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“ a (] n Move to Inbox LY More

Get A Free Experian Check - www.experian.co.uk - Get The UK's No. 1 Credit Check! Free Experian® 30 Day Trial Now On

In case you want to buy Viagra from the Nigerian Prince

Adrian Scoica <adriansc@rosedu.org>
to Adrian |~

Hello,

1 just wanted to wam you not to be tempted to buy Viagra from
Nigerian princes. They are up to nothing but scams!!!

Hope this helps.

Cheers,
Adrian

Intention is more important than content...
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Automatic Spam Detection

Is it a straightforward classification problem?
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> Buy_Vigara Today Purchase Levtira & Vigara - ** Best Products! ** Vigara - 0.895 Levtira - 1§

Cotswold Outdoor News Up to half price sale now on. Save on Rab, Salomon and more... - Cotsu

ACM CareerNews 'ACM CareerNews Alert for Tuesday, February 5, 2013 - February 5. 2013,

but language is a good predictor.



Building a Corpus

Authors compiled the publicly-available PU1 corpus:
@ 618 legitimate messages
@ 481 spam messages

Real emails
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Building a Corpus

Authors compiled the publicly-available PU1 corpus:
@ 618 legitimate messages
@ 481 spam messages

Real emails, but encrypted due to privacy issues:

From: spammer@spamcompany.com Subject: 1234
To: spamtarget@provider.com 5671248934
Subject: Get rich now ! =

Click here to get rich ! Try it now !

= Paper focuses on word-features only.
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XDoc = <X17 X2, X3, "-Xn>

. . . 1 word; € Doc
using only binary, word-only attributes x; =

0 otherwise
which have the highest mutual information with the class variable, C

P(X=x,C=c
5 P(X:X,C:C)/ng()((:x)P(C:l)

x€{0,1},c€{spam,legitimate}

Using the Naive Bayes assumption, we can compute:

P(spam) * [[i_; P(Xi = xi|spam)
Zce{spam,legitimate} P(C = C) H?:l P(Xi = Xi| C= C)

P(spam|Xpoc) =
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Naive Bayes Classifiers

Evaluating Spam Filters

In spam filtering, precision if more important than recall.

Blocking a legitimate message is A times more expensive than letting a
spam message pass, so when do we block?
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Naive Bayes Classifiers

Evaluating Spam Filters

In spam filtering, precision if more important than recall.

Blocking a legitimate message is A times more expensive than letting a
spam message pass, so when do we block?

P(spam|Xpoc) . o
Pllegitimatezngy > A € P(spam|Xpoc) > t = 137

The paper uses threshold t to analyze three scenarios:

t =0.999 t=0.9 t=05
cautious ¢ average — aggressive

How do we evaluate performance? WErr = 20=stns—i

AN, +Ns
. . . . . WE rbaseline o Ns
Comparing to the baseline (no filter): TCR = “5p—— = 5, — 7 —
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Results

Filter used t No. attr. TCR
(a) NB (bare) 0.5 50 4.90
(b) NB (stop-list) 50 4.95
(c) NB (lemmatizer) 100 4.29
(d) NB (stop-list + lemmatizer) 100 4.53
Keyword patterns - 2.01
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Results
Filter used t No. attr. TCR
(a) NB (bare) 0.5 50 4.90
(b) NB (stop-list) 50 4.95
(c) NB (lemmatizer) 100 4.29
(d) NB (stop-list + lemmatizer) 100 4.53
Keyword patterns - 2.01
(a) NB (bare) 0.9 100 2.20
(b) NB (stop-list) 150 2.28
(c) NB (lemmatizer) 100 2.83
(d) NB (stop-list + lemmatizer) 100 2.56
Keyword patterns - 1.40
(a) NB (bare) 0.999 700 0.15
(b) NB (stop-list) 700 0.15
(c) NB (lemmatizer) 50 0.11
(d) NB (stop-list + lemmatizer) 600 0.11

Keyword patterns - 0.04




Results

How many attributes do we need?
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How many attributes do we need?

TCR
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Results

How many attributes do we need?

0.40
—&— NB, no lemmatizer, no stop-list
0.35 ==+ NB, no lemmatizer, top-100 stop-list
0.30 —+— NB, with lemmatizer, no stop-list H
--#-- NB, with lemmatizer, top-100 stop-list
0.25 —k— keyword patterns 1

0.00 +— — T — T — T
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number of retained attributes

TCR of'the filters for t=0.999 (1=999)
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Results

How much training data is enough?

TCR

6.0 —&—NB, lambda = 1, 50 atributes, no lemmatizer, with stop-list
§.5 - - & NB, lambda = 9, 100 atiributes, with . no stop-list
—&— keyword patterns, lambda = 1, entire corpus
5.0 H % keywerd patterns, lambda =9, entire corpus
4.5 1
4.0 1
3.5
3.0 1
2.5 4
088 —8—8—~8—8—F7—5—~1
15 s e e e ¢ 57
1.0 7
0.5 4
0.0 T T T T T T T T 1
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

size of training corpus (100% is 989 messages)

TCR for variable size of training corpus
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Conclusions

Paper key points and contributions:

Introduces cost-sensitive evaluation.

Proves effectiveness of automatic spam filtering.

Proves stop-lists don't improve performance with Ml attribute
selection.

Shows classifiers are trainable even with small amounts of data.

Thank you!
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