
i

Facultatea de Automatică s, i Calculatoare

Departamentul Calculatoare

Nr. Decizie Senat 225 din 27.09.2013

TEZĂ DE DOCTORAT

Extinderea Capabilităt,ilor Dispozitivelor Mobile
prin Transferarea Sarcinilor în Cloud

Extending the Capabilities of Mobile Devices
through Cloud Offloading

Autor: As.ing. Olteanu Alexandru-Corneliu

Conducãtor de doctorat: Prof.dr.ing. Nicolae T, ăpus,

COMISIA DE DOCTORAT
Pres,edinte Prof.dr.ing. Adina Florea de la Universitatea Politehnica Bucures,ti
Conducător de doctorat Prof.dr.ing. Nicolae T, ăpus, de la Universitatea Politehnica Bucures,ti
Referent Prof.dr.ing. Victor Patriciu de la Academia Tehnică Militară Bucures,ti
Referent Prof.dr.ing. Ion Ivan de la Academia de S, tiint,e Economice Bucures,ti
Referent Prof.dr.ing. Valentin Cristea de la Universitatea Politehnica Bucures,ti

Bucureşti, 2013

This work is funded by the Sectoral Operational Programme
Human Resources Development 2007-2013 of the Romanian Ministry

of Labour, Family, and Social Protection through
the Financial Agreement POSDRU1071.5S76909.

This thesis is the result of a three year journey, with more than eight months of internships,
in the Netherlands and Germany. I found, both at home and abroad, many new colleagues
and friends. I would like to thank them all for their influence on the outcome of my PhD
work, and ultimately on this thesis. I will mention some names briefly, as space dictates,
and, if your name has been left out, please accept my non-nominative thanks.

I would like to start by expressing my gratitude to Nicolae T, ăpus, , Alexandru Iosup
and Sven Zeisberg, my advisors throughout the three years of the PhD and to thank
my colleagues and collaborators from University Politehnica of Bucharest, from Delft
University of Technology and from the University of Applied Sciences in Dresden.

Any graduate of the Computer Science and Engineering Department in University Po-
litehnica of Bucharest can surely say that he or she had at least an activity under the
guidance of Prof. Nicolae T, ăpus, . I would like to thank him for accepting me as a PhD
student, which I consider a mark of our mutual consideration and I will always hold with a
high regard. As a Teaching Assistant, I came in contact with many fellow researchers and
graduate students. I would like to mention my co-authors—Dan Tudose, Dan Rizea, Alex
Gherghina, Alex Făsui, Virgil Zamfirache, Răzvan Prejbeanu and S, erban Chiricescu—for
our mutual support and our continuous collaboration. I also want to thank my colleagues
and friends—Adriana Drăchici, Andrei Voinescu, Laura Gheorghe, Dan Dragomir, Sil-
via Stegaru, Răzvan Dobre, Alex Heris,anu, Emil Slus,anschi and Răzvan Rughinis,—for
providing a stimulating research environment.

Advancing in chronological order, my first internship was at the University of Applied
Sciences in Dresden. My special thanks go to Sven Zeisberg for this opportunity and for
personally getting involved to make everything work. I would also like to thank my main
collaborators—Frank Stephan and Alfred Reisner— as well as the guys involved with the
Communications laboratory—Markus, Thomas, Axel, Dirk—and ZigPos GmbH—Erik,
Christoph, Tino—who together form a complete and highly professional research team.

My second internship took place at Delft University of Technology, under the guidance
of Alexandru Iosup. I am grateful to Alex for many things, such as keeping close contact
with UPB, maintaining an orderly yet creative perspective on our Mobile Social Gaming
project, reviewing the drafts for countless times, and teaching me box plots and basketball.
The PDS group, led by Henk Sips and Dick Epema, forms a great working group, both
professionally and socially. I would like to thank Otto Visser, Siqi Shen, Yong Guo, Kefeng
Deng, Lipu Fei, Bogdan Ghit, , Mihai Capotă, Boxun Zhang and the whole PDS Group.
We also had a fruitful collaboration with Fernando Kuipers and Emanuel Dias from the
Network Group. I hold dear the company of my friends in the Netherlands, among whom
I also count, in addition to the aforementioned: Andra, Andrei, Bogdan N, Ana, Marius,
George, Jie, Adele, Mihai T, Ionut, , Andreea, Erdal, Manu, Oana, Lucas and Niek.

Last, but certainly not least, I would like to thank my friends from home, for their
refreshing support S, tefan, Laura, Dan, Roxana, Petre, Ruxi, Vali, Andreea N, Vlad,
Irina, Ioana, T, ache, Măda, Anda, George, Anca and Adi. Foremost, I would like to thank
Elus, , mom, dad and the rest of my family, for being close to me even when I was far away
and for their continuous support. I love you all very much!

Alexandru Olteanu

Abstract

Modern mobile devices, such as smartphones and tablets, are offering increasingly complex
functionalities. We use them daily in activities ranging from entertainment, to solving
professional tasks. Although mobile devices are growing in functionality and computing
power, we believe the role of more powerful infrastructure, to augment the capabilities
of mobiles, will increase. Surveying the state of the art, we can see that developers and
researchers alike study ways to access from the mobile device resources in the Cloud, in
community resource pools, and in personal networks.

The focus of our work is to define an exploratory space for offloading concerns and to use
it in the analysis and empirical evaluation of various offloading mechanisms for mobile de-
vices. First, we survey existing research efforts regarding offloading for mobile devices and
propose a General Offloading Model and a Taxonomy. We also propose an Exploratory
Space that shows novel offloading mechanisms, as well as the opportunity of a design
space exploration. Second, we propose a workload model for online social applications,
for both macro-level information—the number of users—and micro-level information—the
operations users trigger. We collect traces for thousands of Facebook games and several
native mobile applications, and use it to characterize and model various elements in the
workload model. We also show how our model can be used to generate synthetic traces
and to help developers understand how the changes in their applications can affect the
workload. Third, we conduct a comparative analysis on offloading mechanisms for various
mobile applications. We investigate Communication Adaptation and Offloading for appli-
cations spanning the mobile device and custom hardware extensions, and Computation
Adaptation and Offloading for loop-based applications. We also propose an operational
analysis to describe offloading mechanisms for loop-based applications that, according to
our workload model, include online social applications. Fourth, we conduct performance
evaluation on various offloading mechanisms. We show results for empirical evaluation on
a real-world application, a simulation that estimates performance for the whole population
of users and an analytical evaluation to match our proposed operational analysis.

Offloading for mobile devices is a hot topic and will continue to be, as people are sur-
rounded by seamlessly interconnected personal computing devices. We found a strong
community interest for our workload model, leading us to plan further improvements,
that will refine the model and allow it to cover more applications, with greater accuracy.
We also believe that our comprehensive exploratory space can continue to serve as basis
for further empirical evaluation, both with real applications and simulations.

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 The Context of Cloud Offloading for Mobiles 1
1.2 Problem Statement . 2
1.3 Main Challenges and Research Questions 3
1.4 Main Objectives . 4
1.5 Thesis Structure . 4

2 Aspects about Offloading for Mobile Devices 7
2.1 A Primer on Offloading . 7

2.1.1 Offloading Motivation . 7
2.1.2 Main Goal . 10
2.1.3 Offloading Characteristics . 11
2.1.4 Offloading Benefits . 12
2.1.5 Main Challenges . 13

2.2 General Offloading Model . 14
2.2.1 Application Monitoring . 15
2.2.2 Resource Management . 16
2.2.3 Offload Process . 16
2.2.4 Orthogonal Concerns . 17

2.3 Taxonomy for Offloading Concerns . 17
2.3.1 The Taxonomy . 17
2.3.2 Mapping of Existing Research on the Taxonomy 23

2.4 Research Directions . 29
2.4.1 Adaptation versus Offloading: a Balanced Choice 30
2.4.2 Exploratory Space . 31

3 Workload Modeling for Online Social Applications 33
3.1 The Context of Workload Modeling . 33
3.2 The Data Collection Process . 34

3.2.1 Web-based applications . 35
3.2.2 Tightly coupled simulations . 37

3.3 The Workload Model . 39
3.3.1 Popularity Distribution . 39
3.3.2 Evolution Pattern . 40

viii CONTENTS

3.3.3 Packet-Level Traces . 42
3.3.4 State Transition Diagram . 43

3.4 Characterization and Modeling using Real-World Traces 44
3.4.1 Popularity Distribution . 44
3.4.2 Evolution Pattern . 46
3.4.3 Packet-Level Traces . 50
3.4.4 State Transition Diagram . 51

3.5 On the use of our model . 52
3.5.1 Traffic-Related applications . 52
3.5.2 Evolution Typology-Related applications 53

4 Offloading Mechanisms Analysis 54
4.1 Communication Adaptation and Offloading 55

4.1.1 Adaptive Query Algorithm for Location-Based Applications 55
4.1.2 Offloading Communication to Custom Hardware Extensions 60

4.2 Computation Adaptation and Offloading 68
4.2.1 Performance Adaptation in Video-Processing Applications 68
4.2.2 Maintaining Performance by Offloading Stages in Processing Loops 74

4.3 Operational Analysis for Offloading in Loop-Based Applications 77
4.3.1 Offloading Various Components . 79
4.3.2 Intermittent Offloading . 81
4.3.3 Offloading with Partial Data . 81
4.3.4 Parallel Offloading . 82

5 Performance Evaluation for Offloading Mechanisms 84
5.1 Measuring Performance on Mobiles . 84
5.2 Empirical Evaluation . 85

5.2.1 Experimental Setup . 85
5.2.2 Empirical Results . 88

5.3 Analytical Evaluation . 94
5.3.1 Analysis Parameters . 94
5.3.2 Analytical Results . 94

5.4 Comparison . 97

6 Conclusion 99
6.1 Research Contributions . 100
6.2 Future Directions . 101

List of Publications 102

List of Figures

1.1 The relation between the main four chapters of the thesis. 5

2.1 Hierarchy of devices in relation to their proximity to the user 10
2.2 General offloading model. 14
2.3 Our Taxonomy for offloading concerns. 18
2.4 Our Exploratory Space for mobile offloading 31

3.1 The Workload Model . 39
3.2 Classes and typologies of evolution . 41
3.3 Model to approximate growth and decay of the number of users 42
3.4 The State Transition Diagram . 43
3.5 Popularity distribution as maximum DAU over rank 44
3.6 Examples of DAU evolution . 47
3.7 Seasonality detection in the evolution of the number of users 48
3.8 CDFs for the parameters of the evolution model 48
3.9 Characterization results for Packet-Level Traces 50
3.10 Examples of traffic applications . 52

4.1 Sensor device (left) and a map overlay (right) with information from the
sensor device. 55

4.2 General architecture and communication mechanism 56
4.3 CPU energy consumption . 59
4.4 Test with a client device. The test dongle (right on top of the tablet) uses

the same platform as the network device (top board). 61
4.5 Home automation system architecture . 62
4.6 General client architecture . 64
4.7 Android application structure based on the abstraction layers proposed in

the general client architecture. 65
4.8 Application screenshots, while displaying historical video clips on top of a

QR code shown on a screen. 69
4.9 Basic client application cycle . 70
4.10 Buffer placement between threads . 71
4.11 The number of frames processed by each module during an experiment . . 73
4.12 Experiment running OpenTTD distributed on a tablet and laptop 74
4.13 OpenTTD game loop . 75
4.14 Comparison of local running of AIs (red) with offloaded running of AIs

(green) . 76
4.15 The main loop as a cycle graph. 78

x LIST OF FIGURES

4.16 The graph model for varying offloaded components. 79
4.17 The graph model for partial offloading process. 81
4.18 The graph model for partial offloading data. 82
4.19 The graph model for offloading parallelism. 82

5.1 General architecture of the Testbed . 86
5.2 Instrumentation in our Offloading System 88
5.3 Calibration: effects of game parameters . 89
5.4 Exploratory Space Coverage for Variation of Offloaded Component 90
5.5 Clients that do not perform offloading might be removed from the game

because they are too slow . 91
5.6 Performance and user experience metrics for Offloading Various Components 91
5.7 Exploratory Space Coverage for Parallel Offloading 92
5.8 Performance and user experience metrics for Parallel Offloading 93
5.9 Network load for Parallel Offloading . 93

List of Tables

2.1 Mapping of Application Monitoring efforts with our taxonomy. 23
2.2 Mapping of Resource Management efforts with our taxonomy. 25
2.3 Mapping of the Offload Process approaches with our taxonomy 26
2.4 Mapping Offloading Orthogonal Concerns with our taxonomy. 28

3.1 Dataset overview. 34
3.2 Volume of crawled, parsed, and stored information for Facebook applications. 36
3.3 p-values and D-values for the curve fitting of the popularity distribution . . 45
3.4 Curve fitting parameters that provide the best fit for the popularity distri-

bution . 46
3.5 Classification results showing how many applications fit each typology (left)

and class (right) . 47
3.6 p-values nad D-values for the curve fitting of the evolution model parameters 49
3.7 Curve fitting parameters that provide the best fit for the evolution model

parameters . 50
3.8 Curve fitting parameters that provide the best fit for pakcet level traces . . 51
3.9 Statistics on average running time (T), maximum running time (Tmax) and

quantity of output data (Q) for the five stages in the loop. 51

4.1 Estimated total energy consumption on CPU and on WiFi for the three
query strategies, during 300 seconds tests. 59

4.2 A comparison of communication technologies 63
4.3 Methods to connect a dongle to a smartphone 63
4.4 Estimation of energy consumption. 67
4.5 Frame rate depending on device (left) and content (right) 73

5.1 Data used in analytical evaluation. 95
5.2 Comparison between empirical and analytical results 98

Chapter 1

Introduction

Modern mobile devices, such as smartphones and tablets, are offering increasingly complex
user experiences. We use them daily in activities ranging from entertainment to solving
professional tasks. As sales of mobile devices surpass personal computers sales, matching
advances in hardware and mobile computing with the requirements posed by this massive
mobile momentum is challenging for developers and researchers alike. Although mobile
devices are growing in functionality and computing power, we believe the role of more
powerful infrastructure, to augment the capabilities of mobiles, will increase. Thus, this
PhD research focuses on techniques for offloading operations from mobile to more powerful
cloud-based infrastructure.

1.1 The Context of Cloud Offloading for Mobiles

Modern handheld devices, such as smartphones and tablets, offer portability, increased
computational power, and communication capabilities. Thus, they are becoming an at-
tractive option for users to interact with each other, through social applications, and with
their environment, through ubiquitous computing[1]. Facebook, who has announced re-
cently their increase to over 1 billion monthly active users, reports that more than a half
of the users reach their social network using a mobile device [2]. On the other hand, along
with the technological advances in hardware and mobile computing, user demands are
also increasing, as they expect content rich applications, like games, and access to large
amounts of remote data, like multimedia streaming. Advanced as they may be, modern
mobile devices still have some limitations in relation to user demands, in terms of battery
supply, memory capacity and heat dissipation. Thus, it is reasonable to see why mobiles,
despite their increasing computing power, continue to use more powerful infrastructure.

The convergence of mobile and cloud computing has been studied for a number of years
and is still a hot topic, because of the dynamics in mobile computing and because of
the challenges that continue to arise. As sales of mobile devices grow above sales of
personal computers, many hardware and software manufacturers compete on the mobile
market. Companies such as Samsung, Nokia, HTC, Motorola, Apple, Acer and Asus
produce mobile devices of various hardware characteristics, using a variety of operating
systems, either developed in house, like Apple’s iOS, or by large software companies,

2 1. INTRODUCTION

like Google’s Android or Microsoft’s Windows. The heterogeneity of mobile devices, in
terms of hardware and operating systems, makes it difficult for application developers
to reach all the mobile users, and they usually have to maintain several versions of the
same application. Cloud providers are also interested in tuning their systems to face big
variations in the number of users. In this massive ecosystem, researchers find challenging
topics with effects ranging from user experience to cost optimization for the resource
providers.

Cloud offloading is one of the emerging trends in distributed computing involving mobile
devices. Developers and researchers alike study ways of accessing, from user terminals,
the power offered by cloud infrastructure in terms of storage. The cloud has been used for
offloading storage and functionality for computers for a long time. However, more recently,
mobile devices encouraged developments in computation and communication offloading,
with a focus on the trade-offs between the benefits that the powerful infrastructure brings
and the costs, in time and money, of using remote resources.

1.2 Problem Statement

Our vision is to seamlessly interconnect mobile devices, as part of a hierarchy of computing
devices in relation to their proximity to the user. This hierarchy, which we discuss in
detail in Section 2.1, is essentially comprised of wearable devices, handheld devices, local
infrastructure, and clouds. Latency is smaller in the proximity of the user, but resources
are more powerful further away. It is thus desirable to find a balance between the trade-offs
that govern this hierarchy.

The convergence of mobile and distributed computing has been studied for a number of
years, with results in system design[3][4], job scheduling [5][6], resource discovery [7][8]
and so on. Mobile integration with various other types of computing takes many forms,
like mobile cloud computing, offloading, delegation, cyber foraging, and data staging. We
focus on offloading, which is a form of transferring tasks of various granularity to remote
resources. Offloading and delegation are very similar approaches to use remote resources.
They are sometimes considered to be complementary, as in the work published by Flores
[9]. Our work focuses on offloading, which is detailed in the next section. Cyber Foraging
is an opportunistic approach of using remote resources from mobiles. Satyanarayanan [10]
introduced this concept in 2001 as a pervasive computing technique, and work within the
same research team [11] led to a scripting language for cyber foraging. Verbelen et al. [4]
introduced AIOLOS, a middleware to improve mobile application performance through
cyber foraging and Kristensen [12] introduced scheduling concepts in the topic.

Several offloading systems have been proposed, as middlewares, frameworks, or services.
However, we find that few solutions reach the point to have a big impact on live systems
and applications. Studying mobile offloading is challenging because of device and appli-
cation heterogeneity. However, we believe that focusing on a specific type of application
can bring advances in offloading for mobile devices, while still keeping a wide range of
applicability. Thus, our approach is to conduct an application domain exploration and
select a family of applications on which to conduct analysis and evaluation of various
offloading mechanisms.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 3

1.3 Main Challenges and Research Questions

Offloading for mobile devices is an increasingly popular research topic, matching the
popularity mobile devices have in the general population. With the first research efforts
targeted specifically on mobile devices dating back in the 1990’s, in the past couple of years
a vast material on offloading for mobile devices has been published. Our first challenge is
to cover this vast material, organize it and find the opportunity for our novel contribution.

Many of the modern mobile applications are designed for users to interact with other users,
e.g. social platforms like Facebook, or to share information, e.g. photo sharing platforms
like Instagram. Moreover, most mobile platforms have a market for mobile applications,
like Google Play or Apple iTunes, where users can also interact when deciding to download
applications. Thus, mobile application usage is greatly influenced by relations among users
and the second challenge we are facing is to analyze user behavior and workload in the
context of user social interactions.

Software that uses the interaction of mobile devices with the cloud is already on the mar-
ket. However, recent research materials have identified the cloudlet as an offloading target
[10], emphasizing the trade-off between communication and computation costs. Inspired
by this research, we see mobile devices as part of a hierarchy of computing systems peo-
ple are using today, which is essentially comprised of wearable devices, handheld devices,
cloudlets, and clouds (see Figure 2.1). Given the rate at which smart devices become
smaller and closer to the user, we find it foreseeable that in the near future mobile devices
will serve not as sources, but as targets for offloading, from smaller, wearable devices.
The third challenge we are facing is to decide how to conduct the offloading process, in
the context of online social applications.

The recent popularity of smart mobile devices is motivating many manufacturers to pro-
duce devices for many types of consumers, thus leading to orders of magnitude in hetero-
geneity. The processing unit may vary from single-core CPU, to quad-core CPU, and even
to hybrid architectures that include a dual-core CPU and a GPU. The battery lifetime
may vary from tens to hundreds of hours in standby, and is greatly influenced by user be-
havior, as intense device usage can reduce its battery life to barely a few hours. The fourth
challenge we are facing is to assess the benefits of offloading under such heterogeneity.

To match these challenges, we propose these research questions:

• What is an exploratory space of offloading concerns for mobile devices? Which novel
offloading mechanisms could be beneficial for mobile devices?

• How to characterize and model the workloads for mobile applications that benefit
from offloading, given that the social interactions among users usually have great
effects on the workloads of this type of applications?

• What mobile application type is suitable to study offloading mechanisms? How to
measure the improvement that a mix of offloading mechanisms can bring for various
devices under realistic workloads?

• What improvements can various offloading mechanisms have for various devices
under real and synthetic workload traces?

4 1. INTRODUCTION

1.4 Main Objectives

This thesis focuses on defining an exploratory space for offloading concerns and using
it in the analysis and empirical evaluation of various offloading mechanisms for mobile
devices. To accomplish this, we need to structure the vast information from the research
literature on offloading for mobiles, to investigate how various offloading mechanisms
work on several types of applications and pick an application domain for which to show
in detail a selection of offloading mechanisms from our exploratory space. Thus, the main
objectives of this thesis include the following:

• study and organize the vast amount of aspects about offloading for mobile devices,
for identifying novel offloading mechanisms and for defining an exploratory space

• characterize and model workloads of a comprehensive number of applications, taking
into consideration the social interactions among mobile users, which usually have
great effects on the workloads

• investigate in detail how various offloading mechanisms work on a few applications
and derive an analytical support that can be extended on a whole family of appli-
cations

• use the workload traces and the analytical support to conduct analytical evaluation
on the offloading mechanisms in the exploratory space, and validate the findings
through empirical evaluation on a real-world application.

1.5 Thesis Structure

In this section we present the thesis structure and a brief overview of how we address our
objectives and how we accomplish our contributions summarized in Section 6.1.

The thesis is structured in four chapters, each one addressing one of the four objectives
of this work. Figure 1.1 summarizes the relation between the four chapters, and the
remainder of this section details it.

In Chapter 2 we survey existing research efforts regarding offloading for mobile devices and
propose a primer on offloading, a General Offloading Model and a Taxonomy for offloading
concerns, to structure the vast possibilities of conducting the offloading process. We also
identify two main research directions. First, we emphasize the balance between offloading
and alternatives, such as adaptation, and define three main factors that rule this balance:
application type, offloading type and offloading tuning. Second, to structure our study
on these three factors, we propose an Exploratory Space that outlines a design space
exploration, as well as the opportunity to indicate novelty in offloading mechanisms, such
as parallel and partial offloading.

In Chapter 3 we summarize our efforts to collect traces of online social applications that
contain information about workloads at macro-level (number of users) and at micro-level
(operations) for 16.000 Facebook games and several mobile applications. We also propose
a workload model with several components: Popularity Distribution and Evolution Pat-
tern, for macro-level information, Packet-Level Statistics and State Transition Diagram,

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 5

Figure 1.1: The relation between the main four chapters of the thesis.

for micro-level information. Then we present the results we obtained from characteriza-
tion and modeling using the traces of online social applications on the workload model,
showing that normal applications, with a single peak in user numbers, reach maturity
early in their lifetimes, and that social networking features are increasingly influencing
the user experience of online applications. Finally, we show how our workload model can
be used to predict traffic and evolution typology, as well as to generate synthetic traces.

Chapter 4 shows our efforts to investigate in detail some offloading mechanisms on a few
real applications. We study Communication Adaptation and Offloading for distributed
applications spanning the mobile device and custom hardware extensions, such as sensor
devices and home automation networks. We also study Computation Adaptation and
Offloading for loop-based applications, that is applications which function by iterating a
processing loop, with a focus on video processing, using an augmented reality application,
and video rendering, using a popular simulation game. We then propose a formalism to
help conducting operational analysis for the whole family of loop-based applications, for
the mechanisms that form the Exploratory Space we defined in Chapter 2.

In Chapter 5 we reiterate through the mechanisms that form the Exploratory Space from
Chapter 2 to conduct performance evaluation. We conduct empirical evaluation using
a testbed that we designed and implemented based on a real world application, and
analytical evaluation using the formalism we proposed in Chapter 4 and the workload
traces from Chapter 3. We show the results and compare them for validation.

Chapter 6 concludes the thesis by stating how this work fits among the current efforts
on offloading for mobile devices. We summarize the main contributions of our work,
such as defining an exploratory space for offloading mechanisms, modeling the workloads
of thousands of applications, investigating in detail how several offloading mechanisms

6 1. INTRODUCTION

function on a few applications and how this functionality can be generalized for a whole
family of applications through operational analysis, and validating the analytical results
with empirical evaluation. Finally, we describe the future directions opened by our work,
such as improving the workload model for better accuracy and for more applications,
providing a more complex analytical model to better formalize how tasks are handled
in an offloading system, and extending the workload predictions on the computational
infrastructure with possible results in capacity planning and provisioning.

Chapter 2

Aspects about Offloading for Mobile
Devices

To accomplish our vision, of seamlessly integrated mobiles within the computing world,
we have studied the existing literature and found there are several approaches, such as
offloading, delegation and cyber foraging. We focus on offloading as an approach with
many opportunities in novel research. In this chapter, we survey existing research efforts
regarding offloading for mobile devices and propose a Primer on Offloading, a General
Offloading Model and a Taxonomy for Offloading Concerns, to structure the vast pos-
sibilities of conducting the offloading process. We also identify Research Directions: we
emphasize the balance between offloading and alternatives, such as adaptation, and de-
fine three main factors that rule this balance: application, offloading type and offloading
tuning. To cover multiple aspects of the latter, we propose an Exploratory Space that
outlines a design space exploration, as well as the opportunity to indicate novelty in of-
floading mechanisms, such as concurrent and parallel offloading, spatial and temporal
partial offloading, and temporal content offloading.

2.1 A Primer on Offloading

In this section we provide an elementary material on offloading, to serve as introduction
to the broad subject of offloading. We provide a motivation, main goal, characteristics,
benefits and challenges. Throughout the section, we refer to the most important aspects
that lead to offloading for mobile devices: mobile characteristics, their popularity, the
vast application domain of mobiles, the way they interconnect with a more powerful
infrastructure and how this connection is structured.

2.1.1 Offloading Motivation

Modern handheld devices, such as smartphones and tablets, offer portability, increased
computational power, and communication capabilities. Among their characteristics we
outline several that we find most important:

8 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

• Connectivity: mobile devices are enabled with WiFi and 3G modules to connect to
the Internet, and with Bluetooth, NFC and various serial interfaces to connect with
their peers and with dedicated devices. Communication protocols are continuously
evolving to offer higher bandwidth and lower energy consumption.

• Processing capabilities: encouraged by the competition among mobile device man-
ufacturers and user demand, processing capabilities are growing, closing the gap
with personal computers. High-end mobile devices feature quad-core CPUs and
even GPUs. However, limited by energy concerns, all processors employ frequency
scaling and usually offer high performance for limited periods of time. Moreover,
user demand is growing beyond the capabilities of single devices, in applications
such as games.

• Sensing abilities: all mobile devices have a number of built-in sensors, such as
accelerometer, gyroscope, compass, pressure meter, luminosity, and input functions,
such as touch, voice commands, that enable them for a variety of applications.
Moreover, through Bluetooth and serial interfaces, they can connect to dedicated
sensing devices.

• Pervasiveness: handheld devices are designed for being close to the user at all times.
They become personal assistants, or gateways in the interaction with other devices.
Besides their portability, they are more attractive than personal computers because
they are always on, and thus offer lower latency at boot time. The tradeoff is their
small display.

• Heterogeneity: the popularity of mobile devices, encourages numerous manufactur-
ers to enter the race for market. Each offers its own platform. Far from being
the only operating system on the market, Android is a step towards unifying their
efforts, but still each manufacturer has to customize the Android implementation.
The need for unification is sprawling technical solutions such as HTML5, that offer
the possibility of running the same code on multiple devices under the responsive
paradigm, but it is far from offering all the functionalities a native application can
access.

• Limited battery supply: this is probably the characteristic that triggers most dis-
cussions. While some complain about the limited battery capacity most devices
have, others appeal to bigger batteries that affect the form factor, while others are
satisfied with daily recharge cycles. Overall, battery supply is directly affected by
the performance of the device and always will be a tradeoff to it.

The limited battery supply and processing capabilities, at least in respect to the user
demand, are the characteristics that trigger the most interest in offloading research. The
connectivity supports the offloading process, while the heterogeneity provides several chal-
lenges.

Given the characteristics mobile devices posses, they are an attractive option for users to
interact with each other, through social applications, and with their environment, through
home automation. The popularity of mobile devices can be seen in many ways. Facebook,
who has anounced recently their increase to over 1 billion monthly active users, reports
that more than a half of their users reach their social network using a mobile device [13].

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 9

People use mobile devices daily in activities ranging from entertainment to solving pro-
fessional tasks. Mobile applications span a vast application-domain, being developed for
various purposes, such as gaming, multimedia streaming, travel, communication, etc.
Many of these types of applications rely on connectivity and on data stored remotely.
Also, many of them make a lot of use of the high computation power of mobile devices.
Among this generous application space, there are several type of applications that would
benefit from offloading:

• applications that are computational intensive, like Chess and other low-response-
time games: these applications are fit for remote processing because users do not
expect quick responses from the program

• applications that rely on data from server side, such as Shazam, the program that
recognizes songs by comparing samples with a vast cloud database: the amount of
data these applications use is prohibitive to a single device functionality

• applications with pipeline functionality, such as image processing applications: these
are suitable for offloading in various degrees, as only parts of the pipeline should be
offloaded, depending on the conditions at hand

• applications that already interact with the cloud, such as m-commerce applications:
these are already making use of the communication capabilities, so employing other
forms of offloading is just a matter of fine-tuning

Although mobile devices are growing in functionality and computing power, we believe
the role of a more powerful infrastructure, to augment the capabilities of mobiles, will
increase. First, there are still limitations mobile devices have due to battery performance
and power dissipation. Second, personal computers and large computing clusters are also
growing in power, so there will always be a gap between the best mobile device and the
best computing station. Third, the requirements users put on devices are continuously
increasing, triggering software and hardware development cycles. Fourth, an increasing
number of applications rely on global data, either because this data is too big to store on
a single device, or simply because it comes from multiple sources, like crowdsourcing or
social interactions.

Software that uses the interaction of mobile devices with the cloud is already on the
market. However, recent research efforts have also identified the cloudlet as an offload-
ing target [10], emphasizing the trade-off between communication and computation costs.
Inspired by this research, we see mobile devices as part of a hierarchy of computing sys-
tems people are using today, which is essentially comprised of wearable devices, handheld
devices, cloudlets, and clouds (see Figure 2.1). Given the rate at which smart devices be-
come smaller and closer to the user, we find it foreseeable that in the near future mobile
devices will serve not only as sources, but as targets for offloading, from smaller, wearable
devices, such as glasses. Figure 2.1 also shows the tradeoffs encountered in this hierarchy
of devices: devices closer to the user are connected with better, low range communication
methods, that ensure lower latency, but also generally have less resources. Overall, there
is a need to minimize costs and energy consumption.

The convergence of mobile computing and cloud-based services is one of the leading ways
in which cloud computing is evolving [14]. As the Forrester analyst, Glenn O’Donnell,
put it: "‘cloud plus mobile is a classic more than the sum of its parts combination"’.

10 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

Figure 2.1: Hierarchy of devices in relation to their proximity to the user. Interconnection
level: Personal Area Networks (PAN), Local Area Networks (LAN),Wide Area Networks
(WAN). Trade-offs are highlighted.

Mobile integration with various other types of computing takes many forms, like mo-
bile cloud computing, offloading, delegation, cyber foraging, and data staging. We focus
on offloading, which is a form of transferring tasks of various granularity to remote re-
sources. Several offloading systems have been proposed, as middlewares, frameworks, or
services. In this work, we try to find and formalize the patterns underlying various types
of offloading systems.

2.1.2 Main Goal

The goal of offloading is to use remote resources to improve the functionality of the source
device. Offloading can be done in order to either maximize performance, to minimize
energy, or to minimize cost. Usually, these goals are mutually exclusive, as, for instance,
better performance means more power consumption, or higher costs. Another interesting
tradeoff when offloading is between the gain on computing power, due to more powerful
infrastructure, and the loss on data transmission, due to the distance to the remote
resource. Moreover, offloading decisions need to be made in a setup that is continuously
changing, due to device mobility, fluctuating connectivity, and variating energy supply.

When properly conducting offloading, it is important to identify the appropriate condi-
tions in which offloading can bring a benefit and to operate within given parameters. The
vast application domain, the device heterogeneity and the complex process of offloading
offer researchers the possibility to investigate various forms of the offloading process in a
number of conditions. Proper mobile device, having certain types of workloads, for cer-
tain applications, using appropriate infrastructure, under specific conditions are all key
elements in conducting a successful and beneficial offloading process. Moreover, assessing
these conditions accurately, automatically and as quickly as possible is the main goal of

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 11

the research in this domain.

We further investigate the main goal from the perspective of several research approaches
in Section 2.2.3.

2.1.3 Offloading Characteristics

Offloading aims to optimize the functionality of an application by using remote resources.
Although most of the existing research efforts focus on key concerns, such as performance,
energy and cost, some of them acknowledge that offloading is much more complex, es-
pecially if it is designed to work with a real-world application. Inspired by research on
distributed systems in general, we have in mind a broader range of concerns:

• Performance is, of course, the main concern of an offloading system. In order to
offer an increased performance to its clients, the offloading system should be fine
tuned to have its own performance at peak efficiency. Performance analysis is a
complex task, but all of its aspects, ranging from modeling to measuring, have been
researched and applied on various distributed systems.

• Energy saving is key for all modern computing systems. Mobiles are focused on
energy saving due to their limited battery supply. Clouds are also focused on energy
saving to ensure low costs for their users.

• Costs, from a financial point of view, can also become a complex aspect of offload-
ing. A single offloading operation can imply costs for multiple service or resource
providers, such as network operators, software manufacturers and cloud owners.
The cost for data transmission can range from nothing, for WiFi, to a significant
amount of money, if 3G/4G is used. Remote processing can be free if some local
infrastructure is used, or can cost a fee, usually in the pay-as-you-go form, to service
providers such as Amazon Web Services or Microsoft Windows Azure.

• Accuracy of the results can also be a serious concern, especially when processing is
done in parallel on the device and on a different architecture, with various types of
data

• Scalability in offloading systems, as in any distributed system, is a serious concern
when addressing large numbers of inputs. For example, if the offloading system goes
public, it needs to scale well to ensure proper functionality for increasing numbers
of users.

• Elasticity is the ability to adapt to workload changes and it usually involves actively
creating and destroying resources. Thus, the system should either predict or react
quickly to both positive and negative changes in the workload. If the system is not
able to provision new resources, the clients will be affected by lack of service. If the
system is not able to deprovision unused resources, then the financial cost will grow
unnecessary for existing clients.

• Flexibility refers to the property of a service to be customized to better serve the
needs of various types of customers

12 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

• Support for value adding operations like backup, update, cloning and avoid vendor
lock-in

• Security is, like in any distributed system, a topic of great interest, because data
leaves the personal device and needs to travel over public infrastructure for remote
processing. Thus, there are many existing and emerging solutions on security that
can be applied in offloading systems as well.

• Support for regulatory law, which includes privacy and durability, is also a key aspect
of offloading systems. People are usually sensitive about the data they keep on their
mobiles, which are used as personal assistants. Durability is a mirror aspect of this
concern for data, which should not be lost unless the user requires such a deletion.

Among offloading characteristics, we can also number:

• setup-related characteristics: what resource will be offloaded and how will it be
determined

• execution conditions: which is the target of the offloading, what is the allocation
policy, what are the system properties, and so on

• how will offloading be operated: which metrics control the process, which offloading
mechanism will be used

We detail all of these characteristics in our General Offloading Model in Section 2.2.

2.1.4 Offloading Benefits

Offloading has a number of benefits, some already exposed in commercial applications,
other still only shown in research studies.

Offloading addresses some of the limitations of mobile devices. For example, to prevent
mobiles from performing numerous queries to services, the major mobile operating systems
developers implemented push notification services, a form of communication offloading.
Data and content offloading opened the way for feature recognition applications such as
Shazam, that rely on massive amounts of data, that could not exist on a single device.
Moreover, offloading, as a centralized service, addresses all the types of devices, which, as
we have seen, reach orders of magnitude in heterogeneity.

Another benefit offloading systems have is that they can service a large amount of users,
using the already validated examples of web-based applications. In web-based applica-
tions, a scalable amount of users reach a remote resource using their browsers. Offloading
can, therefore, address users on a global scale, and they can easily understand how it
works, because they can relate to these similar models.

From the developer’s perspective, besides increasing performance, offloading can ease the
development process, because it follows the one implementation for all model. Offloading
also moves processes closer to the developer, who knows how to fix issues and how to
update features, which leads to better service times.

Offloading can be used for various purposes, to increase performance, to enable new
functionality on mobile devices, or to enable new properties in mobile applications (like

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 13

fairness in games). Offloading can also make it feasible to produce wearable devices,
smaller, less capable devices, focused on a single function, like collecting statistics for
joggers. Such devices can use mobiles as their offloading target.

2.1.5 Main Challenges

Mobile characteristics have a great impact on the offloading process. Mobility leads to
wireless connection losses and handovers which can pose some technical difficulties. Com-
munication in mobiles also poses a challenging tradeoff, between WiFi, which has more
bandwidth and less cost, and 3G, which is pervasive. Mobiles have sensing abilities, like
location awareness, that might lead to concerns regarding data sensitivity and privacy.
Also, device heterogeneity, in terms of hardware and technologies used by OS manufac-
turers, are a serious challenge to any offloading system, that essentially needs to replicate
functionality so it can perform with any kind of device.

The popularity of mobile applications also poses interesting challenges. Mobile applica-
tions have peculiar workloads, with social influences and bursty behavior, that require
good provisioning mechanisms. The simple use of traditional thin client approaches is not
sufficient in many cases, so better tuning is needed.

Studying mobile offloading is challenging because of device and application diversity. The
recent popularity of smart mobile devices is motivating many manufacturers to produce
devices for many types of consumers, thus leading to orders of magnitude in heterogene-
ity. For example, the processing unit may vary from single-core CPU, to quad-core CPU,
and even to hybrid architectures that include a dual-core CPU and a GPU. The same
level of diversity is found in mobile software as well, due to the massive developer popu-
lation that builds and maintains hundreds of thousands of applications on several official
marketplaces, like Apple iTunes, Google Play or Microsoft Windows Store, and countless
applications on unofficial marketplaces. Mobile applications span over various genres and
implementation technologies. For worthwhile offloading, it is necessary to find those appli-
cations where offloading is beneficial. Most offloading efforts focus on finding a good ratio
between computation and communication costs. We focus on applications that already
have some sort of communication, so the challenge is just fine-tuning this communication.
Instrumentation is key in performing such fine-tuning and it usually starts with profiling,
either online (interval-based, event-driven, etc), or offline.

Offloading implies the usage of third-party infrastructure in an interactive approach. It
is therefore necessary to quickly decide if offloading is beneficial or not. Such a decision,
as well as allocation details, can be made through either cost-driven (how much it costs
in energy and time?), or data-driven (where is the data?), or code-driven (where is the
code?) analysis [15]. Moreover, security and multi-tenancy issues must be taken into
consideration.

Finally, because mobile devices are part of a hierarchy of devices, offloading requires
to quickly decide where to offload in this hierarchy of devices and to account dynamic
changes of context. For example loosing access to a network, or the battery level getting
below a threshold, can have dramatic effects on the benefits of the offloading process.

In our work, we try to address these challenges, look beyond the surface to the underlying

14 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

Figure 2.2: General offloading model.

technology and to find those mechanisms that span a broad range of applications, but
still offer the possibility of some in-depth insights.

2.2 General Offloading Model

In this section, we present a general offloading model that describes a generic offload
system. We will then map the various research efforts as subsets of this general model.
In this chapter we offer an overview of each of the key components involved in offloading
and we will detail their functionality in Chapter 2.3.

We divide the components of an offloading system into two planes: components on
the client—the mobile device—and components in the environment—either a cloud, a
cloudlet, a peer device, or a hybrid environment, as discussed in Section 2.1.1. The
components are depicted in Figure 2.2 and are detailed in the remainder of this section.

Many of the current research efforts focus on thoroughly understanding the application to
be offloaded. Therefore, the Application Monitoring part of the offloading system is key
in obtaining a beneficial offloading process. The Profiling component is able to assess the
way in which the application is functioning through various mechanisms, such as static
or dynamic analysis. The information obtained from the Profiling component may be
used by the Partitioning component, which aims to split the application in components
of predefined granularities and identify which of them are offloadable. Both the Profiling

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 15

and Partitioning components provide information essential to the offloading decision.

There is also a need to assess the resources that are available for the functioning of the
application, both local and remote, with a Resource Management component that spans
both the client and the environment plane. In the client plane, the Resource Monitor-
ing component assesses parameters such as battery level, CPU load, wireless connection
quality and so on. In the environment plane, the Resource Supply component manages
the external resources that may be used in offloading, through mechanisms such as dis-
covery and provisioning. Resource discovery is useful in opportunistic approaches, such
as cyber foraging, in which the mobile device tries to find available offloading targets in
its environment. Resource provisioning is a more proactive approach, highly utilized in
cloud environments, in which resources are dynamically created to adjust to computing
needs.

The Offload Process itself needs to be an iterative process, due to mobility and the chang-
ing nature of the execution conditions. For example, the mobile client may switch from
WiFi to 3G, or may reach a critical battery level, with consequences the offloading process.
The Offload Decision component receives information from Application Monitoring and
Resource Management, to assess the current offloading needs and conditions, and from
previous iterations of the Offload Operation, to assess their benefits and defects. Offload
Decision can choose:

• what to offload, among the sets of partitions offered by the Partitioning component

• when to offload, as sometimes it may be not worth offloading at all

• where to offload, and instruct the Allocation component to use the appropiate of-
floading target.

Besides the basic offloading process, research efforts also address a number of orthogonal
concerns. Some approaches focus on adaptability, e.g. a game may turn off animations
if the offloading system is not able to sustain a reasonable frame rate, or the device may
switch communication networks through handover. Security concerns derive from using
remote resources, that may belong to third-parties, during the offload process. Logging
may be used for accountability, billing and making software improvements.

In the remainder of this section, we provide a mapping of existing research efforts on these
components. In the following section we provide a taxonomy based on the components
presented here.

2.2.1 Application Monitoring

Some of the researchers [10] [16] [17], focus their efforts on one or a few applications,
for which the behavior is considered a priori knowledge. Most of the research efforts
[18] [19] [20] [3] [21] employ a mix of static and dynamic analysis mechanisms. Notably,
there are a few efforts [22] [23] [24] [4] [3] that employ the type of profiling that monitors
the application behavior while offloading. Also notable is code instrumentation [23] as a
profiling method, that steadily evolved into more automatic ways [18].

Also in the application monitoring area of concerns, partitioning refers to dividing the
application into components of various granularities, to obtain a graph. Some researchers

16 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

quantify each node and each edge with specific metrics and apply clustering algorithms
to obtain a partition or set of partitions [3] [21].

2.2.2 Resource Management

Some approaches focus on challenges regarding resource handling, both locally and re-
motely. Locally, Resource Monitoring assesses resources available on the device, most
often CPU and network [11] [25].Remotely, Resource Supply needs to assess resources
available in the environment, which can either be performed by discovering or provision-
ing resources.

Zhang et al [26] focus on two scenarios that require massive resources in constrained
locations, namely disaster relief and child finding. This type of scenario encourages the
use of devices in the vicinity, by leveraging collocation. In [10], the authors describe the
Kimberley Control Manager, that supports browsing and publishing services using the
Avahi mechanism in Linux. This module acts as a broker in identifying and maintaining
connections with the remote resources. In the work presented by Marin et al [27], a
component named Cloud Receiver also acts as a broker in deciding which cloud resource
to use.

Ferber[28] and Satyanarayanan[10], who use virtualized environments for conducting of-
floading, measures the demand and provision when necessary, taking into account power
consumption and startup overhead. Also notable is the solution proposed by Yan[29] that
also considers resource specialization when provisioning. At the same time, the existing
solutions having an opportunistic approach [26] do not employ any provisioning at all.

2.2.3 Offload Process

The offload process needs to be an iterative process, to react to changes in the running
conditions. The iteration involves deciding on the form of offloading, allocating resources
and performing the offload operation.

Most researchers take into account the performance of the mobile device with and without
offloading, expressed as running times. Some also optimize the energy consumption, like
[30][31][26], or the monetary costs, like [28][29][26]. Satyanarayanan[10] and Verbelen[20]
also refer to the quality of the result when offloading, like better image resolution or more
accurate matchings. Usually, the researchers adopt a strict, mathematical assessment
model, based on equations. However, in [32], the authors present a prototype based on
fuzzy logic that takes into account remote information sources. They demonstrate their
prototype by uploading videos and applying a map-reduce version of a face detection
algorithm.

The usage of the remote resource produces an output that needs to be merged in the
local processing. This is sometimes a challenging task, as it implies parallel programming
concerns, such as synchronization, concurrency and error handling. Most of the solutions
based on remote code execution discuss methods to integrate the results obtained on the
remote resources back into the mobile device. Some solutions, based on virtual machines,
like [10] and [4] only discuss state integration. Notably, some approaches, like [33][29][15]

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 17

get into the complexities of handling failures in remote processing. The easiest solution
is to acknowledge failures through keep-alive mechanisms and to correct result errors by
discarding all the results that come from a faulty remote resource.

2.2.4 Orthogonal Concerns

We classify system properties as an orthogonal concern, because they refer to the sys-
tem as a whole. The performance property of the offloading system is discussed by all
solutions we studied. Availability, durability and reliability are also discussed quite often
[18][34][35][36] as these are key properties when trying to develop an offloading system
beyond the prototype phase and into a public solution. In addition, systems such as the
ones presented in [34] and [37] also discuss the distribution property of the system, while
others, especially the ones using cloud infrastructures, leave that to the cloud service
provider.

Kumar et al [30] discuss several privacy concerns related to using cloud resources, giving
examples such as bugs, third-party vendors and location tracking. They identify as possi-
ble solutions encryption and steganography. Eom et al [18] propose to use SocialVPN, a
tunneling technique through Virtual Private Networks that has a double benefit: better
security and virtualisation. Kemp acknowledges [36] security and privacy concerns users
might have when offloading, but leaves them for future work.

Given the research nature of the materials we have studied, most approaches are at a
prototype phase and only consider logging for functional and debugging purposes[34].
However, it is easy to understand how commercial offloading solutions like Google C2DM
[37] and, more recently, GCM, provide logging for accountability and billing purposes.

2.3 Taxonomy for Offloading Concerns

In this Section, we present a novel taxonomy for offloading concerns, structured on the
model presented in Section 2.2. We first introduce our taxonomy and then provide a
mapping with the research literature we studied on offloading for mobile devices.

Some approaches focus on the partitioning part of the process, discussing ways to instru-
ment and to profile the code. Other approaches focus on the discovery of resources.

2.3.1 The Taxonomy

As shown in Section 2.2, we identify four major areas of offloading concerns: Application
Monitoring, Resource Management, Offload Process and Orthogonal Concerns. Each of
these areas has a number of key topics of interest, each with several subtopics. Figure 2.3
shows our three-level taxonomy.

A. Application Monitoring

18 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

Figure 2.3: Our Taxonomy for offloading concerns.

As shown in Section 2.2.1, Application Monitoring is a key area of offloading concerns,
as it helps to decide what part of the application is worth offloading and under which
conditions.

A.1. Profiling is a classical approach in application optimization, usually employed by
developers when optimizing the functioning of an application, e.g. when implementing a
parallel version of a serial program. Profiling is also important when offloading, offering
input for both partitioning and offloading decision.

A.1.1. Profiling Mechanism. Profiling can be accomplished through various mechanisms.
Static analysis is the process of analyzing the code of an application without actually
executing the program. On mobile devices, it can be accomplished through various tools,
such as lint and Dexter. Dynamic analysis is the process of analyzing the behavior of the
application while running. We refer to offline profiling as profiling the application without
offloading, and to online profiling as profiling the application while offloading. In some
cases, researchers do not do any automatic analysis at all, but focus on a few applications,
for whose behavior they have a priori knowledge.

A.1.2. Application Metrics are the metrics extracted during the profiling stage for com-
ponents of various granularities. They help with the understanding of the application
behavior and, thus, are used in the partitioning process and serve as basis for the offload
decision. Metrics such as memory usage, CPU time, energy consumption and operational
time characterize the behavior of various components from a performance point of view.
As the application is split into components of various granularities, the offloading deci-
sion can be based on metrics such as the access frequency or the number of invocations
of given components, and the size of input/output data of each component, both being
used to compute the effort of handling that component remotely. Portability shows if
a component can be offloaded or not, as some, e.g. user interfaces, cannot be handled
remotely. Location of the component shows if that component has already been offloaded
or not, which can have an effect on the offloading decision.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 19

A.2. Partitioning serves as starting point in the offload process and aims to divide the
application into components organized in a partition or set of partitions. Afterwards,
a decision must be made about which components to offload and which components to
run locally. This process can vary in complexity from a simple hard-coded decision to
comprehensive graph algorithms.

A.2.1. Partition Mechanism. When partitioning, different mechanisms can be used. If the
application is well-known, then a manual, hard-coded partitioning can be used. However,
if the offloading solution should work on multiple applications, more complex methods
should be used. The knowledge of the developer can be used by asking him to make code
annotations, that is to indicate which pieces of code can be offloaded and which should be
run locally. Probably the most complex solution, to employ fully automatic partitioning,
is to use the output of the profiling component to represent the application as a graph,
in which nodes are components and edges are the communication between components.
Each node and each edge can be characterized with specific metrics, and then a number
of graph specific algorithms, such as clustering, can be used to obtain an optimal solution.

A.2.2. Partition Granularity. Partitioning the application can be performed at various
levels. Components can differ in size from an approach to another, ranging from a method
or set of instructions, to full threads or processes, and even to entire virtual machines.

B. Resource Management

As shown in Section 2.2.2, the Resource Management is needed to monitor local and
remote resources and to supply remote resources. The offloading process is essentially the
usage of remote resources. Therefore both aspects are important for having a worthwhile
offloading process.

B.1. Resource Monitoring assess the resources available on device, such as CPU, memory,
battery level and communication capabilities. The specifics of mobile applications can
motivate an offload for any of these types of resources, and monitoring itself can be done
using several types of metrics.

B.1.1. Offloaded Resource. Perhaps the most common form of offloading is to remotely
execute code, thus alleviating computation. However, sometimes remote execution is
done with a concern for the working memory used by that code, and we refer to this
as memory offloading. Communication offloading comes in two flavors: using a proxy,
commercially implemented as push notifications services, and using a peer, by sharing file
downloads and other communication intensive tasks. Content and storage offloading are
also commercially implemented, in the form of Content Delivery Networks and remote
storage services.

B.1.2. Resource Metrics are used to assess available resources, both locally and remotely.
Computation, communication and data storage resources are all covered in existing re-
search. Resource metrics mirror the application metrics presented in A.1.2.

B.2. Resource Supply in the environment can be done either through discovery—which is
useful in opportunistic approaches, when the device uses whichever resources are available—
or through provisioning—a more active approach that can also be found in other types of
distributed systems, where the system is able to create new resources in the environment
based on the demand.

20 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

B.2.1. Offload Target Placement. Based on the hierarchy of devices presented in Fig-
ure 2.1, the resources can be either in the distant and powerful cloud, the local cloudlet
or even among peers. Such a wide range of possibilities arises trade-offs to be studied
by the researchers, but also poses some interesting ownership challenges for commercial
implementations.

B.2.2. Discovery Mechanisms. Often, especially when the research efforts focus on other
areas of offloading than resource monitoring, the researchers use statically defined re-
sources, ranging from their own laptops, to virtual machines in the cloud. Others use
general distributed computing principles by employing a component that acts as a re-
source broker, mediating the dialog between the resource hungry device and the resources
available in the environment. Finally, a few approaches leverage device collocation when
selecting a remote resource, as this usually leads to lower latency times.

B.2.3. Provisioning Criteria. If there is any provisioning, it should consider the demand
to scale up and down the number of remote resources available for offloading, to optimize
performance and cost. Given the nature of mobile applications, provisioning might take
into account the specialization of the resources, which might be either the same type as
the client mobile device for compatibility, or of a different type for a diversification of
the mobile device’s capabilities. As an alternative, cyber foraging is an opportunistic
approach, that uses no provisioning at all.

C. Offload Process

As shown in Section 2.2.3, the offloading process is iterative, to adapt to fluctuating
conditions, and uses information from A. Application Monitoring and B. Resource Man-
agement.

C.1. Offload Decision gathers some of the most diverse ideas in offloading for mobile
devices, depending on the benefit assessment. The approaches differ in the way they assess
benefits, how they collect feedback from previous iterations of the offloading process and
how they take into account context.

C.1.1. Benefit Assessment. Offloading can be targeted for optimizing either performance,
energy consumption or costs. The three criteria are usually mutually exclusive, that is
minimizing all at the same time is not possible, but a balance between two or more criteria
can lead to a good benefit assessment model.

C.1.2. Feedback Collection. At the end of an offloading iteration, results computed re-
motely must be merged with local results, errors must be handled and a general perfor-
mance assessment must be made.

C.1.3. Context Awareness. In many cases, the context can be leveraged for better results.
For example, user behavior, social relations between users and location can be used to
model and predict workload changes and network conditions.

C.2. Allocation refers to the way in which the system decides on what resources to use
for which tasks—allocation criteria—and how to use multiple tasks on a limited number
of resources—allocation strategy.

C.2.1. Allocation Criteria. Various criteria can be found in the research literature for
deciding where to offload, that is which of the remote resources to use. They range from
performance related considerations, such as allocation time, processing time overhead,

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 21

energy consumption and network bandwidth, to qualitative resource properties, such as
data affinity, and job type.

C.2.2. Allocation Strategy. Remote resources can be used exclusively or multiplexed by
several clients. The space sharing allocation strategy is done through virtualization.

C.3. Offload Operation. The offload operation itself can be met in a variety of conditions,
depending on the theoretical mechanism used and the actual implementation. Offload-
ing inherently implies a sort of division between what is done locally and what is done
remotely. The division can refer either to data—in this case it can be compared with the
SIMD paradigm—or to processing—similar to the MISD paradigm.

C.3.1. Mechanism depends on the application partition granularity described in A.2.2. It
can range from cloning entire virtual machines, full process migration, job partitioning,
to remote code execution.

C.3.2. Parallelism. All types of offloading can be done either sequentially or in parallel.
Moreover, sometimes a concurrent offloading can be implemented, in which tasks are
solved both locally and remotely and the quickest result is used.

C.3.3. Processing Division. A full processing can be offloaded, or it can be offloaded
partially, either spatial or temporal. For example, in a game that simulates a map over
a loop, offloading can be implemented only on part of the map, or only on part of the
loops.

C.3.4. Data Division is based on the concepts of region of interest and object of interest,
that identify the part of the data that benefits from the user attention. For example, in
graphics-oriented applications, the viewport is the region that the user sees. Offloading
can be implemented for the region of interest, while processing data outside the region of
interest can be considered background effort and can be performed locally.

D. Orthogonal Concerns

As shown in Section 2.2.4, several of the topics researchers address in their papers are not
part of either Application Monitoring, Resource Management, nor the Offload Process.
Therefore, in this area of the taxonomy we identify them as orthogonal concerns.

D.1. System Properties. The general properties of the offloading system are a key indicator
of the system’s functionalities and qualities. However, they refer to the system as a whole
and cannot be integrated in any of the three areas of the General Offloading Model.

D.1.1. Functional Properties. The distribution property is the geographical spread of
the system’s components which enables it to perform well regardless of the mobile client’s
position. Matching hardware is a core operation property that ensures a good functionality
for all the heterogeneous devices that benefit from offloading. Lawfulness and privacy are
properties that arise from the distributed nature offloading systems have, when the user
allows personal information from its own mobile device to travel to infrastructure, which
can belong to third-parties, can exhibit multi-tenancy and can use data from sources with
different owners.

D.1.2. Qualitative Properties. In offloading systems, performance is a key property,
defined for each of its components and for the system as a whole. It is often used to
settle the expectations of each of the stakeholders, like establishing network latency in a

22 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

Service Level Agreement. The availability property refers, like in all distributed systems,
to the proportion of time the system is in functioning condition. The reliability property
refers to the ability of the system to perform its functions correctly in various conditions,
whereas the durability property refers to the ability of the system to perform its functions
correctly in lengthy periods of time.

D.2. Adaptability can be expressed in many ways and is an important factor for offloading
systems, that must cope with various changes in the context. The adaptability of the sys-
tem matches the ideas from C.1.3. Context Awareness. When offloading is not beneficial,
depending on the application, the system can perform quality adaptation. Mobility leads
to changes in communication capabilities and offloading systems might support network
adaptation. As a last resort, the system can deny new users through admission control.

D.2.1. Quality Adaptation is sometimes necessary when the system cannot keep up.
For example, a game may choose to reduce its graphics quality, or an image processing
application may choose to reduce the number of processed frames.

D.2.2. Network Adaptation can be accomplished through handover. A number of proto-
cols, such as IEEE 802.21 and IEEE 802.16e focus on handovers between various network
technologies.

D.2.3. Admission Control is a classical mechanism in service-oriented systems, which
assigns a component for approving or rejecting requests entering the system. Thus, a
system that cannot service more requests can simply deny them from the beginning.

D.3. Security & Privacy. Whether offloading uses a distant cloud resource or a closer
cloudlet resource, data travels from the safe environment of the local device to the outside
world. People are already concerned with privacy and security issues on their mobile
device, and, in this respect, offloading integrates in the same lines as sharing documents
and information.

D.3.1. Security. As data and code travels through various networks to reach the re-
mote resources used in offloading, security becomes a basic concern. However, classical
mechanisms can be used such as encryption, authentication, authorization and trust man-
agement.

D.3.2. Privacy is a great concern when offloading. Usually mobile devices are used
as personal assistants and people trust them with sensitive personal information, which
might be transferred to remote resources, that usually belong to different tenants.

D.4. Logging, in a commercial application, is essential for accountability and billing. How-
ever, research prototypes also benefit from logging as a functional tool, to help debugging.

D.4.1. Accountability. Given the big security and privacy risks that distributed applica-
tions in general pose to mobile users and the vast amount of service providers that have
a role in the offload process, accountability is a key feature that offloading systems need
to have when they become available for the general public.

D.4.2. Billing. Offloading implies services and resources supported by many third-party
providers. Given the popularity of mobile devices, offloading solutions can also benefit
from vast numbers of users, thus becoming an interesting revenue source for the providers.

D.4.3. Functional Logging. Offloading is a complex process, with great variations in

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 23

time due to the changing context. Thus, during the development stages of the offloading
system, the researchers use logging as a method for debugging their solution.

2.3.2 Mapping of Existing Research on the Taxonomy

In this section, we provide a comprehensive view on existing literature on offloading for
mobile devices, by matching it with our taxonomy.

A. Application Monitoring

Many research efforts on offloading for mobile devices focus only on a couple of applica-
tions, thus simplifying the Application Monitoring area. However, there are some which
strive for an automated solution, which would work on many types of applications, and
thus need to employ complex mechanisms. Some correlations among topics can be made:
solutions that employ graph techniques for partitioning also need statistical application
metrics, such as access frequency and input/output data size. Moreover, works where the
researchers choose applications in which they use a priori knowledge, aided sometimes by
static analysis, usually lead to manual partitioning and, thus, a focus on other areas of
the offloading problem. Table 2.1 summarizes our findings.

Table 2.1: Mapping of Application Monitoring efforts with our taxonomy.

Profiling
Mechanism

Application
Metrics

Partition
Mechanism

Partition
Granularity

Hassan, 2011 (map-reduce) [33] D C,D S M
Eom, 2012 (Snarf) [18] S,D,P C,P C J
Hong, 2009 [19] S,D E,T M T
Kemp, 2012 (Cuckoo) [36] S,P M,C,T M M
Huerta, 2010 [22] S,O T,L M,C M
Lagerspetz, 2011 [31] S E M C
Balan, 2007 [11] S - C M
Cuervo, 2010 (MAUI) [23] D,O,P P C M
Ou, 2007 [15] S M,C,P,F M C
Gu, 2004 [24] O M,P,L,F,D G C
Zhang, 2010 [26] S,P M,C,E M,C C
Satyanarayanan, 2009 [10] P - M V
Portokalidis, 2010 [16] P C M P
Verbelen, 2012 [20] S,D C,P M C
Chun, 2011 (CloneCloud) [3] S,D,O C,E,D G V,T
Giurgiu, 2009 [21] S,D M,P,D C,G C
Flores, 2011 [17] P C M C

Legend: Profiling Mechanism: S=static analysis, D=dynamic profiling, O=online profiling,
P=programmer input; Application Metrics: M=memory usage, C=CPU time, T=operational time,
E=energy, P=portability, F=access frequency, L=location, D=input/output data; Partition Mechanism:
M=manual partition, C=code annotation, S=chunk splitting, G=graph techniques; Partition Granular-
ity: V=virtual machine, J=job, P=process, T=thread, C=component/object, M=method

A.1. Profiling. Often, when researchers choose one or two applications, profiling is limited
to the a priori knowledge the researchers have on them. However, many research efforts
strive for automatic, general solutions that employ a mix of profiling mechanisms, with
multiple application metrics.

24 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

A.1.1. Profiling Mechanism. Some of the researchers [10] [16] [17], focus their efforts on
one or a few applications, for which the behavior is considered a priori knowledge. Most
of the research efforts [18] [19] [20] [3] [21] employ a mix of static and dynamic analysis
mechanisms. Notably, there are a few efforts [22] [23] [24] [4] [3] that employ the type of
profiling that monitors the application behavior while offloading.

A.1.2. Application Metrics. Most of the research efforts to profile applications for of-
floading measure, per component, the CPU usage and other performance related metrics,
such as memory usage, energy consumption and operational time. However, as shown
in [21], assessing the CPU cost for mobile devices is very difficult, due to heterogeneity,
and can only serve as a rough estimate. Some works [33] [15] [24] [4] [3] [21] additionally
employ statistical metrics such as the number of invocations a component has and the
amount of data it communicates, which have a role in graph specific algorithms used in
the partitioning. Qualitative metrics such as portability and location of the component
are also collected for the offloading decision [18] [22] [23] [24] [20] [21].

A.2. Partitioning serves as starting point in the offload process. The application is split in
components of various granularities and an offload decision is made about each of them.
This process is often modeled by representing the application as a graph, where each
node is a component and each edge is the communication among two components. Then
it is possible to quantify each node and each edge with specific metrics and to obtain a
partition or set of partitions by applying clustering algorithms.

A.2.1. Partition Mechanism. Many existing solutions conduct offloading on only a few
applications and the authors have a priori knowledge about them. A number of algorithms
can be used when partitioning, such as clustering. Some solutions rely on code annotation
from the developer, while others strive for an automatic approach.

A.2.2. Partition Granularity. Partitioning of the application can be performed at various
levels. Components can differ in size from an approach to another, ranging from a method
or piece of code, to full threads or processes, and even to entire virtual machines.

B. Resource Management

Table 2.2 shows a selection of papers regarding offloading, with a focus on Resource
Management, that cover a broad range of approaches. In the extensive literature we
studied, it can be noted that opportunistic or cyber foraging approaches are often based
on collocation, as mobile devices will use computational power available in their vicinity. It
can also be noted that, although most of these works have a focus on resource monitoring,
only some of them deal with resource supply, while many researchers prefer to statically
define the remote resources in their experiments.

B.1. Resource Monitoring is present in most of the works about offloading for mobile
devices. All of them select one or a combination of resources to be offloaded and many also
employ a mechanism to monitor existing resources on the device and in the environment.

B.1.1. Offloaded Resource. Most of the solutions we studied focused on methods to
offload computation. However, there are some notable variations. Huerta et al. [22]
offload processing that has high memory requirements and thus is not suitable for mobile
devices. Hassan [33] and Flores [32] perform offloading to use the data already present
in the cloud rather than bringing it to the mobile device. Communication offloading, in
the form of push notifications, has already been implemented as a commercial solution by

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 25

Table 2.2: Mapping of Resource Management efforts with our taxonomy.

R
es
ou

rc
e

M
et
ri
cs

O
ffl
oa
de

d
R
es
ou

rc
e

D
is
co
ve
ry

M
ec
ha

ni
sm

s

P
ro
vi
si
on

in
g

cr
it
er
ia

O
ffl
oa
d

T
ar
ge
t

Ferber, 2012 [28] T,X C S P CC
Kemp, 2011 [38] E,Bat N,C S S CC, HC
Hassan, 2011 (map-reduce) [33] C,E,X C,D S S CC,RC
Huerta, 2010 [22] $,C,M C,M C F P
Balan, 2007 [11] C,M,B,Bat C S F RC
Yan, 2010 [29] X,$ C B Z CC
Ou, 2007 [15] M, C, B C S S RC, HC, HS
Zhang, 2010 [26] C, M, Bat, N C, S, N C F CC, CS
Satyanarayanan, 2009 [10] C,M,X C B P,Z,T CL
Flores, 2013 [32] C,B C,D S S CC,CS
Marin, 2013 [27] C,M,B,Bat C B S CC

Legend: Resource Metrics: C=CPU load, M=memory load, N=network latency, B=bandwidth
usage, T=total execution time, X=interaction delay (response time), E=energy consumption,
Bat=battery level, $=cost; Offloaded Resource: C=computation, N=communication, D=data/content,
M=memory, S=storage; Discovery Mechanisms: S=static, C=collocation, B=broker; Provisioning crite-
ria: P=demand, Z=specialization, T=startup overhead, F=opportunistic/cyber foraging, S=predefined
servers; Offload Target Placement: CC=cloud computing, CS=cloud storage, CD=CDN, CL=cloudlet,
RC=residential computers, HC=home computer, HS=home server, HM=home mobile devices, P=peers.

many mobile technology producers, such as Google [37]. Kemp [38] describes this solution
as part of an integrated offloading platform called Cuckoo.

B.1.2. Resource Metrics mirror the application metrics presented in A.1.2. and are
used when deciding whether the mobile device has enough resources to perform the op-
erations locally or not. Most of the approaches monitor some form of computational
load [33][22][11][15][26][39][32][27] and battery level on the device [11][26][27]. Many
also measure the impact of network transfers as network latency [26], bandwidth us-
age [11][15][17][27] or interaction delay [28][33][29][39]. Huerta [22] and Yan [29] also take
into account the monetary cost of using remote resources.

B.2. Resource Supply is a more niche topic, as many offloading approaches are only tested
on a statically defined resource pool, on various levels of target placement, such as lap-
tops [11] or virtual machines in commercial infrastructures like Amazon Web Services
[28][36][33]. However, some approaches deal with resource supply in the form of discov-
ery or provisioning, where resources can as well be located on various levels of target
placement.

B.2.1. Offload Target Placement. Kemp et al [38] investigate offloading communication
to a single push server. They note that one may want to use elastic cloud resources
when load gets too high, but they admit that Cuckoo, their framework, does not support
migration of code between servers. Kumar et al [30] highlight the benefits of using the
cloud storage, that has beneficial effects on the amount of transferred data and thus on
the performance of the offloading process

26 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

B.2.2. Discovery Mechanisms Zhang et al [26] focus on two scenarios that require massive
resources in constrained locations, namely disaster relief and child finding. This type
of scenario encourages the use of devices in the vicinity, by leveraging collocation. In
[10], the authors describe the Kimberley Control Manager, that supports browsing and
publishing services using the Avahi mechanism in Linux. This module acts as a broker in
identifying and maintaining connections with the remote resources. In the work presented
by Marin et al [27], a component named Cloud Receiver also acts as a broker in deciding
which cloud resource to use.

B.2.3. Provisioning Criteria. Ferber[28] and Satyanarayanan[10], who use virtualized en-
vironments for conducting offloading, measures the demand and provision when necessary,
taking into account power consumption and startup overhead. Also notable is the solution
proposed by Yan[29] that also considers resource specialization when provisioning. At the
same time, the existing solutions having an opportunistic approach [26] do not employ
any provisioning at all.

C. Offload Process

Table 2.3 shows efforts regarding the Offload Process in existing scientific literature.

Table 2.3: Mapping of the Offload Process approaches with our taxonomy

B
en

efi
t

A
ss
es
sm

en
t

Fe
ed

ba
ck

C
ol
le
ct
io
n

R
es
ou

rc
e

al
lo
ca
ti
on

cr
it
er
ia

R
es
ou

rc
e

al
lo
ca
ti
on

st
ra
te
gy

M
ec
ha

ni
sm

P
ar
al
le
lis
m

P
ro
ce
ss
in
g

di
vi
si
on

D
at
a

di
vi
si
on

Ferber, 2012 [28] P,C N L E,S R,S S S F
Kumar, 2010 [30] P,E S D,EC E M,R S,P S O
Hassan, 2011 [33] P R,F D,J,L,N S MR P S O
Lagerspetz, 2011 [31] P,E R A, DA, EC S R,S P F C
Cuervo, 2010 (MAUI) [23] P S J,A,P E R S S D
Yan, 2010 [29] P,C R,F A, EC S S P F C
Ou, 2007 [15] P R,F D S R S S F
Zhang, 2010 [26] P,C,E S,R A,P,R S M P S C
Satyanarayanan, 2009 [10] P,Q S L S C P F F
Verbelen, 2012 [20] Q R A,P S R S S F
Verbelen, 2012 (AIOLOS) [4] P S J,D,EC S M S F F
Flores, 2013 [32] P R P,R S MR P F C

Legend: Benefit Assessment: P=performance, C=cost, E=energy consumption, Q=quality; Feedback
Collection: S=state migration, R=result integration, F=handling failure, N=none; Resource Allocation
Criteria: J=job type, A=allocation time, P=processing overhead, D=data/code affinity, R=runtime,
SD=slowdown , EC=energy consumption, L=least occupied resource, N=network bandwidth; Resource
Allocation Strategy: E=exclusive, S=space sharing, T=time sharing; Mechanism: J=job partition,
C=cloning/replication, M=migration, R=remote execution, MR=map-reduce, S=Service; Parallelism:
S=sequential, C=concurrent, P=parallel; Processing division: S=spatial, T=temporal, F=full process;
Data division: O=object of interest, R=region of interest, F=full data, D=deltas, C=chunks.

C.1. Offload Decision gathers some of the most diverse ideas in offloading for mobile
devices, depending on the benefit assessment. The approaches differ in the way they assess
benefits, how they collect feedback from previous iterations of the offloading process and
how they take into account context.

C.1.1. Benefit Assessment. Most researchers take into account the performance of the

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 27

mobile device with and without offloading, expressed as running times. Some also op-
timize the energy consumption, like [30][31][26], or the monetary costs, like [28][29][26].
Satyanarayanan[10] and Verbelen[20] also refer to the quality of the result when offload-
ing, like better image resolution or more accurate matchings. Usually, the researchers
adopt a strict, mathematical assessment model, based on equations. However, in [32], the
authors present a prototype based on fuzzy logic that takes into account remote infor-
mation sources. They demonstrate their prototype by uploading videos and applying a
map-reduce version of a face detection algorithm.

C.1.2. Feedback Collection. Most of the solutions based on remote code execution discuss
methods to integrate the results obtained on the remote resources back into the mobile
device. Some solutions, based on virtual machines, like [10] and [4] only discuss state
integration. Notably, some approaches, like [33][29][15] get into the complexities of han-
dling failures in remote processing. The easiest solution is to acknowledge failures through
keep-alive mechanisms and to correct result errors by discarding all the results that come
from a faulty remote resource.

C.1.3. Context Awareness. In many cases, the context can be leveraged for better results.
For example, Marin et al. [27] take into account social relations among users for better
understanding the workloads of the applications and Flores et al. [9] build a cloud-based
system to gather benefit assessment from multiple clients and base the offload decision
on that.

C.2. Allocation. Allocation in mobile offloading literature is rarely a topic of focus. Ferber
et al. [28] compare several allocation strategies. On the other hand, several solutions
leverage cloud resources, like Amazon EC2 [28] and Amazon Mechanical Turk [29] and,
thus, rely on the implicit allocation policies of the cloud provider.

C.2.1. Allocation Criteria. Ferber et al. [28] investigate allocation time and processing
time overhead using remote objects over Amazon EC2. Other researchers adopt various
other allocation criteria, like which is the least occupied remote resource [28][40], or where
is the data to be processed [30][33][15].

C.2.2. Allocation Strategy. Some of the approaches [3][10] use virtual machines in the
cloud, thus using a space sharing allocation technique. Others, who work at finer gran-
ularities than virtual machines, like component [31] or method [23][4], can also service
multiple clients by space sharing them on the same remote resource. Ferber et al. [28]
compare exclusive allocation and space sharing allocation based on the least-occupied
criteria, and highlight the trade-off they have on various types of tasks. Time sharing can
be envisioned as a possibility as well, but is not presented by the works we studied.

C.3. Offload Operation. The offload mechanism is usually one of the focal points in most
of the papers on mobile offloading, as there are many variations and some correlations with
the granularity of the application. Parallel offloading is considered by some researchers, as
a method to increase performance, but its benefits are application specific and bounded by
the additional complexity that it brings. Processing division is at the core of the offloading
process, which usually splits the processing spatially, and, less often, temporally. Data
division is rarely considered.

C.3.1. Mechanism. Lagerspetz et al [31] focus on file indexing among devices and between
devices and the cloud. The offloading process is described as remote execution among

28 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

devices and as a service from the cloud. Zhang et al [26] propose an application model
based on migrating application components named weblets. In [10], the authors use
entire VM migration and dynamic VM synthesis to replicate the work. Verbelen et al
[20] propose an OSGI-based offloading solution to maximize the quality of an augmented
reality application, while still meeting all defined time constraints. In [32], the authors
demonstrate their prototype by uploading videos and applying a map-reduce version of a
face detection algorithm.

C.3.2. Parallelism. In [29], the authors propose a solution that uses the Amazon Mechan-
ical Turk, a service where tens of thousands of people are actively working on simple tasks
for monetary rewards, to perform image search. The sollution is parallel, in a sense that
each person matches the query to a set of photos. In [26], the authors conduct offloading
on an image processing application. A weblet pool is created on the cloud, and images
are processed in parallel by pool members. In [10], the authors acknowledge the benefits
of parallelism by cloning the VM if the cloudlet is a cluster.

C.3.3. Processing Division. A full processing can be offloaded, or it can be offloaded
partially, either spatial or temporal. For example, in a game that simulates a map over
a loop, offloading can be implemented only on part of the map, or only on part of the
loops.

C.3.4. Data Division. The processing of the full content can be offloaded, or only that of
the region of interest, for example the viewport in graphical applications.

D. Orthogonal Concerns

Table 2.4 shows a selection of papers dealing with Orthogonal Concerns while offloading.
It can be noted that very few research efforts address all types of orthogonal concerns,
but many address at least one.

Table 2.4: Mapping Offloading Orthogonal Concerns with our taxonomy.

System properties Adaptability Security & Privacy Logging

Kumar, 2010 [30] L,P,D - S,P -
Kemp, 2011 [38] P,R - S,P -
Eom, 2012 (Snarf) [18] P,H,A - S -
Kemp, 2012 (Cuckoo) [36] P,H,R Q S,P -
Klein, 2010 [34] G,P,A H - F
C2DM, 2010 [37] G,L,P,A - S,P A,B
Wang, 2010 [41] P,A,R,D Q - -
Hoang, 2012 [35] P,A A - -

Legend: System properties: G=distribution property, L=lawfulness property, P=performance prop-
erty, H=matching hardware, A=availability property, R=reliability, D=durability property; Adaptabil-
ity: H=Handover /Network Adaptation, Q=Quality Adaptation, -frame skipping, -reducing graphics,
-reducing precision, A=Admission Control; Security & Privacy and Logging: S=security, P=privacy;
Logging: A=accountability, B=billing, F=functional.

D.1. System Properties. The performance property of the offloading system is discussed
by all solutions we studied. Availability, durability and reliability are also discussed quite
often [18][34][35][36] as these are key properties when trying to develop an offloading
system beyond the prototype phase and into a public solution. In addition, systems such
as the ones presented in [34] and [37] also discuss the distribution property of the system,

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 29

while others, especially the ones using cloud infrastructures, leave that to the cloud service
provider.

D.2. Adaptability. In [34], the authors describe Heterogeneous Access Management
schemes in the context of Mobile Cloud Computing, One of their highlights is the adap-
tive network access, handover, based on context awareness elements, such as location
awareness, network load, user movement predictions. In [41] the authors propose a ren-
dering adaptation technique which can adapt the game rendering parameters to satisfy
Cloud Mobile Gaming communication and computation constraints, with a focus on user
experience.

D.3. Security & Privacy. Kumar et al [30] discuss several privacy concerns related to using
cloud resources, giving examples such as bugs, third-party vendors and location tracking.
They identify as possible solutions encryption and steganography. Eom et al [18] propose
to use SocialVPN, a tunneling technique through Virtual Private Networks that has a
double benefit: better security and virtualisation. Kemp acknowledges [36] security and
privacy concerns users might have when offloading, but leaves them for future work.

D.4. Logging. Given the research nature of the materials we have studied, most ap-
proaches are at a prototype phase and only consider logging for functional and debugging
purposes[34]. However, it is easy to understand how commercial offloading solutions like
Google C2DM [37] and, more recently, GCM, provide logging for accountability and billing
purposes.

2.4 Research Directions

Offloading for mobile devices is a hot topic. It has an increased presence in peer-reviewed
publications and events in the past few years, quite similar to the growing popularity
mobile devices have with the general public.

Improvements in mobile applications derived from offloading are also increasingly visi-
ble. For example, the communication offloading technique presented by Kemp [38] is also
implemented commercially by major mobile service providers, like in [37]. Also on the
market, applications such as Shazam use remote processing as a basic way of function-
ing. However, many research efforts still face a number of challenges until they can be
implemented for the general public. We identify, in the remainder of this section, research
directions for mobile offloading which show great potential for future exploration.

Application Monitoring: most of the research focuses on increasingly automatic ways of
partitioning applications at an operations level. We believe that application monitoring
can also be understood from a workload perspective, with results such as load predictions,
that in turn can lead to better resource provisioning and smarter offloading systems.

Resource Management: resource discovery and provisioning is hardly tackled. Many of
the approaches refer to opportunistic offloading, resource scavenging, cyber foraging, and
so on. However, resource providers, with expertise in discovery and provisioning in cloud
environments, are certainly interested in finding out how they can efficiently offer their
resources to the mobile software market, a market with hundreds of millions of users.

30 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

Offload Process: research can be made on partial and parallel offloading, as well as ex-
ploiting the region of interest. Moreover, experimental setup can be better tuned for
real-life applications: experiments not with many clients, laptop instead of mobile.

Orthogonal Concerns: adaptation is often a good companion to offloading and sometimes
even a better alternative. Finding a good balance between offloading and adaptation can
be a novel approach for performance optimization.

2.4.1 Adaptation versus Offloading: a Balanced Choice

Our taxonomy identifies at item D.2. the adaptability of the system as a key orthogonal
concern. Adaptation can be performed in terms of quality of the result, network access
or admission control. Notably, when offloading is not beneficial, depending on the appli-
cation, the system can perform quality adaptation. For instance, in a game it might be
preferable to lower the graphics quality, or in a video-processing application it might be
preferable to process only some of the frames.

Adaptation may be used as a complement or as a replacement for offloading. To assess
which technique is more suitable in a wide range of situations, we consider the factors
that have most influence on the benefits of offloading:

• Resource Type: as described in our taxonomy, item B.1.1., communication, com-
putation and content can all be offloaded. Communication adaptation can be per-
formed in client-server systems as well, by limiting the number of queries the client
is doing. Computation adaptation can be performed, for instance, in a game by low-
ering the graphics quality. Content adaptation can be done by using different types
of assets in mobile applications, depending on the connection or screen size. We
investigate communication and computation adaptation and offloading in Chapter
4.

• Application Type: we have already identified several types of applications that might
benefit from adaptation. These are especially oriented on image processing and
graphics, but also on transferring numerous messages. On the other hand, applica-
tions that might benefit from offloading are usually the ones that already have some
type of distributed functionality, that are computationally intensive, or that depend
on data available remotely. We investigate applications that follow both criteria in
Chapter 4.

• Process Tuning: as shown in our taxonomy, item C.3., the process of mobile applica-
tions can be tuned for offloading, by exploiting partiality and parallelism. Adapta-
tion inherently exploits process partiality, by allowing parts of an application to run,
but parallelism is not suitable. So, in these terms, offloading shows more complexity
than adaptation.

In Chapter 4, we conduct an application domain exploration that investigates commu-
nication and computation offloading in the context of several applications, thus covering
the first two factors. Some elements of the third factor, process tuning, are also covered
by the inherent nature of adaptation and offloading. However, to cover multiple aspects
of the third factor we define an Exploratory Space that will be used in Chapter 5, in the
Experimental Evaluation of our proposed Integrated Offloading System.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 31

Figure 2.4: Our Exploratory Space for mobile offloading

2.4.2 Exploratory Space

Based on our understanding of current research efforts in offloading for mobile devices, we
propose an exploratory space that focuses on topics that show nice research opportunities.
Figure 2.4 shows an exploratory space with five dimensions:

• Component: using A.2.2. Application Partition Granularity to define application
components, the application can be offloaded in various degrees, ranging from a
single component to most of its components, leaving only a thin client on the mobile
device. As examples of the latter there are various VNC clients for mobile devices
and game streaming technologies.

• Intermittence: as described by C.3.3. Process Division in our taxonomy, the of-
floading process can occur partially, either spatially or temporally. Spatial process
division is denoted by splitting the application components, which is described in the
previous dimension. Temporal process division is described by the intermittence of
the process, that is alternation between offloading and not offloading a component.

• Data Division: as described by B.1.2., offloading can be performed to alleviate mem-
ory limitations. In this case, the data used by computation can be fully offloaded
or partially offloaded, either at the level of object of interest or region of interest.
This type of mechanism is covered in our taxonomy by C.3.4. Content Division.

• Parallelism: as described by C.3.2. Parallelism in our taxonomy, offloading can be
done in parallel for some tasks. Also, concurrent offloading could be interesting for
studies as a method to maximize performance at the loss of costs.

32 2. ASPECTS ABOUT OFFLOADING FOR MOBILE DEVICES

• Resource Placement: as described by B.2.3. Offloaded Target Placement in our
taxonomy, using the cloud, the cloudlet or even peers highlights some interesting
trade-offs.

Various mixes on the five dimensions can bring interesting results. A comparison of various
degrees of offloading components in the context of various available resources has not been
made. Also, some of the offloading tuning methods can prove there is still novelty to be
discovered in offloading.

To the best of our knowledge, no offloading system has been tested under realistic work-
loads matching tens of millions of users. Thus, sequentially offloading on remote resources,
already more powerful as they are offered by powerful infrastructure such as clouds, has
been enough. We plan to investigate parallel offloading as a better method of offloading
under workloads such as the most popular mobile applications are showing today. Also,
concurrent offloading can be exploited under experimental conditions.

Partial processing offloading and partial data offloading have been studied with limited
results. We believe focusing on a specific application domain can bring better insights and
a proper understanding of partial offloading. For instance, for games we could investigate
the region of interest level of partiality by applying the concept of area of interest in
offloading experiments, we could investigate partial spatial offloading by dividing a map
and we could investigate partial temporal offloading by processing only some of the frames
remotely.

Chapter 3

Workload Modeling for Online Social
Applications

We believe that offloading can be beneficial and still pose some interesting challenges for
applications which (1) already use some form of communication, and (2) perform most of
the functionality by iterating an execution loop. Also considering the popularity various
types of applications have, we decide to further investigate Online Social Applications,
which are applications dedicated to socially interconnected users, developed for various
purposes, such as gaming, multimedia streaming, travel, communication, etc.

3.1 The Context of Workload Modeling

Our work is closely related to studies of Internet workloads, including web applications
[42][43][44], peer-to-peer file sharing [45], and online gaming [46]. The research in [44] and
[47] brings a focus on access patterns, based on a spectral analysis of data collected during
the 1996 Olympic Games. In contrast, our study focuses on online social applications,
which represent a new class of applications.

A number of papers deal with characterizing and modeling workloads and performance of
web servers. In [43], the authors describe a performance analysis monitor that passively
collects packet traces from a server to determine service performance characteristics.

We have also found very useful the efforts to model usage related features in online sys-
tems, such as failures in large scale distributed systems [48][49], flashcrowds in bittorrent
systems [45] and workloads in online gaming systems [50][51].

Closest to our work, several research efforts focus on online social applications. Nazir
et al. [52][53] study the workload of three Facebook applications, with a focus on social
interactions. Kirman et al. [54] study two Facebook games in comparison with a stand-
alone game, and find that the social networks show a sharp cut-off, in comparison with
the scale-free nature of the social network of the stand-alone game. In contrast to this
body of work, ours is conducted on a much larger data set and over a much longer period
of time, and the focus of our investigation provides new characterization and modeling
insights.

34 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Online social applications are currently implemented using various technologies:

• Web 2.0: for example the applications hosted by the Facebook platform and devel-
oped by an entire ecosystem of companies; such applications send messages with
the user actions to be performed on the server; such applications address hundreds
of millions of users only on mobile devices [13]

• Tightly Coupled Simulations: for example multiplayer simulation games, like OpenTTD,
which do some heavy processing on the device and usually communicate only control
messages; OpenTTD alone has more than 100,000 users on Android

• Streaming: for example online social application and video streaming platforms, like
OnLive, which do heavy processing on the server and send video and audio streams
to the device; in 2012 OnLive alone was reported to have 1.5 million active users
[55]

Applications from all three types of technologies have loop-based processing, with some
of the stages occurring remotely, due to their online and social characteristics. Moreover,
the social relations between the users lead to some bursty workloads that can prove to be
challenging from a research and production point of view. As explained in Section 2.4, we
believe that application monitoring can also be understood from a workload perspective,
with results such as load predictions, that in turn can lead to better resource provisioning
and smarter offloading systems. Thus, in this chapter, we focus on workload modeling
on online social applications, and we will use the results presented here in conducting
performance evaluation of several offloading techniques, presented in Chapter 5.

3.2 The Data Collection Process

For this study, we have collected several large-scale datasets from online social applica-
tions, as depicted in Table 3.1. The objective is to have datasets that cover large time
frames and large number of users, and also that come from applications based on dif-
ferent technologies. However, the data collection process is difficult because, generally,
application developers are reluctant in sharing usage information for their products. Such
information can have negative effects on things like market share or user opinion. Thus,
we have quite a diverse collection of datasets, from which only some were fit for the
characterization and modeling we present in Section 3.4.

Table 3.1: Dataset overview.

Dataset Type total # of applications total # of users Duration

facebook-1 users count
operations

630
18

10M
2

3 years
60 sessions

facebook-2 users count 16,800 10M 3 years
open-ttd operations 1 10 (AI) 100 sessions

tune-up users count
operations 500 15,000 9 months

1000 sessions

The datasets facebook-1 and facebook-2 correspond to web-based applications, whereas

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 35

open-ttd and tune-up correspond to tightly-coupled simulations. For each of the datasets
we describe in the following the data collection process, which is comprised of the crawling,
parsing, storing, and sanitizing steps.

We collect two types of datasets: users count or operations. Users count datasets register
the number of active users. We use in our work the names given by Facebook to their
usage indicators: daily active users (DAU) and monthly active users (MAU). Operations
datasets account for the user triggered operations with effects on the computation and
communication load. The two types of datasets match the two main sections of our
workload model, the Macro Model and the Micro Model respectively, as presented in
Section 3.3.

3.2.1 Web-based applications

To collect data for web-based applications, we gathered usage information and traces for
Facebook applications using third-party platforms and the Facebook OpenGraph API.
Facebook reports daily, through its API, usage data concerning applications dedicated to
its users. A number of third-party websites collect this data and report it, over a period
of time, in ranks or individually. In our analysis we use DAU and MAU to investigate
both popularity and the evolution of the number of users. However, we are also interested
in other data that might provide insights, such as application developer, category and
subcategory. We use app as an abbreviation for application.

Crawling directly application pages on facebook.com is impractical due to the changing
login mechanism, and the varying page structure and layout. Another alternative is
to crawl the Facebook OpenGraph API at graph.facebook.com, which retrieves a lot of
useful information in easy-to-parse JSON format, but requires the Facebook app id to be
known in advance. Thus, we first obtained the facebook-1 dataset from the third-party
websites, and then used the app id list to obtain the facebook-2 dataset from the Facebook
OpenGraph API.

The facebook-1 dataset: user count

In the first stage, we crawled two websites, namely appdata.com and developeranalyt-
ics.com, daily for thirty-one months, between January 1st, 2010 and July 31st, 2012. We
chose these websites because they report extensive data about a large number of Face-
book applications, in a paged-tabular form, covering 40 and 50 applications on each page,
respectively. From such data it is easy to obtain an index of applications, sorted by the
number of users. Moreover, developeranalytics.com displays charts with historical data,
going back to the beginning of 2008, which were used to obtain an increased coverage
for 50 applications. From appdata.com we started to extract MAU and rank for the top
applications fitting on 150 pages, for a total of 6,000 applications. However, in March
2010, an unforseeen change in the query parameters lead our crawlers to retrieve in each
subsequent session the first page for 150 times. So, in the end, we have information about
top 6,000 applications for three months and top 40 applications for thirty-one months.
From developeranalytics.com we extract DAU, MAU, rank and developer for the applica-
tions in top 100, over the same thirty-one months. Also, for a sample of 50 applications,

36 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Table 3.2: Volume of crawled, parsed, and stored information for Facebook applications.

Source Files applications Samples
appdata.com 47,056 16,664 1,864,812
developeranalytics.com 49,177 630 133,594
graph.facebook.com 16,901 16,901 16,901

that were in the top during our first day of crawling, we gathered information for the
whole period.

At the end of the crawling period, we developed Python parsers that we used to parse
and store useful data in an unified SQLite database. We completed the datasets with in-
formation regarding developer, category and subcategory by crawling graph.facebook.com
for all the applications obtained from the other two sources.

To sanitize the data, we tried to identify and remove any reporting and reading errors.
For example, some applications were reported to have an exact same number of users for a
few days in a row, or to suddenly have no users for sporadic dates. While this can happen
in real-life, due to special events such as failures in the infrastructure, we consider that
such features are most probably reporting errors, especially when they affect the whole
population of applications. Plotting the evolution of DAU for a few applications shows
that the number of users can display a bursty behavior, as it will be shown in subsection
4.2.1. We cannot presume that this behavior is caused by reporting errors and, thus, we
investigate this situation.

A quantification of the volume of crawled, parsed, and stored data can be found in Ta-
ble 3.2.

The facebook-1 dataset: operations

To crawl data regarding operations users perform in web-based applications, we used two
popular network sniffers, namely Fiddler and Wireshark, while performing 60 sessions
on our own devices, with 18 Facebook applications. The network sniffers intercept and
store all network packets, with specified filters. Fiddler in particular only intercepts
HTTP traffic, which is reasonable to assume consists most of the traffic for the web-based
applications.

To parse the data we use Python libraries that are able to read the pcap trace files produced
by Wireshark. The saz trace files produced by Fiddler are essential zip archives, each
containing a directory structure where all the registered packets can be found as files. We
use Linux tools, like grep and awk, to parse the packet files and extract useful information
from the headers and bodies of the HTTP messages.

Although we took special care that the browser window with the Facebook app was the
only user application using the Internet, we need to acknowledge that other network traffic
sources may exist, triggered by the background processes or the operating system. We
consider that the Fiddler traces may be less biased, as they contain only HTTP traffic. To
further sanitize the data, we plotted some of its statistical characteristics. This way we
found out that many of the packet sizes were consistent with the standard Ethernet frame

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 37

size, with a payload of 1500 bytes. However, some exceeded this size. To the best of our
knowledge, the network cards we used do not support jumbo frames, so there might be
some inconsistency in reporting from Fiddler. In any case, we created a script to repack
all frames and to obtain the actual packet sizes.

We do not perform any additional storage of the data, because the traces are already in
a clear standard file structure and the scripts we used for parsing are quick and versatile.

We also acknowledge that the number of users for this dataset is a serious limitation. We
are working to repeat the data collection process using more student volunteers. However,
we believe that online social applications based on web technologies have to some extent
a number of basic common characteristics at an operations level, which we try to identify
in Section 3.3.4 and we use this dataset that, due to the large number of sessions and
applications, has statistical value.

The facebook-2 dataset: user count

To crawl the data from the Facebook OpenGraph API, we had to create a Facebook user
and a Facebook application of our own. This allowed us to obtain a security token that is
used in all the queries on the API. The purpose of the token is to allow Facebook appli-
cations to require information about other applications on the platform, for a time frame
of up to three years in the past. While it seems reasonable to allow all the applications
of a developer to require such information one from another, it was surprising for us to
see that the API supports queries about any application, from any developer, if the app
id is known in advance. Thus, we implemented crawling scripts in Python that run for
two days on a machine in our cluster, downloading the full history for the whole list of
application ids in the facebook-1 dataset.

Parsing the data was easy because of its standard JSON format, each response from
the server containing, besides information about DAU and MAU, the application title,
developer, genre, category and link. We store the data in the same unified SQLite database
as the facebook-1 dataset.

To sanitize our data, we compared the two datasets. Mostly, the results matched, but some
timestamps with null values in the facebook-1 dataset did have values in the facebook-2
dataset, indicating that some information was lost because of the indirection to third-
party websites.

3.2.2 Tightly coupled simulations

Collecting data for tightly coupled simulations is not an easy task. Even when the appli-
cations perform communication with a public server, a significant amount of the workload
takes place on personal devices. People are usually reluctant to offer any kind of usage
information regarding their devices. On one hand, we collected the open-ttd trace by
using OpenTTD ourselves. Though the number of users is limited, we believe there is
yet statistically relevant information that can be extracted from this dataset. On the
other hand, we made a partnership with Bitdefender, a popular software company that
people trust for their security and system tuning applications. In particular, they develop

38 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Power Tune-Up, an application that can be installed on Android devices and collects
traces regarding system usage to make some recommendations that prolong battery life
and increase system performance. We obtained access, within the boundaries of an NDA,
to some of the statistical information that Tune-Up collects. We describe our effort to
collect data from Tune-Up in [56], but we do not further detail it here, as its results are
not used yet in the workload model.

The open-ttd dataset: operations

For covering this type of applications we have conducted profiling on OpenTTD, a popular
open-source simulation game. In multiplayer mode, OpenTTD currently supports up to
255 simultaneous users on the same map, one of which must host the server. Each of
the clients needs to perform every 100ms a processing loop, consisting of input capture,
AI input (if AI’s are used), command synchronization, simulation and render. During
command synchronization, each client sends all the commands issued by human or AI
players, the server puts them in order and sends the whole collection of commands back
to the clients for execution. We further detail the functionality of OpenTTD in Section
4.2.2.

To collect run-time data from OpenTTD, we modify the source-code and log timestamps
at key moments in the processing loop, using the time function in C++, which has a
precision of the order of microseconds. We choose the key moments by profiling the
application. We use gprof to obtain the call graph for the top-level functions, handling
the six stages in the loop. We process the data by computing the first derivative, to obtain
the time spent on computation in each stage. It is important to note that the commands
issued in one iteration of the loop are transmitted to the server, received back by the client
and processed in the next iteration. Thus, the time spent on command synchronization
will be more than the time interval between two loops (that is 100ms), but the total time
spent on such a loop should not exceed twice the time interval (that is 200ms), otherwise
the client may be kicked out of the game, as being too slow. To sanitize the data, we
identify and remove any outliers, that differ from the median with more than twice the
standard deviation.

To collect network traffic, we use tcpdump while running the multiplayer game and output
the trace to a text file. We parse the text file with awk and store the information in csv
files.

These collection procedures serve as a base for the test-bed we design and implement
using OpenTTD, which we describe in Section 5.2.

We use a Sony Vaio 4-core @2.3GHz running Ubuntu 10.04 (laptop) as server, and a Asus
TF101 2-core @1GHz running Android 4.0.3 (tablet) as client. Given the diversity of
parameters that govern the game, we choose a standard Scenario (Europe) which benefits
of a large map of 1024x1024 tiles, numbering tens of thousands of cities and resources, and
we set a high graphic detail and animations. We further discuss how various parameters
can influence performance in Section 5.2.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 39

Figure 3.1: The Workload Model

3.3 The Workload Model

To help understand the loads on online social applications we create a workload evolution
model (see Figure 3.1). The key element of our model is evolution, either short-term (time
range spanning the lifetime of a online social application session, up to a few hours, with a
resolution of milliseconds) or longterm (time range spanning the lifetime of a online social
application, so up to several years, with a resolution of one day). To accommodate the
two very different time ranges and accuracies, we propose separate model components:

• a macro-evolution component for the long-time range, which accounts for the num-
ber of active users applications have, consisting of three elements: the popular-
ity distribution—which describes how users are spread throughout a population
of applications—the evolution pattern—which describes how the number of users
varies during the lifetime of an application—and the daily pattern—which describes
how the number of users varies during a day

• a micro-evolution component for the short-time range, which accounts for the opera-
tions users trigger and their associated load, consisting of two elements: the general
network statistics—with insights into network traffic and processing times—and the
state transition diagram—which segments loads on different application states.

We detail our model in the remainder of this section, and present characterization and
modeling results in Section 3.4, using the datasets described in Section 3.2.

3.3.1 Popularity Distribution

To quantify application popularity within a population of similar applications, we investi-
gate the relation between maximum number of DAU and the rank of the application. We

40 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

expect this relation to conform with a Pareto-like principle, with top ranking applications
gathering many more users even than the ones ranked immediately below them.

We also expect that the popularity distribution is not time-varying, despite the overall
increasing number of users mobiles and online social applications have. We also expect
that the popularity distribution is not affected by seasonality, given the global scale of
the user base. To validate this expectation, we use our long-term datasets and present
the results in Section 3.2.

To model popularity, we conduct curve fitting on the empirical distribution for various
reference distributions, namely Exponential, Weibull, Pareto, Log-normal, and Gamma.
We use the maximum likelihood estimation method (MLE) to estimate the distribution
parameters, and the Kolmogorov-Smirnov (KS) test to evaluate goodness of fit (GOF).
The results are reported in terms of the p-values and D-values, as well as the parameters
that provide the best fit for each of the reference distributions. The p-value shown is the
average of 1000 values, each of which was computed by selecting 30 samples randomly
from each dataset.

3.3.2 Evolution Pattern

Networked applications can evolve in various ways over time. An infamous evolution
typology is the flashcrowd (burst, spike) [45], for which the number of users over time
first grows quickly, then reaches a peak high above the number of users at the start of
the flashcrowd, then quickly decreases. When subjected to this type of workload, many
services crash or severely depreciate their quality of service. However, other evolution
typologies also exist.

In this work we identify several major evolution typologies, each of which is governed by
parameterized evolution patterns. We develop a model for each pattern and an algorithmic
classifier that maps a given OSG to its evolution typology. We validate our model in
Section 3.4.

Orthogonal to the evolution typologies, but of importance to the algorithmic classifier,
we also identify three application typologies to represent application coverage—whether
the observation data captures the full lifespan of the application (Type 1 of coverage), an
ascending part (Type 2), or a descending part (Type 3).

We identify the following five major evolution typologies: stationary, peaked but without
bursts (usually single-peaked), with rising bursts, with descending bursts, and multi-
peaked (with spikes), which we depict in Figure 2 and for which we propose models:

• Class-1 (stationary) applications have a relatively constant DAU, with DAU values
not varying by more than 10% from the mean computed for the first 10% of the
application’s lifetime.

• Class-2 (single peak) applications grow steadily to a peak, then decay steadily (Fig-
ure 3.2, row “without bursts”). The growth and decay occur slowly, and may be
interrupted by limited periods (maximum 2 weeks) of opposite effect. To model this
typology, we use a linear model consisting of two line segments. The parameters
of the evolution pattern for this class are the peak value, the growth rate, and the

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 41

Figure 3.2: Classes and typologies of evolution

decay rate. The peak value (p) occurs at tp and is measured as the maximum DAU
throughout the lifespan of the OSG (tl). The growth rate is m = p

tp
and the decay

rate is n = −p
tl−tp

. The relation between growth rate and decay rate can be quan-
tified by the maturity of the OSG at peak r = tp

tl
. Growth and decay are related:

m = (1− 1
r
)n. For each of the four parameters described in this subsection, we plot

the cumulative distribution function (CDF), and we conduct curve fitting following
the same procedure that we use for fitting the popularity distribution.

• Class-3 and Class-4 (ascending and descending bursty pattern, respectively) applica-
tions resemble Class-2 games, but exhibit sharply ascending or descending periods
(Figure 3.2, rows of “rising” and “descending bursts”). Identifying this pattern may
be difficult, for example because bursts may oscillate over short periods during their
lifetime, leading to false positives. As in our previous work on flashcrowds occurring
in peer-to-peer systems [45], we model the bursty pattern using the start time (mea-
sured after the birth of the OSG), the duration, the duration of the peak period (the
plateau), and the magnitude of the major flashcrowd (measured as a ratio between
the peak number of users and the number of users at the start of the flashcrowd).

• Class-5 (multi-peaked) applications (Figure 3.2, row “spikes”) combine the properties
of multiple Class-3 and Class-4 applications, and possibly also exhibit periods during
which they behave as Class-1 or Class-2 applications. Thus, they are difficult to
model and predict.

42 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Figure 3.3: A simplified model to approximate the growth and decay of the number of
users for social applications. Labels: p, peak value; tp, time to peak; tl, total length of
life.

3.3.3 Packet-Level Traces

The Packet-Level Traces element models the network load that online social applications
have, in terms of packet sizes and inter-arrival rate.

Online social applications can transfer images, multimedia, data and actions. Being on-
line, these applications are already optimized for a low latency and often use images in
compressed formats, like jpg and png instead of bmp, multimedia packed as swf files, data
represented as JSON strings and actions as scripts in various languages. However, they
can still transfer over the network tens and hundreds of megabytes in one session, which
makes the quantity of transferred data interesting to model. The messages however can
vary in size with orders of magnitude, from control messages without any payload or just
a few bytes to content messages of megabytes of data. Small messages however can lead
to a considerable network load as, regardless of how small the payload is, each packet
contains headers from various levels in the communication stack. Big messages as well
need to be split into sizes that fit into data frames, each message will gain in size with
several headers.

The inter-arrival rate complements the packet-size in understanding the network load, as it
also has a great influence on the resource consumption. Wireless communication modules
consume a lot of energy when in active modes. Once a packet is sent, the module will
remain active for some time, consuming energy without actually transferring any useful
data. Therefore, regardless of the size, small and frequent packages can lead to even a
greater power consumption than a few large packages.

Thus, to better understand the real impact an application has on the network, we compute
the cumulative distribution function (CDF) for packet sizes and inter-arrival times. The
CDF depicts the full range of values each of the two metrics can have, also showing which
are encountered more often, and can be complemented with a time-based profile for better
understanding of how the two metrics vary in time.

Packet level information can be segmented on multiple criteria. For example, an applica-
tion developed by Zynga and hosted by Facebook normally makes queries to 10-20 servers,
belonging to Zynga, Facebook or other companies, such as Google that offers analytics
services. Also, the servers are usually dedicated to various purposes: authentication,

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 43

Figure 3.4: The State Transition Diagram

content delivery, command processing, data storage, etc.

3.3.4 State Transition Diagram

We find that online social applications seen as state machines, regardless of the imple-
mentation technology, are similiar. Both web-based applications and tightly coupled
simulations behave very much in the same way. First, there is an initialization state, in
which the application authenticates the user and downloads any necessary assets. Then,
the application moves to a principal state, when the user sees a map or otherwise a main
screen. While here, when triggered by the user or at fixed time intervals, the application
iterates a processing loop. Besides interacting with the application while in the processing
loop, the user can also open a secondary screen, like a settings screen, or activate a social
component, like write in a chat window or visit a friend’s map. While in these states, the
application usually keeps iterating the same loop.

Inspired by the research on Application Partitioning, as described in our Taxonomy (see
Section 2.3) we propose modeling the states in which an online social application can be.
Figure 3.4 represents these states as a graph we name the State Transition Diagram.

Each node in the State Transition Diagram represents a processing stage and can be
described by the time and the resources spent in that stage. Transitions can occur either
with a certain probability, or at fixed time intervals. Moreover, the transitions can also
model the data dependencies between stages, which can be represented with the quantity
of data that needs to be transferred, through the network if the stages do not share
memory or virtually if the stages share memory.

While in the initialization state, many applications download most of the assets they
need while initializing, to prevent any delays further in their functionality. Thus, we are
interested to understand this state first of all from the point of view of network load.
Also, the application spends most of it time iterating over the processing loop, so we will
try to understand it from a general performance point of view. In our work, we refer
to loop-based applications as applications that perform such a loop and can be modeled

44 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Figure 3.5: Popularity distribution, depicted as the distribution of maximum DAU over
rank. One curve per trimester.

with this graph.

3.4 Characterization andModeling using Real-World
Traces

In this section we present empirical results related to our workload model. We characterize
and model each element using the datasets introduced in section 3.2.

3.4.1 Popularity Distribution

We analyse the maximum observed DAU and MAU as metrics of app popularity. To
account for seasonal transitions yet still be able to follow the results, we analyse the
information we have for these metrics per trimester. We characterize and model, in the
remainder of this subsection, the eleven trimestrial datasets resulting from our 31 months
of data.

Characterization

For each trimester in our datasets, we select the maximum DAU for each of the applica-
tions, then sort the maxima in descending order to obtain a rank. In Figure 3.5, we plot
the distributions (left side) and a box-and-whiskers chart that offers a more precise view
of the main statistical characteristics of the distributions (right side).

Each trimestrial curve exhibits the same phenomenon: the best-ranked 5-10% appli-
cations (applications rank 1 through 11-21) attract many more users than all the
remaining applications taken together. Specifically, the first 20 applications have
each over 5,000,000 DAUs; many of them also have over 20,000,000 MAUs (not depicted
here). This phenomenon and the observed values indicate that there may be two types
of app operators: operators of the first 20 applications, who due to their application sizes

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 45

could largely own the physical infrastructure on which their applications operate, and the
other operators, who could lease infrastructure from a cloud, only when needed.

We are also interested in exploring seasonality in this dataset. The shape of the curves for
different trimesters are very similar, which indicates that seasonal effects do not influence
the relative order of maxima (Figure 3.5). The increasing trend in the total number of
Facebook users lead, at the end of 2011, to an accentuation of the differences among the
top applications in terms of maximum DAU, which can be seen on the right-hand chart
as the box and whiskers are larger.

Modeling through Curve Fitting

We conduct curve fitting for all the eleven trimesters, using the Kolmogorov-Smirnov test
(K-S test). The Kolmogorov-Smirnov statistic quantifies a distance between the empirical
distribution function of a sample and the cumulative distribution function of a reference
distribution. We choose five reference distributions, Exponential, Weibull, Pareto, Log-
Normal and Gamma, which cover the most cases we have found in literature. For each
reference distribution, the K-S test provides the parameters that provide best fit, the
p-values which show the level of significance of the result and the D-values which quantify
the distance between our empirical distribution and the best fit.

We present the p-values and the D-values in Table 3.3. We dismiss the distributions for
which we obtain a p-value below the significance level of 0.5. The D-values show that the
Log-normal distribution provides the best fit with the data we analysed, from
the five distributions we have tried, except for the last timeframe, which actually
consists of a single month. The parameters obtained for each distribution are summarized
in Table 3.4.

Table 3.3: p-values and D-values resulting from KS tests conducted for the popularity
distribution over five reference distributions: Exponential, Weibull, Pareto, Log-normal
and Gamma.

series Exponential Weibull Pareto LogNormal Gamma
p-val d-val p-val d-val p-val d-val p-val d-val p-val d-val

Jan-Mar’10 0.073 0.23 0.064 0.22 0 0.65 0.238 0.13 0.079 0.21
Apr-Jun’10 0.083 0.23 0.092 0.19 0 0.67 0.284 0.13 0.099 0.21
Jul-Sep’10 0.056 0.24 0.063 0.2 0 0.66 0.282 0.12 0.066 0.22
Oct-Dec’10 0.065 0.23 0.044 0.2 0 0.69 0.202 0.15 0.066 0.23
Jan-Mar’11 0.038 0.27 0.027 0.24 0 0.7 0.218 0.16 0.039 0.25
Apr-Jun’11 0.049 0.24 0.027 0.25 0 0.66 0.228 0.14 0.048 0.22
Jul-Sep’11 0.05 0.26 0.031 0.24 0 0.69 0.223 0.14 0.049 0.23
Oct-Dec’11 0.055 0.27 0.045 0.22 0 0.65 0.24 0.15 0.063 0.22
Jan-Mar’12 0.057 0.27 0.051 0.22 0 0.68 0.233 0.17 0.065 0.23
Apr-Jun’12 0.132 0.19 0.168 0.16 0 0.69 0.32 0.13 0.196 0.18

Jul’12 0.205 0.15 0.125 0.2 0 0.59 0.044 0.28 0.155 0.2

46 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Table 3.4: Parameters for the reference distributions (Exponential, Weibull, Log-normal
and Gamma) that provide best fit for the popularity distribution. Values for µe, λ and θ
are expressed in multiples of 106

.

Series Exp(µe) Wbl(kw, λ) LogN(µl, σ) Gam(kg, θ)
Jan-Mar’10 1.76 0.82 1.53 13.69 1.03 0.84 2.09
Apr-Jun’10 2.03 0.84 1.79 13.86 1.01 0.87 2.34
Jul-Sep’10 2.64 0.83 2.29 14.10 0.99 0.86 3.09
Oct-Dec’10 2.13 0.89 1.96 13.99 0.90 1.00 2.14
Jan-Mar’11 2.31 0.84 2.03 14.02 0.90 0.92 2.52
Apr-Jun’11 2.55 0.82 2.18 14.08 0.93 0.87 2.93
Jul-Sep’11 2.94 0.82 2.50 14.20 0.95 0.85 3.47
Oct-Dec’11 3.22 0.77 2.58 14.20 1.02 0.76 4.24
Jan-Mar’12 3.43 0.80 2.84 14.31 0.99 0.81 4.26
Apr-Jun’12 2.73 1.06 2.82 14.41 0.83 1.36 2.01
Jul’12 2.17 0.63 1.65 13.27 2.67 0.48 4.51

3.4.2 Evolution Pattern

We analyze in this subsection the evolution of the values observed for app DAU and MAU.
Similarly to the previous subsection, we first present characterization, and then modeling
results.

Characterization

To compare applications while accounting for the high variability among them—both
lifespan, and evolution of DAU and MAU—, we first normalize both the lifespan and
the number of users of each application. In the characterization plots presented in this
subsection, we express for each application the number of users at a moment in time as
a percentage of the application’s peak number of users, and the moment in time as a
percentage of the application’s total lifetime.

In our datasets, we have at least one DAU reading for 16,799 applications. To make better
use of our data, for evolution characterization we select a sample of applications. First, we
disregarded applications with very few readings, i.e., less then 100, for which normalization
would actually reduce resolution. We further select only those applications that reach a
peak of at least 5,000,000 DAUs or 20,000,000 MAUs. These are thresholds inspired by
the results obtained while characterizing application popularity (subsection 3.4.1); these
applications account together for more than 80% of the total DAUs and MAUs observed
in our datasets. On this sample we performed manual classification, going through tens
of charts like the ones presented in Figure 3.2, depicts the DAU evolution for several
applications in the sample, with normalized values.

We then extend our sample to all the applications that reach a peak of at least 100 DAU.
Although this sample limits the number of applications to 5,723, we consider, based on
the results obtained while characterizing application popularity (subsection 3.4.1), that
all other applications do not posses a significant impact on the general user population.
Classifying thousands of applications manually is, of course, unfeasible. This led us to

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 47

Figure 3.6: Examples of DAU evolution for several applications: (a) typical single-peaked
pattern, (b) suddenly ascending, (c) suddenly descending., (d) continuously ascending,
(e) continuously descending.

develop an algorithmic classifier. The design and implementation of the algorithmic clas-
sifier were done with the help of Emanuel Dias, from Delft University of Technology. To
account burstiness, the classifier accounts for large values in the first derivative of the
time series. To account for the lifespan, the classifier compares the initial value, the final
value and a band of values in the middle of the time frame. Table 3.5 shows the results
we obtained, expressed as the numbers of application in each of the 5 classes.

Table 3.5: Classification results showing how many applications fit each typology (left)
and class (right)

Full Lifespans Ascending Descending
Without bursts 460 32 871
Rising bursts 73 127 198

Descending bursts 66 51 1075
Spikes 596 240 1004
% total 25% 9.50% 66.70%

Constant: 319 (5.57%) Other behaviours : 611 (19.7%)

Count Percent
Class-1 319 5.57%
Class-2 1363 23.82%
Class-3 398 6.95%
Class-4 1192 20.83%
Class-5 2451 42.83%

The single-peak pattern occurs in less than 25% of all cases, which leaves a
majority of applications exhibiting un-common patterns and, thus, are difficult cases for
provisioning.

We are also interested to determine any seasonal and cyclical components in the evolu-
tion of the number of users. Inspired by several works on statistics [57], we study the
autocorrelation of the DAU as a function over time, following three steps:

1. remove the trend component by differentiating the function

2. calculate a correlogram (a depiction of the autocorrelation function) with a maxi-
mum lag equal to the length of the observations vector

3. test values outside the error band ± 2√
N

, with N number of observations or use the
Ljung-Box test to determine any significant outliers on the correlogram

48 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Figure 3.7: Correlogram (right) that shows how the seasonality detection algorithm works
on a typical application (left)

Figure 3.8: CDFs for the parameters of the evolution model: (a) peak value, (b) growth
rate, (c) maturity at the peak and (d) decay rate.

Figure 3.7 shows how the seasonality detection algorithm works on a typical application.
It can be noted how the autocorrelation function raises above the threshold at values
multiple of 7, indicating a weekly seasonal pattern. The most applications we found,
especially games, present such a pattern.

Modeling through Linear Fitting

We validate the linear model proposed in subsection 3.3.2 empirically, using our datasets.
However, with the current version of our linear model, we can only use data coming from
applications for which we have a full lifespan coverage. Moreover, the linear model does
not fit well the bursty behavior. Thus, in this section, we can use the 460 applications
that fall in Class-2 and for which we have the full lifespan in our dataset.

Using data from the selected applications, we plot a cumulative distribution function
(CDF) for each of the parameters of the evolution model, as depicted in Figure 3.8. We
find that the values of growth rate and decay rate differ with one order of magnitude
(Figure 3.8b,c). Thus we could presume that usually the peak comes rather early in the
life of an application: after a quick growth, follows a slow decay. This fits with some of the

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 49

applications included in the characterization (Figure 3.2a), but not with all of them. To
better understand this relation, we compute Pearson correlation coefficients (r) for peak
value (p), growth rate (m), and decay rate (n). We find that r(p,m) = 0.57, r(p, n) = 0.30
and r(m,n) = 0.41, which shows there is quite often a high peak in the number of users
leads to a steep decay.

A CDF of maturity at the peak is given in Figure 3.8d: 52% of the applications have a
peak within 15% of their lifetime and 85% have a peak within their first third of their
lifetime.

To model the distributions for each of the parameters, we conduct curve fitting against
five reference distributions (exponential, Weibull, Pareto, log-normal and gamma) and we
conduct Kolmogorov-Smirnov (KS) tests to see which is the best fit.

We report from our modeling results the p-values and D-values (in Tables 3.6), and
the distribution parameters (in Table 3.7). The Weibull and Gamma distributions
provide best-fits for both peak value and maturity at the peak. The growth
rate can be best approximated with the Log-normal distribution and for the
decay rate Weibull, Log-normal, and Gamma are close approximations.

Table 3.6: p-values and D-values resulting from KS tests conducted for the parameters
of the evolution model over five reference distributions: exponential, Weibull, Pareto,
lognormal and gamma.

Series Exponential Weibull Pareto LogNormal Gamma
p-val d-val p-val d-val p-val d-val p-val d-val p-val d-val

peak value 0.334 0.1 0.426 0.05 0 0.58 0.299 0.11 0.406 0.06
growth rate 0.063 0.24 0.354 0.1 0 0.55 0.359 0.07 0.282 0.15
decay rate 0.116 0.22 0.399 0.07 0 0.54 0.355 0.08 0.372 0.09

maturity at peak 0.261 0.12 0.445 0.07 0 0.71 0.399 0.07 0.445 0.05

The Weibull and gamma distributions provide the best fit for both peak value and ma-
turity at the peak. The growth rate can be best approximated with the lognormal distri-
bution and for the decay rate Weibull, lognormal and gamma are close approximations.

The linear model provides reasonably good D-values. However, modeling the other classes
may not be as accurate. Therefore, we consider extending our model using time series
analysis [58]. According to the time series analysis theory, we study the evolution patterns
under three components (the trend, seasonal / cyclical and irregular components). The
irregular component covers the bursts that some of the applications display during their
evolution. Naturally, the bursts can either be real or come from reading errors. The chain
through which we collected data (described at the beginning of this subsection), allows
a number of reporting errors. We consider that system wide events (such as stagnation
periods or sudden drops) can be an indication of a reporting error. However, bursts that
affect only applications from one developer can derive from promotions or campaigns
performed by the developer leading us to think of possible correlations. An algorithm for
removing seasonality was shown under characterization. Finally, removing the irregular
and seasonal components leave the trend component, which can be approximated with
better results by the linear model.

50 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Table 3.7: Parameters for the reference distributions that provide best fit for each of the
parameters of the evolution model (see subsection 3.3.2).

Series Exp(µe) Wbl(kw, λ) LogN(µl, σ) Gam(kg, θ)
p 4.36·106 0.87 4.04·106 14.58 1.33 0.83 5.26·106

m 50,792 0.66 35,256 9.68 1.62 0.54 93,242
n 8,409 0.68 6,382 7.96 1.66 0.58 14,619
r 19 1.37 21 2.64 0.85 1.76 10

Figure 3.9: Packet sizes (left) and interarrival-times (right) for some of the applications
in our datasets

3.4.3 Packet-Level Traces

In this section, we characterize and model the traces from facebook-1 and openttd datasets
using the packet sizes and inter-arrival rates. The data regarding Packet-Level Traces for
web-based applications was processed together with Emanuel Dias, from Delft University
of Technology.

Figure 3.9 depicts the packet sizes (left) and the inter-arrival rate (right) we obtain for
some of the applications in our datasets. It is important to note that Farmville and
MagicLand are web-based applications, from different developers and that OpenTTD is
a tightly-coupled simulation, and although manufactured by different developers, with
different technologies, there are some similarities.

Both packet sizes and inter-arrival times are represented on the log scale, which shows that
both differ in value with orders of magnitude. It can be noted how most of the packets for
all applications cluster around two fixed sizes. There are many small packets (10 bytes
for OpenTTD, 200 bytes for web-based applications), which are probably control packets,
and many large packets (the MTU size of 1500 bytes denotes messages that need to be
split into multiple packets at Ethernet level), which are probably content packets.

Possibly a consequence of status updates, the packet inter-arrival time for web-based
applications has an prominent mode around 2s (corresponding to packet size 200 bytes).
For OpenTTD, similar modes appear also for similar reasons in FPS games, with frequency
of about 40ms and size of 25–80 bytes. They also appear in MMORPG games (50–250ms
and 15–30 bytes), and in some RTS games (200–250ms and 8–40 bytes).

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 51

Table 3.8: Parameters for the reference distributions (E–exponential, W–Weibull, Ln–
log-normal, and G–gamma) that provide best fits for the various empirical distributions.
Large values are expressed in thousands and suffixed by K, or in millions and suffixed by
M.

Model element Best fit (parameter values) Min 1st Q Median Mean 3rd Q Max
Packet inter-arrival time [s] Ln(µl = 0.28, σ = 1.95) 0.01 0.41 1.84 - 4.01 -
Packet size, split [B] W(kw = 520.71, λ = 1.46) 0 204 242 466 685 MTU
Packet size, un-split [B] Ln(µl = 7.37, σ = 1.95) 0 223 988 12.5K 10.3K 1.04M
Game object size, Flash only [B] W(kw = 80, 459.72, λ = 0.81) 1,004 39K 44.9K 93.5K 81.9K 1.04M
Game object traffic, Flash:All [%] - 4.3 - 78 64 - 95

Media sizes in web-based online social applications are still very small, from 1KB to about
1MB, with an average of less than 100KB. Flash objects account on average for about
two-thirds of game content.

To model the packet size and inter-arrival times, we conduct curve fitting through the
Maximum Likelihood Estimation method. We compare the two empirical distributions
with four standard distributions and summarize in Table 3.8 our findings. We also segment
the packet size metric depending on the object type, and we emphasize the percentage of
the Flash files for web-based applications, which represents most of the graphical content
that evolves as developers improve the look and feel of their applications.

3.4.4 State Transition Diagram

We analyze the data we collected for the OpenTTD application, using a Sony Vaio 4-
core @2.3GHz running Ubuntu 10.04 (laptop) as server, and a Asus TF101 2-core @1GHz
running Android 4.0.3 (tablet) as client. For each of the five stages in the processing loop
we report statistical results in Table 3.9.

Table 3.9: Statistics on average running time (T), maximum running time (Tmax) and
quantity of output data (Q) for the five stages in the loop.

tablet laptop
T Tmax Q T Tmax Q

[ms] [ms] [bytes] [ms] [ms] [bytes]
human input 1.2 58 40 0.7 48 40

AI input 48.2 973 40 4.3 209 40
synchronization 188.5 2446 120 101.9 4576 120

simulation 9.3 211 1068576 2.6 283 1068576
rendering 5.7 726 4096000 13.7 135 5206720

As expected, the time values on the tablet are larger than the time values on the laptop for
almost all the stages. Rendering takes less time on average, probably because of the lower
resolution and the dedicated GPU on the tablet. It is interesting to note that processing
time for AI input collection differs on average with an order of magnitude. Simulation
on the other hand, although more consuming on the tablet, exhibits a lesser difference,
probably because it is optimized by splitting the processing over several iterations.

52 3. WORKLOAD MODELING FOR ONLINE SOCIAL APPLICATIONS

Figure 3.10: Examples of traffic-related applications: (a) traffic vs number of sessions
s ∈ [0.5, 3]; (b) traffic for various applications; (c) traffic after a hypothetical increase of
the packet arrival frequency; (d) traffic after a hypothetical increase in the size of Flash
files (f ∈ [10×, 40×]) and in the fraction of media files among online social application
objects (P ∈ [66%, 80%]).

3.5 On the use of our model

The workload evolution model for applications has various uses. For a company that
develops an OSG similar to others, our model as a whole provides the tools to predict
network capacity requirements, based on assumptions about the online social application’s
relative ranking versus the competition. Our model is also useful for companies that
develop novel applications or when data related to the competition is not available: then,
the needed network capacity can be based on targets set by the developer about the online
social application’s initial growth and peaks. As a third general example, when coupled
with a low-level packet generator, our model provides the tools for tuning existing and
designing new OSG architectures, by generating the input needed for simulations.

We present, in the following, several specific applications.

3.5.1 Traffic-Related applications

What is the traffic generated by applications? To give a reasonable estimate, practitioners
can explore various parameters of our model. s, the number of sessions played by each
player, on average, per day, is also needed to obtain actual estimates; we use in this study
a realistic range for s: [0.5, 3]. Figures 3.10a,b depict the traffic of various applications.
Even for the low value s = 0.5, the total daily traffic we estimate for FarmVille, after
normalizing by number of players, is much higher than for OSN gifting applications. We

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 53

explain this by the different application requirements, e.g., FarmVille, as a online social
application, has much higher packet inter-arrival rates.

How would applications traffic change if applications increase pace or improve their mul-
timedia quality? Figures 3.10c,d shows estimates for a transition to FPS-like packet inter-
arrival times (median: 40ms) and for a transition to much larger content sizes (Flash files
scale up 10–40 times and/or become more present). For an application of FarmVille’s
popularity, the traffic could increase significantly, up to 1PB/day.

3.5.2 Evolution Typology-Related applications

The evolution typologies described in Section 3.4.2 are useful in running networked on-
line social application operations. Stationary (Class-1) applications are relatively easy
to maintain, requiring only basic spare-capacity planning and management. Single-peak
(Class-2) applications are favorable for predictive provisioning of resources for the infras-
tructure on which they operate. However, the periods of opposite effect may lead to
inefficient resource provisioning which, especially when these periods occur close to the
peak, may lead to significant unnecessary costs. Class-3-to-5 applications represent diffi-
cult cases for resource provisioning, requiring not only adequate predictions of when the
burst(s) will occur, but also finding a provider that can offer the large amount of needed
resources without a clear understanding of the peak. Even when a cloud provider can offer
the necessary networked resources, these OSG classes require constant attention to avoid
missing peaks and thus causing unnecessary costs, and may require a special commercial
agreement between the OSG operator and the resource provider.

Predicting whether an application will be successful (predicting the peak and lifetime)
is a major focus of any online social application operator. Future predictive algorithms
can use the CDF of maturity at the peak, depicted in Figure 3.8d, indicates that most
applications have a peak within 15% of their lifetime and 85% have a peak within their
first third of their lifetime. The models for each evolution pattern could be useful for
predicting application lifetime and for designing future prediction algorithms.

Chapter 4

Offloading Mechanisms Analysis

People use mobile devices daily in activities ranging from entertainment to solving pro-
fessional tasks. Mobile applications span a vast application-domain, being developed for
various purposes, such as gaming, multimedia streaming, travel, communication, etc.
Many of these types of applications rely on connectivity and on data stored remotely.
Also, many of them make a lot of use of the high computation power of mobile devices.
Among this generous application space, we identify several types of applications that
would benefit from offloading:

• applications that are computational intensive, like Chess and other low-response-
time games: these apps are fit for remote processing because users do not expect
quick responses from the program

• applications that rely on data from server side, such as Shazam, the program that
recognizes songs by comparing samples with a vast cloud database: the amount of
data these apps use is prohibitive to a single device functionality

• applications with a particular, pipeline-based processing, such as image processing
applications: these applications are suitable for offloading in various degrees, only
parts of the pipeline can be offloaded, depending on the conditions at hand

• applications that already interact with the cloud, such as m-commerce applications:
these apps are already making use of the communication capabilities, so employing
other forms of offloading are just a matter of fine-tuning

In this chapter, we investigate Communication Adaptation and Offloading for distributed
applications spanning the mobile device and custom hardware extensions, such as sensor
devices and home automation networks. We also investigate Computation Adaptation
and Offloading for loop-based applications, with a focus on video processing (using an
augmented reality application) and video rendering applications (using a popular simula-
tion game). Finally, we propose an operational analysis to represent mathematically all
the offloading mechanisms identified in Section 2.4.2, for any loop-based application.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 55

4.1 Communication Adaptation and Offloading

As increasingly more intelligent interconnected devices surround us each day, to fulfill the
vision of Ubiquitous Computing [1], several challenges and research opportunities arise.
Smaller devices, like sensor nodes in Wireless Sensor Networks, are usually limited in
terms of computation power and battery supply, so they rely on communication, through
WiFi, Bluetooth and other emerging technologies. In mobile devices more than a third
of the power consumption is spent on communication tasks, while in small sensors more
than a half is spent on communication [59]. Devices can be made smaller and smaller,
but battery cells usually cannot.

In this section we explore communication adaptation and offloading mechanisms with a
focus on interconnecting mobile devices with even more limited sensor devices. First,
we investigate communication adaptation in a system built by our team, consisting of a
sensor device that monitors air quality and a mobile device that performs periodic queries
to read sensor values. Second, we experiment with communication offloading to a dongle,
a small device that connects to the mobile through USB, and enables communication with
a home automation network through the ZigBee communication protocol.

4.1.1 Adaptive Query Algorithm for Location-Based Applica-
tions

We develop a system, called PollutionTrack, consisting of a smartphone and an embed-
ded device designed to measure air quality [60]. Figure 4.1 shows the sensor device and a
map on the mobile device with an overlay of information collected from the sensor device.
Communication between the mobile phone and the sensor device needs to be effective and
power efficient in order to have a minimum effect on the phone’s recharge cycles. Our
approach to this challenge is to reduce the power consumption of the device using an
adaptive query algorithm which minimizes the energy used in data transfers. The algo-
rithm gives great advantages to location-aware projects by reducing data communication
when it is not needed.

Figure 4.1: Sensor device (left) and a map overlay (right) with information from the
sensor device.

56 4. OFFLOADING MECHANISMS ANALYSIS

System Design and Implementation

The PollutionTrack system consists of an Android application interconnected with an
embedded sensor device, that measures air quality with a NO sensor, a CO sensor and
a particle count sensor. The sensor device was designed and built by Dan Tudose and
the Android application was implemented in collaboration with Daniel Rizea [61], both
from University Politehnica of Bucharest. The application on the smartphone needs to
query the sensor device using Bluetooth in order to collect pollution data, as shown in
Figure 4.2. On the mobile device, a sensor service periodically sends a short command
to the sensor device, depicted in the figure as the letter "‘a"’. The sensor responds with a
package consisting of the letter "‘ "’, for consistency checks, and four numbers, representing
the values from the three sensors and the battery level of the sensor device.

Figure 4.2: General architecture and communication mechanism

The communication between the mobile phone and the sensor device needs to be effective
and power efficient in order to have a minimum effect on the phone’s recharge cycles.
Our approach to minimize power consumption is to switch on the Bluetooth adapter only
when a query must be done. We will show the effectiveness of this method in the next
section.

PollutionTrack is designed to work in either passive mode or active mode. In passive
mode the user is not informed when the pollution levels are increasing. This mode can be
utilized when the user does not want to be actively informed of pollution danger levels
and only wants to collect air pollution data. In this case, the update period, cool down
time and wakeup parameters can be lowered. The location will have the biggest impact
on query intervals and pollution data values will have a small contribution in setting
the update periods. The active mode of the system is utilized when the user wants to be
actively informed whenever specific pollution levels are exceeded. In this case the adaptive
algorithm is more aggressive and will have a smaller wakeup time interval. The system
will make more queries whenever an increasing pattern of pollution values is detected.
This being the case, the query period of the sensor will be heavily influenced by the
pollution information and not so much by location changes.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 57

The Adaptive Query Algorithm

We propose an Adaptive Algorithm that changes the update time interval based on
the previous user location and the previous update time. This approach is suitable for
location-aware applications by reducing data communication when it is not needed.

For example, let us consider that a user remains in a location for about 1 hour. In a
normal approach 60 queries will be made for the device (assuming a 1 minute period
between queries). In our adaptive approach the second time the application wakes up it
will compare the last location with the previous one and will increase the query interval
by doubling the previous time interval. Only 6 sensor queries will be executed. Let us
assume now that the service battery usage for 1 hour and 60 requests is about 4% of the
battery capacity, then our algorithm will have a total of 0.4% battery usage over 1 hour.
The improvement is significant and is needed in order to make the application popular
among users.

It is important to note that, when applying the algorithm to other applications, parame-
ters such as the reference query time interval and the cool down time can vary according to
the application’s purpose and needs. The variations of these parameters influence the to-
tal power consumption of the Bluetooth module. In the remainder of this section, we give
a formal presentation of the adaptive algorithm tuned for the PollutionTrack application.

The update time interval is dynamically calculated and uses the following formula:

Tu(mode) = Tb(cld(mode) + cdd(mode)) (4.1)

, where:

• Tu: adjusted query time interval

• Tb: reference query time interval

• cld: location dependent coefficient

• cdd: data dependent coefficient

The location dependent coefficient and the data dependent coefficient are computed sepa-
rately and their values follow the observations made regarding the system characteristics
in passive and active mode.

The location dependent coefficient is computed based on the current location loci+1 and
previous location loci. When in passive mode Equation 4.2 is used, and when in active
mode Equation 4.3 is used, where α and β are adjustable parameters. Both equations
work on the same principle: if the location stays the same, then the time between queries
is increased, which means the smartphone will issue fewer queries and less power will be
consumed. If the location changes then the time between queries is reduced, which will
enable the sensor to collect fresh data. This behavior is based on the fact that pollution
information does not change radically in a small period of time and in the same location.
The diference between the two modes is however in the ratio with which the coefficient
is updated. The active mode of the algorithm is used for dangerous environments where

58 4. OFFLOADING MECHANISMS ANALYSIS

pollution levels can grow rapidly in the same location and over a few minutes.

ci+1
ld (passive) =

αcild(modei) if loci+1 = loci

1
α
cild(modei) if loci+1! = loci

(4.2)

ci+1
ld (active) =

3βcild(modei) if loci+1 = loci

2
3βc

i
ld(modei) if loci+1! = loci

(4.3)

To compute the data dependent coefficient, we hold a queue with the last n recorded
values. Based on these and the current value from the sensor, we determine how fast the
pollution data changes. We compute the change rate with r = ∑ v−Di

v
, where n is the

window size, v is the current value and D is an array of size n with recently collected
data. The size of the window should vary according to different needs. In our experiments
we use a size of 5 values, as this should cover timeframes of more than one minute, given
the sampling period which, in our case is 15 seconds. If the change rate is positive, there
is a growth in the values, so the queries should be made more often, at a rate directly
proportional with the growth rate. If it is negative, the queries should occur less often.
The data dependent coefficient also depends on the mode: in active mode (Equation 4.5)
the effect of the change rate is twice the effect in passive mode (Equation 4.4).

cdd(passive) = λ∑ v−Di

v

(4.4)

cdd(active) = 2 λ∑ v−Di

v

(4.5)

Testing and Performance Evaluation

We conduct functional testing and performance evaluation of our solution, using our cus-
tom sensor device and a HTC Nexus One, running Android 2.2. Some relevant hardware
characteristics are its Qualcomm Snapdragon CPU at 1GHz and the Bluetooth module
with Bluetooth 2.0 + EDR. For testing, we have used both the sensor device and a Java
computer application that we developed, which behaves exactly as the pollution sensor,
having the same Bluetooth communication protocol. With this program we can emulate
the behavior of the sensor and vary the sensors data to test the data dependent function.

Each test involves running the application for 300 seconds. Most of the performance tests
were run while remaining in the same location, as this is the maximum efficiency case
for the algorithm. We study three query strategies: Permanent Connection (Permanent),
Fixed Time Query Interval (Fixed) and Adaptive Query (Adaptive). In the former, the
smartphone establishes a permanent connection with the sensor device. This is demanding
in terms of energy consumption from the CPU and from the Bluetooth module. For Fixed
Time Interval Query the CPU and Bluetooth module are put into connection state, where
power consumption is the largest only when a data query is needed. The Adaptive Query
uses our Adaptive Algorithm to dynamically select a query time interval.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 59

Power consumption on the CPU has been recorded using PowerTutor [25], an Android
application that estimates power consumption on different hardware components based
on an energy model that the authors derived in their studies. We also estimate the power
consumption on the communication module using this simple model:

Etotal = Pconn ∗ Tconn + Ptrans ∗ Ttrans + Pon ∗ Ton (4.6)

Based on Formula 4.6 we can calculate the estimated power consumption for the three
query strategies. For all the three cases we have a Ttrans time that is the same for Perma-
nent Connection and Fixed Time Query Interval but is smaller for Adaptive Algorithm.
In the case of Permanent Connection we have no Ton time because the Bluetooth is always
connected. For Fixed Query Interval we have a Tconn time when the Bluetooth is in con-
nected state. After the data is transmitted the Bluetooth connection is terminated, thus
saving energy. In the Adaptive Algorithm the Bluetooth connection time varies, adapting
the query time based on location and environment data. The measurements done in [62]
show that a Bluetooth module in the on state with no connection Pon = 15mW , in the
connected idle state takes Pconn = 65mW and in transmission Ptrans = 432mW . In both
the Fixed Time Query Interval and Permanent Connection we intend to read values from
the sensor at every 15 seconds.

Data transfers are performed on a query basis: the smartphone asks for data from the
sensor device, which in turn responds with a single message. Thus, for a single exchange,
we have 2 bytes sent from the smartphone and 21 bytes received. Figure 4.3 shows the
variation power consumption on the CPU for the three query strategies during the 300
seconds tests. Table 4.1 shows the total estimated power consumption on the Bluetooth
module and on the CPU.

Figure 4.3: CPU energy consumption

Table 4.1: Estimated total energy consump-
tion on CPU and on WiFi for the three query
strategies, during 300 seconds tests.

CPU
Energy
(mJ)

Data
transfer
(bytes)

Comm.
Energy
(mJ)

Permanent 136,133 21 x 20 = 420 28,740
Fixed 5,465 21 x 20 = 420 14,180

Adaptive 1,310 21 x 4 = 84 6,228

From the results we can see that the Adaptive Algorithm approach is almost 5 times
better than the Fixed Time Query Interval and 100 times better than the permanent
connection approach. The significant power saving is justified because in 300 seconds, the
duration of the tests, we had 20 fixed queries at every 15 seconds in Fixed Time Query
Interval mode and only 4 queries in the Adaptive mode (the location was not modified)

60 4. OFFLOADING MECHANISMS ANALYSIS

which makes the Adaptive Algorithm mode to have 5 times less queries than Fixed Time
interval.

Ttrans is less for the Adaptive Algorithm than in the other two cases because the adaptive
query algorithm varies the query interval. In each of our 300 second tests we have 20
requests at intervals of 15 seconds. The transmission time takes approximately 1 second
per query. Tconn = 300 seconds and Ttrans is 15 seconds. Ton = 285. With the help of
the adaptive algorithm, the number of queries goes down to 4 queries in 300 seconds.

Conclusion

We have studied power consumption in a system consisting of a smartphone and an
embedded device designed to measure air quality. The system has two functioning modes:
passive and aggressive. These two modes influence how the adaptive algorithm performs.
In passive mode, the location factor has a greater impact on the query interval. In
aggressive mode the recorded data varies the parameters used in the algorithm.

We have done measurements and estimations to compare power consumption dedicated
to CPU and Bluetooth usage in three cases: using a permanent connection, using a
fixed time query interval and using our adaptive algorithm. In terms of CPU power
consumption, we find that our algorithm is 5 times more efficient than the Fixed Time
Query Interval strategy, that is proportional with the number of queries. In terms of
Bluetooth power consumption, reducing the transmission time and the connected idle
time, the Adaptive Algorithm is approximately twice more efficient than the Fixed Time
Query Interval strategy, which in turn is approximately twice more efficient than the
Permanent Connection.

The adaptive algorithm is suited for location-aware applications, leveraging the fact that
new queries are not necessary if the location has not changed significantly. We find that
considerate querying can lead to energy consumption 20 times smaller than in the case
of a permanent connection. We plan to improve the algorithm in our further studies, by
determining velocity and using machine learning techniques in order to alter the query
period.

4.1.2 Offloading Communication to Custom Hardware Exten-
sions

Mobile devices can communicate with a home automation network through an Internet
gateway, but cannot directly communicate with devices in the network, which usually
implement low power communication protocols like IEEE 802.15.4. Some research was
conducted in using smartphones along with IEEE 802.15.4 [63][64]. However, to the best
of our knowledge, there is no work that investigates this usage in the context of home
automation. We investigate the use of multiple communication channels, such as the TCP
channel, that uses WiFi to connect to a gateway, and the USB channel, that can connect
to a device on the home automation network through an USB dongle.

Our main contribution is three-fold:

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 61

Figure 4.4: Test with a client device. The test dongle (right on top of the tablet) uses the
same platform as the network device (top board).

• We investigate different ways to connect, to an Android device, a dongle capable of
mediating two-way IEEE 802.15.4 communication (Figure 4.4)

• We propose a general client architecture and an Android implementation, with sev-
eral abstraction layers, that can support multiple communication channels and en-
able other developers to offer different user interfaces to our communication system,
while hiding the home automation system complexity

• We estimate energy consumption for WiFi transfers for typical home automation
scenarios

We find that using an USB host is the most promising solution, among the ones we in-
vestigated, in connecting to the mobile device a dongle capable of two-way IEEE 802.15.4
communication. We propose three abstraction layers to unify local and remote access,
different communication channels, as well as various ways of offering the functionality to
multiple user interfaces. Our energy estimation for three use cases, typical for home au-
tomation, indicates that it is worth using low-power protocols such as the IEEE 802.15.4,
especially for issuing commands with small payloads, like turning on and off the lights.

System Design and Implementation

The home automation system used in our work (Figure 4.5) consists of:

• Various home automation devices interconnected in a wireless sensor network, each
running the ZigBee stack; for our tests, we have used a couple of ZigBee nodes with
LED lights simulating a conventional home light;

• A gateway at the edge of the network, in the form of a PC, which has several
functions, such as providing a two-way interface with the Internet and caching sensor
data in a local database;

• One or more client devices that provide the user with status updates and command
functions, while ensuring proper security and privacy considerations, as well as

62 4. OFFLOADING MECHANISMS ANALYSIS

concurrent access; the clients should be able to access the home automation network
either through the Internet gateway or the USB dongle.

Figure 4.5: Home automation system architecture

Using the network gateway to issue a command consists of: (1) creating a data package on
the client, denoting the type of command, the extended address of the destination device,
and the actual payload, as described by the ZigBee specification (simplest commands
are formed with 48 bytes); (2) sending this data package to the network gateway, with
the overhead given by network encapsulation; (3) forwarding the command through the
ZigBee network to the destination device. In contrast, a client device with ZigBee capa-
bilities, can simply connect to the destination device, if in range and send the command
directly.

ZigBee is the communication protocol of choice in home automation networks because, as
shown in Table 4.2, it is an energy efficient protocol, ideal for small messages and routing
information through the network. Considering that usually Bluetooth modules operate at
about 1.8V and ZigBee modules at 3.3V, Bluetooth power consumption is within the same
range as ZigBee power consumption. In contrast, Wi-Fi and UWB take up to 230mA for
transmitting and receiving data. While Wi-Fi and UWB have higher power consumption
levels, they also have a considerably larger bandwidth, which offers them a very low ratio
of energy/transferred MB. Bluetooth has a medium bandwidth, and ZigBee has the lowest
bandwidth, making it ideal for small messages.

Modern mobile devices have embedded modules for several wireless communication tech-
nologies, such as WiFi, UMTS and Bluetooth. However these are not applicable for home
automation devices. To enable the mobile device with a ZigBee module, an extension
in the form of the dongle is needed. To identify an appropriate communication method
between the mobile device and the dongle, we compare several candidate technologies
(detailed in Table 4.3):

• Audio jack: the audio jack is a universal connectivity port featured on all modern
mobile devices. Signal is transmitted in an analog form, as it is primarily designed
for audio signals, over up to four channels. Digital data can be transmitted by
encoding the signal [65] or by using Frequency Shift Keying [66]. However, the
bitrate is significantly low and its limited ability to gather power from the mobile
device makes it prohibitive for use as a dongle;

• USB: Universal Serial Bus is an asymmetric communication protocol, which assumes

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 63

Table 4.2: A comparison of communication technologies

ZigBee WiFi Bluetooth
IEEE 802.15.4 IEEE 802.11a/b/g IEEE 802.15.1

Bandwidth 250 Kbps 54 Mbps 1 Mbps
Range 10-100 meters 50-100 meters 10 meters

Topology ad-hoc, point to ad-hoc,
star or mesh access point small networks

Frequency
868 MHz (Europe)

2.4 and 5 GHz 2.4 GHz900-928 MHz (NA)
2.4 GHz (world)

Coexistence dynamic freq. dynamic freq. adaptive freq.
selection selection hopping

Power
25mA TX, 219mA TX, 57mA TX,
27mA RX, 217 mA RX, 47mA RX,
standby 3uA standby 20mA standby 0.2mA

Typical apps industrial control sensor networks Internet access headsets,
file transfer

the existence in the communication process of a host and a client. Thus, USB
communication for Android comes in two flavors: USB host, when the mobile device
plays the role of the host, and USB accessory mode, when the dongle plays the role
of the host and is called an accessory;

• Bluetooth: is a communication protocol with a long tradition, usually intended for
file transfers on a short range; now at its fourth iteration, the Bluetooth protocol
features profiles for low power consumption as it is usually used on devices with
energy constraints, such as those involved in home automation.

Table 4.3: Methods to connect a dongle to a smartphone

Audio Jack USB Host Accessory mode Bluetooth

Two-way serial Yes Yes Yes Yes(analog)
Power Yes (7.4 mW) Yes No Not needed
Devices Most phones

and tablets
(requires
TRRS jack)

Tablets
(Android 3.1
otherwise
recompile)

Phones & tablets
(Android 2.3.4
and 3.1)

All phones
and tablets
(Bluetooth 2.1)

Pros All devices Power Works on phones,
not only tablets

All devices

No changes to kernel Reliable serial No kernel change

Cons
Analog only some devices no power

not really a dongleunreliable different connectors dedicated chip
little power different connectors

While the audio jack and Bluetooth are the only truly universal connectivity ports, they
lack the performance and reliability of the USB connection. On the other hand not all
Android devices have a USB port and, those that have one, can have one of the several
variants of USB ports, which makes it a challenge for the dongle designers. Using the
Android device in accessory mode is an interesting approach, promoted by Google through
the Accessory Development Kit, dedicated especially to the older phones, which do not
have the USB Host mode. However, having the mobile device act as a client would mean
that the dongle would have to power the bus, which is completely unfeasible in our case,

64 4. OFFLOADING MECHANISMS ANALYSIS

Figure 4.6: General client architecture

due to the form factor restrictions. USB is our method of choice because it conforms with
all our three criteria:

• Two-way serial: the ability to communicate in both directions, in a serial manner

• Supported mobile devices: supported by many off-the-shelf devices

• Power consumption: a dongle without its own power supply is preferable, due to
size factor and convenience; thus, it is necessary to draw power from the mobile
device.

As part of our collaboration with the University of Applied Sciences in Dresden, we have
acquired a communication dongle developed by ZigPos GmbH, which connects to the
mobile device via USB following our specifications. This dongle features an FTDI chip
for USB communication, connected to the phone, and an IEEE 802.15.4 module for ZigBee
communication, with the home automation devices.

For the client design we propose the general client architecture in Figure 4.6, with the
purpose of supporting all the communication methods described in our analysis so far.

For the Android client implementation we only use two communication methods: USB
Host to connect the dongle, and wireless for remote access. The application has a hierar-
chical structure (Figure 4.7), which interposes between the GUI and the communication
modules three layers of abstraction, so that it can adapt to a variety of devices:

• Data Provisioning Layer : provides an abstraction over all types of communication
methods, either local, via a dongle, or remote, via a web server; the API exposed
by this layer has the essential function of enabling various developers to propose
different GUIs over a single mobile application structure;

• Access Layer : unifies all the local access methods to communicate with the home
automation network from within the premises, and, separately, all the remote meth-
ods that are used to communicate with the home automation network remotely via
internet; local access is usually trustworthy while remote access requires some addi-
tional form of security and stronger authentication; the API exposed by this layer
is used by the Data Provisioning Layer to provide a single API to the GUI;

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 65

• Communication Channel Layer : uses any of the communication modules described
in Section II, either wired, such as serial, USB, audio jack, or wireless, such as
Bluetooth, WiFi; all the wired communication channels, as well as the Bluetooth,
are used to communicate with a IEEE 802.15.4 capable device, such as the USB
dongle we used in our tests, that in turn connects dirrectly with a device from the
home automation network; the web service query channel, as well as the local WiFi
module can be used to communicate with the home automation network via a server,
through internet and local area network respectively.

Figure 4.7: Android application structure based on the abstraction layers proposed in the
general client architecture.

We implement an Android application that uses general object-oriented programming
concepts and particular Android features to implement communication with multiple
channels, following the three proposed abstraction layers.

The Data Provisioning Layer uses Content Providers, which are Android specific con-
structs meant to encapsulate data and serve it to multiple processes. In our implemen-
tation, each of the five Content Providers uses a local SQLite database to store data
regarding one key concept of a generic home automation network. The device can be
something like a light source or a thermostat, and has several characteristics, such as
location and network address. Each device can have either numeric or Boolean (on/off)
values. A set of devices is a manual grouping of devices that need to be operated together
for a complex functionality, such as putting the whole house in stand-by when going on
holiday. The plan associates certain values to certain devices at a given timestamp. The
report is a collection of aggregated values, either sampled or averaged. The Data Provi-
sioning Layer also provides caching of data on the local storage of the device. Values are
kept on the device for a week, after which they are only available on the server.

66 4. OFFLOADING MECHANISMS ANALYSIS

In this stage, the Access Layer is poorly represented. We currently do not make any
difference between local access and remote access. Although security can be provided
with traditional means, such as using HTTPS for communication over WiFi, the role of
the Access Layer is crucial in a real-world implementation.

The Communication Channel interface is an abstract class that is meant to serve the
Communication Channel Layer in providing communication capability with various mod-
ules. It describes the abstract methods of reading and writing data. In this stage, it
has three implementations: (1) the USB Dongle Channel uses the USB Communication
Module to conduct serial communication with the dongle in order to read and write data,
for local access; (2) the REST Server Channel uses the REST Communication Module to
conduct wireless communication with a network gateway, for remote access conforming
with REST principles; (3) the Hardcoded Channel simply provides mock-up data without
actually communicating with the exterior and was used in testing.

The Connection Manager uses a Service, which is an Android specific construct, meant
to perform long-running operations in the background and provide inter-process commu-
nication. In our case, it monitors the availability of communication channels and can be
used by the upper layers in the architecture for operations such as selecting an active com-
munication channel. This option is necessary because, if more communication channels
are available in the same time, only one can actually be used. If both the USB Dongle
Channel and the REST Server Channel have connectivity, the USB Dongle Channel is
preferred by default.

On top of this structure, we propose a UI focused on usability. The UI is based on
several concepts that describe basic and complex entities of a home automation system.
Basic entities are devices and their values, as described earlier in this section. Among
the complex entities, the profile groups a set of devices and their desired values, and the
profile’s state, which is either active or inactive. We also use some time related concepts:
the event, which has the role of associating a timestamp with a device and a value, like the
lights were turned off, and a schedule, which is basically a set of events. These concepts
can model most of the use cases envisioned for home automation. For example, when going
out on holiday, the user can activate a stand-by profile, which passes all the associated
devices to low-power values, such as turning off the heating on all the electric plugs.
We use Content Providers and a Service, which provide inter-process communication, to
provide a loose coupling between the UI and the rest of the application structure. Thus,
the UI can be easily extended by third-parties, who can write applications that use the
lower levels of our application.

Testing and Performance Evaluation

We test the application with two client devices running Android 4.0, an Acer Iconia A500
tablet and an Asus Transformer TF101 tablet. We also use a mock home automation net-
work consisting of a PC gateway and two ZigBee devices, developed by ZigPos, simulating
conventional home lights (Figure 4.4). We identify and test several use-cases, which may
occur during the normal usage of the application:

• Use Case 1 - toggle command: in this use case, the user issues a simple command to
toggle the lights; according to the ZigBee implementation, this translates into a se-

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 67

ries of bytes denoting the type of command, the extended address of the destination
device, and the actual payload;

• Use Case 2 - encoded image: the system allows users to take a photograph of the
network device and replace the default icon with the actual image;

• Use Case 3 - history of values: the implementation usually keeps a limited cache of
values on the device and periodically stores them on larger storage devices; in some
rare cases, the users might be interested in detailed historical values registered by
the home automation network, in which case the application can retrieve a detailed
history in a compact JSON format; we consider this the most demanding, but also
the rarest use case.

We estimate the power consumption over these three use cases using WiFi. Although
we could not find any datasheet for the WiFi module of neither of the two tablets, we
estimate the following data at a voltage of 3V.

Table 4.4: Estimation of energy consumption.

original size actual size link speed time current energy energy/byte
[bytes] [bytes] [Mbit/s] [ms] [mA] [uJ] [uJ]

toggle command 48 664 26 0.003 270.40 2.47 0.051
encoded image 57,296 57,912 39 0.177 270.40 143.62 0.003
history of values 2,468,676 2,491,895 52 5.713 270.40 4,634.06 0.002

We use the Android internal API to read values for the actual sizes of the transfers, link
speed and current value for the WiFi module in active state. The values reported in Table
4.4 are averages over five readings.

The actual size of the transfer is larger than the original size, as it accounts for headers
and failed packet transfers. The link speed varies a lot from one run to another, so the
final estimation can actually have quite a big offset. However, we find that the average
values of the link speed describe well the expected behavior of a WiFi module, which
should work well for large transfers. Thus, we consider the final estimated values in a
valid proportion one to another.

Using the data we read, we estimate the time taken by each transfer, and the total energy
consumed by each transfer. We also compute the energy/byte, using the total energy and
the original size. We use the original size instead of using the actual size, to account for
packet headers and failed packet transfers.

Observing the energy/byte in Table 4.4, we conclude that the WiFi module consumes a
lot of extra energy for small transfers, such as the ones in Use Case 1, which we expect
to be the most numerous in a real deployment. For such transfers, using ZigBee might
prove to be energy efficient.

Conclusion

In this paper, we study the integration of mobile devices into home automation systems.
We investigate different ways to connect, to an Android device, a dongle capable of me-
diating two-way IEEE 802.15.4 communication.

68 4. OFFLOADING MECHANISMS ANALYSIS

We propose a scalable architecture, with three abstraction layers, to unify local and
remote access, different communication channels, as well as various ways of offering the
functionality to multiple user interfaces. We hide the complexity of the notions involved
in the home automation system by including them into a simple, but comprehensive set
of related concepts. This simplification is needed to fit as much of the functionality on
the limited space offered by a mobile device’s display.

We test the application with two client devices running Android 4.0 and a test network
consisting of a couple of ZigBee devices and a PC as gateway. We estimate the energy
consumption of WiFi transfers over several typical use cases and we conclude that using
IEEE 802.15.4 can prove beneficial both in terms of functionality and performance.

4.2 Computation Adaptation and Offloading

In this section we explore computation offloading mechanisms. We first focus on adap-
tation of quality in a video-processing application and then we employ offloading in a
video-rendering application trying to preserve quality.

4.2.1 Performance Adaptation in Video-Processing Applications

A simple camera-enabled smartphone can be used to step into a virtual or augmented
world. For example, in a museum, users looking at maps through their mobile phones can
see animation depicting troop movements, and when looking at posters with images they
can see instead short movies. Augmented reality is based on processing the frames regis-
tered by a camera and overlaying rendered objects based on either location information
or marker tracking.

We develop an augmented reality application to study the stages through which informa-
tion needs to pass in order to be displayed to the user (Figure 4.8). We choose QR codes
as the starting point of our marker-based tracking system, as they already benefit from
a number of implementations for various mobile platforms. The QR codes provide two
important features:

• they store compressed information, large enough to implement a client-server system
for retrieving information;

• they provide means for easily detecting surfaces, by locating the corners of the code.

We identify the bottlenecks of the system, with the purpose of maximizing its performance
and we propose an adaptation mechanism of skipping frames at each stage in order to
provide a fast on-screen response. We conclude by measuring the output frame rate, with
respect to the hardware specification of the devices.

System Design and Implementation

We design, implement and evaluate an augmented reality application for Android. This
study was conducted in collaboration with Alexandru Gherghina [67]. The application’s

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 69

Figure 4.8: Application screenshots, while displaying historical video clips on top of a QR
code shown on a screen.

primary requirement is to replace specific markers with images, animations or even movies.
For example, it may be used to enrich a person’s experience when visiting a museum, or
can overlay informational boards with more attractive and content-rich posters.

The implementation uses QR codes as markers for the augmented reality to take place.
The QR codes possess the advantage that they contain data that can be used to identify
the content, as well as data related to the physical location of the marker. A very dynamic
system may be achieved in this way. No marker is programmed directly into the appli-
cation and it may distinguish between two different markers with ease. Unfortunately
QR codes also present a disadvantage: slow recognition and relatively small recognition
angles. We consider that the QR code contains the address of the server where the content
is stored and the ID of the content that is supposed to be displayed. The necessary data
format will be explained when describing the QR code decoding module.

The system is composed of a client and a server. The server’s job is to store content,
answer to client requests to download content and manage the existing content in the
database. The client retrieves content and projects it on the display.

The client application runs in a cycle, depicted in Figure 4.9. This is consistent with the
State Transition Diagram of our workload model presented in Section 3.3.4.

The server has a very simple architecture. It contains a series of Java servlets that answer
the requests from the clients and enough storage space for all the content. In addition, we
are offering a web administration section where content can be added, deleted or modified.
The current implementation resides on Google App Engine, a cloud computing platform
offered by Google. We choose this platform because it offers an integrated storage system.

The steps in the cycle are represented as if they were sequential. However, to speed up the
actual content projection and to make use of the device’s processing power, the application
relies heavily on separate threads (see Figure 4.10). Therefore, a set of modules has been
designed, modules that can run independently from one another.

In addition, to make sure the module that displays the camera preview is not slowed down
by other processing, we used a pipeline programming model. Every module reads data
from an input buffer and after processing it will write the data into another buffer so that
another module can make use of it. For example, when the content downloading module

70 4. OFFLOADING MECHANISMS ANALYSIS

Figure 4.9: Basic client application cycle

has to connect to the server and get the content, the other ones don’t have to wait around
for it and keep processing whatever data they have.

The modules correspond to the execution steps:

• Image acquisition module: initializes the camera and obtains individual frames;

• QR code reader module: searches for a QR code in a previously obtained frame and
decodes it if found;

• Surface detection module: uses 4 points from the QR code and computes the per-
spective transform matrix;

• Content acquisition module: searches if required content is in the device’s memory
and downloads it if not found;

• Content transformation module: applies the perspective transform matrix on a
content frame and obtains a frame that is ready to project;

• Content display module: projects the previously obtained frame on the camera
preview.

In Figure 4.9 the content transformation module and content display module were treated
as one step. As long as the content transformation module does not provide a new output,
the content display module will always render the same image.

The client application stores all downloaded content in the device’s memory so that it
can be seen later on, without the need of contacting the server again. When the QR
bar code is decoded and the content ID is extracted from it, the application must check
if that specific content is available locally (in the device’s internal storage). To be able
to achieve that easily, we designed a fixed folder format. All content is stored with the
following path: /sdcard/arinfo/[Language]/[ContentID], where Language and ContentID
are replaced with the actual values. If the content file or language folder is not found,
then a request to the server is made in order to download the missing content.

The content cache was implemented for a very important reason: loading content from

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 71

Figure 4.10: Buffer placement between threads

memory is a lot faster than downloading it from the server each time the user points
the device to a QR bar code. In the case of images or animations the process is almost
instantaneous whilst videos need more time to load. The cache was also needed for the
buffering mechanism needed by accessing video files - the whole content cannot be loaded
into memory (it can get quite big). A tradeoff between no cache at all and fast loading
times would be using live video streams.

Persistent content storage is implemented on the server, using the Datastore and Blobstore
provided by the Google App Engine API. The Blobstore is used to store the actual content
files and a reference to it and all other metadata (such as language, ID etc) is stored in
the Datastore. The server’s interface allows an administrator to easily add content that
can be obtained by the client.

In our implementation we used two Java libraries which are meant to assure that the
application will work both correctly and fast: Open CV—for surface detection—and
Zxing—for the reading of the QR codes. For the muted/soundless animations, we used
the GIF format, from which we take individual frames but synchronize them with the
main execution thread. Thus the speed is accurate, even though not all the frames are
processed and displayed. In order to render audio/video materials, we take individual
frames from their video source but we synchronize with the audio source. Unfortunately,
the processing speed of this type of content drops considerably, so that the images end up
being displayed with interruptions. It’s worth mentioning that the porting of the ffmpeg
library was necessary in order to display these videos.

The ffmpeg library was compiled using the Android Native Development Kit so that it
can be used inside our Java application. The C code inside the library can be easily
called from Java using the Java Native Interface. The library is mainly used to extract
individual frames from the video file, at specific timestamps. The audio stream from the
video file is rendered using the Android-specific MediaPlayer. The audio is synchronized
with the video by using the same timestamps. The application’s Content class offers
uniform access to all file types that can be displayed. Thus, whether we deal with an
image, animation or a movie, it insures that the content transformation module uses the

72 4. OFFLOADING MECHANISMS ANALYSIS

right image. For videos or animations, the main execution thread is responsible with
calling the nextFrame() method which signals to the Content class that a new image is
needed.

The user interface consists of two activities:

• The Main Activity is used to display the camera preview as well as drawing the
projected images. Important information coming from the operating system such as
events (when the application is sent to background or foreground) is also received
here. When the application starts or it is sent to foreground important operations
are executed, such as starting the worker threads or obtaining access and initializing
the device’s camera.

• The Settings Activity is responsible with displaying the configuration options. The
user may select the language of the displayed content, camera resolution or he may
choose to turn on debugging information. Thus, the user can lower the resolution
on low performance devices, so that the speed with which the content is displayed
is increased.

The application relies on the images provided by the camera and it is not possible to
run the application on a device that does not have a camera. The quality of the pictures
provided by the camera does not matter as the application adapts to the resolutions it
can provide.

Testing and Performance Evaluation

After the initial testing on the serial version of the application, we decided that using a
threaded approach was mandatory. From 3 frames per second using the serial version,
we reached more than 15 frames per second, when the same image was displayed. Func-
tional tests were conducted on the threaded version in various conditions: using several
devices, various types of content (images, animations, movies), different screen resolu-
tions, etc. Figure 4.8 illustrates how content is seen on a device while debugging mode
is enabled (frame rate and camera resolution is displayed). In this case, an animated
content, matching the history museum scenario, was encoded in the QR bar code.

We also evaluate the performance, expressed as frames per second (FPS) in various con-
ditions. Figure 4.11 shows the results of a test that aims to compare performance at
different stages, with and without a QR code in view. We can see the number of frames
processed every second for the important modules (Image acquisition, QR bar code reader
and Content display), as well as the impact when a bar code was put in front of the camera
and the application had to process it.

The test was done on a dual-core device running at 1.7 GHz. It consisted in a 40 seconds
application run with no bar code visible for 12 seconds after which a marker pointing to a
simple image was introduced to the device’s view. The test showed that while no bar code
is visible (application is mostly idle), the worker threads do not use as much power as they
use while working. The idle state is characterized by the much higher frame rate achieved
with no bar code visible. In Table II we can see the results of testing the performance of
the application with three supported content types: images, animations and video. We
pick a representative format for each of the content types.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 73

Figure 4.11: The number of frames processed by each module during an experiment

In Table 4.5 we summarize the results we obtain on four different devices, with different
hardware characteristics. The FPS corresponds to the Content Projection Module, that
is the final module in the processing loop, which is the speed the user is presented with
new transformed images.

Table 4.5: Frame rate depending on device (left) and content (right)

Device Cores Resolution
FPS

Content Type FPSLow Medium High
SE Xperia 1 core @1GHz 320x480 23 18 13 Image (png) 23-27

Samsung GS2 2 cores @1.2GHz 540x960 34 29 24 Animation (gif) 20-27
HTC One S 2 cores @1.7GHz 480x800 40 35 30 Video (mp4) 15-20
Acer A510 4 cores @1.3GHz 1280x800 17 15 13

Also in Table 4.5 we present the performance obtained for various types of projected
content. Animation handling is very fast and it reduces to manipulating a series of simple
images, as it can reach similar performance to image rendering. However, rendering video
takes a lot of processing power because we use the ffmpeg library to extract individual
frames at specific timestamps, which adds a lot of overhead. When an image needs to
be projected (the display module is ready to draw another picture) the video needs to be
seeked from the last position to the new timestamp.

Conclusion

We propose a client-server system, which aims to be a general purpose augmented reality
application, which can be used in any scenario where rich and dynamic content can be
overlaid over a QR code. We use surface detection to project the images, so that they seem
to belong to the surrounding environment. As a client we develop an Android application
and we implement the server using the Google App Engine platform to take advantage of
its replication capabilities, based on demand from clients.

The client’s architecture is based on a pipeline structure with the purpose of minimizing
the delays of the module responsible with displaying images on the device’s screen. Each
module runs on its own thread, picks up input data from the preceding buffer and writes
output data in the following buffer. This matches very well the design patterns of Android

74 4. OFFLOADING MECHANISMS ANALYSIS

applications, where the main UI thread, responsible with displaying the camera preview,
cannot be delayed.

Performance evaluation shows the amounts in which image processing speed is directly
proportional with processor power and inversely proportional with the screen resolution
(due to larger requirements in processing) and with camera resolution (as it takes more
time to find the QR code).

4.2.2 Maintaining Performance by Offloading Stages in Process-
ing Loops

As an alternative to the computation adaptation mechanism presented in Section 4.2.1,
in this section we investigate offloading on OpenTTD, a popular open-source simulation
game (Figure 4.12). In multiplayer mode, OpenTTD currently supports up to 255 simul-
taneous users on the same map, one of which must host the server. Another popular way
of using the game is in singleplayer, against a number of AIs. The AIs are developed by
the community and are freely available to all players.

Figure 4.12: Experiment running OpenTTD distributed on a tablet and laptop

System Design and Implementation

OpenTTD is a loop-based application, as it functions by continuously iterating over a
processing loop, depicted in Figure 4.13. This is consistent with both the AR application
presented in Section 4.2.1 and with the State Transition Diagram of our workload model
presented in Section 3.3.4.

Essentially, the loop can be modeled as a cyclical graph, consisting of:

• input collection, either from the user or from an AI

• sending the local commands and receiving all-player commands from the server (only
in networked games)

• simulation, which consists of several iterations on tiles, vehicles and building

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 75

Figure 4.13: OpenTTD game loop

• rendering, which is greatly affected by the user graphics settings

For this experiment we choose to offload the AIs. Usually, the AIs are computationally
intensive, as they often perform path-finding algorithms like A*, and bursty, as they only
act when they have the in-game money to do so.

To enable the community to build custom AIs, the creators of OpenTTD designed them as
scripts running in a Squirrel Virtual Machine, thus providing a loosely coupled interaction
of the AIs with the whole system. This type of interaction also makes them fairly easy to
offload.

For the implementation, we start adapting the source code of OpenTTD version 1.3.0,
released in April 2013, one of the latest versions of OpenTTD. We implement offloading
by tweaking a multiplayer game: the offloaded version is essentially a multiplayer game
in which the client runs on the mobile device and the server runs the AIs. To do so, we
make several changes to the community version.

We modify the game so that AIs can run in multiplayer, as this feature is normally
disabled because the community doe not want to have players create AIs that compete
instead of them in real matches. This modification is based on the adaptation made by
Otto Visser from Delft University of Technology. We also implement instrumentation, to
collect metrics both from the operating system level (like CPU load, memory load and
network load) and from the application level (like frames per second and in-game time).

To conduct experiments, we need to repeat them for a number of times and make sure
they all behave the same way. Thus we replace the human player with an AI running
on the device and our implementation follows its movements on the screen. So, starting
a game with the same AI on the same scenario will recreate in each run the same usage
patterns and the same operations.

Finally, we adapt the starting procedure so that we can easily add more configuration
settings in the original configuration file. This is necessary because when running Android
applications it is not possible to start them with command line arguments.

To experiment with real mobile devices, we use the SDL port for Android written by Pelya.
SDL is essentially the graphics library used by OpenTTD. Porting SDL for Android, the
developer paved the way for porting any of the games using it. Thus, we are able to use

76 4. OFFLOADING MECHANISMS ANALYSIS

Figure 4.14: Comparison of local running of AIs (red) with offloaded running of AIs
(green)

our modified C++ code, which is cross-compiled with the Android NDK and then linked
with the rest of the SDL Android project.

Testing and Performance Evaluation

For our experiments we use, as client, an Asus Eee Pad Transformer TF101, featuring a
nVidia Tegra 2 1GHz dual-core CPU, running Android 4.0.3. We also use, as server, a
Sony Vaio laptop, with a Intel Core i3 2.27 GHz quad-core CPU, running Linux Ubuntu
10.04. The two devices connect through WiFi and are in the same Local Area Network.

We have tested the application with various game settings, such as details on or off,
animations on or off, quality of textures high or low, maps large or small, etc. We present
here an experiment using a large and dense map, and high graphics settings and we discuss
more about calibration and the impact of game settings in Section 5.2.

The scenario we investigate is that a human player has a match against a number of AIs.
We have started with 16 AIs, but running the game locally with that many AIs proves
to be unplayable on our device. So, to collect data for a control test run, we repeatedly
decreased the number of AIs until the game became usable on our device. We have settled
to 4 AIs, that we picked from the most popular in the community, namely OtviAI, AIAI,
ChooChoo and Chopper.

Figure 4.14 shows CPU load and in-game time we obtained during 10 minute gaming
session, using our version of OpenTTD enhanced for repeatability.

The left-hand chart shows a CPU load of 40-50% most of the time, which corresponds to
a high usage of one of the two cores. The spikes are triggered by autosaves, which, in our
setting, take place once per in-game month. The autosaves are performed on a separate
thread, which explains why the CPU load exceeds the 50% threshold. The right-hand
chart shows how in-game time progresses related to real time. The vertical axis depicts
the in-game time in months, while the horizontal axis depicts real time in seconds.

Both charts indicate that, without offloading, the game slows down to compensate for the

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 77

lack of processing power of the client device. As indicated by the values in the right-hand
chart, as well as by the number of spikes in the left-hand chart, in a 10 minute gaming
session, the offloaded version covers almost 8 in-game months, while the local version
covers only 4 in-game months.

Conclusion

We continue the analysis of loop-based applications we started in Section 4.2.1 by exper-
imenting with computational offloading on OpenTTD, a popular open-source game. We
use the multiplayer version of the game to experiment with offloading one of the stages in
the processing loop, interpreting the AI player scripts. We modify the community version
of the game so that it is suitable for experiments: running the game multiple times with
the same parameters will produce the same usage patterns

We find that, when running 4AIs locally the in-game action is twice as slow as it is when
offloading the AIs. In some cases, performance adaptation is a reasonable solution to the
lack of computing power. However, for highly interactive applications, such as games,
slowing down the game speed is not a viable solution. In this case adaptation can lead
to poor user experience, longer playing times for the same incentive, and, of course, more
resources used by the client device.

4.3 Operational Analysis for Offloading in Loop-Based
Applications

We continue our investigation on loop-based applications that we started in Section 4.2
and, in this section, we propose an operational analysis for loop-based applications, match-
ing the offloading mechanisms we identified in Section 2.4.2 as part of our Exploratory
Space.

As identified in Chapter 4, we focus on loop-based applications. A loop-based application
is one in which most of the functionality is given by iterating an execution loop. All the
Online Social Applications, for which we built a Workload Model in Chapter 3, have such
a loop, as it can be seen in the Micro Model, in Section 3.4. In addition, for Online Social
Applications, independent of their technology: Tightly Coupled Simulations, Web 2.0 or
Streaming, some amount of functionality already occurs remotely, this being one of the
criteria for which we chose them to conduct our studies.

We model the main loop of the application with a graph that consists of a cycle, with
stages numbered from 1 to n, as depicted in Figure 4.15. An example of such a loop is
given in Figure 4.13, which shows the main processing loop of OpenTTD that consists of
stages such as input capture, synchronization on the server, simulation, and rendering.
Based on this loop, and derived from the metrics and the benefit assessment models
described in our taxonomy (Section 2.3) we express three main criteria for assessing the
benefit of offloading, in terms of time (Equation 4.7), energy (Equation 4.8) and cost
(Equation 4.9).

78 4. OFFLOADING MECHANISMS ANALYSIS

Figure 4.15: The main loop as a cycle graph.

T =
n∑
i=1

T ip|r +
n∑
i=1

Qi

B(s, d) (4.7)

E =
n∑
i=1

Ei
p|r +

n∑
i=1

Et(Qi, B(s, d)) (4.8)

C =
n∑
i=1

Ci
p|r +

n∑
i=1

Ct(Qi, B(s, d)) (4.9)

where:

• T - time needed to perform computation or a data transfer

• E - energy consumed by computation or a data transfer

• C - monetary cost to be paid for a computation or a data transfer

• p/r - local/remote processing

• Q - quantity of data to be transferred

• B(s,d) - bandwidth when transferring data from source s to destination d

In the remainder of this section we make some simplifications, to keep the formulas concise,
at the expense of some precision. First, we consider the download speed and the upload
speed roughly the same size:

B(local, remote) = B(remote, local) = B (4.10)

We also consider that passing data among local stages, as well as passing data among
remote stages, is much quicker than passing data from local to remote and vice versa,
and, therefore, we consider it as infinite:

B(local, local)→∞, B(remote, remote)→∞ (4.11)

Finally, when estimating energy, the energy consumed by remote resources can be dis-
carded from the perspective of the client device. Similarly, we do not take into consider-
ation any monetary costs for performing computations locally on the device.

Er ≈ 0, Cp ≈ 0 (4.12)

In the following, we expand our analysis based on the exploratory space of offloading mech-
anisms that we proposed in Section 2.4.2. For the first direction in the exploratory space,
the number of components that are offloaded, we detail all three criteria—performance,
energy and cost—and show the operational analysis is analogous. For the other four di-
rections in the exploratory space, partial offloaded process, partial offloaded data, parallel
offloading and resource placement, we only show the operational analysis for performance.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 79

4.3.1 Offloading Various Components

As previously shown, we address loop-based applications and we model their processing
with a cyclic graph. We are also focused on applications that already have some form of
communication. We depict this by having a stage being processed in the environment (see
Figure 4.16 a), as, for example, OpenTTD has the synchronization stage being processed
on the server.

Figure 4.16: The graph model for varying offloaded components.

By offloading components we refer to moving the processing of additional stages in the
environment. For example, in OpenTTD, besides doing the synchronization, we might
remote the execution of the simulation as well. We generally note with k the stage where
local processing turns into remote processing and with l the stage where processing returns
on the device. Offloading is thus represented by moving indexes k and l within the loop,
as described by Figure 4.16 b. We use this formalism to express the offloading decision
logic, for the three main benefit assessment models: performance, energy and cost.

Inspired by [28] and [3], we express performance as the time it takes to perform the loop:

T (k, l) =
k∑
i=1

T ip + T kt +
l∑

i=k+1
T ir + T lt +

n∑
i=l+1

T ip (4.13)

where T ip is the local processing time of stage i, T ir is the remote processing time of stage
i, and T it is the transferring time of output data from stage i. Transmission time can be
expressed as the quantity of data transmitted divided by the transmission speed. At this
stage we make the simplification that the sending and receiving speeds are similar. Local
and remote processing times can be measured directly, and can also be expressed as the
quantity of code to be executed divided by the CPU speed. The equation becomes:

T (k, l) =
k∑
i=1

T ip +
l∑

i=k+1
T ir +

n∑
i=l+1

T ip + Qk +Ql

B
(4.14)

In general, offloading is beneficial if remote processing has a better performance than
local processing, or, equivalently, if the penalty for transmitting the data to the remote

80 4. OFFLOADING MECHANISMS ANALYSIS

resource is less than gain in time obtained from using a remote resource more capable
than the local one, expressed by the inequality:

Qk +Ql

B
<

l∑
i=k+1

(T ip − T ir) (4.15)

Thus, the offload decision becomes the optimization problem expressed as:

Tmin = min
k,l

k∑
i=1

T ip +
l∑

i=k+1
T ir +

n∑
i=l+1

T ip + Qk +Ql

B

 , 1 < k < j < l < n (4.16)

We can express the logic for energy and cost criteria in a similar way. For energy, we are
interested in minimizing the energy consumed by the mobile device. Therefore, offloading
is beneficial if the penalty for transmitting the data to the remote resource is less than the
energy consumed by handling the stage locally. We can express this analogous to 4.14,
with:

Et(Qk +Ql) <
l∑

i=k+1
Ei
p (4.17)

To explicit the transmission energy and the processing energy, we could use any of the
energy models proposed in the literature, like [59] and [64]. These energy models are
highly configurable and can cover any number of devices. Moreover, energy consumption
can be measured directly with some limitations. In any case, the purpose of the offloading
decision is the optimization problem expressed as:

Emin = min
k,l

k∑
i=1

Ei
p +

n∑
i=l+1

Ei
p + Et(Qk +Ql, B)

 , 1 < k < j < l < n (4.18)

For the cost criteria, we consider that communication and remote processing come with
a cost. The application has to perform some stage remotely by its nature—let that be
stage j— so it cannot function only locally. Therefore, assessing offloading benefit needs
to compare offloading stages from k to l with executing stage j remotely:

Ct(Qk +Ql) +
l∑

i=k+1
Ci
r < Ct(Qj−1 +Qj) + Cj

r , 1 < k < j < l < n (4.19)

In this case as well, we can explicit the transmission cost and the remote processing cost,
using various estimations. Therefore, the optimization problem for the cost criteria is:

Cmin = min
k,l

l∑

i=k+1
Ci
r + Ct(Qk +Ql, B)

 , 1 < k < j < l < n (4.20)

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 81

4.3.2 Intermittent Offloading

We refer to Intermittent Offloading in loop-based applications as offloading a component
only once in a given number of iterations. We depict this using probabilities, matching our
approach in modeling workloads at the operations level segmented on the State Transition
Diagram (see Section 3.3.4. For example, processing advances from stage j to stage j + 1
either moving to the device with probability P (l) or staying on the remote resource with
probability 1− P (l):

Figure 4.17: The graph model for partial offloading process.

Thus, the optimization problem becomes an issue of finding the probability P (l) that
minimizes the total iteration time. A similar formula can be derived for energy or cost.
A weighted average of the three criteria can also be considered, for additional dimensions
of the trade-off.

Tmin = min
P (l)

j−1∑
i=1

T ip + T jr + P (l)T j+1
p + (1− P (l))T j+1

r +

+
n∑

i=j+2
T ip + Qj−1 + P (l)Qj + (1− P (l))Qj+1

B

 (4.21)

4.3.3 Offloading with Partial Data

When offloading part of the data, the same process, corresponding to at least one stage,
is performed in the same time on the device and in the environment. For example, in
OpenTTD, half of the map can be processed locally and half of the map can be processed
remotely. A more suitable notion is the region of interest, which represents the part of
the output that benefits from the user’s attention, e.g. the viewport in games, that is the
region of the map that the user sees at a given time. A finer grained notion is the object
of interest. In any case, we represent the offloaded data as being the fraction R of the
total data that is transferred from stage j to stage j + 1.

The optimization problem is to find the ratio R for which, depending on the benefit
model of choice, the iteration time, the energy consumption, or the monetary cost are at

82 4. OFFLOADING MECHANISMS ANALYSIS

Figure 4.18: The graph model for partial offloading data.

a minimum.

Tmin = min
R

j−1∑
i=1

T ip + T jr +
T j+1
p

R
+ T j+1

r

1−R +
n∑

i=j+2
T ip + 1

B
(Qj−1 +RQj + (1−R)Qj+1)

(4.22)

4.3.4 Parallel Offloading

Offloading can be done in parallel, that is using multiple remote resources in the same
time for remote processing. For example, in OpenTTD a user can play against a number
of AIs. We could offload AIs in parallel, that is each AI is processed by a separate
remote resource. The trade-off is that dividing jobs properly in more tasks, provisioning
sufficient resources and scheduling the tasks on the resources may be more consuming
than the benefits of parallel processing. However, offloading itself, through its distributed
nature, covers to some degree the division of tasks, provisioning and scheduling, which
simply need to be tuned for this type of offloading.

Figure 4.19: The graph model for offloading parallelism.

A key aspect when evaluating the benefits of parallel offloading is the amount of pro-
cessing that cannot be parallelized, the serial part of the program S which we take into
consideration by applying Amdahl’s Law for the processing time of stage j remotely, we
obtain:

T jr|| = T jr (S + 1− S
N

) (4.23)

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 83

We use this form of Amdahl’s Law in Equation 4.7, but also consider that using N
remote resources instead of 1 also means N times more communication. The performance
optimization problem becomes:

Tmin = min
N

j−1∑
i=1

T ip + T jr (S + 1− S
N

) +
n∑

i=j+1
T ip +N

Qj−1 +Qj

B

 (4.24)

As the formula shows, using offloading parallelism might be beneficial when offloading in
applications with a small serial part S and when each of the N remote resources can work
with only part of the outputs from the previous stage.

Chapter 5

Performance Evaluation for
Offloading Mechanisms

With inputs from all the other chapters of the thesis, in this chapter, we conduct ex-
perimental and analytical evaluation of several offloading mechanisms. We select our
offloading mechanisms from the Exploratory Space defined in Chapter 2. For the empiri-
cal evaluation, we expand on our experiments on OpenTTD presented in Chapter 4 and
for the analytical evaluation we use the operational analysis also described in Chapter 4,
as well as the workload traces presented in Chapter 3.

5.1 Measuring Performance on Mobiles

Analyzing power consumption is an interesting research topic, as shown by various projects
that can be found in the literature. Caroll and Heiser [59] design multiple micro-benchmarks
to associate the power costs to modules of a mobile system. They try to determine the
power consumption of different parts like CPU, GSM and WiFi. Zhang et al. [25] de-
scribe a power module construction technique that they use to characterize 3G, GSM,
WiFi, CPU and screen, and to introduce PowerTutor, an Android application that can
use these models for power consumption estimation on any device. We use such tools to
estimate the power consumption of different components, but we found little solutions on
estimating power consumption from the Bluetooth radio.

Balasubramanian et al. [64] show that 3G, GSM and WiFi incur a high tail energy
overhead. Pering et al. [68] describe methods to reduce the power consumption by
switching between Bluetooth and WiFi. The Bluetooth module has a power consumption
as much as 10 times lower than WiFi. WiFi is intended for high-bandwidth and 100 meters
coverage while Bluetooth is designed for low-bandwidth and a coverage of 10 meters. The
authors also describe that power consumption in idle mode compared to active mode is 4
times smaller for WiFi and 6 to 10 times smaller for Bluetooth. We find this significant
as it justifies the need of advanced algorithms that power down these interfaces when
communication is not necessary.

Various other papers try to determine algorithms and technologies for reducing energy
consumption, by modeling optimum power as a Nash equilibrium [69], by employing back-

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 85

off methods for synchronization [70], or introducing an active-sleep duty cycle [71]. We
propose an adaptive algorithm for reducing the polling rate in location-aware applications,
leveraging the fact that new queries are not necessary if the location has not changed
significantly.

Some research was conducted in bringing new communication technologies, like IEEE
802.15.4, in use on the smartphones [63][64]. Our work investigates this prospect specifi-
cally in the context of home automation and its particular challenges. We also investigate
the use of multiple channels, such as WiFi to connect to a central server, and ZigBee,
through an USB dongle, to connect to a network device.

The concern for usability appeared among the first patents for home automation [72].
With the advancements in human-computer interaction in modern technology, researchers
envision systems based on gestures for home control [73]. Our work is oriented towards
bringing user control to off-the-shelf devices, such as smartphones and tablets.

We are also aware of the energy consumption challenges and we try to investigate that.
We use smartphone specific methods for energy estimation and we apply some of the
principles described in the research literature [25].

In our work we apply techniques of Computer Systems Performance Analysis that are
well established in the field, providing very useful tools in the form of analytical model-
ing. Kleinrock [74] provides a very thorough introduction in the modeling of stochastic
systems of flow using queuing theory. By understanding the stochastic processes that
describe the arriving stream and the structure and discipline of the service facility, one
can mathematically obtain measures of performance and effectiveness. Menasce [75] also
uses queuing networks to obtain descriptive models for various types of systems, which
serve as basis for quantifying performance models. Jain [76] offers a thorough reference
to fundamental and practical engineering principles of computer systems evaluation and
King [77] extends the principles on communication topics.

5.2 Empirical Evaluation

In our empirical evaluation, we continue our work presented in Section 4.2.2, where we
detail an offloading experiment on OpenTTD, a popular open-source game. We design
and implement a testbed based on OpenTTD, which we use to conduct a design space
exploration for offloading mechanisms, based on the Exploratory Space we proposed in
Section 2.4.2. In the remainder of this section, we detail the experimental setup based
on the testbed, and the results we obtain in the experiments for calibration, offloading
various components, and parallel offloading.

5.2.1 Experimental Setup

To conduct empirical evaluation of various offloading mechanisms, we design and im-
plement a testbed based on OpenTTD, a popular open-source game. OpenTTD is the
open-source version of Transport Tycoon Deluxe, a business simulation game developed
by Chris Sawyer in 1994. As an open-source application, OpenTTD has a community

86 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

of developers that continuously update the game and publish all sources in a repository.
Moreover, other developers port the game to other platforms. For example, the Android
port by Pelya has hundreds of thousands of active users.

We select OpenTTD because it is a real popular application, which falls in the category
of online social applications, implemented as a tightly coupled simulation, for which we
have a workload model, as proposed in Chapter 3. Tightly Coupled Simulations are,
among Online Social Applications, the type of applications that provide opportunity for
the broadest range of experiments, because the largest amount of processing takes place
on the mobile device. We conduct static and dynamic analysis on OpenTTD. We use
Vprof to profile OpenTTD on a Linux system and Vtune on an Android system. The
basic functionality of the game consists of iterating a loop, which means we can apply
our operational analysis described in Section 4.3. We detail the functionality of the loop
in Section 4.2.2.

In multiplayer mode, OpenTTD follows a client-server architecture that currently sup-
ports up to 255 simultaneous users on the same map, one of which must host the server.
There are some notable efforts to expand that number of users with a Massively Mul-
tiplayer Online version of OpenTTD, named At Large. In our testbed, we augment
the client-server architecture, by tapping into the normal data flow of the system and
adding an observer that also has the ability to control the experiments (see Figure 5.1).
The testbed enables experiments for conducting offloading from various clients to either a
cloudlet device, in the same LAN, or with powerful cloud infrastructure, over the Internet.

Figure 5.1: General architecture of the Testbed

We implement the testbed by making several changes to the community version. To
conduct experiments, we need to repeat them for a number of times and make sure they
all behave the same way. Thus we replace the human player with an AI running on the
device and our implementation follows its operations on the screen. So, starting a game

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 87

with the same AI on the same scenario will recreate in each run the same usage patterns
and the same operations. To enable running AI players on the server, we adapt the
code, starting with the modifications implemented by Otto Visser, from Delft University
of Technology. In addition, we also adapt the starting procedure so that we can easily
start the game on the mobile device and on the server through scripts. When starting
Android applications, it is not possible to give the native code command line arguments,
so it was necessary to implement some additional configuration settings in the original
configuration file.

We also implement instrumentation in all the components of the architecture, to collect
various metrics, as depicted in Figure 5.2:

• on the device, within OpenTTD: we measure game specific metrics, like frames per
second and in-game time, as well as component statistics, in terms of processing
time and quantity of data

• on the device, at application level: we run several profilers, such as vprof and
VTune, and tools, like top and iftop for Android, to collect metrics such as CPU
load, memory load, and network load

• on the device, in the kernel: hooks and system calls can be placed for forwarding to
higher levels essential information captured from hardware counters on the physical
device, like the C-states; we have investigated C-states for a better understanding
on CPU loads [78], but we do not detail them in this testbed

• at the network level, software known as package sniffers, such as Fiddler and Wire-
shark, capture packets and help with statistics, such as sent and received packets,
sent and received bytes, session length, inter-arrival times, and the size of the input
and output data

• on the server side

We use top, iftop and the sysfs to monitor internal resources on the Android device.
Network load is monitored using iftop and tcpdump. We use the tools AWS provide for
the cloud servers and simple linux tools for our cloudlet machines.

The OpenTTD implementation already handles issues such as lagging clients and out of
order commands. Each client holds a tick-based internal counter, that serves as a reference
for the client in executing commands. A comprehensive error handling system can press
the client to speed up on executing older commands, and can even go to the point of
kicking out a client that cannot keep the pace.

We have created a suite of bash scripts that, when run from the observer, trigger the game
on the clients and the server, start the measuring tools, wait for the time specified for
the experiment and cleanly close all the programs that they started. All communication
with the Android clients is done through adb, or Android Debug Bridge, a tool offered
by Google, which enables file transfers and remote connections to the Android devices.
Communication with the other devices in the cloudlet and the cloud is done through
SSH and SCP , two popular communication protocols for remote connections and file
transfers, with many clients on both Windows and Linux. At the end of the experiment,
all the results are centralized on the observer, where other scripts automatically compute
statistics and plot charts using gnuplot.

88 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

Figure 5.2: Instrumentation in our Offloading System

The system does not take a dynamic decision, but is instructed by the observer which
tests to run, because we are interested in comparing various mechanisms. We implement
several variants of OpenTTD, to offload different amounts of components. We also allow
file configuration for varying parameters, such as graphics and user behavior.

5.2.2 Empirical Results

In this subsection, we describe the analytical evaluation of two offloading mechanisms from
the Exploratory Space, namely offloading component variation and parallel offloading.

However, before proceeding with the empirical evaluation of the two offloading mecha-
nisms, we compare effects that various parameters have on performance, parameters such
as graphics quality and map size.

Calibration: effects of parameters

In this first experiment, we want to evaluate the influence various game parameters have
on our implementation. The purpose of this experiment is to let us select a configuration
suitable for the other experiments. We investigate graphics level and scenario type as
game parameters with great impact on the performance.

Graphics level usually has a great influence on the rendering performance. We define
graphics as being high or low by collectively setting color-depth, animations and details.
Color-depth denotes the number of bytes used to store color information for each pixel.
In OpenTTD, graphics can be represented with 8-bits or 32-bits per pixel. Thus, the
color-depth can lead to four times the size of the rendered images. Animations refer to
the small movements various artifacts do on the screen, and require additional processing,

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 89

as they are usually implemented by iterating over an animation loop. The level of details
determines how many artifacts each tile has. Therefore, we define:

graphics : high = {color : 32− bit; animations : on; details : on}

graphics : low = {color : 8− bit; animations : off ; details : off}

Scenario sizes usually have a great influence on the simulation stage, which usually needs
to iterate through the whole world representation, but also on the AI input capture,
because AI players need to traverse the whole world when taking decisions. We define
scenarios of various sizes by selecting three predefined scenarios from the community:

Europe : large&dense = {1024x1024tiles; 10.000citiesandresources}

Antarctica : large&sparse = {1024x1024tiles; 100resources}

2Mountains : small&dense = {128x128tiles; 100resources}

We try to use scenarios that resemble geographical units from the real world, because
users generally tend to play on them.

For this experiment, we use our openttd-repeatable implementation, which allows us to
repeat the same scenario multiple times. We run the client on an Asus TF101 2-core
@1GHz running Android 4.0.3 and the server on a Sony Vaio 4-core @2.3GHz running
Ubuntu 10.04, as described in the Experimental Setup 5.2.1. There is one AI player
running on the client to simulate a real player.

We compare the time to complete an iteration on the client, when varying the graphics
and, respectively, when varying the scenario. Figure 5.3 summarizes the full range of
values that we obtain in the form of CDFs.

Figure 5.3: Calibration: effects of game parameters

It can be noted that using low graphics on a small map in 90% of the cases the iteration
time is less than 30ms, while using high graphics only in 20% of the cases the iteration
time is less than 30ms and in 90% of the cases it steeps to 60ms. Varying the map size
also has a significant impact because in 90% of the cases the iteration time is less than

90 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

30ms using a small map, which covers only 70% of the iterations when using a large map.
The map density does not seem to have a significant impact, as the difference between
the Europe and Antarctica scenarios is fairly small.

Offloading Various Components

For this experiment, we explore the benefits of offloading the AI Input Collection com-
ponent of the game. We represent the AI Input Collection as a stage in the processing
loop of OpenTTD (see Section 4.2.2. Profiling shows that the AI players can consume
significant amounts of processing power when computing routes from one city or resource
to another, which they do by using algorithms such as A*, especially when the tree repre-
sentation of the world is large. However, the AI players have a bursty behavior, and only
compute such routes only when they acknowledge they have enough in-game money. It is
therefore interesting to see what is the impact of offloading the Squirrel Virtual Machine,
which runs the AI scripts and offers an AI input.

Using this experiment, we explore one of the four main offloading mechanisms identified
in our Exploratory Space, as depicted in Figure 5.4. We compare not offloading anything,
that is running AIs on the client device, with offloading the AI component, that is run-
ning the AIs on the server. We use our testbed and, as offloading target, the cloudlet
represented by a Sony Vaio laptop.

Figure 5.4: Exploratory Space Coverage for Variation of Offloaded Component

We conduct the experiment several times, increasing the number of AI players in the
game. We find that our client device, an Asus Transformer TF101, has problems running
the game with 4 AI players. The client is removed from the game (see Figure 5.5), because
it fails to send commands to the server often enough. All clients must start a new loop
every 100 ms to ensure fairness for all participants and send commands to the server each
loop. In our measurements, the iteration time is generally between 100 ms and 200 ms
because our measurements follow the data flow: commands sent in one iteration to the
server will be sent back to the client in the next iteration, to hide latency.

Figure 5.6 reports two of the metrics we collect, showing the first 12 minutes of the
experiment. The iteration time is a performance metric, and shows how long an iteration

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 91

Figure 5.5: Clients that do not perform offloading might be removed from the game
because they are too slow

of the data takes to be processed through the whole loop. The in-game time is a metric
closely related to user experience, and shows how much time passed in the game world
related to real time. In-game time is important to the whole experience because, on one
hand, if it passes too slow then the user feels the game lagging and, on the other hand,
advances in the game are triggered by the passing of in-game time.

We log the iteration time in our modified version of OpenTTD every time an iteration
completes. With roughly ten iterations per second, during a 10 minute window we would
have roughly 6,000 readings. To present our findings in a friendly way, we aggregate the
readings on a per-minute basis, and we only report the median value in the left chart in
Figure 5.6. It can be seen how in the no-offloading version, the iteration time increases in
the first 5-7 minutes of the game and gets above the threshold in the 8th minute, when the
client is removed from the multiplayer. On the other hand, the median of the offloaded
version is not affected much and stays all the time in the range of 160-165 ms.

Figure 5.6: Performance and user experience metrics for Offloading Various Components

The in-game time shows an important difference (see the right chart in Figure 5.6), con-
sistent with our findings in Section 4.2.2. In the first 470 seconds of the experiment, the
no-offloading version advances from January 1st to April 4th, while the offloading ver-
sion advances from January 1st to July 21st. This shows that the no-offloading version
advances approximately twice as slow as the offloading version, the user will experience
lags and will have to play twice the amount of real-world time in order to get the same
results in the game.

92 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

Parallel Offloading

Parallelism is already exploited at some levels in OpenTTD. Profiling shows that tasks
such as saving the game and playing the audio files are operated on separate threads.
We have also seen that the clients send to the server commands from one iteration, but
receive the commands from the previous iteration, to hide network latency.

In this section, we exploit that running multiple AIs to offer one move is an embarrassingly
parallel decision. Each AI reads the game state and there is no communication and no race
condition among the different AIs. Thus, we try to leverage the power of the computing
infrastructure, by running AIs in parallel.

We repeat the experiment from the previous section where the mobile client is just a
spectator and we run 4 AI players on the laptop representing our cloudlet. For comparison,
we also run the 4 AI players as separate clients. The laptop has a quad-core CPU, which
allows for the 4 AI players to be run in parallel. Thus, we explore another of the four
main offloading mechanisms identified in our Exploratory Space, as depicted in Figure
5.7.

Figure 5.7: Exploratory Space Coverage for Parallel Offloading

We present results for the same two metrics as in the previous experiment and also for
network traffic. The iteration time is a performance metric, and shows how long an
iteration of the data takes to be processed through the whole loop. The in-game time is
a metric closely related to user experience, and shows how much time passed in the game
world related to real time. Network traffic is a penalty that the client must pay in order
to benefit from the advantages of the more powerful remote infrastructure.

All clients must start a new loop every 100 ms to ensure fairness for all participants and
send commands to the server each loop. So, in our report window of 10 minutes there
are readings for approximately 6,000 loops. To present our findings in a friendly way, we
aggregate the readings on a per-minute basis, and we only report the median value in the
left chart in Figure 5.6. As the chart shows, there are no significant improvements, as the
median iteration time for both variants stays in the range 160-165 ms. This is probably
caused by the manner in which we split the AIs into parallel tasks, by using them in

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 93

Figure 5.8: Performance and user experience metrics for Parallel Offloading

separate clients, which makes the parallel part insignificantly small in comparison with
the serial part.

The in-game time shows a relevant difference (see the right chart in Figure 5.6). In the
first 8 minutes of the experiment, the serial version advances from January 1st to July
21st, whereas the parallel version advances from January 1st to August 1st. Thus, the
serial version advances 201 in-game days, with 11 days less than the parallel version,
which accounts for a 5.47% speed-up on the parallel version.

Figure 5.9: Network load for Parallel Offloading

We are also interested in observing the penalty in data transfers. Figure 5.9 shows, on a
logarithmic scale, the amount of bytes sent by the two versions during the first 10 minutes
of the experiment. As it can be seen, the data transfers are similar among the two versions,
with a large spike during the initialization phase, when content is downloaded, followed
by a leveled amount of data transferred in time.

In our case, we choose to offload all the data to a central component, that, in turn, transfers
it to the workers executing the code remotely. This approach allows for a constant level
of transfers and it can also explain the relatively low performance improvement.

94 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

5.3 Analytical Evaluation

In this section, we use the operational analysis described in Chapter 4 and the workload
traces presented in Chapter 3 to evaluate a selection of two offloading mechanisms on
OpenTTD, the same application we use in our empirical evaluation in Section 5.2.

5.3.1 Analysis Parameters

Based on the State Transition Diagram, an element of our Micro Workload Model (see
Section 3.3.4), we model the loop of the application using a cyclical graph (Figure 4.16).
For OpenTTD we consider five stages: human input collection, AI input collection, com-
mand synchronization, simulation and rendering. Thus, the graph will have n = 5 stages.

When deciding which components to offload, we should consider the portability of the
stages:

• Stage 1, human input collection, can only be handled on the device

• Stage 3, command synchronization, needs to take place remotely, on the server,
because it needs to take inputs from all the clients

• Stages 2, 4 and 5, AI input collection, simulation and rendering, can be handled on
both device and server

We show in our characterization and modeling of OpenTTD traces (see Section 3.4.4)
that processing time of Stage 2, the AI input collection, differs between a tablet and a
laptop with one order of magnitude (on average 48.2 ms on the tablet and 4.3 ms on the
laptop), while keeping a small size of output data (approximately 40 bytes). On the other
hand, the time difference for simulation is not as large (on average 9.3 ms on the tablet
instead of 2.6 ms on the laptop) and comes with the cost of transferring a larger size of
output data (approximately 1MB). The same considerations apply for rendering, which
may be beneficial if using streaming, but already has a comparable processing time on the
device and the tablet. Thus, in the remainder of this section, we use Stage 2 to analyze
two offloading mechanisms from our Exploratory space, component offloading and parallel
offloading.

Another key parameter in our analysis is the bandwidth. The bandwidth can vary greatly
from one implementation to another, influenced both by hardware and software stack. In
our experiments, we use WiFi, which can offer a nominal speed of up to 54 Mbps. However,
we our application may not be the only one using the wireless. On Android devices
specifically, there are a number of background services that may perform synchronization
while other applications are running. Based on our experience on the empirical evaluation,
we estimate an average speed of 8Mbps.

5.3.2 Analytical Results

In this subsection, we describe the analytical evaluation of two offloading mechanisms from
the Exploratory Space, namely offloading component variation and parallel offloading.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 95

Offloading Various Components

We compare offloading the AI input collection stage with no offloading, using Equation
4.14. We also summarize in Table 5.1 the values we use, based on the values from workload
modeling (see Section 3.4.4).

Table 5.1: Data used in analytical evaluation.

Stage
name and number

Local
Processing

Remote
Processing

Quantity
of Data

Tp [ms] Tr [ms] Q [byte]
Human Input Collection (1) 1.2 0.7 40
AI Input Collection (2) 48.2 4.3 40
Command Synchronisation (3) 188.5 101.9 120
Simulation (4) 9.3 2.6 1,068,576
Rendering (5) 5.7 13.7 4,096,000

Bandwidth
B [Mbps]

8

In the base case, without offloading, k = j = l = 3, indicating the remote operation of
command synchronization, the only stage that needs to be performed remotely:

T (3, 3) = T 1
p + T 2

p + T 3
r + T 4

p + T 5
p + Q2 +Q3

B
= 166.45ms (5.1)

In a similar way, when offloading Stage 2, the AI input collection, k = 2, j = l = 3, and
the formula becomes:

T (2, 3) = T 1
p + T 2

r + T 3
r + T 4

p + T 5
p + Q1 +Q3

B
= 122.55ms (5.2)

The smaller time for remote processing Stage 2 compared with local processing, as well as
the comparable output data size of Stage 1 and Stage 2, make offloading Stage 2 a better
option than no offloading.

In comparison, trying to offload Stage 4, the simulation would lead to:

T (3, 4) = T 1
p + T 2

p + T 3
r + T 4

r + T 5
p + Q2 +Q4

B
= 1178.71ms (5.3)

This would be an example when offloading is not beneficial. Due to the large size of the
output data, one iteration of the loop would take more than a second, which means that
the client device will be removed from the multiplayer game because it is too slow.

We now consider Stage 2’ to describe running 4 AI players instead of 1. Having multiple
AI players take a decision during one iteration is an embarrassingly parallel task, thus
running N AI players on a serial processor would take N times the time. This, for N = 4
players, the base case can be represented as:

T (3, 3) = T 1
p + T 2′

p + T 3
r + T 4

p + T 5
p + Q2 +Q3

B
= 311.05ms (5.4)

96 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

and offloading Stage 2’ becomes:

T (2′, 3) = T 1
p + T 2′

r + T 3
r + T 4

p + T 5
p + Q1 +Q3

B
= 135.45ms (5.5)

Thus, when running 4 AI players locally, the 200 ms loop period is exceeded, and the
client will be removed from the multiplayer game. In this case, offloading is necessary, as
it brings the iteration time below the 200 ms threshold.

Intermittent Offloading

We have seen how offloading N = 4 AI players can have significant benefits on perfor-
mance. We would like to see what benefits parallel offloading can have on this embar-
rassingly parallel task. Applying Amdahl’s law, we assume that the serial portion of this
code S = 0 and thus, applying Equation 4.23 we obtain that T jr|| =

T j
r

4).

Thus, the processing time of one iteration becomes:

T (2′||, 3) = T 1
p + T 2′

r

4 + T 3
r + T 4

p + T 5
p + 4Q1 +Q3

B
= 119.78ms (5.6)

We compute the relative benefit RB of offloading in parallel using Equations 5.4, 5.5 and
5.10 as:

RB = T (3, 3)− T (2′, 3)
T (2′, 3)− T (2′||, 3) = 8.9% (5.7)

In this case, offloading in parallel brings an additional benefit of 8.9%. The relative
benefit can serve as an easy indicator for server operators who want to implement several
offloading mechanisms, to decide whether additional implementations are worth the costs.

Offloading with Partial Data

We have seen how offloading N = 4 AI players can have significant benefits on perfor-
mance. We would like to see what benefits parallel offloading can have on this embar-
rassingly parallel task. Applying Amdahl’s law, we assume that the serial portion of this
code S = 0 and thus, applying Equation 4.23 we obtain that T jr|| =

T j
r

4).

Thus, the processing time of one iteration becomes:

T (2′||, 3) = T 1
p + T 2′

r

4 + T 3
r + T 4

p + T 5
p + 4Q1 +Q3

B
= 119.78ms (5.8)

We compute the relative benefit RB of offloading in parallel using Equations 5.4, 5.5 and
5.10 as:

RB = T (3, 3)− T (2′, 3)
T (2′, 3)− T (2′||, 3) = 8.9% (5.9)

In this case, offloading in parallel brings an additional benefit of 8.9%. The relative
benefit can serve as an easy indicator for server operators who want to implement several
offloading mechanisms, to decide whether additional implementations are worth the costs.

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 97

Parallel Offloading

We have seen how offloading N = 4 AI players can have significant benefits on perfor-
mance. We would like to see what benefits parallel offloading can have on this embar-
rassingly parallel task. Applying Amdahl’s law, we assume that the serial portion of this
code S = 0 and thus, applying Equation 4.23 we obtain that T jr|| =

T j
r

4).

Thus, the processing time of one iteration becomes:

T (2′||, 3) = T 1
p + T 2′

r

4 + T 3
r + T 4

p + T 5
p + 4Q1 +Q3

B
= 119.78ms (5.10)

We compute the relative benefit RB of offloading in parallel using Equations 5.4, 5.5 and
5.10 as:

RB = T (3, 3)− T (2′, 3)
T (2′, 3)− T (2′||, 3) = 8.9% (5.11)

In this case, offloading in parallel brings an additional benefit of 8.9%. The relative
benefit can serve as an easy indicator for server operators who want to implement several
offloading mechanisms, to decide whether additional implementations are worth the costs.

5.4 Comparison

In this section we compare the results we obtained during our experiments with the ones
obtained by applying the operational analysis, to validate our understanding on the two
offloading mechanisms: component variation offloading and parallel offloading. In our
operational analysis, we refer to a couple of performance metrics: total iteration time
and quantity of data transmitted over the network. Table 5.2 summarizes the significant
figures in our comparison. We consider two base cases and two experiments:

• Base Case 1: No network - we run OpenTTD in singleplayer mode on the mobile
client; no communication is performed by OpenTTD, but it still has to run 4 AI
players

• Base Case 2: No offloading - we run OpenTTD in multiplayer mode, on the mobile
client and the laptop; now the client needs to send commands to the server for
synchronization, but nothing else is offloaded

• Experiment 1: AI serial offloading - we run OpenTTD in multiplayer mode, on the
mobile client, and on the laptop several clients run an AI player each, but they are
all forced to work on a single core, so they operate in serial

• Experiment 1: AI parallel offloading - we run OpenTTD in multiplayer mode, on
the mobile client, and on the laptop several clients run an AI player each, in parallel

For iteration time, we compute the average in the four cases—no network, no offloading,
offloading the AIs in a serial manner and offloading the AIs in parallel. In the base cases,
the game stops in the middle of the experiment, so we are not able to compute an average
consistent with the method from the other experiments. However, since the client was

98 5. PERFORMANCE EVALUATION FOR OFFLOADING MECHANISMS

removed from the game automatically, it must have exceeded the threshold of 200 ms
repeatedly.

For quantity of data, we sum up the data transmitted over the network, both sent and
received, over a period of 8 minutes that represents the maximum period for which we
have data in all 4 cases. In this sum, we exclude the initialization phase, which does not
belong to the processing loop. To estimate the analytical result, we assume an average of
10 iterations per second, and thus a total of 4800 of round-trips, which include sending
to server data of 40 bytes each and receiving 120 bytes.

Table 5.2: Comparison between empirical and analytical results

Scenario Average iteration time Total data in 8 min
T [ms] Q [bytes]

empirical analytical empirical analytical
No network >200 265.64 64,211 0
No offloading >200 311.05 1,307,300 768,000
AI serial offloading 155.7 135.45 1,463,240 768,000
AI parallel offloading 154.41 119.78 1,473,267 768,000

It can be noted that our observation, that running 4 AI players is prohibitive for clients
that do not offload, is consistent for both methods. However, this is also the cause why we
were not able to assess empirically the exact performance for the base cases. On the other
hand, serial and parallel offloading do not seem to vary significantly for AIs, although our
analytical evaluation showed that parallel offloading should be able to bring an additional
9% speedup. Still, as expressed in Section 5.2, we find a significant improvement, of
approximately 5%, in terms of in-game time.

In terms of data transfers, the analytical results do not match the empirical results,
probably because in reality there are more information passed between client and server
than the commands. In the no network case, we can see an overhead of 64kB of data
that seems to be caused by other applications, since OpenTTD has no network enabled.
We consider this background noise, having two orders of magnitude less than the real
messages, and relatively constant, as it is probably caused by services that synchronize
in the background. Even when substracting this value from the empirical values, they
still remain significantly higher than the ones from the analytical evaluation. Therefore,
it seems that OpenTTD also transmits other data and this data is larger when offloading
AIs. However, data for serial and parallel AI offloading does not differ much, which is
consistent with the analytical results.

We find that the operational analysis is a promising tool. Although the actual values are
significantly different than the empirical ones, many of the ideas behind the offloading
mechanisms are supported by both sets of results.

Chapter 6

Conclusion

This thesis focuses on defining an exploratory space for offloading concerns and using it in
the analysis and empirical evaluation of various offloading mechanisms for mobile devices.
To accomplish this, in Chapter 2 we structure the vast information from the research
literature on offloading for mobiles and we propose a Taxonomy and an Exploratory
Space for offloading mechanisms. Then, in Chapter 3 we propose a workload model for
online social applications and we use it to characterize and model traces we collected for
thousands of Facebook applications and several native mobile applications. In Chapter
4 we investigate in detail how various offloading mechanisms work on several types of
applications and propose a formalism that can be used to conduct operational analysis
of the offloading mechanisms in the Exploratory Space, applied to any application that
functions by iterating over a processing loop. Finally, in Chapter 5 we validate our
formalism by comparing analytical evaluation results with empirical evaluation results.

We believe that focusing on a specific type of application can bring advances in offloading
for mobile devices, while still keeping a wide range of applicability. The idea of applying
this research specifically to online social applications is new. From the point of view of
the technology used to implement the applications, our approach covers both web-based
applications, applications that send messages with the user actions to be performed on
the server, and tightly coupled simulations, which do some heavy processing on the device
and usually communicate only control messages. Through our workload model (Section
3.3) and our operational analysis (Section 4.3) we generalize both types of technologies
and refer to any kind of loop-based application. We conduct an innovative design space
exploration, based on the exploratory space we propose in Section 2.4.2, through empirical
and analytical evaluation.

Our results on workload modeling have been received with great interest by the scientific
community, as shown by the articles we published on this topic [79][80], and by the Best
Paper Award we received at the 13th International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2013) in the Netherlands. The exploratory space is compre-
hensive and versatile, given the numerous contributions up to this date and the numerous
opportunities for future research.

100 6. CONCLUSION

6.1 Research Contributions

The thesis includes multiple theoretical and practical contributions in the research area of
offloading for mobile devices. The main contributions of the thesis are the characterization
and modeling of workloads of online social applications and the design space exploration
we perform through empirical and analytical evaluation of various offloading mechanisms.

In more detail, the contributions of this thesis are to:

• propose an Exploratory Space (Section 2.4.2) that shows novel offloading mecha-
nisms, such as parallel and partial offloading in loop-based applications, as well as
the opportunity of a design space exploration;

• collect traces of online social applications (Section 3.2) that contain information
about workloads at macro-level (number of users) and at micro-level (user opera-
tions) for 16.000 Facebook games and several native mobile applications;

• propose a workload model (Section 3.3) with several components: Popularity Dis-
tribution and Evolution Pattern, for macro-level information, Packet-Level Traces
and State Transition Diagram, for micro-level information;

• conduct characterization and modeling (Section 3.4) using the traces of online so-
cial applications on the workload model, showing that normal applications, with a
single peak in user numbers, reach maturity early in their lifetimes, and that so-
cial networking features are increasingly influencing the user experience of online
applications;

• show how our workload model can be used (Section 3.5), to predict traffic and
evolution typology, as well as to generate synthetic traces;

• propose an Adaptive Query Algorithm for location-oriented applications, as a com-
munication adaptation mechanism, and show what practical benefits it can have in
a real application that monitors air quality using a sensor device (Section 4.1);

• propose a multi-layer architecture that enables mobiles connect to a home automa-
tion network using an USB dongle, as a communication offloading mechanism (Sec-
tion 4.1);

• design and implement an Augmented Reality application, that overlays QR codes
with multimedia in a loop-based process, and experiment with computation adap-
tation to improve its performance;

• modify a popular open-source game, that works by iterating over a processing loop,
and use it to experiment with computation offloading;

• propose a formalism (Section 4.3) for operational analysis of the offloading mecha-
nisms in the Exploratory Space, which can be used for any kind of application that
functions by iterating over a processing loop;

• design and implement a testbed based on a real-world application and use the
testbed to conduct empirical evaluation for some of the offloading mechanisms in
the Exploratory Space (Section 5.2;

EXTENDING CAPABILITIES OF MOBILE DEVICES THROUGH CLOUD OFFLOADING 101

• generate synthetic workloads using the workload model and use them to conduct
analytical evaluation for some of the offloading mechanisms in the Exploratory Space
(Section 5.3);

6.2 Future Directions

Offloading for mobile devices is a generous topic. We identify here some of the directions
in which further contributions can be made, especially related to workload modeling for
online social application and to offloading mechanisms for loop-based application.

The workload model can be improved for better accuracy and for covering more ap-
plications. First, we propose studying the Evolution Pattern using time series analysis
principles. According to the time series analysis theory, we study the evolution patterns
under three components (the trend, the seasonal/cyclical component and the irregular
component). The irregular component covers the bursts that some of the applications
display during their evolution. Removing the irregular and seasonal components leaves
a smoother trend component, which can be approximated with better results by either
the linear model or by more complex distributions [45]. Second, we already have in mind
new elements of the workload model that can take into consideration user actions. Third,
we continue to collect data and we believe that using the workload model on even larger
datasets will increase its accuracy.

We plan to propose an analytical model based on queuing theory [74] to better match the
processing flow in offloading systems based on client-server architectures. The analyti-
cal model can easily and accurately provide more metrics of an offloading system, such
as availability and reliability. We also plan to extend our focus on the computational
infrastructure load with possible results in capacity planning and provisioning. Both di-
rections can serve as basis for broader analytical evaluation of offloading systems and can
be validated through empirical evaluation.

As mobile applications and mobile users are evolving, research efforts on offloading for
mobile devices need to evolve as well. For example, until a few years ago multi-threading,
although available at the programming level, did not have any impact on performance, be-
cause most of the CPUs were single core. In recent years mobile devices became as sophis-
ticated as personal computers, with multi-core CPUs and some form of GPU. Therefore,
current offloading research needs to take into consideration multi-threading and paral-
lelism on the device when offloading. Also, it is foreseeable that, in the near future, even
smaller and less capable computing devices, in the form wearable objects, will become
increasingly popular, so mobile devices should be seen not as a source, but as a target for
offloading.

List of Publications

Awards and Nominations

1. Best Doctoral Symposium Paper at CCGrid 2013, May 2013, The Nether-
lands, for the paper: ’Extending the capabilities of mobile devices for online social
applications through cloud offloading’

2. Nomination for Best Poster Award at CCGrid 2013, May 2013, The Netherlands,
for the poster following the paper mentioned above

3. Research Grant from the Romanian American Foundation to continue the Adap-
tive Query Algorithm presented in Section 4.1 during Nov 2013 - May 2014

Conference Proceedings Papers

1. A. Gherghina, A. C. Olteanu, and N. Ţăpuş. A marker-based augmented reality
system for mobile devices. In RoEduNet, 2013. Available: http://bit.ly/XXPLYV

2. A. Făsui,A. C. Olteanu, and N. Ţăpuş. Fault tolerant surveillance system based on
a network of mobile devices. In RoEduNet, 2013. Available: http://bit.ly/WCOr0K

3. V. Zamfirache, A. C. Olteanu, and N. Ţăpuş. Collaborative learning assistant for
android. In RoEduNet, 2013. Available: http://bit.ly/11cQ9u3

4. D. O. Rizea, D. Ş. Tudose,A. C. Olteanu, and N. Ţăpuş. Adaptive query algorithm
for location oriented applications. In RoEduNet, 2013. Available: http://bit.ly/WGXRbg

5. A.C. Olteanu, G. D. Oprina, N. Ţãpuş, and S. Zeisberg. Enabling mobile devices
for home automation using zigbee. In CSCS, pages 189–195. IEEE, 2013

6. A. C. Olteanu, A. Iosup, and N. Ţãpuş. Towards a workload model for online
social applications: Icpe 2013 work-in-progress paper. In ICPE, pages 319–322.
ACM, 2013

7. A. C. Olteanu, N. Ţăpuş, and A. Iosup. Extending the capabilities of mobile
devices for online social applications through cloud offloading. In CCGRID, pages
160–163, 2013

103

8. M.A. Popescu, O. Sluşanschi, and A.C. Olteanu. New bounds of a measure in
information theory. In Dezvoltare durabilã în condiţii de instabilitate economicã,
2013

9. S. Chiricescu, A.C. Olteanu, and N. Ţăpuş. Interacţiunea cu dispozitive mobile
pe baza detecţiei mişcãrilor feţei. In RoCHI, 2013. In publication. Available:

10. A. Gherghina,A. C. Olteanu, and N. Ţăpuş. Measuring performance in application
offloading for mobile devices. In ICSCS, 2013. In publication. Available:

11. A. Făsui, A. C. Olteanu, and N. Ţăpuş. A survey regarding grid and distributed
computing using mobile devices. In ICSCS, 2013. In publication. Available:

12. V. Zamfirache, A. Eftenoiu, P. Iosif, A. C. Olteanu, and N. Ţăpuş. Extending
the moodle course management system for mobile devices. In ICSCS, 2013. In
publication. Available:

13. A. C. Olteanu, D. S. Tudose, and N. Ţăpuş. Energy-efficient user interaction with
an off-grid building. In ICSCS, 2013. In publication. Available:

14. R. Prejbeanu, A. C. Olteanu, and N. Ţăpuş. Real time collaboration in cloud for
tune-up android. In RoEduNet (Fall), 2013. In publication. Available:

Journal Articles

1. A. C. Olteanu, A. Iosup, N. Ţăpuş, and F. Kuipers. A workload evolution model
for online social games. Internet Computing. submitted

2. A. C. Olteanu and N. Ţăpuş. Offloading for mobile devices: A survey. UPB
Scientific Bulletin. submitted

Presentations at Scientific Events

1. A. C. Olteanu, D. S. Tudose, A. Voinescu, and N. Ţăpuş. Complete hardware and
software solution for energy economy. In WERC, 2012

2. G. Oprina, A.C. Olteanu, D. S. Tudose, and N. Ţăpuş. Enabling mobile devices
with medical diagnosis capabilities. In WPA, 2013

3. D. Rizea, D. S. Tudose, A. C. Olteanu, and N. Ţăpuş. Mobile application for
pollution data. In WPA, 2013

4. A. C. Olteanu, R. I. Chioibasu, and N. Ţăpuş. Design of m-health solutions for
psychology practitioners. In WPA, 2013‘

Technical and Scientific Reports

1. A. C. Olteanu, A. Iosup, and N. Ţăpuş. Towards a workload model for online

104 . LIST OF PUBLICATIONS

social applications: Extended report. Tech.Rep. PDS-2013-003, TU Delft, January
2013

2. A. C. Olteanu, A. Iosup, and N. Ţăpuş. Cloud offloading for mobile computing:
A survey. Scientific report, UPB, 2013

3. A. C. Olteanu, A. Iosup, and N. Ţăpuş. Workload modeling for online social
applications on mobile devices. Scientific report, UPB, 2013

Bibliography

[1] Mark Weiser, Rich Gold, and John Seely Brown. The origins of ubiquitous computing
research at parc in the late 1980s. IBM systems journal, 38(4):693–696, 1999.

[2] CNN. Facebook reaches one billion users, 2012.

[3] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
Clonecloud: elastic execution between mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, pages 301–314. ACM, 2011.

[4] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Aiolos: Middleware
for improving mobile application performance through cyber foraging. Journal of
Systems and Software, 85(11):2629–2639, 2012.

[5] P. Ghosh, N. Roy, and S.K. Das. Mobility-aware efficient job scheduling in mobile
grids. In CCGrid. IEEE, 2007.

[6] K.A. Hummel and G. Jelleschitz. A robust decentralized job scheduling approach for
mobile peers in ad-hoc grids. In CCGrid. IEEE, 2007.

[7] D. Bruneo, M. Scarpa, A. Zaia, and A. Puliafito. Communication paradigms for
mobile grid users. In CCGrid. IEEE, 2003.

[8] A.T.A. Gomes, A. Ziviani, L.S. Lima, and M. Endler. Dichotomy: A resource dis-
covery and scheduling protocol for multihop ad hoc mobile grids. In CCGrid. IEEE,
2003.

[9] Huber Flores and Satish Nayarana Srirama. Adaptive code offloading and resource-
intensive task delegation for mobile cloud applications.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based
cloudlets in mobile computing. IEEE Perv. Comp., 2009.

[11] Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan, and James Herb-
sleb. Simplifying cyber foraging for mobile devices. In Proceedings of the 5th inter-
national conference on Mobile systems, applications and services, MobiSys ’07, pages
272–285. ACM, 2007.

[12] Mads Darø Kristensen and Niels Olof Bouvin. Scheduling and development support
in the scavenger cyber foraging system. Pervasive and Mobile Computing, 6(6):677–
692, 2010.

[13] Facebook. Facebook reaches one billion users, 2012.

[14] 10 ways cloud computing will change in 2013.

106 BIBLIOGRAPHY

[15] S. Ou, K. Yang, and J. Zhang. An effective offloading middleware for pervasive
services on mobile devices. Pervasive and Mobile Computing, 3(4):362–385, 2007.

[16] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Para-
noid android: versatile protection for smartphones. In Proceedings of the 26th Annual
Computer Security Applications Conference, pages 347–356. ACM, 2010.

[17] Huber Flores, Satish Narayana Srirama, and Carlos Paniagua. A generic middleware
framework for handling process intensive hybrid cloud services from mobiles. In
Proceedings of the 9th International Conference on Advances in Mobile Computing
and Multimedia, pages 87–94. ACM, 2011.

[18] Heungsik Eom, Pierre St Juste, Renato Figueiredo, Omesh Tickoo, Ramesh Illikkal,
and Ravishankar Iyer. Snarf: a social networking-inspired accelerator remoting
framework. In Proceedings of the first edition of the MCC workshop on Mobile cloud
computing, MCC ’12, pages 29–34. ACM, 2012.

[19] Yu-Ju Hong, K. Kumar, and Yung-Hsiang Lu. Energy efficient content-based image
retrieval for mobile systems. In Circuits and Systems, 2009. ISCAS 2009. IEEE
International Symposium on, pages 1673 –1676, may 2009.

[20] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Cloudlets: Bringing
the cloud to the mobile user. In Proceedings of the third ACM workshop on Mobile
cloud computing and services, pages 29–36. ACM, 2012.

[21] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso. Calling
the cloud: enabling mobile phones as interfaces to cloud applications. In Middleware
2009, pages 83–102. Springer, 2009.

[22] Gonzalo Huerta-Canepa and Dongman Lee. A virtual cloud computing provider for
mobile devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, MCS ’10, pages 6:1–6:5, New York,
NY, USA, 2010. ACM.

[23] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with
code offload. In Proceedings of the 8th international conference on Mobile systems,
applications, and services, pages 49–62. ACM, 2010.

[24] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan Milojicic.
Adaptive offloading for pervasive computing. Pervasive Computing, IEEE, 3(3):66–
73, 2004.

[25] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In Proceedings of
the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 105–114. ACM, 2010.

[26] Xinwen Zhang, Sangoh Jeong, Anugeetha Kunjithapatham, and Simon Gibbs. To-
wards an elastic application model for augmenting computing capabilities of mobile
platforms. In Mobile wireless middleware, operating systems, and applications, pages
161–174. Springer, 2010.

BIBLIOGRAPHY 107

[27] Radu-Corneliu Marin and Ciprian Dobre. Reaching for the clouds: contextually
enhancing smartphones for energy efficiency. 2013.

[28] M. Ferber, T. Rauber, M.H.C. Torres, and T. Holvoet. Resource allocation for
cloud-assisted mobile applications. In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 400 –407, june 2012.

[29] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. Crowdsearch: exploiting crowds
for accurate real-time image search on mobile phones. In Proceedings of the 8th
international conference on Mobile systems, applications, and services, pages 77–90.
ACM, 2010.

[30] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users: Can of-
floading computation save energy? IEEE Computer, 43(4):51–56, 2010.

[31] E. Lagerspetz and S. Tarkoma. Mobile search and the cloud: The benefits of offload-
ing. In Pervasive Computing and Communications Workshops (PERCOM Work-
shops), 2011 IEEE International Conference on, pages 117 –122, march 2011.

[32] Huber Raul Flores Macario and Satish Srirama. Adaptive code offloading for mobile
cloud applications: exploiting fuzzy sets and evidence-based learning. In Proceeding
of the fourth ACM workshop on Mobile cloud computing and services, pages 9–16.
ACM, 2013.

[33] Mohammed Anowarul Hassan and Songqing Chen. Mobile mapreduce: Minimizing
response time of computing intensive mobile applications. In MobiCASE, pages 41–
59, 2011.

[34] Andreas Klein, Christian Mannweiler, Joerg Schneider, and Hans D Schotten. Access
schemes for mobile cloud computing. In Mobile Data Management (MDM), 2010
Eleventh International Conference on, pages 387–392. IEEE, 2010.

[35] Dinh Thai Hoang, Dusit Niyato, and Ping Wang. Optimal admission control policy
for mobile cloud computing hotspot with cloudlet. In Wireless Communications and
Networking Conference (WCNC), 2012 IEEE, pages 3145–3149. IEEE, 2012.

[36] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: A com-
putation offloading framework for smartphones. In Mobile Computing, Applications,
and Services, volume 76 of Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering, pages 59–79. Springer Berlin
Heidelberg, 2012. 10.1007/978-3-642-29336-8_4.

[37] Google, Inc. Android Cloud to Device Messaging Framework, 2012.

[38] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Energy efficient information mon-
itoring applications on smartphones through communication offloading. Mobicase,
2012.

[39] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges. Personal
Communications, IEEE, 8(4):10–17, 2001.

[40] Mahadev Satyanarayanan. Mobile computing: the next decade. ACM SIGMOBILE
Mobile Computing and Communications Review, 15(2):2–10, 2011.

108 BIBLIOGRAPHY

[41] Shaoxuan Wang and Sujit Dey. Rendering adaptation to address communication
and computation constraints in cloud mobile gaming. In Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE, pages 1–6. IEEE, 2010.

[42] M.F. Arlitt and C.L. Williamson. Web server workload characterization: The search
for invariants. In ACM SIGMETRICS, volume 24, pages 126–137. ACM, 1996.

[43] L. Cherkasova, Y. Fu, W. Tang, and A. Vahdat. Measuring and characterizing end-
to-end internet service performance. ACM TOIT, 3(4):347–391, 2003.

[44] A.K. Iyengar, M.S. Squillante, and L. Zhang. Analysis and characterization of large-
scale web server access patterns and performance. WWW, 2(1):85–100, 1999.

[45] B. Zhang, A. Iosup, J. Pouwelse, and D. Epema. Identifying, analyzing, and modeling
flashcrowds in bittorrent. In P2P, pages 240–249. IEEE, 2011.

[46] M. Suznjevic and M. Matijasevic. Player behavior and traffic characterization for
mmorpgs: a survey. Multimedia Systems, pages 1–22, 2012.

[47] A.K. Iyengar, E.A. MacNair, M.S. Squillante, and L. Zhang. A general method-
ology for characterizing access patterns and analyzing web server performance. In
MASCOTS, pages 167–174. IEEE, 1998.

[48] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The failure trace archive: Enabling
comparative analysis of failures in diverse distributed systems. In CCGrid, pages
398–407. IEEE, 2010.

[49] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, and D. Epema. Analysis and modeling
of time-correlated failures in large-scale distributed systems. In GRID, pages 65–72.
IEEE, 2010.

[50] Y. Guo and A. Iosup. The game trace archive. In NetGames, pages 1–6. IEEE, 2012.

[51] Y. Guo, S. Shen, O. Visser, and A. Iosup. An analysis of online match-based games.
In HAVE, pages 134–139. IEEE, 2012.

[52] A. Nazir, S. Raza, and C.N. Chuah. Unveiling facebook: a measurement study of
social network based applications. In IMC, 2008.

[53] A. Nazir, S. Raza, D. Gupta, C.N. Chuah, and B. Krishnamurthy. Network level
footprints of facebook applications. In IMC. ACM, 2009.

[54] B. Kirman, S. Lawson, and C. Linehan. Gaming on and off the social graph: The
social structure of facebook games. In CSE, volume 4, pages 627–632. IEEE, 2009.

[55] Onlive has over 1.5 million active users.

[56] R. Prejbeanu, A. C. Olteanu, and N. Ţăpuş. Real time collaboration in cloud for
tune-up android. In RoEduNet (Fall), 2013. In publication. Available: .

[57] StatSoft. How to identify patterns in time series data: Time series analysis.

[58] Danielle Bilodeau. Seasonal adjustment: why, when, how? Institut de la statistique
du Québec.

BIBLIOGRAPHY 109

[59] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX conference on USENIX annual technical
conference, pages 21–21, 2010.

[60] D. O. Rizea, D. Ş. Tudose, A. C. Olteanu, and N. Ţăpuş. Adaptive query
algorithm for location oriented applications. In RoEduNet, 2013. Available:
http://bit.ly/WGXRbg.

[61] D. Rizea, D. S. Tudose, A. C. Olteanu, and N. Ţăpuş. Mobile application for
pollution data. In WPA, 2013.

[62] Gian Paolo Perrucci, Frank HP Fitzek, and Jörg Widmer. Survey on energy con-
sumption entities on the smartphone platform. In Vehicular Technology Conference
(VTC Spring), 2011 IEEE 73rd, pages 1–6. IEEE, 2011.

[63] Choong-Bum Park, Byung-Sung Park, Huy-Jung Uhm, Hoon Choi, and Hyong-Shik
Kim. Ieee 802.15. 4 based service configuration mechanism for smartphone. Consumer
Electronics, IEEE Transactions on, 56(3):2004–2010, 2010.

[64] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implications for net-
work applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, pages 280–293. ACM, 2009.

[65] Ye-Sheng Kuo. Hijacking power and bandwidth from the mobile phone’s audio inter-
face. In Proceedings of the First ACM Symposium on Computing for Development.
ACM, 2010.

[66] Damien Phelan Stolarz, George Dean IV, and Zack Gainsforth. Electronic device
input/output system and method, March 8 2010. US Patent App. 12/660,995.

[67] A. Gherghina, A. C. Olteanu, and N. Ţăpuş. A marker-based augmented reality
system for mobile devices. In RoEduNet, 2013. Available: http://bit.ly/XXPLYV.

[68] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. Coolspots: reducing
the power consumption of wireless mobile devices with multiple radio interfaces. In
Proceedings of the 4th international conference on Mobile systems, applications and
services, pages 220–232. ACM, 2006.

[69] Wei Yu, George Ginis, and John M Cioffi. An adaptive multiuser power control al-
gorithm for vdsl. In Global Telecommunications Conference, 2001. GLOBECOM’01.
IEEE, volume 1, pages 394–398. IEEE, 2001.

[70] Anant Agarwal and Mathews Cherian. Adaptive backoff synchronization techniques,
volume 17. ACM, 1989.

[71] Tijs Van Dam and Koen Langendoen. An adaptive energy-efficient mac protocol
for wireless sensor networks. In Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 171–180. ACM, 2003.

[72] Yong-Soon Mun. Home automation system having user controlled definition function,
November 26 1996. US Patent 5,579,221.

[73] Thad Starner, Jake Auxier, Daniel Ashbrook, and Maribeth Gandy. The gesture
pendant: A self-illuminating, wearable, infrared computer vision system for home

110 BIBLIOGRAPHY

automation control and medical monitoring. In Wearable Computers, The Fourth
International Symposium on, pages 87–94. IEEE, 2000.

[74] Leonard Kleinrock. Queueing systems. volume 1: Theory. 1975.

[75] Daniel A Menasce, Virgilio AF Almeida, Lawrence Wilson Dowdy, and Larry Dowdy.
Performance by design: computer capacity planning by example. Prentice Hall Pro-
fessional, 2004.

[76] Raj Jain. The art of computer systems performance analysis, volume 182. John
Wiley & Sons Chichester, 1991.

[77] Peter JB King. Computer and communication systems performance modelling. Pren-
tice Hall International (UK) Ltd., 1990.

[78] A. Gherghina, A. C. Olteanu, and N. Ţăpuş. Measuring performance in application
offloading for mobile devices. In ICSCS, 2013. In publication. Available: .

[79] A. C. Olteanu, A. Iosup, and N. Ţãpuş. Towards a workload model for online social
applications: Icpe 2013 work-in-progress paper. In ICPE, pages 319–322. ACM, 2013.

[80] A. C. Olteanu, A. Iosup, N. Ţăpuş, and F. Kuipers. A workload evolution model
for online social games. Internet Computing. submitted.

[81] A. Făsui, A. C. Olteanu, and N. Ţăpuş. Fault tolerant surveillance system based on
a network of mobile devices. In RoEduNet, 2013. Available: http://bit.ly/WCOr0K.

[82] V. Zamfirache, A. C. Olteanu, and N. Ţăpuş. Collaborative learning assistant for
android. In RoEduNet, 2013. Available: http://bit.ly/11cQ9u3.

[83] A.C. Olteanu, G. D. Oprina, N. Ţãpuş, and S. Zeisberg. Enabling mobile devices
for home automation using zigbee. In CSCS, pages 189–195. IEEE, 2013.

[84] A. C. Olteanu, N. Ţăpuş, and A. Iosup. Extending the capabilities of mobile devices
for online social applications through cloud offloading. In CCGRID, pages 160–163,
2013.

[85] M.A. Popescu, O. Sluşanschi, and A.C. Olteanu. New bounds of a measure in
information theory. In Dezvoltare durabilã în condiţii de instabilitate economicã,
2013.

[86] S. Chiricescu, A.C. Olteanu, and N. Ţăpuş. Interacţiunea cu dispozitive mobile pe
baza detecţiei mişcãrilor feţei. In RoCHI, 2013. In publication. Available: .

[87] A. Făsui, A. C. Olteanu, and N. Ţăpuş. A survey regarding grid and distributed
computing using mobile devices. In ICSCS, 2013. In publication. Available: .

[88] V. Zamfirache, A. Eftenoiu, P. Iosif, A. C. Olteanu, and N. Ţăpuş. Extending
the moodle course management system for mobile devices. In ICSCS, 2013. In
publication. Available: .

[89] A. C. Olteanu, D. S. Tudose, and N. Ţăpuş. Energy-efficient user interaction with
an off-grid building. In ICSCS, 2013. In publication. Available: .

[90] A. C. Olteanu and N. Ţăpuş. Offloading for mobile devices: A survey. UPB
Scientific Bulletin. submitted.

BIBLIOGRAPHY 111

[91] A. C. Olteanu, D. S. Tudose, A. Voinescu, and N. Ţăpuş. Complete hardware and
software solution for energy economy. In WERC, 2012.

[92] G. Oprina, A.C. Olteanu, D. S. Tudose, and N. Ţăpuş. Enabling mobile devices
with medical diagnosis capabilities. In WPA, 2013.

[93] A. C. Olteanu, R. I. Chioibasu, and N. Ţăpuş. Design of m-health solutions for
psychology practitioners. In WPA, 2013.

[94] A. C. Olteanu, A. Iosup, and N. Ţăpuş. Towards a workload model for online social
applications: Extended report. Tech.Rep. PDS-2013-003, TU Delft, January 2013.

[95] A. C. Olteanu, A. Iosup, and N. Ţăpuş. Cloud offloading for mobile computing: A
survey. Scientific report, UPB, 2013.

[96] A. C. Olteanu, A. Iosup, and N. Ţăpuş. Workload modeling for online social
applications on mobile devices. Scientific report, UPB, 2013.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 The Context of Cloud Offloading for Mobiles
	1.2 Problem Statement
	1.3 Main Challenges and Research Questions
	1.4 Main Objectives
	1.5 Thesis Structure

	2 Aspects about Offloading for Mobile Devices
	2.1 A Primer on Offloading
	2.1.1 Offloading Motivation
	2.1.2 Main Goal
	2.1.3 Offloading Characteristics
	2.1.4 Offloading Benefits
	2.1.5 Main Challenges

	2.2 General Offloading Model
	2.2.1 Application Monitoring
	2.2.2 Resource Management
	2.2.3 Offload Process
	2.2.4 Orthogonal Concerns

	2.3 Taxonomy for Offloading Concerns
	2.3.1 The Taxonomy
	2.3.2 Mapping of Existing Research on the Taxonomy

	2.4 Research Directions
	2.4.1 Adaptation versus Offloading: a Balanced Choice
	2.4.2 Exploratory Space

	3 Workload Modeling for Online Social Applications
	3.1 The Context of Workload Modeling
	3.2 The Data Collection Process
	3.2.1 Web-based applications
	3.2.2 Tightly coupled simulations

	3.3 The Workload Model
	3.3.1 Popularity Distribution
	3.3.2 Evolution Pattern
	3.3.3 Packet-Level Traces
	3.3.4 State Transition Diagram

	3.4 Characterization and Modeling using Real-World Traces
	3.4.1 Popularity Distribution
	3.4.2 Evolution Pattern
	3.4.3 Packet-Level Traces
	3.4.4 State Transition Diagram

	3.5 On the use of our model
	3.5.1 Traffic-Related applications
	3.5.2 Evolution Typology-Related applications

	4 Offloading Mechanisms Analysis
	4.1 Communication Adaptation and Offloading
	4.1.1 Adaptive Query Algorithm for Location-Based Applications
	4.1.2 Offloading Communication to Custom Hardware Extensions

	4.2 Computation Adaptation and Offloading
	4.2.1 Performance Adaptation in Video-Processing Applications
	4.2.2 Maintaining Performance by Offloading Stages in Processing Loops

	4.3 Operational Analysis for Offloading in Loop-Based Applications
	4.3.1 Offloading Various Components
	4.3.2 Intermittent Offloading
	4.3.3 Offloading with Partial Data
	4.3.4 Parallel Offloading

	5 Performance Evaluation for Offloading Mechanisms
	5.1 Measuring Performance on Mobiles
	5.2 Empirical Evaluation
	5.2.1 Experimental Setup
	5.2.2 Empirical Results

	5.3 Analytical Evaluation
	5.3.1 Analysis Parameters
	5.3.2 Analytical Results

	5.4 Comparison

	6 Conclusion
	6.1 Research Contributions
	6.2 Future Directions

	 List of Publications

