Quantum Computation & Cryptography Day 3

Post-quantum cryptography

Let's be a bit more precise

$$KeyGen: \mathcal{S} \to \mathcal{K} \times \mathcal{K}$$

$$KeyGen(seed) = (PK, SK)$$

$$Enc: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$$

Not necessarily a function (might use randomness)

$$Dec: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$$

Properties we want

KeyGen, Enc, Dec computable in (classical) polynomial time $\forall (PK, SK) \in Range(KeyGen),$

$$\forall M \in \mathcal{M}, Dec(SK, Enc(PK, M)) = M$$

KeyGen, Enc, Dec computable in (classical) polynomial time $\forall (PK, SK) \in Range(KeyGen),$

$$\forall M \in \mathcal{M}, Dec(SK, Enc(PK, M)) = M$$

Denote as PPM the set of probabilistic poly-time machines/algorithms

Given any two messages M_1 and M_2 it must be that

$$\forall A \in PPM$$

$$|Pr[A(PK, Enc(PK, M_1)) = 1] - Pr[A(PK, Enc(PK, M_2)) = 1]|$$
< small

KeyGen, Enc, Dec computable in (classical) polynomial time $\forall (PK, SK) \in Range(KeyGen),$

$$\forall M \in \mathcal{M}, Dec(SK, Enc(PK, M)) = M$$

Denote as PPM the set of probabilistic poly-time machines/algorithms

Given any two messages M_1 and M_2 it must be that

$$\forall A \in PPM$$

$$Pr[A(PK, Enc(PK, M_1)) = 1] \approx Pr[A(PK, Enc(PK, M_2)) = 1]$$

Computational (semantic) security

These properties can be achieved with trapdoor one-way functions

One-way function

$$f: \mathcal{X} \to \mathcal{Y}$$

The function can be evaluated in polynomial-time

Hard to invert efficiently

$$\forall A \in PPM, Pr[A(f(x_1)) = 1] \approx Pr[A(f(x_2)) = 1]$$

What about the trapdoor?

Trapdoor one-way function

$$(f,T)$$
 where $f: \mathcal{X} \to \mathcal{Y}, T \in \mathcal{T}, s.t.$

f is a one-way function

There exists a PPM M such that

$$\forall y \in Range(f), M(T, y) = x, f(x) = y$$

Trapdoor information allows you to invert the function efficiently

$$(f,T) \to (PK,SK)$$

$$Enc(PK, \cdot) = f(\cdot)$$
$$Dec(SK, \cdot) = M(T, \cdot)$$

Do such functions exist?

We think so, but there is no proof

$$f(x, n, l) = x^{l} \mod n$$

$$n = p \cdot q, l \text{ co-prime with } (p - 1)(q - 1)$$

This is the RSA function

For I=2, can be shown that inverting f is equivalent to factoring n

No known poly-time classical algorithm

But there is Shor's algorithm

One-way functions are based on NP problems

A problem is in **NP** iff the solution can be checked in classical polynomial time

Example

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

One-way functions are based on NP problems

A problem is in **NP** iff the solution can be checked in classical polynomial time

Example

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	ന	4	8
1	9	8	ന	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	80	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

One-way functions are based on NP problems

A problem is in **NP** iff the solution can be checked in classical polynomial time

Recall that **P** is the class of problems whose solution can be found in classical polynomial time

Clearly
$$P \subseteq NP$$

The million dollar question

$$P \stackrel{?}{=} NP$$

Conjectured relationship between classes

Conjectured relationship between classes

What about quantum computations (BQP)?

Conjectured relationship between classes

Can we find one-way functions that are hard to invert for quantum computers as well?

Lattice problems

Lattices

What is a lattice?

Essentially a discrete vector space

Lattices

Let $\mathbf{B} = \{v_1, v_2, ... v_n\}$ be a basis of \mathbb{R}^n

Then, a lattice is the following

$$\mathcal{L}(\mathbf{B}) = \{a_1v_1 + a_2v_2 + \dots + a_nv_n | a_1, a_2, \dots a_n \in \mathbb{Z}\}$$

Input:
$$\mathbf{B} = \{v_i\}_{i \leq n}$$

Output:
$$\{a_i\}_{i \leq n}$$
 $a_i \in \mathbb{Z}$

Such that for
$$w = \sum_{i=1}^{n} a_i v_i$$
 it must be that

$$w \neq 0$$

w is (one of) the shortest vector(s) in ${f B}$

Input:
$$\mathbf{B} = \{v_i\}_{i \leq n}$$

Output:
$$\{a_i\}_{i \leq n}$$
 $a_i \in \mathbb{Z}$

Such that for
$$w = \sum_{i=1}^{n} a_i v_i$$
 it must be that

$$w \neq 0 \qquad ||w|| = l_{min}$$

Input:
$$\mathbf{B} = \{v_i\}_{i \leq n}$$

Output:
$$\{a_i\}_{i \leq n}$$
 $a_i \in \mathbb{Z}$

Such that for
$$w = \sum_{i=1}^{n} a_i v_i$$
 it must be that

$$w \neq 0 \qquad ||w|| = l_{min}$$

Shortest Vector Problem (SVP)

If you can solve it in poly-time, you can solve any **NP** problem in poly-time

Input:
$$\mathbf{B} = \{v_i\}_{i \leq n}$$

Output:
$$\{a_i\}_{i \leq n}$$
 $a_i \in \mathbb{Z}$

Such that for
$$w = \sum_{i=1}^{n} a_i v_i$$
 it must be that

$$w \neq 0 \qquad ||w|| = l_{min}$$

Shortest Vector Problem (SVP)

Problem is **NP**-hard

There's also a similar problem called

Closest Vector Problem (CVP)

$$SVP_{\gamma}, \ \gamma \geq 1$$

Input:
$$\mathbf{B} = \{v_i\}_{i \leq n}$$

Output:
$$\{a_i\}_{i \leq n}$$
 $a_i \in \mathbb{Z}$

Such that for
$$w = \sum_{i=1}^{n} a_i v_i$$
 it must be that

$$w \neq 0$$
 $||w|| \leq \gamma \cdot l_{min}$

For constant γ this is still **NP**-hard*

For $\gamma = poly(n)$ best algorithms require $2^{O(n)}$ time and space

 $SVP_{poly(n)}$ seems like a good candidate for post-quantum crypto!

Average case vs. worst case

Complexities we've mentioned refer to worst case

In practice we care about average case

Expected running time averaged over all inputs

Why average case?

Instances we generate are usually random

Might be difficult to find the worst case instances

Parameters

Dimension $n, q = poly(n), m = O(n log(q)), \mathcal{E}$ error distribution

$$\mathcal{E}: \{0, 1, ...q - 1\} \to [0, 1] \qquad \sum_{x} \mathcal{E}(x) = 1 \qquad \sqrt{n} \le std(\mathcal{E}) \ll q$$

Error distribution is typically a discrete Gaussian

Parameters

Dimension $n, q = poly(n), m = O(n log(q)), \mathcal{E}$ error distribution

$$\mathcal{E}: \{0, 1, ...q - 1\} \rightarrow [0, 1]$$

$$\sum_{x} \mathcal{E}(x) = 1 \quad \sqrt{n} \le std(\mathcal{E}) \ll q$$

Error distribution is typically a discrete Gaussian

Problem

Let
$$e \leftarrow_R \mathcal{E}^m$$

Input:
$$A \in \mathbb{Z}_q^{m \times n}, b \in \mathbb{Z}_q^m, \mathcal{E}$$

$$b = (As + e) \bmod q$$

Output: $s \in \mathbb{Z}_q^n$

Example from O. Regev's survey paper https://cims.nyu.edu/~regev/papers/lwesurvey.pdf

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + 1s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$
Say the error is ± 1

Example from O. Regev's survey paper https://cims.nyu.edu/~regev/papers/lwesurvey.pdf

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + 1s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$
Say the error is ± 1
 $s = (0, 13, 9, 11)$

What does LWE have to do with lattices?

$$SVP_{poly(n)} \leq LWE$$

Quantum

worst case $SVP_{poly(n)} \leq_Q$ average case LWE

LWE can be used for many crypto applications (PK crypto, SK crypto, signatures, hash functions etc)

worst case $SVP_{poly(n)} \leq_Q$ average case $LWE \leq$ crypto

Public-key crypto based on LWE

$$KeyGen(1^n)$$

Samples A, s uniformly at random and e from error distribution

$$KeyGen(1^n) \rightarrow (PK, SK)$$

$$SK = s, PK = (A, b = As + e)$$

Assume message, M, is one bit

$$Enc(PK, M) \rightarrow (u, v)$$

Sample a *short* vector $r \in \{0, 1\}^m$

$$u = r^T A, \quad v = \langle r, b \rangle + M \cdot \lceil q/2 \rceil$$

$$SK = s, PK = (A, b = As + e)$$

$$Enc(PK, M) \rightarrow (u, v)$$

Sample a *short* vector $r \in \{0, 1\}^m$

$$u = r^T A, \quad v = \langle r, b \rangle + M \cdot \lceil q/2 \rceil$$

$$Dec(SK, (u, v)) \to M'$$

$$M' = \begin{cases} 0, & \text{if } ||v - \langle u, s \rangle|| \le q/4\\ 1, & \text{otherwise} \end{cases}$$

Some real parameters

$$n = 64, q = 251, m = 1024$$

Then A will have 65536 elements

Each element requires 8 bits to store

The public key will be at least 64KB!

Can LWE be made to have smaller keys?

Yes

Ring Learning With Errors (R-LWE)

$$R_q = \mathbb{Z}_q/(x^n + 1)$$

Polynomials of degree at most n, with coefficients mod q

$$a, b, s, e \in R_q$$

such that

$$b = a \cdot s + e$$

e is drawn from some gaussian distribution over polynomials

Find s!

$$n = 64, q = 251$$

Keys require only 64 bytes

Ring Learning With Errors (R-LWE)

worst case $SVP_{poly(n)}$ \leq_Q average case $R-LWE \leq crypto$ on ideal lattices

$$\mathcal{I} \subseteq \mathbb{Z}/(x^n+1)$$

 $(\mathcal{I},+)$ subgroup of $\mathbb{Z}/(x^n+1)$

Ideal lattice problem still seem hard

But research is ongoing

A new hope (2015)

A new hope

Elements Console	Sources Network Timelin	ne Security » : X					
© Overview	https://play.google.com <u>View requests in Network Panel</u>						
Main Origin	Connection						
https://play.google.com							
0	Protocol	TLS 1.2					
Secure Origins	Key Exchange CECPQ1_ECDSA						
https://www.gstatic.com	Cipher Suite	AES_256_GCM					
https://lh3.googleusercontent.co							
https://ajax.googleapis.com	Certificate						
https://www.google-analytics.co							
https://ssl.gstatic.com	Subject	*.google.com					
https://fonts.gstatic.com	SAN	*.google.com					
https://apis.google.com	*.android.com						
https://books.google.com		Show more (52 total)					
https://lh6.ggpht.com	Valid From	Thu, 30 Jun 2016 14:58:20 GMT					
https://lh5.ggpht.com	Valid Until	Thu, 22 Sep 2016 14:53:00 GMT					
https://www.google.com	Issuer	Google Internet Authority G2					
https://clients5.google.com	SCTs 2 valid SCTs						
https://clients2.google.com							
https://lh6.googleusercontent.co		Open full certificate details					
https://payments.google.com							
https://plus.google.com	Certificate Transparency						

Another implementation

A version of LWE with many many optimisations

It's plain LWE not R-LWE

Frodo (2016)

Only 2x slower than ECDH

$$f: \{0,1\}^m \to \{0,1\}^n$$

Server

Enc, Dec should be efficient for the client

Can be done with LWE!

Efficiency of Enc, Dec independent of efficiency of f

Check out

https://github.com/shaih/HElib

References and resources

Semantic security

https://en.wikipedia.org/wiki/Semantic_security https://lucatrevisan.wordpress.com/2009/01/22/cs276-lecture-2semantic-security/

Crypto references

http://theory.stanford.edu/~trevisan/books/crypto.pdf
https://www.amazon.com/Introduction-Modern-CryptographyPrinciples-Protocols/dp/1584885513
https://crypto.stanford.edu/~dabo/cryptobook/

Scott Aaronson's survey on P vs NP

https://www.scottaaronson.com/papers/pnp.pdf

References and resources

Complexity and quantum computing

https://www.scottaaronson.com/democritus/lec10.html

Lattice problems and LWE

https://www.youtube.com/watch?v=FVFw_qb1ZkY https://www.youtube.com/watch?v=Fp-liVpgDlc https://cims.nyu.edu/~regev/papers/qcrypto.pdf https://en.wikipedia.org/wiki/Learning_with_errors

Reductions and crypto protocols based on LWE

https://people.csail.mit.edu/vinodv/6876-Fall2015/L13.pdf

Fully homomorphic encryption

https://www.youtube.com/watch?v=O8IvJAIvGJo https://en.wikipedia.org/wiki/Homomorphic_encryption https://crypto.stanford.edu/craig/craig-thesis.pdf https://people.csail.mit.edu/vinodv/6876-Fall2015/L14.pdf