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Day 3

Quantum algorithms
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States

Transformations

Composition

Observation
(measurement)

Recap

Unit vectors in a ) €H
complex vector space  ||[¥)|]* =1

Unitary operations  UU' =UU =1

Tensor product  Hap = Ha ® Hp

Orthonormal bases  {|z)},z € {0,1}"



Recap

X10) = 1) X|1) = 10)

HI|0)=1]+)  H[1)=[=)

CNOT|x)ly) = |z)|lx D y)

Urlz)|y) = |2)|ly ® f(x))

for some
f:{0,1}" — {0,1}




Recap

Deutsch-Josza problem and algorithm

f:40,1}Y = {0, 1}

|s it constant or balanced”

v — w
) w

Measure first N gubits

If all zeroes, then function is constant,
otherwise balanced



Generalising the function gate

What about f: {0,1}" — {0,1}™ 2

)
'y @ f(x))

N qubits - |x)

M qubits - |y)

Uslz)|y) = |2)|ly ® f(x))

We'll only consider functions of the form

f:{0,1}Y — {o,1}"



Simon’s problem

Consider a function of the form
{0,137 = {0,137

that Is promised to be either 1-to-1
or 2-to-1 and periodic

1-to-1
\V/Q?1,5172 -~ {O, 1}N,f(a;'1) — f(CEQ) < 1 = I9

2-to-1 with period s
3s € {0, 1}, s £ 0V, Vai, 20 € {0, 1}, 21 # v,

f(rx1) = f(x2) < x1=22FP s



Simon’s problem

Consider a function of the form
{0,137 = {0,137

that Is promised to be either 1-to-1
or 2-to-1 and periodic

1-to-1
\V/Q?1,5172 -~ {O, 1}N,f(a;'1) — f(CEQ) < 1 = I9

Simon function
3s € {0, 1}, s £ 0V, Vai, 20 € {0, 1}, 21 # v,

f(rx1) = f(x2) < x1=22FP s



Simon’s problem

Consider a function of the form
{0,137 = {0,137

that Is promised to be either 1-to-1
or 2-to-1 and periodic

1-to-1
\V/Q?1,5172 -~ {O, 1}N,f(a;'1) — f(CEQ) < 1 = I9

Simon function
3s € {0, 1}, s £ 0V, Vai, 20 € {0, 1}, 21 # v,

f(rx1) = f(x2) < x1=22FP s

Determine the function’s type!



Simon’s problem

Some examples first...

Vo e 0,1}, f(z) =
This is a 1-to-1 function
vz € {0, 1}V, g(z) = g(z ® 1Y) = min(z,z @ 1Y)

This is a Simon function

ake N = 2
(00) =00 f(01) =01 g(00) =00 ¢(01)
(10) =10 f(11) =11 g(10) =01 g¢g(11)



Simon’s problem

Some examples first...

Vo e 0,1}, f(z) =
This is a 1-to-1 function
vz € {0, 1}V, g(z) = g(z ® 1Y) = min(z,z @ 1Y)

This is a Simon function

ake N =2



Simon’s problem

1-to-1 function

g

Essentially just a
permutation

(

(

® C @ (

\4

s = 010

v

Simon function




Simon’s problem

We're going to solve this by trying to find a collision

(z,y) with z # y, f(z) = f(y)

Finding a collision means the function is a Simon function
Otherwise, it's 1-to-1

How many queries classically, deterministically?
2N—1 _|_ 1

Probabilistic vs guantum



Finding collisions

Say we have a 2-to-1 function

How many queries to find a collision
with high probability? (say > 2/3)

Let M =2V

How many collision pairs are there?



Finding collisions

Say we have a 2-to-1 function

Let M =2V
How many collision pairs are there?

000 @ X
001 - ®
010 @& ®
011 - > @
100 \ ®
101 @ @ ®
110 o ®
111 ® ®




Finding collisions

Say we have a 2-to-1 function

Let M =2V
How many collision pairs are there?

M2

ake k (different) random values from {0, 1}

k) k(k — 1)

5) = different pairs

There will be < 5

What is the probability of finding a collision?

k(k — 1)
M

Y
Y




Finding collisions

What is the probability of finding a collision”

k(k — 1)
M

N
Y

We want this to be large

So we take k = O(V/ M)

Thus, we will need on the order of 2/V/2 queries
Birthday paradox

Can be shown that this is optimal



Simon’s algorithm

What about quantumly?

Let's start by creating a superposition of all inputs

QN
" — = Y @)
0)®N 2 x€{0,1} N

Suppose the function is a Simon function

What happens it we measure the second register?



Simon’s algorithm

o) —
: )

Y lf@

xe{0,1}
Suppose the measurement outcome is |2)

What will the first register be?

%(\m} + |r2)) such that 1 =x2 & s, f(x1) = f(z2) = 2



Simon’s algorithm

5 )+ [o2) —

A useful identity

1 N
BNy = o 3 (<))
y€{0,1} ¥

Where...

:c-y:xlyl@atoQ@...@aﬁNyN



Simon’s algorithm

%um [z2)) —

Before measurement, the state will be

2<Ni1>/z D ((F1)™¥ 4 (=172 )y)

yeq{0,1} &V

To =1 DS




Simon’s algorithm

%um |22)) —

s Y (1 ()

2<Ni1>/2 > (T4 (=1)%Y)|y)

yeq{0,1} &V

The only y's we can get are those for which

s-y =20



Simon’s algorithm

To recap, for a Simon function...

" —g _
o)

We obtainy, such that s-y =0

Do it again, and again, and again...

Y1, Y2, ... Yk
y-}sl %5 y%sQ e y{sz =0
YsST DY:° D ... B ys s =0

yllcsl D yzsz T D yéVsN =0



Simon’s algorithm

yist DyYist ... Dy s =0
yist @yis? e . @ ylsN =0

1.1 2.2 N _N
Y.S  DyYps  D...Dyr s =0

Can be shown that if we do this O(k) times
whp we will get k linearly independent equations

Do it O(N) times!
Solve the system

We've found s, with only O(N) queries!



Simon’s algorithm

When we have a Simon function we will
find s whp

When we have a 1-to-1 function, we will
just get random y's

ence, we will get a random s

We only need to check whether
f(0) = f(s)

If so, then algorithm says it's a Simon function
otherwise, 1-to-1 function



Simon’s algorithm

Once again, the key was interference

s Y (DT (1))

ye{0,1}

Pertect destructive interference when s -y =1

Pertect constructive interference whens -y =0
Interference reveals structure about s

Like finding the period of a diffraction grating



Let's break some classical crypto!



Public-key cryptography



Public-key cryptography

Quantum
Computation
and Quantum

Information




Public-key cryptography

| want to buy

Quantum
Computation
and Quantum

_Information -

amazon
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Public-key cryptography
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Public-key cryptography
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Public-key cryptography

| want to buy
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Public-key cryptography
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Public-key cryptography
Many public-key crypto systems
RSA, El Gamal, ECC, lattice-based

All of them are based on the computational
hardness of certain problems

For the attacker to find SK he would have to
solve a "hard problem”

Factoring, computing the discrete logarithm,
learning with errors



Factoring

Input: n =p-q
P, q prime numbers
Output: (p, q)

“The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most

important and useful in arithmetic”
Carl Friedrich Gauss

Note that the number of bits required to represent
our input Is

N =log(n)



Factoring

Classical approaches

Naive approach: try all factors O(y/n) = O(21V/?)

Pollard’s rho algorithm
(uses birthday paradox)

General number field sieve 20(VN)
Sub-exponential time, but still inefficient

No known classical poly-time algorithm

But we have a quantum algorithm, due to Peter Shor



Some group theoretic preliminaries

Integers co-prime with n form a group under multiplication
G ={z € Z|x > 0,lcd(x,n) =1}
For n = p-q Euler showed that
Gl =(p—-1(qg—-1)

Knowing the order of the group and n
lets us find p, Q

Goal: find the order of G



Some group theoretic preliminaries

Let g € G

Smallest k such that ¢* mod n =1 is called the order of g

Lagrange showed that the order of an element always
divides the order of the group

|dea: take a bunch of group elements and compute
the Icm of their orders

What will that be, with high probability?
G

A constant number of elements Is sufficient



Factoring

We've reduced factoring to finding the order of an
element in G

Order finding

Input: n=p-q, g

Output: smallest k, s.t. ¢* modn =1

Remember that N = log(n)

We want an algorithm that is polynomial in N



Shor’s algorithm

|dea and an anecdote
f:G—G
f(z) = g*” mod n

Since ¢" modn =1
f(x) = f(z+ k)
Find k!

Sound familiar?



Shor’s algorithm

Consider the state

> |21 f(x))

Suppose we measure the second register and get |f(z))
What will the first register be?

2) 4 |2+ k) + |2+ 2k) + ...

For Simon we used: HEV|[z) =) (—1)"¥|y)
Y

Here, we're going to use the
Quantum Fourier Transform (QFT)



Quantum Fourier Transform

Discrete Fourier Transform

L1y L2y .. LM DET > Y1,Y2, ... YN

M
1 ., |
J /_7‘ [ g:l: W &

Now Imagine the x's are amplitudes
M M
QFT (Z $kk>) = yilk)
k=1 k=1

QFT|z) = Y w™ly)
Y



Shor’s algorithm

What happens if we apply QFT on the state
2)+ |z +k)+ |2+ 2k) + ...

Y
> w1+ + M+ )y)
Y

It we measure this state, probability of seeing y Is

E :wjky

J

2




Shor’s algorithm

2
E :wjky
J

When w*¥ = 1 the sum is maximal

What about the other cases”?



Shor’s algorithm

E :wjky
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Shor’s algorithm

2
E :wjky
J

When w*¥ = 1 the sum is maximal

What about the other cases”?

The sum will approach O
(interference strikes again)

We are likely to see y’s for which w”*¥ = 1

m2N

This means that y will be close to

For some integer m



Shor’s algorithm

Repeat the following multiple times

Create ) _|x)|f(x))

Measure second register
Apply QFT to first register

Measure first register

m12N TTLQQN m32N
kK~ k7 k

Use modular multiplicative inverse and GCD to find k



Recapping Shor’s algorithm

Factoring < Order finding
Order finding = Period finding
Do pretty much the same as in Simon’s algorithm
Complexity will be O(N?)
Hadamard replaced with QFT
In Simon we were looking for periods over binary strings

In Shor we were looking for periods over integers mod n

Seems like something more general is at play



Hidden Subgroup Problem
Input: (G, +),f: G — G

G Is a group and f is a function such that

There exists a subgroup H of G and...

flg)=fg+h) < heH

Output: efficient description of H
By efficient we mean a list of generators

We are assuming G was also presented
as a list of generators



Hidden Subgroup Problem

Simon’s problem
G={0,1", +=¢ H=1{s,0V}

Order finding
G={0,1,..n—1},+ =+ mod n, H = {x € G|g* modn =1}

For some element g for which we want to find the order

Note that this G is not the same group
as the one that g iIs from

Note that both groups are abelian!



Abelian Hidden Subgroup Problem

Efficient guantum
algorithm for AHSP

Generalise Shor ——
No known etticient classical algorithm for AHSP

Computing the discrete logarithm is also an
instance of AHSP

This compromises security of
Diffie-Hellman, RSA, El Gamal, ECC and others

What about the non-abelian case”



Non-abelian Hidden Subgroup Problem

Quantum computers can almost solve it
hitps://people.eecs.berkeley.edu/~vazirani/s09guantum/notes/

lecture11.pdf
No one knows how to overcome the “almost”

People have looked at specific groups

Dihedral group, 2°VY) algorithm due to Kuperberg
https://arxiv.org/abs/quant-ph/0302112

Hope for guantum-secure cryptosystems?


https://people.eecs.berkeley.edu/~vazirani/s09quantum/notes/lecture11.pdf
https://people.eecs.berkeley.edu/~vazirani/s09quantum/notes/lecture11.pdf
https://arxiv.org/abs/quant-ph/0302112

References and resources

Birthday paradox
hitps://en.wikipedia.org/wiki/Birthday_problem

Pollard’s rho algorithm
hittps://en.wikipedia.org/wiki/Pollard%27s rho algorithm

Simon & Shor
https://www.youtube.com/watch?v=EQKt hyk2h8
https://www.scottaaronson.com/blog/?p=208

Lecture notes on public-key crypto and
quantum algorithms
http://stellar.mit.edu/S/course/6/sp15/6.045/materials.html
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