the next subsection.

3.2.4 Episodic learning

The idea of episodic learning in MIL is useful whenever we want to learn a chain of
clauses that depend one on the other. Take the BFS example in 3.2: in the first episode
we provide examples for one step of the Breadth First Search algorithm while in the
second episode we provide examples for the whole algorithm. The MIL learner will
link the two episodes and try to reuse all the predicates it created in previous episodes.
This is why it is able to use bfs step in the definition of bfs – we did not explicitly
include it in the background knowledge, but it was created in a previous episode.

In the case of a robot learning its way in on a 2D grid the episodic learning can be
used to build an exponential ladder of movements:

� Episode 1 – the learner gets examples for moving one position to the right and
learns the move right 1 predicate.

� Episode 2 – the learner gets examples for moving two positions to the right, reuses
move right 1 and learns the move right 2 predicate.

� Episode 3 – the learner gets examples for moving four positions to the right,
reuses move right 2 and learns the move right 4 predicate.

� Episode N – same process is applied, the learner will output a hypothesis for
moving 2N−1 cells to the right.

Using the predicates learned in previous episodes, the robot can now combine, for
instance move right 2 and move right 4 to move 6 positions to the right. In this
way, any movement up to 2N − 1 is possible in just N + 1 episodes (N for learning
the exponential ladder and one for the target movement, if the number of cells is not a
power of two).

Chapter 4

Learning Prolog disambiguation
rules

4.1 General description

Throughout this chapter we are going to discuss two different PoS disambiguators writ-
ten in Prolog, along with their respective rule designs and learning processes. Although
the two disambiguators are different in some respects, both follow the same general idea
of identifying suitable contexts in which some rules can be applied. Rules are mined
using random examples fed into a MIL learner and then selected by two different algo-
rithms, the most notable one being a genetic algorithm.

The PoS disambiguation stage comes immediately after morphological analysis in
the translation pipeline. Let’s consider the following example which has been ambigu-
ously tagged in the previous stage (“Yesterday I read a book”):

ˆYesterday/Yesterday<adv>$
ˆI/I<num><mf><sg>/prpers<prn><subj><p1><mf><sg>$
ˆread/read<vblex><inf>/read<vblex><pres>/

read<vblex><past>/read<vblex><pp>$
ˆa/a<det><ind><sg>$
ˆbook/book<n><sg>/book<vblex><inf>/book<vblex><pres>$
ˆ./.<sent>$

This constitutes input for our disambiguator which should remove wrong readings
and output the unambiguous version. First, we use Prolog’s DCGs (Definite Clause
Grammars) to parse the raw text and get lists of split tokens as follows:

� isolate tokens:
["Yesterday/Yesterday<adv>", ...]

� split tokens into readings:
["I", "I<num><mf><sg>", "prpers<prn><subj><p1><mf><sg>"]

21

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 22

� augment each reading with metadata:
["I<num><mf><sg>", ["num", "mf", "sg"]]

The last step is necessary for performance reasons: most of the time rules will
lookup tags inside tokens, so preprocessing and adding them as metadata will save
computing time later in the disambiguation process.

The input reader module will present us with a list of tokens on which rules can
now be applied. A context is represented by a list which contains a central token (to
be disambiguated) and some of the tokens around it. In our case we will always take
into consideration the same amount of tokens to the left and to the right of the word
that needs disambiguation, which we call context radius. More formally, a context of
radius r around token Ti is:

[Ti−r, ..., Ti−1, Ti, Ti+1, ..., Ti+r] (4.1)

Disambiguation rules are Prolog predicates that operate on contexts. They are pro-
duced by an MIL learner and, in our implementation, can be monadic or dyadic. A
monadic rule is actually a test that is performed by the disambiguator, while the dyadic
rules perform context transformations (note that in order to produce disambiguation
some readings need to be removed; in the case of monadic rules the action of select-
ing some reading is performed whenever the predicate is true for a certain context).
Example rules:

(1) concept(concept_2867, "n").
concept_2867(C) :- post_token(C, T), is_sent(T).

(2) rule_3(A, B) :- one_part_b_n(A), cg_remove_p1(A, B).
token_b([_, B, _, _, _], B).

The first rule is specific to the first disambiguator that we implemented as a proof
of concept. The predicate concept links the test concept 2867 to the tag n - this
way the disambiguator knows that it has to select readings that contain this specific
tag whenever concept 2867 unifies. Here we worked on contexts of radius 1 (lists
of three elements, [Tpre, Tcentral, Tpost]) and the predicate post token extracts Tpost

from the context, while is sent checks whether the extracted token contains the tag
sent. Overall the rule can be translated as “select noun (remove every other reading)
whenever the central token is the last word in a sentence” (sent tags mark sentence
boundaries). An intuition of this heuristic rule is that sentences often end with a noun
(“Yesterday I read a book.”).

The second rule (corresponding to the second disambiguator that we wrote) contains
one test (one part b n) and one action (cg remove p1). It works on contexts of
radius 2 encoded as [Ta, Tb, Tc, Td, Te], where Tc is the central token. The example
also includes the implementation of the helper predicate token b which extracts the
token in position b (can be read as the previous word). So, overall, the rule says “if the
previous word can be a noun (has at least one reading containing n) remove readings
that imply first person from the current token”. The intuition behind the rule might be

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 23

that the noun preceding a verb is often the subject, so the number of the verb can’t be
first person (“The horse fell.”).

After the disambiguators repeatedly select and apply these rules we get less and
less ambiguity (readings get removed). The algorithm stops when no further changes
can be made to the stream of tokens.

In order to produce candidate rules we use the MIL (Meta Interpretive Learning)
framework. The process can be summarized as follows:

� Rule design. We can see from the example above that the design of rules is
specific to each disambiguator. The idea we had in mind in the first case was
a monadic predicate that would be able to decide the part of speech (and its
attributes) based on a 1-radius context around the central token. In the second
case we wanted to learn Prolog programs that performed Constraint Grammar
style transformation (reading selection / removal) by analyzing a 2-radius context
around the central token (leading us to a rule represented as a dyadic predicate
with a few tests in its body followed by a cg select / cg remove action).

� Background knowledge. As background knowledge for the MIL learner we had
to implement helper predicates (building blocks for the actual rules). We can dis-
tinguish between two types of background knowledge: hand written and automati-
cally generated. The hand written predicates are mainly used for the extraction of
tokens from contexts (such as “pre token([C, T]) :- C = [T, ,].”),
while the automatically generated background knowledge provides wrappers like
“is pr(Token) :- token has tag(Token, "pr").”, for all possible tags.

� Metarules implementation. For each type of disambiguation rule we need
to implement a metarule that tells the MIL learner what is the structure of the
rule we wanted to produce. While the metarules for the first disambiguator
are simpler, in the second case they also include post tests that ensure certain
consistency properties.

� Example acquisition. At this point we have everything we need to start learn-
ing rules from examples. For this step we have implemented example generators
that use some filtering and randomly draw instances of contexts that are fed into
the MIL learner. The training corpus consists of aligned files of ambiguously
tagged and handtagged texts.

� Learning of rules. The actual rules are learned by feeding the randomly gen-
erated examples to the learner and checking whether it was able or not to find a
suitable hypothesis. This is the most time consuming step because it involves the
probability that a randomly generated example will actually produce any rule at
all. In order to lower the time we introduced some simple filters, such as isolating
examples by their ambiguity class (for instance, the example generators are able
to select only those contexts where we need to decide between a noun and a verb).

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 24

Because of the randomly selected contexts that make up the examples we can end
up with some less accurate rules for the disambiguators. The extra step that we took
to take care of this is rule selection. The rule selection receives all the rules that
have been mined by the MIL learner and selects a subset of them that provides the
best accuracy on the training data. This enables us to remove unnecessary rules (thus
speeding up the disambiguation process by having to check less rules) and also assigns
priorities in the case of the second disambiguator.

4.2 Machine learning framework setting

The data we used in our experiments for training and evaluation has been made avail-
able by the Apertium open source organization under the GNU GPL v2 license. It
consists of a series of texts ambiguously tagged by the morphological analyzer which
are aligned with unambiguously hand tagged counterparts.

At training time, we present the MIL learner with pairs of contexts (ambiguous and
hand tagged) and expect it to form a hypothesis (rule) that fits the supplied pairs.

At evaluation time, we supply the ambiguously tagged testing data to our disam-
biguators (along with learned rules) and store their prediction. An evaluation script
compares our prediction with the hand tagged file and counts the errors. The script
computes two different metrics:

� Overall accuracy.

Aoverall = 1− Ecount

Ntotal
(4.2)

where Ecount is the number of errors the disambiguator made (differences from
the handtagged files) and Ntotal is the total number of tokens in the input file.
It can be thought as “the fraction of correct, unambiguous tokens from all the
tokens”.

� Disambiguation accuracy.

Adisambiguation = 1− Ecount

Nambiguous
(4.3)

where Ecount is the same as above (error count) and Nambiguous is the number
of ambiguous tokens in the input file. This accuracy is strictly related to disam-
biguation: it reveals what fraction of the ambiguous tokens has been correctly
disambiguated.

The first metric is always higher than the second one (since the disambiguators do
not change already unambiguous tokens in the input) and is the one usually reported in
research papers. The second metric allows us to take a better look at the disambiguation
process alone, eliminating the already unambiguous tokens from the equation.

In our experiments, we employed a 3-fold cross validation. We split the data in three
equal parts and we always use two of them for training and one of them for testing.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 25

We repeat the process three times with a different fold left out for testing. This way
we ensure that we use all examples for testing at least once.

In order to be able to produce background knowledge for the MIL learner we needed
to implement tools for extracting relevant information from the data, such as ambiguity
classes, most frequent lemmas and tags.

We found out that we have to deal with total number of 60 tags: parts of speech
(adj - adjective, n - noun, vblex - lexical verb, det - determiner) and their attributes
(past - past tense, sg - singular, f - feminine, gen - genitive case).

Some of the rules run tests against the lemma part of the token (the word in the
original text without tags: ˆI/prpers<prn><subj><p1><mf><sg>$ → I). These
rules tend to overfit the data, but they might as well prove useful when perform tests
on frequent words (articles, determiners). The following table illustrates the 5 most
frequent lemmas in our corpus (along with their respective counts):

Lemma Occurrences

the 986

of 644

and 550

to 456

in 430

Table 4.1: Top lemmas from the dataset.

An ambiguity class is a collection of tags that always appear together in the same
token after the morphological analysis. Ambiguity classes prove to be useful at the
example generation step - filtering by ambiguity class reduces the probability of getting
examples that contain completely unrelated contexts, thus increasing the probability
that the learner will produce a valid (and useful) hypothesis. Note that this kind of
filtering is only used for the second disambiguator that uses dyadic predicates as rules.
The following table contains the top 5 ambiguity classes:

Ambiguity class Occurrences

<vblex><past>/<vblex><pp> 1335

<vblex><inf>/<n><sg>/<vblex><pres> 1005

<adj>/<n><sg> 813

<adv>/<pr> 556

<vblex><inf>/<vblex><pres> 423

Table 4.2: Top ambiguity classes from the dataset.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 26

4.3 Baseline disambiguator implementation

The accuracy of our disambiguators will be compared to a baseline implementation
(discussed in detail in this section) and the HMM (Hidden Markov Models) disam-
biguator described in this paper [6] and currently implemented as part of the Apertium
translation engine.

The baseline implementation is based on a probabilistic unigram language model:
a token is disambiguated to the reading that provides the highest probability of the
tags. Let’s consider the following token: X = {R1, R2, ..., Rr}. Ri ∈ X is a reading
and can be viewed as a set of tags: Ri = {T1, T2, ..., Tt}; we want to choose the reading
that has the maximum probability with respect to its tags.

Per tag probabilities are computed based on their frequencies in the hand tagged
files as follows:

p(T) =
N(T)

N
(4.4)

where N(T) is the number of times tag T appears in the hand tagged tokens and
N is the total number of tokens.

We can view a reading as a set of tags R = {T1, T2, ..., Tk}, |R| = k. The probability
of a reading R is defined as:

p(R) =
∏
T∈R

p(T) (4.5)

The baseline disambiguator will then choose a reading R ∈ X such that p(R) ≥
p(R′), ∀R′ ∈ X.

In order to avoid rounding errors we can apply ln in equation 4.5 and use the
additiveness property of logarithms to transform the product into a sum as follows:

ln(p(R)) = ln(
∏
T∈R

p(T)) (4.6)

ln(p(R)) =
∑
T∈R

ln(p(T)) (4.7)

And since the natural logarithm is a strictly increasing function we continue to
select the reading R with the highest log probability. More formally, we now choose
R ∈ X such that ln(p(R)) ≥ log(p(R′)),∀R′ ∈ X.

The effect of this probabilistic model on the data is that it will always return the
same, most probable reading from each ambiguity class. The following table illustrates
this on the most frequent five ambiguity classes:

The baseline has a disambiguation accuracy of 60.60% and an overall accuracy
of 89.05%. When compared against the hand tagged data, the raw output from the
morphological analyzer has an overall accuracy of 72.30% (which means that this per-
centage of tokens came out unambiguous after the dictionary lookup in morphological
analysis stage of the translation pipeline).

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 27

Ambiguity class Selected reading

<vblex><past>/<vblex><pp> <vblex><past>

<vblex><inf>/<n><sg>/<vblex><pres> <n><sg>

<adj>/<n><sg> adj

<adv>/<pr> <adv>

<vblex><inf>/<vblex><pres> <vblex><pres>

Table 4.3: Reading selection by the baseline algorithm for top ambiguity classes.

4.4 Using concept learning

General description and rule design

In this section we are going to detail the idea, implementation and results of a disam-
biguator based on concept learning. This was a proof of concept disambiguator that
was implemented as the first part of the project.

This disambiguator works by concept identification - the disambiguator tries to
recognize a certain concept in the stream of tokens (a noun, for instance) and then
removes every reading that does not match the specified concept. Specifically, if the
disambiguator recognizes the noun concept in a token, then all readings that do not
contain the tag <n> will be removed:

book/book<n><sg>/book<vblex><inf>/book<vblex><pres>
→

book/book<n><sg>

Having in mind that the decision (concept identification) should be made by looking
at the context, we decided to implement the rules as monadic Prolog predicates that
receive a context as a parameter and unify iff the central token matches the concept.
We came up with the following simple rule design:

concept(test_pred, "tag1").
test_pred(Ctx) :- extract_token(Ctx, Token), is_tag2(Token).

The first part of the rule is a Prolog fact that links the predicate test pred to the
tag tag1. This way we know that the test pred predicate will be used to identify
the concept of tag1. The disambiguator will try the test pred on each context in
the ambiguously tagged stream and whenever it unifies, it will remove all readings from
the central token that do not contain the tag tag1.

Let’s take a look at the body of the test pred predicate. First, it calls an
extract token predicate (a choice of pre token / post token), which binds the
Token atom to either the previous or the next token with respect to the central one

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 28

from the context. The whole test unifies only if is tag2(Token) is true (actual
examples of is tag2(Token) include is adj(Token), is vblex(Token), etc.).

A natural language formulation of a rule can be “If the previous token is a noun,
the current one must be an adjective”. Its Prolog representation would then be:

concept(sample_rule, "adj").
sample_rule(Ctx) :- pre_token(Ctx, Token), is_n(Token).

It is worth noting that for concept learning disambiguator we are using contexts of
radius 1. That is, the disambiguator (as well as the learner) have access to only three
tokens from the stream at a time:

[Tpre, Tcentral, Tpost]

where Tcentral is the token for which we decide which readings to keep and which to
remove (this is, actually, the reason for which we have only two predicates for token
extraction, pre token → Tpre and post token → Tpost).

Metarules definition

In order to be able to use MIL to learn such rules, we need to specify only one metarule
for the learner:

metarule1(
dis1rule,
[P/1,Q/2,R/1], ([P,X] :- [[Q,X,Y]-true,[R,Y]-true]),
(pred_above(P/1,Q/2,Prog),
pred_above(P/1,R/1,Prog)), Prog).

In this metarule definition, apart from name, preconditions and program, we specify
the metasubstitutions and the rule structure. The metasubstitutions list tells MIL that
we are going to use three predicates in the clause we are trying to build: P and R of
arity 1 and Q of arity 2. The rule structure informs the learning framework that in
order for P(X) to be true, Q(X, Y) and R(Y) need to be both true. In our case, Q
will be used for token extraction (so X is will be the context, while Y will be a Token)
and R will be used for testing the token (replaced by an is tag predicate). Finally
P(X) is the disambiguation rule we are building (and will be used to identify a certain
concept).

Background knowledge

We need to provide the MIL learner with background knowledge in order to be able to
substitute predicate variables Q and R and form theories. For the substitution of Q we
provide the following hand written dyadic predicates:

pre_token (Ctx, Token) :- Ctx = [Token, _, _].
post_token(Ctx, Token) :- Ctx = [_, _, Token].

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 29

The substitution of R requires us to write one predicate per part of speech, so we
implemented a script that automatically generates the necessary monadics:

is_pr(Token) :- token_has_tag(Token, "pr").
is_past(Token) :- token_has_tag(Token, "past").
is_pri(Token) :- token_has_tag(Token, "pri").
...

Note that it is also possible to just generate a list of constants of the form ["pr",
"past", "pri", ...] and then use them in combination with token has tag
directly in the learner (with a suitable metarule). While the two approaches of tag
specification are perfectly equivalent we chose the first one because in the second dis-
ambiguator the latter would be less efficient.

The background knowledge for this disambiguation approach counts 62 predicates
(2 for token extraction and 60 for checking tags). At this point we can feed examples
into the MIL learner and record the generated hypothesis (if there is any, unrelated
examples might not be explainable in the bounds of the theory size that we impose).

Manual example

In order to get a better understanding of how examples should be built let’s take a look
at the learning episode in listing 4.1.

Listing 4.1: Manual example for disambiguator 1

episode(
% Concept name.
concept_n,
% One positive example.
[[concept_n,
[["a", ["a<det><ind><sg>", ["det", "ind", "sg"]]], % Pre token.
["book", ["book<n><sg>", ["n", "sg"]]], % Central token.
[".", [".<sent>", ["sent"]]]]] % Post token.

],
% No negative examples.
[]

).

From the listing above (and from A.1) we can see that one learning episode consists
of multiple positive and negative examples. Each one of these examples represents a
different 1-radius context encoded in Prolog lists, as described in the beginning of this
chapter.

Note that the MIL learner was intentionally only allowed to use the post token
and is sent predicates for this demonstration. Keeping this in mind and looking at
the code above we could easily formulate the following heuristic rule in natural language:
“A noun reading should be selected whenever it is the last word in a sentence”. In other
words, if the next token marks a sentence boundary then the current one is a noun. As
expected, Metagol comes up with the same hypothesis:

EXAMPLE EPISODE: concept_n

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 30

TRY CLAUSE BOUND: 1
TRY NEW PREDICATE BOUND: 0
TRY METARULE SET: [dis1rule]
FINAL HYPOTHESIS FOR EPISODE: concept_n, BOUND: 1

concept_n(A) :- post_token(A,B), is_sent(B).

The task of hand picking examples for Metagol is very tedious and error prone. It is
much more easier for a human to check the data and come up with good rules than to
manually select and provide examples to a machine learning algorithm. Nevertheless,
this provided us with a better understanding of the data and led to improvements of
the automated example generators we implemented.

Generating examples and learning

The purpose of any machine learning algorithm is to provide us with parameters such
that our model explains the data as accurately as possible. In our case these parameters
are represented by the rules we want to learn. Because our model does not take noise
into account we can’t just feed in all possible examples that fit a certain concept (a noun,
let’s say) and expect good rules because the algorithm will tend to overfit and it will
also take a large amount of time for Metagol to find a suitable hypothesis. Instead, we
rely on sampling a few examples each time, feeding them to the learning and recording
the theories. This does not eliminate the problem of overfitting, but significantly lowers
the execution time. We are going to deal with the problem of overfitting at a later point
by pruning the list of learned rules.

Because this disambiguator relies on the idea of concept identification it makes
little sense to provide cross-concept examples. That is, we will always try to find sets
of examples that will fit the same concept. Having this in mind, we have implemented
simple filters for our data that enable us to select only those 3-token contexts in which
the central token (in its disambiguated form) fits the concept we want to learn.

We might, for instance, want to learn the concept of singular (represented by the sg
tag) in our sample sentence “Yesterday I read a book.”. Since we set the goal ourselves
we will only provide examples in which the sg tag is present, such as ”Yesterday, I,
read” or ”a, book, .”. We can also learn rules without doing so, we might provide two
examples of different concepts and, if our theory bound permits, we will get rules for
explaining both; but in this situation we then need to trace back which rule applies
to which concepts because in the disambiguator we need to link concept tags to rules
through the concept fact (above all, as mentioned previously, the less related the
examples are, the more time it takes to learn a hypothesis).

Our example generator applies a by-tag filtering first and then randomly samples
the pool of contexts. We typically use 8 examples with a theory size bound (number of
Prolog clauses in the hypothesis) of 2-3. This is one simple way to avoid (or, at least,

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 31

to lower the probability of) overfitting: we ask that a small number of rules for concept
identification will cover a relatively large number of examples.

For a small automatically generated example, please refer to code listing A.1 in
Appendix A. Note that we are also using one negative example because we are trying
to avoid theories that fit other concepts as well - the negative example contains, as its
central token, one word that could not be found in the dictionary by the morphological
analyzer. Metagol will output a rule for concept identification that holds for all three
positive examples, but fails to unify when the negative example is supplied. We typically
use 3-4 negative examples each time (this has been found to be a good value by trial
and error, taking into account execution time and the frequency of failures to find rules
that would cover both positives and negatives).

The final hypothesis for the learning episode in A.1 is presented below:

FINAL HYPOTHESIS FOR EPISODE: concept_x, BOUND: 1
concept_x(A) :- pre_token(A,B), is_adj(B).

This is a good heuristic which says that a noun can be identified if there is an adjec-
tive before (obviously, the ambiguously tagged token must have the <n> tag associated
with at least one of its readings).

Using this method, we were able to mine about 900 rules. As we fed random
examples to the learner, some of the rules were low quality, so we had to prune the
initial set (this matter is discussed over the next subsection).

Rule pruning

The main idea behind rule pruning was to avoid overfitting and, to some extent, rule
overlapping. Since this disambiguator (implemented as the first step of the project) was
initially designed to serve as a Proof of Concept, we implemented a simple algorithm
for rule pruning just to get an idea of what can be achieved by a rule learning approach
to the task of PoS disambiguation.

First, we isolated all the rules that we were able to learn in the previous step and
fed them to the disambiguator one by one. This way we could measure the influence
that a single rule has on the accuracy. Then, we listed the rules in decreasing order
with respect to their accuracy gains and only kept the top K1 ones.

In order to make sure that each concept has the chance to be identified, we aug-
mented our list with the best K2 rules for each concept class (again, with respect to
the previously computed accuracy gain). Note that concept class actually means the
tag that was linked to the rule’s identification predicate (such as <n>, <sg>, etc.).

Finally, we eliminated duplicates from the list in order to make sure that no predi-
cate appears twice in the Prolog code file that was going to be supplied to the disam-
biguator. We repeated the experiments with different values for K1 and K2 and found
that good values for our conditions were K1 = 60 and K2 = 1.

Since the total number of rules is

Nrules = K1 + NconceptsK2 (4.8)

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 32

and we had about 60 different tags, we ended up with a total of about 120 rules,
not too far from the usual hand written CG-3 rule files.

Results

The disambiguator that we implemented in the first half of the project was designed to
be more exploratory than complex. The idea behind it was to prove that it is possible
to write a rule based disambiguator in Prolog with machine learned rules. In this
subsection we present results solely for the first part of the project (for an overview,
comparisons and further discussion please refer to Chapter 6).

The total number of rules we managed to learn using Metagol was about 900 (ap-
proximately 15 rules / concept). As mentioned before, in the pruning step we got rid
of most of them, keeping only about 120 rules (approximately 13.33% of them).

Table 4.4 shows the accuracy achieved by the set of rules before and after pruning
(baseline has been also added for comparison).

Before pruning After pruning Baseline

Adisambiguation 44.73% 70.66% 60.60%

Aoverall 84.60% 91.83% 89.05%

Table 4.4: Comparative results for PoS tagger 1

While high accuracy was not the main goal, we had better results than initially
expected. We can see that our disambiguator produced after rule pruning an improve-
ment of almost 10% over the baseline. The plot in figure 4.1 shows the evolution of the
accuracy after adding the top 60 rules by accuracy gain. The blue curve is a 3rd degree
polynomial interpolation of the actual data points and helps us to see the general trend.

As we can see in this figure, the first 60 rules are enough to produce an improvement
over the baseline by almost over 7% (blue curve above). The rest of improvement comes
from the second part of the pruning process in which we have kept the best rule for
each concept (green level). It is interesting to note that the first 5 rules seem to have
a huge influence on the disambiguation accuracy.

As a short conclusion, we managed to implement a PoS disambiguator in Prolog
with a simple rule design. While rules are traditionally manually written by linguists,
in our case we proved that they can be machine learned. By using the Metagol system
for learning (and with little post processing) we were able to substantially improve the
accuracy of our disambiguator over the baseline.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 33

55

60

65

70

75

0 10 20 30 40 50 60

A
c
c
u
r
a
c
y

(
%
)

Rule set size

PoS tagger 1 (interpolated)
PoS tagger 1 (raw)

After selection
Baseline

Figure 4.1: Accuracy comparison for PoS disambiguator 1

4.5 Using action learning

General description and rule design

In this section we are going to discuss implementation details and results of the second
disambiguator we implemented as part of this project. There are major improvements
over the previous PoS disambiguator with respect to metarules (with influence on the
rule types), example generator and selection process (equivalent to rule pruning in the
other case).

The main idea behind this disambiguator is that its rules also do stream transfor-
mations (remember that in the previous case the disambiguator used rules merely to
identify concepts and it was always applying the same action). We decided to mimic
the Constraint Grammar framework, so the actions that our disambiguator can take
are cg remove and cg select.

It is obvious that in this case we can not use monadic predicates and we will need
to learn dyadic predicates, as we basically want them to map from an input context to
a (at least partly) disambiguated context. As in the previous case we need some tests
that guard the decisions of applying cg remove / cg select so the rules will look

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 34

like this:

rule(In, Out) :- test1(In), test2(In), ..., testN(In),
action(In, Out).

First, how many tests we need in order to produce a good disambiguation? Surely,
less tests will produce more generalization, while more tests might be more accurate
in some situations (while being prone to overfitting). By looking at human produced
rules in Apertium we can see that linguists are able most of the time to achieve very
high accuracies (approx. 99%) with no more than 4 tests per rule (usually, one of these
tests is reserved to check the central token). We decided, then, to restrict our rules at
four context tests, while the first one will always check for a tag in the central token.

At this point, we wanted to take advantage of the two strong points of MIL, namely
predicate invention and learning of recursion. As it turns out, in our design of rules,
there aren’t good reasons for recursion. We could think of some scenarios where re-
cursion could be involved, but as it turns out, because of just a few number of tests
suffice, there is no real need for it. Nevertheless, the last chapter of the thesis presents
one scenario in which PoS disambiguators could benefit from learning of recursion.

Now let’s turn and investigate predicate invention within the MIL framework. As
we left recursion outside of this discussion, predicate invention occurs whenever it is
not possible for the learner to produce a hypothesis without any new predicates, while
obeying the metarules. With no recursion, it is always possible to produce a single
Prolog clause that fits all positive examples and does not fit any negative examples,
because we can always replace the call to a predicate with its body. Because of the
way Metagol works at the moment, the more metarules we need and the more invented
predicates we need to learn, the more time it takes. Initially, we tried to use the
metarules that would have produced the following types of predicates (dyadics with at
most two clauses in the body / monadics for tests):

disambiguate(C1, C2) :- test(C1), remove_part(C1, C2)
disambiguate(C1, C2) :- test(C1), select_part(C1, C2)
disambiguate(C1, C2) :- test(C1), disambiguate1(C1, C2)
test(C) :- test1(C), test2(C).

This way, we could link multiple tests and end with one of the two predicates at
the top, applying one of the possible actions. The problem is that in this case a rule
consisting of four tests and one action would look like this:

disambiguate(C1, C3) :- p1(C1), remove_part(C2, C3).
p1(C) :- p2(C), p3(C).
p2(C) :- some_test1(C), some_test2(C).
p3(C) :- some_test3(C), some_test4(C).

Notice the invented predicates p1, p2, p3: the only case in which they are truly
useful is whenever MIL can reuse them. In our experiments we found out that invented

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 35

predicates are rarely used in multiple rules. Moreover, due to the performance of
Metagol and the increased size of the resulting hypotheses, they become infeasible. We
then decided to create three metarules that would result in clauses with 1, 2 and 3 tests
(one extra test will always be added by us at a later point, at filtering and example
generation time).

Unlike the previous disambiguator, we will use here contexts of radius 2:

[Ta, Tb, Tc, Td, Te] (4.9)

We can see in 4.9 that each of the tokens has assigned a different letter: this
letter is paired with context extraction predicates that are used in the background
knowledge as helper predicates. The predicate token b(Context, T) will bind T
to the second token in the Context. In the Constraint Grammar introductory paper
[8] it is suggested that a window of 5 tokens should be sufficient to produce good
disambiguation.

Another addition to this disambiguator consists of rule priorities. Each one of the
rule predicates is linked to a certain priority through a Prolog fact. One example
is disambiguator rule(rule 491, 2).: the fact states that rule 491 has a
priority of 2. Note that in our case the lower the number, the higher the priority – in
other words, the disambiguator will exhibit a preference for rules that have assigned
lower numbers. From this point on we will refer to the minimum priority rule as the
rule with the lowest number assigned.

The workflow of the disambiguator for a single context is presented in figure 4.2.
The step for finding candidate rules imposes three restrictions on the rules:

� R(C,C ′) – the tests in the rule must unify with C and produce a (possibly)
disambiguated context, C ′.

� C ′ ⊂ C – the readings of the central token in C ′ need to be a subset of those
in C. That is, the rule must produce some disambiguation (remove at least one
reading).

� C ′ has at least one reading – there must be at least one reading in the central
token of the disambiguated context. Indeed, the Constraint Grammar framework
uses this constraint: rules cannot remove the last reading of a token.

Using this workflow, the disambiguator iterates over all tokens, extracts their con-
texts and produces disambiguation. The process is over when no further disambiguation
can be done using the rules – in this case, the disambiguator simply chooses one random
reading for the still ambiguous tokens and writes the stream.

Metarules definition

There are two important matters to be discussed in this subsection: rule types and
post conditions.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 36

Figure 4.2: Per context disambiguation.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 37

We argued that in our case, using predicate invention does not make much sense
taking into account the performance of the learning system, the size of the theory and
the fact that these invented predicates will probably not be reused in multiple clauses.
This affected the way we designed our rules. Specifically, we know that we always
want only one action per rule and at most 3 context tests, so we decided to write three
metarules that will produce predicates with 1, 2 or 3 context tests and not to make use
of predicate invention (since we would end up with the same programs, but expressed
in a different way). Let’s take a look at the metarule that could lead to the abduction
of a clause with two tests (T1 and T2) and one action (A):

Listing 4.2: Metarule 2 example

metarule1(ruletype2,
[P/2, T1/1, T2/1, A/2],
(
[P,CtxAmb,CtxHt] :-

[
[T1,CtxAmb]-true,
[T2,CtxAmb]-true,
[A,CtxAmb,Result]-learned_rule_sanity_check(CtxAmb, CtxHt, Result)

]
),

(
pred_above(P/2, T1/1, Prog),
pred_above(P/2, T2/1, Prog),

pred_above(P/2, A/2, Prog),
T1 \=@= T2

),
Prog).

First, notice the parameters of P: CtxAmb – the ambiguous context, CtxHt – the
handtagged context. Sure, we are in the learning part and, since we want to learn a
function P , we need to provide pairs of input-output as examples. Now, we don’t want
to force the learner to remove or select readings so that it produces full disambiguation
– it is better to be careful when removing or selecting readings and we don’t have to
do it at once, with only one rule. But in this case, we need some other way to check
whether the rule is good or not.

First of all, note that the action A in the metarule does not need to unify with
the handtagged context in its second parameter and its result is bound to the variable
Result. Indeed, unification would not work in those partial disambiguation cases. The
hypothesis that MIL will learn will look like p(A, B) :- test1(A), test2(A),
action(C). and we will have to process them and replace C with B.

Checking if a rule works on a certain example (CtxAmb / CtxHt pair) at learning
time is done through the learned rule sanity check predicate that establishes
the following post constraint between CtxAmb, CtxHt and Result:

Chandtagged ⊂ Cresult ⊆ Cambiguous (4.10)

where C1 ⊂ C2 means that the readings of the central token in C1 are a subset of the
readings of the central token in C2. The rationale behind this constraint is that a good
rule needs to produce some disambiguation (Cresult ⊂ Cambiguous) and also needs to still

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 38

keep the only reading in the handtagged version of the context (Cresult ⊆ Cambiguous).
Note the subset or equal in the second relation: the rule is not restricted from producing
full disambiguation.

Background knowledge

We need to provide Metagol with building blocks for the hypotheses that we want it
to be able to learn.

First, let’s focus on tests. We introduce two types of tests:

� one part pos tag
At least one of the readings of the token in position pos has the tag tag. Ex-
ample:

one_part_e_vaux(Ctx) :- token_e(Ctx, T),
token_has_tag(T, "vaux").

� all part pos tag
All of the readings of the token in position pos have the tag tag. Example:

all_part_e_vaux(Ctx) :- token_e(Ctx, T),
token_all_tag(T, "vaux").

We have generated all the possible combinations of one / all, positions and tags
and included them in the monadics set of predicates for Metagol.

On the other hand, the dyadics set of predicates contains all the possible actions
that can be carried on a context. The general form of such a predicate is

� cg select tag
Transforms the central token of the input context by removing all readings that
do not contain the tag tag. Example:

cg_select_n(CtxIn, CtxOut) :- cg_select(CtxIn, CtxOut, "n").

� cg remove tag
Transforms the central token of the input context by removing all readings that
contain the tag tag. Example:

cg_remove_n(CtxIn, CtxOut) :- cg_remove(CtxIn, CtxOut, "n").

Predicates that are present in the definitions of the above (such as cg remove or
token all tag) are not part of the background knowledge – they are helper predicates
implemented by hand.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 39

Manual example

In listing 4.3 we provide a manual example to the MIL learner. Note the context of
radius 2 (5 tokens) and the pair of ambiguous / handtagged instances. We did not
provide any negative examples and, in the case of this second disambiguator, we never
will (details of why we chose to do so are explained in the next subsection). The last
line in the code listing tells Metagol which metarules should use in order to build the
hypothesis (in this specific case, ruletype1, which means one test followed by a select
/ remove action).

Listing 4.3: Manual example for disambiguator 2

episode(
% Concept name.
rule_x,
% One positive example.
[
[rule_x,

[
["Yesterday", ["Yesterday<adv>", ["adv"]]],
["I", ["prpers<prn><p1><sg>", ["prn", "p1", "sg"]]],
["read",

["read<vblex><inf>", ["vblex", "inf"]],
["read<vblex><pres>", ["vblex", "pres"]],
["read<vblex><past>", ["vblex", "past"]],
["read<vblex><pp>", ["vblex", "pp"]]],

["a", ["a<det><ind><sg>", ["det", "ind", "sg"]]],
["book", ["book<n><sg>", ["n", "sg"]]]

],
[
["Yesterday", ["Yesterday<adv>", ["adv"]]],
["I", ["prpers<prn><p1><sg>", ["prn", "p1", "sg"]]],
["read", ["read<vblex><past>", ["vblex", "past"]]],
["a", ["a<det><ind><sg>", ["det", "ind", "sg"]]],
["book", ["book<n><sg>", ["n", "sg"]]]

]
]

],
% No negative examples.
[]

).

metaruless([[ruletype1]]).

The output of the learner can be seen below:

EXAMPLE EPISODE: rule_x

TRY CLAUSE BOUND: 1
TRY NEW PREDICATE BOUND: 0
TRY METARULE SET: [ruletype1]
FINAL HYPOTHESIS FOR EPISODE: rule_x, BOUND: 1

rule_x(A,B) :- all_part_a_adv(A), cg_remove_inf(A,C).

This is not a particularly good rule (If all readings from token in position -2 contain
”adverb” then remove ”infinitive” from the central token), but if fits the example and

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 40

does not break our consistency rules: by removing the infinitive of read it reduces the
ambiguity of the central token without removing the correct reading.

Generating examples. Three stage learning

In order to generate examples for the learner we first produce a set of (ambiguous,
handtagged) tuples from our training set. Samples from this set will be our examples.
Remember that in the case of the first disambiguator we found out that if we feed too
distant examples Metagol will probably not be able to produce a hypothesis for us.
One way of ensuring we do not get too distant examples is to filter them by ambiguity
class or tags of the central token.

We chose to filter contexts by the presence of a certain tag in the central token
because then we can use this information after learning and augment the rule with it.

This is why, unlike learning rules for the first disambiguator, we need to process the
rules we get from Metagol in two ways. First, we are going to replace the variable C with
B (it is different only so we are able, at learning time, to check our constraints). Then
we are going to add another test to the clause. This test checks if the central token has
the tag we were targeting when we did the filtering of examples. The pseudocode 4.1
illustrates the complete process.

Algorithm 4.1 Rule learning algorithm.

1: A = ambiguous contexts, H = corresponding handtagged contexts.
2: Tags = all tags present in A ∪H.
3: Cp ← {(ca, ch)|ca ∈ A, ch ∈ H}, all context pairs.
4: for tag ∈ Tags do
5: Ctag = {(ca, ch) ∈ Cp| central token of ca has tag tag}
6: for i = 1 to Nexamples do
7: Sample Ctag, build the episode file for Metagol and get a rule R.
8: Fix rule R: replace C with B in the body.
9: Augment rule R: prepend one part c tag(A).

10: Save rule.
11: end for
12: end for

We implemented three metarules that Metagol can use to produce predicates with
1, 2 or 3 tests. We do a three stage learning and in each of the stages we use one of the
metarules. In the first stage we use a large number of examples (about 12) each time
we call Metagol and we ask for only one test – the idea behind this is that we want
to get good generalization with our rules (less constraints means more generalization
because it increases the chance that the rule will fit many examples). After we have
learned a set of predicates we use them to produce disambiguation and save the partially
disambiguated file. This file will be used as the ”ambiguously tagged” input for the
second stage of learning.

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 41

In the second stage of learning we learn predicates with 2 tests (using the second
metarule), but supply less examples (about 6). This is partly because now we have
less contexts to sample from (they come from the result of disambiguation using rules
learned in the first stage) and partly because it is a lower chance that a predicate with
two constraints will fit many examples. We gather all the rules that we are able to
learn this way, use them to disambiguate the result of stage 1 and we get an even less
ambiguous result. Again, the result of this stage will make for the input to our third
(and final) stage.

The third stage of learning makes use of the third metarule. We use as input the
result of stage 2, we feed even less examples (2-3) to Metagol and ask for rules with
three tests.

At this point we have three sets of rules, one set for each of the learning stages.
We are going to set priorities to them so that rules with less tests are applied first,
exactly in the order of learning. Although we are also going to use a genetic algorithm
to assign different priorities to rules with the same number of tests, all the rules from
stage 1 will be preferred to those from stages 2 and 3, while all the rules from stage 2
will be preferred to those from stage 3, so the genetic algorithm will only optimize one
stage at a time.

Rule selection

In the learning stage we were able to learn about 1000 rules. We know that some of
them have a low quality, while others are good and the goal of the rule selection step
is to select a subset of good rules that can achieve the highest accuracy. In the case of
this disambiguator we replaced the naive pruning of rules (which was implemented for
the proof-of-concept disambiguator) with a genetic algorithm that assigns priorities.

At learning time, all the rules that come from Metagol in one stage have the same
priority. In Chapter 5 we show and discuss the implementation of a genetic algorithm
that assigns a different priority to each rule from a certain stage.

After each rule has a priority assigned it is just a matter of removing all rules
with low priorities which would be, anyway, probably covered by higher priority rules.
So in this case the pruning is not done by accuracy gain (as in the case of the first
disambiguator), but based on a priority that is optimized by a genetic algorithm. Figure
4.3 illustrates the evolution of the accuracy by the number of rules. As we can see from
the graph, the best size of the rule set is about 400, which is twice as much as linguists
usually write for a CG-3 parser (although our rules have less expressive power).

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 42

50

55

60

65

70

75

80

0 100 200 300 400 500

A
c
c
u
r
a
c
y

(
%
)

Rule set size

PoS tagger 2 (interpolated)
PoS tagger 2 (raw)

Baseline

Figure 4.3: Accuracy comparison of PoS disambiguator 2

CHAPTER 4. LEARNING PROLOG DISAMBIGUATION RULES 43

Results

Table 4.5 presents the accuracy comparison between our probabilistic baseline imple-
mentation and the second PoS disambiguator.

PoS tagger 2 Baseline

Adisambiguation 78.35% 60.60%

Aoverall 93.97% 89.05%

Table 4.5: Accuracy comparison for PoS tagger 2.

As we can see, we have an 18% improvement over the baseline (and nearly 8% from
the proof-of-concept implementation). The overall accuracy is almost 94% and this is
in line with other rule learning based implementations, such as [10]. While [11] reports
a higher accuracy, it does not fully disambiguate the stream and the final set of rules
consists of about 7000 rules (we managed to select a much more compact set).

Note that, unlike the case of the disambiguator presented in [10], we did not imple-
ment the grammar of the English language in the background knowledge, but merely
provided the MIL learner with simple tests and actions.

Chapter 5

Selecting a good set of rules

Genetic Algorithms have been around for decades now and are used in many optimiza-
tion problems. A genetic algorithm employs a heuristic search in the solution space of
optimization problems by mimicking the process of natural selection [21].

Genetic algorithms are used on a large scale both for theoretical problems (such as
TSP 1 [27], shortest path in graphs [28] or the Knapsack problem [29]) and real world
problems (traffic routing [30], helicopter flight [31] or Quality-of-Service management
in Internet routing [32]).

A possible workflow of a genetic algorithm is illustrated in pseudocode 5.1.

Algorithm 5.1 Genetic algorithm workflow.

1: Input: I - iteration count.
2: Input: N1 - population size.
3: Input: N2 - offspring count.
4: Generate an initial population P of size N1.
5: for i = 1 to I do
6: O = ∅
7: for j = 1 to N2 do
8: (C1, C2)← select candidates(P)
9: O ← O ∪ crossover(C1, C2)

10: end for
11: P ′ ← P ∪ O
12: P ← select best N1 individuals from P ′.
13: end for
14: Output: best individual in P .

As a summary, the main idea is to start with an initial population (if we have no
information about a good solution, then we will rely on randomly generated individu-
als). Each generation we will produce a number of offspring which will be included in
the population. At the end of each generation we have the ”survival of the fittest” step,

1Traveling Salesman Problem

44

CHAPTER 5. SELECTING A GOOD SET OF RULES 45

which selects only the best individuals from our current population. The key aspects
in any genetic algorithm implementation are the fitness function, crossover function
and an algorithm which selects candidates for breeding. In our pseudocode, the genetic
recombination happens in line 9, while the candidates C1 and C2 that will produce the
new individual are selected in line 8.

As a variation, instead of a fixed iteration count we can check how much improve-
ment we have over each generation and decide to stop the algorithm when no further
improvement is detected. Also, moving closer to the natural processes we can include,
with small probability, random mutations in offspring – this will bring a little bit of
diversity but we need to be careful as it could be detrimental to the convergence of the
process (sometimes the probability of random mutations is decreased over time, as we
want to move from exploration to exploitation).

We use a genetic algorithm to optimize the priority assignment for the rules that
we learned in the case of the second disambiguator.

First, we need to discuss the genetic encoding of our problem. Because we want
to optimize priorities for rules and we also want them to be different we can see an
individual as a permutation of priorities. Let’s take the following example (the link
between a rule predicate and its priority is given by the disambiguator rule Prolog
fact):

disambiguator_rule(rule_1, 1).
disambiguator_rule(rule_2, 2).
disambiguator_rule(rule_3, 3).
disambiguator_rule(rule_4, 4).
disambiguator_rule(rule_5, 5).

In this arrangement each rule has a different priority and there are 5 rules in total.
If we have a fixed ordering of these predicates (rule 1, rule 2, etc.) we can represent
priorities in a simple list of 5 elements where the number in position i is the priority of
the i-th rule. The individual in our example will be encoded as [1, 2, 3, 4, 5].
Now, finding the best priority assignment is reduced to finding the best permutation of
numbers from 1 to 5. For instance, the permutation [5, 2, 3, 1, 4] will produce
the following individual:

disambiguator_rule(rule_1, 5).
disambiguator_rule(rule_2, 2).
disambiguator_rule(rule_3, 3).
disambiguator_rule(rule_4, 1).
disambiguator_rule(rule_5, 4).

Each one of the numbers in the permutation represents one gene and genes in the
same positions from two different individuals are called alleles. Notice that we are
dealing with a fixed length genetic code. Sometimes in practice we might need to work
with variable length code.

CHAPTER 5. SELECTING A GOOD SET OF RULES 46

The next important aspect is the fitness function. In other words, we need a
measure to evaluate a certain individual. In our case this is done by writing the
disambiguator rule facts to a Prolog file (this way establishing priorities for rules),
run our PoS tagger on the training data and then evaluate its accuracy. That is, our
fitness function will output a floating point value between 0 and 100, depending on the
ratio of correctly disambiguated tokens.

The selection of candidates for breeding can be done in multiple ways, the most
commonly used being roulette wheel selection. This technique picks each individual
with a probability of

pi =
wi∑N
i=1wi

(5.1)

where the weight wi is the fitness value of the i-th individual and N is the population
size.

Roulette wheel selection did not behave well in our case due to the fact that the
values of the fitness function were too close to each other. In turn, we used the rank
based selection, which replaces the weights wi with ri, where ri is the position of the
individual in the population sorted in descending order by fitness.

The last detail of our genetic algorithm implementation is the genetic recombination
function (also called crossover). Because we are working on permutations, it is com-
pulsory that the offspring will always be a permutation. Out of the many techniques
that are consistent with this constraint we implemented order 1 crossover, detailed in
the rest of this chapter.

We will take the following two individuals and do a step by step demonstration of
the order 1 crossover:

Parent 1 1 8 3 4 7 6 5 2

Parent 2 4 2 3 7 8 1 6 5

Offspring

First, we select a contiguous chain of alleles from the first parent and we drop them
to the offspring:

Parent 1 1 8 3 4 7 6 5 2

Parent 2 4 2 3 7 8 1 6 5

Offspring 4 7 6

Because we don’t want duplicates in our offspring, we cross out all the genes from
this chain in the second parent:

Parent 1 1 8 3 4 7 6 5 2

Parent 2 4 2 3 7 8 1 6 5

Offspring 4 7 6

CHAPTER 5. SELECTING A GOOD SET OF RULES 47

We proceed by selecting all remaining genes in the second parent:

Parent 1 1 8 3 4 7 6 5 2

Parent 2 4 2 3 7 8 1 6 5

Offspring 4 7 6

And complete the gaps in the offspring with them, preserving their original order:

Parent 1 1 8 3 4 7 6 5 2

Parent 2 4 2 3 7 8 1 6 5

Offspring 2 3 8 4 7 6 1 5

The genetic algorithm produced in the end a very good set of rules. Unfortunately,
due to the size of the rule set, the fitness function was slow to evaluate (around 0.2
seconds). We ran multiple experiments with this genetic algorithm and the longest one
took about 10 hours to complete.

Chapter 6

Results

In this chapter we are going to discuss the results of our work.
Most importantly, we achieved the goal of our project: we managed to make use of

the newest ILP framework (Meta Interpretive Learning) and showed that it is feasible to
use it to machine learn rules for a Part-of-Speech disambiguator. Another achievement
of this project is that all of our code has been uploaded to the Apertium repository.
This means that there is an active interest in machine learning of rules for PoS tagging
and it is a starting point for exploring other possibilities. Because the project was
designed to be more exploratory we encountered some issues in our experiments and
provided solutions and workarounds that led to state of the art level disambiguation
accuracy. Nevertheless, we have learned some important lessons, summarized below:

� Rule pruning – Looking at CG-3 files produced by linguists we can see that the
average rule set size is about a few hundreds. While some researchers produced
huge sets of rules [10], we managed to keep our set robust (approx. 420 rules)
with almost the same level of accuracy. Rule pruning also prevents overfitting
and produces a better generalization on unseen examples.

� Selection – The idea of assigning priorities and optimize them with a genetic
algorithm proved to be good judging by the increase in accuracy. At the stage
of priority assignment there is a tradeoff between execution time and getting a
better set of rules. Rule prioritization also makes it easier to prune the rules with
low priority and produce a compact final set.

� Execution time – The somewhat low performance of the Metagol system forced
us to look for workarounds when it came to large theories, large number of exam-
ples, predicate invention and avoidance of overfitting. After carefully analyzing
every one of these issues we came up with ideas that provided the needed balance
in order to lower the execution time.

� Learning by tag classes – Example selection is directly related to execution
time: the more distant the examples we provide to Metagol are, the less likely
the system is to explain them with a short theory (1-2 rules). We found out

48

CHAPTER 6. RESULTS 49

that dividing the examples into tag classes is enough to ensure a smaller distance
between examples (as measured in the number of rules needed to explain them).
Furthermore, we can use this information after the learning process and link each
rule to its tag class. This resulted in the most important accuracy gain in the
case of the second disambiguator.

� Predicate invention – While predicate invention proves to be useful in other
problems, it has only been tested on small, toy examples. We tried to let Metagol
introduce new predicates in order to find rules but we arrived at the conclusion
that is better to design our rules from the beginning in a way such that new
predicates will not be needed (we made this decision mostly due to performance
issues). Nevertheless, as showed in the BFS example, it is possible to use it and
may become available to real world problems with time (as researchers will find
ways to improve the speed of the MIL systems).

� Overfitting – We managed to avoid some overfitting at learning time by forcing
the Metagol system to output single-test rules, while supplying large amounts of
examples. In the case of our second PoS tagger we moved forward with this idea
and employed the three stage learning technique. We also dealt with this problem
at later stages, namely selection (priority assignments) and pruning.

� Three stage learning – The idea that we should learn rules in three distinct
stages and then set different levels of priority based on the stage in which each
rule has been produced yielded good results, most importantly improvements in
terms of accuracy. The goal of this technique was to find out where more general
rules cannot be applied and patch these with more specific rules.

� Negative examples – Lastly, we found out that due to the inductive bias of
Metagol (induced by metarules and background knowledge) we do not always need
negative examples. Because our tests were specific enough, overgeneralization was
less likely. Indeed, in the case of the second PoS tagger we did not supply any
negative examples to the learner.

From the accuracy point of view, table 6.1 presents a summary of the results we
were able to achieve. It also includes results from [10, 11] and the current Hidden
Markov Models tagger implemented in Apertium [6]. Note that accuracy reports were
taken from the papers and were trained and evaluated on different datasets.

Apart from [11] that did not produce full disambiguation of the stream (thus leading
to a very high accuracy in the sense that the tokens preserved the correct reading), we
can see that our second disambiguator competes with other state of the art PoS taggers.
The HMM tagger is still performing better, but it uses a statistical approach (as opposed
to a rule learning based one). It is notable that our disambiguator produced less rules
than [11], while having a comparable accuracy to [10] even though it did not have any
access to knowledge about the English language grammar.

CHAPTER 6. RESULTS 50

Method Aoverall Adisambiguation Notes

Baseline 61.25% 89.21% Simple probabilistic model.

PoS D1 71.23% 91.98% Concept identification.

PoS D2 78.35% 93.97% Dyadic predicates, CG-style actions.

HMM ∼80-85% ∼95-96% Statistical approach.

Progol Gram. – 94% Grammar in background knowledge.

Progol CG – 97% Flawed accuracy formula.

Table 6.1: Method comparison.

Figure 6.1 illustrates a comparison between our two disambiguators from the point
of view of rule set size influence on accuracy. It is interesting that the concept identifi-
cation tagger achieves good accuracies faster. It is nevertheless surpassed by the second
implementation that used the three stage learning technique to patch more subtle sit-
uations in the grammar (note that the best rule set size was 120 and 440 for the first
and second disambiguator, respectively).

CHAPTER 6. RESULTS 51

50

55

60

65

70

75

80

0 100 200 300 400 500

A
c
c
u
r
a
c
y

(
%
)

Rule set size

PoS tagger 1 (interpolated)
PoS tagger 2 (interpolated)

Figure 6.1: Accuracy evolution by rule set size.

Chapter 7

Conclusion and future work

As a conclusion, we achieved the main goals of the project. This work serves as a
Proof-of-Concept for using the MIL framework for machine learning of rules to use
with a PoS tagger. We provided workarounds for performance issues and proved that
we can produce good disambiguation. The limitations of Metagol that we encountered
may disappear in the future and, because it is able to learn complex Prolog programs
as its hypothesis, it is a perfect fit especially for rule learning tasks.

Leaving aside performance limitations, it is theoretically possible to learn a full
disambiguator using the Meta Interpretive Learning framework. This was also our
initial target, but we moved to rule learning because the Metagol system is still unable
to cope with large amounts of data or long hypotheses. Because it is possible to express
our disambiguator in the H2

2 space (which makes it definitely learnable), a challenge
for the future would be to learn the complete disambiguator from examples (not only
rules, but an actual Prolog program that would map the stream of ambiguous tokens
to the stream of correct, non-ambiguous tokens).

Another approach would be to learn the grammar of a language as a set of predi-
cates. This set of predicates could be later used to produce a very compact set of rules,
as described in [10].

A more interesting approach that would have less performance requirements could
be analyzing the text at sentence level and learning multiple per sentence grammars.
At disambiguation time we could try to fit one of these grammars on the sentence we
are analyzing and decide on tags (maybe also in combination with some rules).

Research on MIL and improvements could simplify the process of learning – with
less overfitting we don’t need pruning, selection or three stage learning and we could
theoretically learn the complete set of rules that covers all of our examples in one step.

At the moment, selection works by assigning different priorities to different predi-
cates. Note that the genetic algorithm does not change the rules in any way. Another
idea would be to use genetic programming in order to get better rules from the ones
already learned by the Metagol system. This would defeat, to some extent, the purpose
of learning with Metagol, but it could lead to a more robust final set.

52

Appendices

53

Appendix A

Auto-generated examples

Listing A.1: Auto-generated example for disambiguator 1

episode(
% Concept name.
concept_x,
% Positive examples.
[[concept_x,

[["elliptical", ["elliptical<adj>", ["adj"]]],
["orbits", ["orbit<n><pl>", ["n", "pl"]]],
["to", ["to<pr>", ["pr"]]]]],

[concept_x,
[["cantonal", ["cantonal<adj>", ["adj"]]],
["structures", ["structure<n><pl>", ["n", "pl"]]],
["remained", ["remain<vblex><past>", ["vblex", "past"]]]]],

[concept_x,
[["Middle", ["Middle<adj>", ["adj"]]],
["Ages", ["Age<n><pl>", ["n", "pl"]]],
["in", ["in<pr>", ["pr"]]]]]

],
% Negative examples.
[[concept_x,

[["if", ["if<cnjadv>", ["cnjadv"]]],
["unmarried", ["*unmarried", []]],
[",", [",<cm>", ["cm"]]]]]

]
).

54

APPENDIX A. AUTO-GENERATED EXAMPLES 55

Listing A.2: Auto-generated example for disambiguator 2

episode(rule_x, % Rule name.
[% Positive examples.
[rule_x,

[
["minimum",

["minimum<adj>", ["adj"]],
["minimum<n><sg>", ["n", "sg"]]],

["guaranteed",
["*guaranteed", []]],

["under",
["under<adv>", ["adv"]],
["under<pr>", ["pr"]]],

["the",
["the<det><def><sp>", ["det", "def", "sp"]]],

["constitution",
["constitution<n><sg>", ["n", "sg"]]]],

[
["minimum", ["minimum<n><sg>", ["n", "sg"]]],
["guaranteed", ["*guaranteed", []]],
["under", ["under<pr>", ["pr"]]],
["the", ["the<det><def><sp>", ["det", "def", "sp"]]],
["constitution", ["constitution<n><sg>", ["n", "sg"]]]

]
],

[rule_x,
[
["educational",

["educational<adj>", ["adj"]]],
["pillars",

["*pillars", []]],
["in",

["in<adv>", ["adv"]],
["in<pr>", ["pr"]]],

["Iran",
["Iran<np><top><sg>", ["np", "top", "sg"]],
["Iran<np><top><pl>", ["np", "top", "pl"]]],

["and",
["and<cnjcoo>", ["cnjcoo"]]]],

[
["educational", ["educational<adj>", ["adj"]]],
["pillars", ["*pillars", []]],
["in", ["in<pr>", ["pr"]]],
["Iran", ["Iran<np><top><sg>", ["np", "top", "sg"]]],
["and", ["and<cnjcoo>", ["cnjcoo"]]]]]

],
% No negative examples.
[]
).

% Define the sets of metarules to use.
metaruless([[ruletype3]]).

Bibliography

[1] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Pro-
ceedings of the international conference on new methods in language processing,
volume 12, pages 44–49. Manchester, UK, 1994.

[2] Adwait Ratnaparkhi et al. A maximum entropy model for part-of-speech tag-
ging. In Proceedings of the conference on empirical methods in natural language
processing, volume 1, pages 133–142. Philadelphia, PA, 1996.

[3] John C Henderson and Eric Brill. Exploiting diversity for natural language pro-
cessing. In AAAI/IAAI, page 1174, 1998.

[4] Jesús Giménez and Lluis Marquez. Svmtool: A general pos tagger generator based
on support vector machines. In In Proceedings of the 4th International Conference
on Language Resources and Evaluation. Citeseer, 2004.

[5] Helmut Schmid and Florian Laws. Estimation of conditional probabilities with
decision trees and an application to fine-grained pos tagging. In Proceedings of
the 22nd International Conference on Computational Linguistics-Volume 1, pages
777–784. Association for Computational Linguistics, 2008.

[6] Zaid Md Abdul Wahab Sheikh, Felipe Sánchez Mart́ınez, et al. A trigram part-
of-speech tagger for the apertium free/open-source machine translation platform.
2009.

[7] Eric Brill. A simple rule-based part of speech tagger. In Proceedings of the Work-
shop on Speech and Natural Language, HLT ’91, pages 112–116, Stroudsburg, PA,
USA, 1992. Association for Computational Linguistics.

[8] Fred Karlsson. Constraint grammar as a framework for parsing running text. In
Proceedings of the 13th conference on Computational linguistics-Volume 3, pages
168–173. Association for Computational Linguistics, 1990.

[9] Pasi Tapanainen. The constraint grammar parser CG-2. University. Department
of General Linguistics, 1996.

[10] James Cussens. Part-of-speech tagging using progol. In Inductive Logic Program-
ming, pages 93–108. Springer, 1997.

56

BIBLIOGRAPHY 57

[11] Nikolaj Lindberg and Martin Eineborg. Learning constraint grammar-style dis-
ambiguation rules using inductive logic programming. In Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics-Volume 2, pages 775–779.
Association for Computational Linguistics, 1998.

[12] Adam Lopez. Statistical machine translation. ACM Computing Surveys (CSUR),
40(3):8, 2008.

[13] MikelL. Forcada, Mireia Ginest́ı-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio
Ortiz-Rojas, JuanAntonio Pérez-Ortiz, Felipe Sánchez-Mart́ınez, Gema Ramı́rez-
Sánchez, and FrancisM. Tyers. Apertium: a free/open-source platform for rule-
based machine translation. Machine Translation, 25(2):127–144, 2011.

[14] Raül Canals-Marote, Anna Esteve-Guillén, Alicia Garrido-Alenda, M Guardiola-
Savall, Amaia Iturraspe-Bellver, Sandra Montserrat-Buendia, Sergio Ortiz-Rojas,
Hermınia Pastor-Pina, Pedro M Pérez-Antón, and Mikel L Forcada. The spanish-
catalan machine translation system internostrum. In Proceedings of MT Summit
VIII: Machine Translation in the Information Age, volume 73, page 76, 2001.

[15] Carme Armentano-Oller, Rafael C Carrasco, Antonio M Corb́ı-Bellot, Mikel L For-
cada, Mireia Ginest́ı-Rosell, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema
Ramı́rez-Sánchez, Felipe Sánchez-Mart́ınez, and Miriam A Scalco. Open-source
portuguese–spanish machine translation. In Computational Processing of the Por-
tuguese Language, pages 50–59. Springer, 2006.

[16] Luis Villarejo, Mireia Farrús, Sergio Ortiz, and G Ramı́rez. A web-based transla-
tion service at the uoc based on apertium. In Computer Science and Information
Technology (IMCSIT), Proceedings of the 2010 International Multiconference on,
pages 525–530. IEEE, 2010.

[17] Eckhard Bick. The parsing system palavras. Automatic Grammatical Analysis of
Portuguese in a Constraint Grammar Framework, 2000.

[18] Mans Hulden and Jerid Francom. Boosting statistical tagger accuracy with simple
rule-based grammars. In LREC, pages 2114–2117, 2012.

[19] Stephen Muggleton. Inductive logic programming. New Generation Computing,
8(4):295–318, 1991.

[20] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19(20):629–679, 1994.

[21] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45, 1997.

[22] Ivan Bratko and Stephen Muggleton. Applications of inductive logic programming.
Commun. ACM, 38(11):65–70, November 1995.

BIBLIOGRAPHY 58

[23] Stephen Muggleton. Inverse entailment and progol. New Generation Computing,
13(3-4):245–286, 1995.

[24] Stephen H Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-
Nezhad. Meta-interpretive learning: application to grammatical inference. Ma-
chine Learning, 94(1):25–49, 2014.

[25] Diana F Gordon and Marie Desjardins. Evaluation and selection of biases in
machine learning. Machine Learning, 20(1-2):5–22, 1995.

[26] Stephen Muggleton and Dianhuan Lin. Meta-interpretive learning of higher-order
dyadic datalog: Predicate invention revisited. In Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence, pages 1551–1557. AAAI
Press, 2013.

[27] John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. Genetic
algorithms for the traveling salesman problem. In Proceedings of the first Interna-
tional Conference on Genetic Algorithms and their Applications, pages 160–168.
Lawrence Erlbaum, New Jersey (160-168), 1985.

[28] Mitsuo Gen, Runwei Cheng, and Qing Wang. Genetic algorithms for solving short-
est path problems. In Evolutionary Computation, 1997., IEEE International Con-
ference on, pages 401–406. IEEE, 1997.

[29] Paul C Chu and John E Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of heuristics, 4(1):63–86, 1998.

[30] Barrie M Baker and MA Ayechew. A genetic algorithm for the vehicle routing
problem. Computers & Operations Research, 30(5):787–800, 2003.

[31] Chad Phillips, Charles L Karr, and Greg Walker. Helicopter flight control with
fuzzy logic and genetic algorithms. Engineering Applications of Artificial Intelli-
gence, 9(2):175–184, 1996.

[32] Fei Xiang, Luo Junzhou, Wang Jieyi, and Gu Guanqun. Qos routing based on
genetic algorithm. Computer communications, 22(15):1392–1399, 1999.

