Quantum Computation & Cryptography Day 5

Quantum hardware

Recall

States

Representing the state of the system

 $S \quad s \in S$

Transformations

Changing states in time

 $\mathcal{S} \to \mathcal{S}$

Composition

The state of multiple systems

 $S_{AB} = S_A \otimes S_B$

Observation (measurement)

Observing physical properties

 $\mathcal{S} \to \mathbb{R}$ $\mathcal{S} \to [0, 1]$

Recap

States

S $s \in S$

Transformations

 $\mathcal{S} o \mathcal{S}$

Composition

$$S_{AB} = S_A \otimes S_B$$

Observation (measurement)

$$\mathcal{S} \to \mathbb{R}$$
 $\mathcal{S} \to [0,1]$

Recap - classical mechanics

$$\mathcal{S} = \mathbb{R}^{dN}$$

States
$$\mathcal{S} = \mathbb{R}^{dN}$$
 $s = (\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_N, \mathbf{p}_1, \mathbf{p}_2, ... \mathbf{p}_N)$

$$\mathbf{q}_i = (q_i^1, q_i^2, ... q_i^d) \ \mathbf{p}_i = (p_i^1, p_i^2, ... p_i^d)$$

Transformations
$$H(\mathbf{q}_1,...\mathbf{q}_N,\mathbf{p}_1,...\mathbf{p}_N,t)$$

$$s \longrightarrow t \longrightarrow (\mathbf{q}, \mathbf{p}) \longrightarrow \frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \mathbf{q}} \quad \frac{d\mathbf{q}}{dt} = \frac{\partial H}{\partial \mathbf{p}}$$

Composition

$$S_{AB} = S_A \times S_B$$
 $s_{AB} = s_A \cdot s_B$

$$s_{AB} = s_A \cdot s_B$$

Observation (measurement)

Pretty much any "well-behaved" function of the form:

$$f: \mathcal{S} \to \mathbb{R}$$

Recap - quantum mechanics

States

Unit vectors in a complex vector space

$$|\psi\rangle \in \mathcal{H}$$
$$||\psi\rangle|^2 = 1$$

Transformations

Schroedinger's equation

$$H|\psi\rangle = i\hbar \frac{d|\psi\rangle}{dt}$$

Composition

Tensor product

$$\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$$

Observation (measurement)

Hermitian operators

$$O = O^{\dagger}$$

From classical to quantum

There is a way to take any classical system and quantise it

Canonical quantisation

Take a classical Hamiltonian

$$H = f(\mathbf{q}_1, ... \mathbf{q}_N, \mathbf{p}_1, ... \mathbf{p}_N, t)$$

Turn all p's and q's into Hermitian operators and impose canonical commutation relations

$$\mathbf{q}_i o \hat{\mathbf{q}}_i \quad \mathbf{p}_i o \hat{\mathbf{p}}_i \quad \text{ such that } \begin{aligned} & [\hat{\mathbf{q}}_i, \hat{\mathbf{p}}_i] = i\hbar \\ & [\hat{\mathbf{q}}_i, \hat{\mathbf{p}}_j] = 0, i \neq j \end{aligned}$$

The quantum Hamiltonian is then just

$$\hat{H} = f(\hat{\mathbf{q}}_1, ... \hat{\mathbf{q}}_N, \hat{\mathbf{p}}_1, ... \hat{\mathbf{p}}_N, t)$$

From quantum to classical

How do we go back to classical?

Take expectation values of the quantum operators

$$\mathbf{q}_i \leftarrow \langle \hat{\mathbf{q}}_i \rangle \qquad \mathbf{p}_i \leftarrow \langle \hat{\mathbf{p}}_i \rangle$$

Where
$$\langle O \rangle = \langle \psi | O | \psi \rangle$$

Ehrenfest's theorem

Why does this work?

From quantum to classical

Recall...

$$\left(\sum_{i} a_{i}\right)^{2} = \sum_{i} a_{i}^{2} + \left(\sum_{i \neq j} a_{i} a_{j}\right)$$

interference term

Interference term close to 0 → classical computation

For everyday phenomena, amplitudes are fairly random

Interference term is close to 0

This is why we don't see quantum weirdness around us!

The qubit (again)

Essentially a 2-level quantum system

Atoms

Ground state

Absorbs

$$E = \hbar\omega$$

Excited state

Emits

 $E = \hbar \omega$

Atoms

Energy Levels for the Hydrogen Atom

A Few Energy Levels for the Mercury Atom

Qubits as atoms

Natural atoms

Artificial atoms (superconductors)

Consider a simple oscillating circuit

L inductance C capacitance q electrical charge u voltage (potential difference) i electrical current ϕ magnetic flux (through inductor)

$$i = \frac{dq}{dt}$$
 $\phi = L \cdot i$ $q = C \cdot u$ $u = -\frac{d\phi}{dt}$

Consider a simple oscillating circuit

We'll take q and ϕ as our canonical "position" and "momentum"

One can then write the following Hamiltonian

$$H = \frac{q^2}{2C} + \frac{\phi^2}{2L} = \frac{q^2}{2C} + \frac{1}{2}C\omega^2\phi^2$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$H = \frac{q^2}{2C} + \frac{1}{2}C\omega^2\phi^2$$

This is the same as the Hamiltonian for the harmonic oscillator

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

Solving the system entails solving Hamilton's equations

$$\frac{dq}{dt} = -\frac{\partial H}{\partial \phi} \qquad \frac{d\phi}{dt} = \frac{\partial H}{\partial q}$$

$$q(t) = q_0 \cos(\omega t + \alpha_0)$$
 $\phi(t) = -\omega q_0 \sin(\omega t + \alpha_0)$

Consider a simple oscillating circuit

If we cool this circuit to near absolute 0 temperature it will start to behave quantumly

Classical description no longer applies

But we have canonical quantisation!

$$\hat{H} = \frac{\hat{q}^2}{2C} + \frac{1}{2}C\omega^2\hat{\phi}^2$$

Let's quantise this

$$[\hat{q},\hat{\phi}] = i\hbar$$

We want to find the eigenstates of H

There's a standard way of doing this, which we won't go through:)

What we find is that "neighbouring" eigenstates will be separated by the same energy

Typical values for L and C $L \approx 1nH$ $C \approx 1pF$

 $\omega \approx 10 - 30 GHz$

Microwaves!

But there's a problem!

A laser or our microwave source do not produce single-photon states

Instead, they produce coherent states

$$|\psi\rangle = e^{-\frac{|\alpha|^2}{2}}(|0\rangle + \alpha|1\rangle + \frac{\alpha^2}{\sqrt{2}}|2\rangle + \frac{\alpha^3}{\sqrt{3}}|3\rangle + \dots$$

This means that our "qubit" will be in a superposition of all energy levels!

We need to "space out" the energy levels

Josephson junction

A and B regions are superconductors

C region is an insulator

Current can tunnel through the insulator

Current can tunnel through the insulator

The junction acts as a non-linear inductor

$$i = f(\phi)$$

Inductor

$$i = \phi/L$$

Josephson junction

$$i = i_0 sin(2\pi\phi/\phi_0)$$

Is replaced with

We can still treat the Josephson junction as an inductor

$$L_J = \left(\frac{\partial i}{\partial \phi}\right)^{-1}$$

$$L_J = \frac{\phi_0}{2\pi i_0} \frac{1}{\cos(2\pi\phi/\phi_0)}$$

$$H = \frac{q^2}{2C} + \frac{\phi^2}{2L_J(\phi)}$$

$$V(t) = V_x(t)cos(\omega_d t) + V_y(t)sin(\omega_d t)$$

$$H_d = (\omega - \omega_d)|1\rangle\langle 1| + \frac{V_x(t)}{2}X + \frac{V_y(t)}{2}Y$$

 ω_d is the *driving frequency*

The true Hamiltonian of our system will be

$$H = \frac{q^2}{2C} + \frac{\phi^2}{2L_J(\phi)} + H_d$$

We can assume that the system starts out in the ground state of the original Hamiltonian

The driving Hamiltonian will change this state

$$|0\rangle \to_{H_d} U|0\rangle$$

$$U = exp\left\{-\frac{i}{\hbar} \int_0^{t_d} H_d dt\right\}$$

To sum up Prepare this circuit

Choose what unitary you'd like to perform Apply microwave radiation of the right type and for the appropriate time

Measurement

This is very "schematic"

What we measure depends on the type of qubit we have (flux qubit, charge qubit, phase qubit)

Other configurations are also possible

SQUIDs, fluxonium, transmon, xmon, quantronium

Physicists have the better names again:)

Multiple qubits

 H_d will have interaction terms of the form $X \otimes X, Y \otimes Y$

$$exp(iX \otimes Xt)$$

together with local unitaries is universal

Again, this is schematic. In practice other configurations

Error rates for different implementations

	Single qubit	Multi-qubit	Readout
IBM	0.1%	1%	1%
Rigetti	2 - 5%	7-18%	8 - 20%
Google	0.05-0.1%	0.5 - 1%	0.5 - 1%

But how stable are these qubits?

Ideally

Noise from the environment can corrupt our qubits

Radiation, heat, vibrations etc

Initially I prepare

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

After some time, t

$$3\%$$

$$3\%$$

$$|\psi\rangle$$

$$X|\psi\rangle$$

$$Z|\psi
angle$$

$$XZ|\psi\rangle$$

After more time, t

$$82\%$$

$$6\%$$

$$6\%$$

$$6\%$$

$$|\psi\rangle$$

$$X|\psi\rangle$$

$$Z|\psi
angle$$

$$XZ|\psi
angle$$

This is called **decoherence**

More on this in the next lecture

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

 T_d average time for this $footnote{1}{1}$ **Decoherence time**

Also called **coherence time**:)

Coherence/decoherence times

IBM

 $50-77\mu s$

Rigetti

 $10 - 26 \mu s$

Google

 $\approx 50 \mu s$

D-Wave

 $\approx 100ns$

Time to perform a quantum operation (for IBM, Rigetti, Google) $10-100ns \label{eq:constraint}$

http://science.sciencemag.org/content/339/6124/1169/F3

Same idea as before, but using nature's atoms

We need to capture them, hence why we use ions

This can be done with a combination of electric and magnetic fields (Penning trap, Paul trap etc)

Of course, we need more than just one ion!

Linear ion traps

Typically the ions are kept tens of micrometers apart

Enough so that Coulomb interaction becomes important!

Either use energy levels (optical qubits) or hyperfine energy levels (hyperfine qubits)

lon traps

The 21cm line of hydrogen

Hyperfine levels are very stable and have have long decay times

"Regular" levels have short decay times (spontaneus emission/decay)

The position of the ions is also quantised!

x = 0 at left wall of box.

Thus, the state of each ion is

Importantly, because the ions repel each other, their positions can become entangled

In fact, we quantise the position of all ions together

The basis states of the whole system of k ions will be

$$|m_1, m_2, ... m_k, n\rangle$$

The m's label the energy states of each ion

n labels the position states of all ions

We also say that we have n **phonons** in the system

Quantised vibrations of the ions

Depending on the type of ion qubits we have, changing their state is done with either lasers or RF radiation

Laser can be used to perform single-qubit gates on one ion

But also 2-qubit gates by entangling its energy state to the position state!

Let's look at one ion

Shine a laser of frequency

$$\omega = \omega_{ex} + \omega_{ph}$$

For some time t

$$|0,0\rangle \rightarrow a(t)|0,0\rangle + b(t)|1,1\rangle$$

This will entangle the ion's energy state to the phonon modes

(technically, we might want to use a 3-level atom)

Entangle ion to phonon modes

Entangle another ion to phonon modes

We've entangled 2 ions!

With frequencies around ω_{ex} we can do single qubit operations

For measurement, excite ion to a level where it is likely to spontaneously decay

Error rates for gates

Depends a lot on the implementation

For single-qubit gates, generally very good

$$0.001\% - 0.1\%$$

Same for measurement

For two-qubit gates

$$1\% - 20\%$$

Coherence times on the order of seconds and even minutes!

In 2017, a single-qubit quantum memory lasting 10 minutes

Coherence times go down for larger systems

To date, largest entangled state on ions 14-qubits

Reported coherence time scaling for k ions $\frac{1}{k^2}$

Scalability is tricky, due to phonon interactions

Other implementations

Optical

Nuclear magnetic resonance

Hybrid (optical + ion traps)

Energy levels and image on slide 11

https://en.wikipedia.org/wiki/Energy_level https://physics.stackexchange.com/questions/188883/why-dothe-size-of-gaps-energy-between-different-energy-levels-ofmercury-hg-var

Superconducting qubits

https://arxiv.org/pdf/cond-mat/0411174.pdf
http://qulab.eng.yale.edu/documents/talks/DevoretAPS_Tutorial_090316s.pdf
https://qudev.phys.ethz.ch/content/courses/QSIT11/
QSIT11_V05_slides.pdf

Source for images on slides 31, 33, 34

http://clelandlab.uchicago.edu/pdf/ geller%20cleland%20qc%20architecture%20pra%202005.pdf

Video lectures on superconducting qubits

https://www.youtube.com/watch?v=t5nxusm_Umk https://www.youtube.com/watch?v=KOZCPI_DyDU https://www.youtube.com/watch?v=c9WkyY5XSTw https://www.youtube.com/watch?v=3c4xotTuIwE https://www.youtube.com/watch?v=9ZJk2760KPE

Josephson junction and images on slides 21, 22, 23

https://en.wikipedia.org/wiki/Josephson_effect http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Squid.html

Decoherence

https://en.wikipedia.org/wiki/Quantum_decoherence https://plato.stanford.edu/entries/qm-decoherence/ https://www.scottaaronson.com/democritus/lec11.html

Gate errors and coherence times for IBM

https://quantumexperience.ng.bluemix.net/qx/devices

Gate errors and coherence times for Rigetti

http://docs.rigetti.com/en/stable/qpu.html

Gate errors and coherence times for Google

https://www.youtube.com/watch?v=SCTGI5aGqJU https://www.wired.co.uk/article/googles-head-of-quantumcomputing

D-Wave coherence times

https://arxiv.org/pdf/1503.08955.pdf

https://arxiv.org/pdf/1512.07617.pdf

Ion trap quantum computing

https://qudev.phys.ethz.ch/phys4/studentspresentations/iontraps/CiracZoller1995.pdf

https://en.wikipedia.org/wiki/Trapped_ion_quantum_computer https://www.icfo.es/images/publications/Proc.06-002.pdf Section 7.6 in Nielsen and Chuang

More on ion traps and images from slides 42, 43

https://physics.aps.org/articles/v7/119 https://quantumoptics.at/en/news/72-scalable-multiparticleentanglement-of-trapped-ions.html

Hyperfine energy levels and image on slide 45

https://en.wikipedia.org/wiki/Hyperfine_structure https://en.wikipedia.org/wiki/Hydrogen_line

Position quantisation (particle in a box) and image on slide 46

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/pbox.html https://en.wikipedia.org/wiki/Particle_in_a_box

Ion traps gate errors and coherence times

https://physics.aps.org/featured-article-pdf/10.1103/ PhysRevLett.113.220501

https://arxiv.org/pdf/1512.04600.pdf

https://arxiv.org/pdf/1701.04195.pdf

14-qubit entangled state on ions

https://arxiv.org/pdf/1009.6126.pdf

Optical quantum computing

https://arxiv.org/pdf/quant-ph/0512071.pdf https://en.wikipedia.org/wiki/Linear_optical_quantum_computing

NMR quantum computing

https://en.wikipedia.org/wiki/

Nuclear_magnetic_resonance_quantum_computer http://science.sciencemag.org/content/277/5332/1688

NQIT

https://nqit.ox.ac.uk/

https://nqit.ox.ac.uk/content/ion-traps

https://nqit.ox.ac.uk/content/atom-photon-interfaces

Section 7 of Nielsen and Chuang

Images on slide 53
http://quantum.opticsolomouc.org/archives/876
https://www.msconnection.org/Blog/June-2015/(Not)-The-Sound-Of-Music